
UC Irvine
ICS Technical Reports

Title
Design considerations for limited connectivity VLIW architectures

Permalink
https://escholarship.org/uc/item/7sw1j85n

Authors
Capitanio, Andrea
Dutt, Nikil
Nicolau, Alexandru

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sw1j85n
https://escholarship.org
http://www.cdlib.org/

Design Considerations for Limited Connectivity
VLIW Architectures*

Andrea Capitanic^Nikil Dutt, Alexander Nicolau
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92717

Technical Report ?^92-59

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

'This work was supported in part by the Italian "Dottorato di Ricerca Program, NSF grant
CCRS704367. MIP9009239 and ONR grant N0001486K0215.

z

(ofcj
(Li

^6. ')3-'5f

1 Introduction

VLIW niacliine approaches have received great interest recently, due to the fact that they are

inherently suitable architectures for exploiting the parallelism extracted by fine-grain compilers

that look beyond basic blocks [15] [24] [8]. The ideal VLIVV machinehas a number of concurrently

executing functional units fed by a memory with a large data-bandwidth that can issue two

operands per functional unit and perform one write per functional in each cycle [11] [14] [25] [24]

[16]. Furthermore, smaller feature sizes for VLSI, together with better yields for large die sizes

allow us to realize several million transistors and hence multiple FUs and RFs on a single chip or a

multi-chip module (MCM). This trend of large-capacity chips and MCMs is expected to continue,

making the realization of a complete VLIW on a chip a distinct feasibility in the near future.

A few commercial VLIW-like machines have already appeared on the market. Early examples

of this approach are the Intel i860 [3] [18] that can issue two operations per cycle, the IBM System

6000 [26] that can execute 4 operations concurrently, and the Multiflow TRACE [9] which was

designed to allow the concurrent execution of up to 28 operations per cycle. Although all of these

architectures pursue the goal of executing multiple operations concurrently, none of them has been

built using the "ideal" VLIW architecture.

The variations are necessary because the practical implementation of the ideal VLIW model is

constrained by several technological considerations, the most critical being the inability to build

a register file (RF) that has an excessively large number of ports to store the VLIW code.

Although multi-port memory cell technology has been around for several years [2], there are

no consolidated technologies for building RFs with a large (say more than 16) number of ports

RF [12] [17]. Even if such a large multi-port RF could be built, it may suffer some performance

degradation due to the fact that each memory cell has to drive all output ports (i.e. all data

substreams) in the worst case. Such an overhead may greatly affect the benefits of having a large

number of ports on a RF for achieving large data bandwidth to the multiple functional units in the

VLIW. This exact problem was faced by the designers of the Multiflow TRACE [9], who concisely

noted: ".. any reasonably large number of functional units requires an impossibly large number

of ports to the register file... The only reasonable implementation compromise is to partition the

register files...".

Hence, a more realistic VLIW architecture needs to have its code partitioned into multiple

(port-limited) register files, which we refer to as a Limited Connectivity VLIW architecture. Sev

eral benefits accrue from using this architecture. The first and most important, of course, is

realizability. The second is scalability: each VLIVV partition can be built and replicated to fit

the size of the final machine. The third is the choice of designing a partition using standard,

off-the-shelf, low-cost components, or using a custom/semi-custom design approach. Finally, the

partitioned VLIW scheme enhances testability and maintainability, since a faulty partition can

easily be replaced or replicated.

In this paper we describe the necessity for code partitioning in actually realizing VLIVV archi

tectures that can only use port-limited RFs for the storage of VLIVV code. We present a sample

Limited Connectivity VLIVV architecture that uses multiple, port-limited RFs for architectures

that are realizable in CMOS technologies. We describe a code partitioning technique that can

be used to map the ideal VLIW code into this Limited Connectivity VLIW architecture under

different constraints such as a fixed number of partitions, a fixed number of data moves between

partitions and a maximum number of ports per RF partition. The partitioning of code into mul

tiple RFs (each with a limited number of ports) may result in a degradation of performance due

to the extra moves required to transfer data from one partition to another. We therefore present

the results of some experiments using standard benchmarks that allow a designer to perform a

tradeoff analysis between limiting the number of ports in a RF, the size of each RF partition, and

the effects on the performance of the specific VLIW realization.

The rest of the paper is organized as follows. Section 2 presents the limited-connectivity VLIW

model. Section 3 discusses the partitioning scheme. Section 4 describes some experimental results

using standard benchmarks. Section 5 concludes with a summary.

2 Limited Connectivity VLIW Model

The ideal VLIW model can be regarded as a horizontally microcoded engine able to simultane

ously decode and execute different opcodes on different functional units. Each functional unit is

completely equivalent to all the others so that there are no structural dependencies between the

units, yielding a uniform functional unit model [20] [10] [25] [24]. Since the ideal VLIW assumes

that any FU can access any register in a cycle through full connectivity between the FUs and the

registers, we refer to this architecture as Fully Connected VLIW. This is a simple, yet appealing

model extremely useful for code parallelization since one is only concerned with code scheduling.

However, this ideal model is impractical to realize in silicon (except for a limited number of FUs)

due to the large number of ports required by the centralized RF.

A practical solution to realizing the V'LlWs in silicon is to limit the full connectivity between

registers and FUs in an attempt to reduce the number of ports needed by each register file.

This very approach was followed by the Multiflow TRACE design team who experienced this

port-limitation problem, and designed a VLIW with multiple register files [9]. The basic concept

is to trade some of the ideal performance achieved through full connectivity for a simpler data

register structure and shorter clock cycle time. This goal is achieved by using a partitioned

VLIW processor where each cluster has an equal number of FUs. and all FUs within a cluster

are completely connected to a private register file. Communication between different clusters is

achieved through a number of dedicated buses that connect all the register files. We refer to such

a model as a Limiied Connectivity VLIW.

When a register content is required in a cluster different from where it is stored, a specific

move operation must be executed in a previous instruction to copy the data through inter-cluster

data transfer buses. Hence the compiler has to to introduce some move operations to drive these

buses and transfer the contents of a register from one cluster to the other.

It is clear that because of the limited connectivity and the register-to-register moves, the under

lying model of execution no longer resembles a homogeneous shared memory architecture. In fact,

register accesses can take different time lengths, resulting in an additional constraint that prevents

us from achieving the optimal parallelization obtained using an ideal VLIW. However, there are

clear advantages with the Limited-Connectivity VLIW, the most cogent being the feasibility of

actually realizing the machine.

Although much work has been done on for code partitioning in the distributed computing

community [22] [23] [4], very few authors to our knowledge have addressed the issue in the VLIW

domain. The most closely related work i.s the Multiflow TRACE architecture [9].

2.1 A Sample Limited-Connectivity VLIW Architecture

Figure I shows a sample limited-connectivity VLIW consisting of 4 clusters of two functional units

eaich. Within each cluster, the two functional units are completely interconnected to the local RF,

yielding 4 output ports and 2 input ports for functional unit accesses. Furthermore, each RF has

4 additional input ports for inter-cluster data transfers.

The interconnection among RF clusters is accomplished through a number of inter-cluster data

transfer buses that connect output ports of the RF (originally targeted for a FU) to the specific

inter-bank communication input ports present in each register file (the ports on top of the RFs in

lugisicT rik lUpsKrFik

Addiets Bues

Data Biiaef

Figure 1: 4 cluster. 8 FU, 4 inter-bank bandwidth, Limited Connectivity VLIW

Figure I). The availability of an output port of RF for a data transfer during the execution of an

instruction is guaranteed since a move operation keeps the functional unit in the source cluster idle

for that cycle. This can't be done with the destination cluster since the operation slot for the FU

might contain normal operations. Hence an appropriate number of input ports is added to each

register file to achieve the inter-cluster move operations. It is the compiler's task to automatically

insert a move operation by specifying the source and destination register and bank. The source

bank is automatically detected according to the instruction slot in which the move operation is

inserted.

2.2 Architectural Characteristics

In order to analyze the performance and realizability of the Limited-Connectivity VLIW, we

describe and define some architectural characteristics. We define inier-bank communication band

width of the VLIW to be the number of move instructions that can be issued per instruction,

and define relative bandwidth to be the ratio between the communication bandwidth and the total

number of operations that can be issued concurrently.

The number of reserved ports that have to be added to each register file bank is bounded by

two constants; the number of inter-bank communications allowed per instruction and the total

number of functional units in the other clusters. The first constant is intuitively clear, since we

cannot have more than bandwidth communications taking place per instruction, and in the worst

case all instructions are directed to move data to the same register file. The second constant

arises from the fact that tliere is no need to copy a register tlirough an external bus back to the

same bank. Hence there are at most n functional units whose slot can be used to issue a data

movement operation to a same cluster, where n is the total number of functional units in other

clusters (i.e.. the total number of functional units less the number of functional units per cluster).

The number of communications buses required in such architecture is equal to bandividlh. Note

that when the second constant (total #FUs in other clusters) is less than the bandwidth, the buses

are not connected to all input ports: this requires the adoption of a suitable scheme to ensure full

connectivity. The scheme is easily obtained by connecting each bus to all clusters but one, that

is, each RF is connected to bandwidth — different buses.

This architecture requires only a single control unit and a single conditional flags register file,

since each conditional flag can be written by at most one functional unit and can be read only by

the control unit. Hence there is no need to replicate the control and conditional registers.

The main advantage of the described model is in the limited number of ports required by each

RF, and the limited distance that intuitively separates each functional unit from other non-local

RFs. The direct consequence is an improved data-path delay time.

The gain achieved by reducing the number of ports can be attributed to the decrease in total

number of ports, as well as the decrease in the number of output ports. As explained later, the

number of output ports is one of the factors that most influences the cycle time of the registers,

while the total number of ports accounts for the area complexity measures.

The number of output ports required in a limited connectivity architecture is simply the number

of ports required per functional unit (2) times the number of functional units (#FU) over the

number of clusters (#clusters) in which the architecture is partitioned.

The total number of ports instead is:

^FU
imports = 3 * a^FU + i^clusters * m'u\{bandwidth, (#c/usters —1) ♦ -r—;—)

^clusters

where the first term accounts for the number of ports required for the functional units and the

second term represents the number of ports added for inter-bank communication, and, as explained

before, is computed as the number of clusters times the minimum between the bandwidth and the

number of move operations that can be issued concurrently to move data in the same register file.

•It is clear that the number of output ports is a decreasing linear function of the number of clus

ters and that the improvement can be measured as the ratio between the number of output ports

in a limited connectivity architecture and the number in an unlimited connectivity architecture.

This is obviously one over the number of clusters.

' >1

Tiie analysis of tiie total number of ports per cluster is a little more complicated. The ratio

of the number needed in a Limited Connectivity VLIW and the number in a Fully Connected one

can be expressed as:

1 1 , bandwidth i^rhister — I

H^clnsters 3 ' i^cluster

The first term accounts for the percentage of the ports connected to the functional units recjuired

per RF and the second term is the number added to allow concurrent inter-bank communication.

For example, the machine shown in Figure 1 shows 4 output ports per RF, i.e., 50% of the

unlimited connectivity model, and a total of 10 ports, i.e., about the 42% of that in the fully

connected model.

In [7], we provide a detailed analysis of the number of ports needed to build different kind of

architectures by varying the number of functional units, the number of clusters and the commu

nication bandwidth between clusters.

2.3 Register File Complexity Analysis

The major bottleneck in realizing an ideal VLIW comes from the inability to build register files

with a very large number of ports. Accordingly, wedescribe some complexity measures to highlight

the design consideration for multi-port RFs.

Although multi-port memory cell technology has been around for many years [2] [17] [1], only

recently has there been a demand for memories with a very large number of ports, especially due to

the interest in building VLIW architectures. For this reason there are no consolidated technologies

for large, say more than 16-port RFs [12] [17].

The design of a multi-port memory mn follow two approaches: a simple approach based on

the replication of the memory cell access system (suitable for a limited number of ports), and a

more complex one based on a hierarchical structure used to access the cell contents (more suitable

for a large number of ports).

For a VLIW architecture, another important consideration is that a register cannot be written

to concurrently. This is because the ideal VLIW guarantees full connectivity, resulting in the

possibility of multiplewrites to the same register location - and must be avoided by the compiler.

Only concurrent reads are allowed from the same register and in the worst case all the output

ports of a register file can access the same register (i.e. memory cells). This observation allows us

to separate the area related complexity issues (that are dependent on the total number of input

and output ports) from the delay complexity issues (that are related to the number of output
ports on a RF).

In [7] we show that for a large miniber of ports, the access time of a RF can be modeled as
a logarithmic function of the number of output ports. This make.s the number of ports per RF a
fundamental issue for the design of a pipelined architecture where each constituent delay must be
minimized in order to achieve the best overall throughput. We also show that the area complexity
IS a function that grows with the square of number of total ports; this is intuitively explained by
the requirement of the number of tracks required in the the chip layout to route the input/output
port signals across cells.

3 The Partitioning Methodology

Compiling code for a Limited Connectivity VLIW (LC VLIW) Architecture is not a trivial task.
Due to the non-uniform register file access, data stored in a register is not always available to all
the functional units; and code must operate within the boundaries of the clusters. If data from a
/arregister, that is, in a different cluster, is needed, it must first be copied to a /oca/register and
then utilized.

The LC VLIW model thus requires a major modification of the ideal VLIW code. The ideal
VLIW code stream must be partitioned into a number of substreams to be executed on the
architecture clusters. Each of these substreams must be resource-constraint scheduled according
to the architecture ofthe cluster itself. Also, the limited bandwidth needs to be accounted as a

constraint in the scheduling process.

Our goal is to produce code that can be run on aLimited Connectivity VLIW, while minimizing
the slowdown due to the introduction of tiata movement operations. In this paper, we constrain
ourselves to deal with only straight line code loops. This is not a major limitation since in most
scientific code applications, loops are the hot spots that primarily affect the performance and a
large number of such scientific applications can be coded without conditional jumps.

3.1 Problem Definition

We begin by assuming that we already have the code available for an ideal VLIW model - this
is currently generated by the PS compiler developed at U.C. Irvine [25], This ideal VLIW code
serves as a useful reference point for the analysis of our results.

The code for a VLIVV comes in tlie form of an ordered sequence of Very Long Instructions.
Each instruction is divided into anumber of operations, with each operation defining the function
to be performed by adistinct functional unit. The objective of our methodology is to partition the
ideal code so that data flowing from one operation to another in adifferent cluster may happen
only through main memory access, (i.e., through acouple of store/load operations) or through a
specific data movementoperation.

Our approach mpartitioning the code is divided into three successive phases. First, agraph
representation of the loop is generated. Second, a partitioning algorithm is applied to this graph
in order to divide the code in substreams minimizing agiven cost function. Third, inter-substream
data movement operations are inserted and the code is recompacted.

Agraph representation is first built from the code. This is a Directed Cyclic Graph G=
where each operation op in the loop code is biunivocally mapped to a node n e N

through a function n = node{op); E = E, U is the set of directed edges. Each direct data-
dependency, that IS adependency that flow toward the direction of execution, from an operation
opi to an operation op^ through an operand x is mapped to an edge e e Eue = (ni,n2) and
ni = node{opi), nz =node{op2). Each loop-earned dependency from an opi to an op2 is mapped
to an edge e e Ej.e = (ni,n2).

Ais an ordered list of sets such that, operations in the i"- instruction are contained in the set
A,-. This list Arepresents a scheduled partition of the ideal code graph since no operations can
be shared between different instructions. In this way we operate on aschedule-partitioned DOG,
each disjoint subset of which represents an instruction.

The Apartition is needed to preserve the scheduling order that otherwise would be lost if the
code IS mapped on a plain DCG. Operations contained in a set A, are scheduled to be issued
concurrently. Further, within the same loop iteration, ail operations in all sets Aj for j < i are
scheduled to be executed before A, and all operations in all set At for k> i are scheduled to be
executed after Aj.

In each instruction a fixed number of operations max.op - :ij^FU can be issued. If there are
less then maxjjp due to data dependencies, the instruction is filled with nop operations.

II Aj II = max-op, I < f < i^insiructions

The edge set Eof the graph Gsatisfies the following causality property F;

Ve € E'l.e = (n,m), Aj.meAj ^i<j

Ve e E-2,e = {n, m). n e Ai. m€ Aj => i > j

Partitioning of the code requires the creation of anew partitioned graph G' = (A", E', A', 5)
where S={5,,S,||5 =H^cliisters) is abalanced partition of sets where each edge of Gthat goes
from one node in one set of 5. to anode in adifferent set Sj must be replaced by inserting anode
corresponding to the movement operation that has to be performed in order to copy data across
clusters. ^

A" _ UNm where = {Inter Register Bank Coinmunication Movements}, that is N'
IS the union of the set of nodes in graph Gwith the set of nodes corresponding to movement
operations that have to be inserted.

E ={E~{Edges{Si,Sj)])UEn, where E^ ={e,|the head or the tali of a is amove operation}:
is the new set of edges. This represents the original set Eminus the edges that go across parti
tion's sets plus the edges that represent data flow to and from the data movement operations just
inserted. Edges are to be added in order to maintain the Pproperty; i.e., edges in set Ei must
be replaced with a triplet (edge,node,edge) with both edges placed in Ei (both must be direct
dependencies), and edges in E2 must be replaced with a triplet so that one edge is placed in set
El and the other in set E2. In fact each loop carried dependency e=(ni.nj) with A(ni) >A(n2)
can be substituted with two edges e' = where A(n,) >A(n„,.) and
A(nneu,) < A(n2), or A(ni) < A(n„eu,) and A{n„etc) > A(n2). ^

To satisfy this condition it might be necessary to create some new instructions so A' is the new
set of instructions, each of which still contains at most max^p operations.

The set A' may be larger than the set Abecause of the increased number of operations and
the dependencies among the operations.

In this context we say that the partition S is balanced if || Si fl A,- ||< I < i <
" ' ^clusters _ifclusters, l<j< ifinstructions. This condition states that each A.- (i.e.. the set of operations

in the instruction) is partitioned into ffclusters subinstructions, each of which holds at most

#c/ujtcrj operations (i.e., the number of functional units per cluster).
The whole process has to be executed so as to minimize the increase in size of the partition A'.

^in this context cluster will be used to indicate a set of the partition S
=the notation A(ni) >Afnj) is used to indicate that the index of the Aset containing nj is greater then the

index of the set containing nj

3.2 Partitioning Process

The partitioning process is composed of the following successive phases.

Phase 1: Graph Generatiou

The DCG graph is built from the ideal VLIW code and is simplified according to the following

• Immediate constants are removed from the DCG, since these are local to operations, and

therefore do not represent a data movement.

• Loads and Stores of main-memory data are not represented in the graph because of the fully

connected main memory access model. There are no edges in a load/store operation that

represent the flow of data to and from the main memory.

• Communications from the outer loop are disregarded since these are negligible compared

with inner loop dependencies. This is justified because before a loop is entered, data can

be preorganized in such a way that each cluster has all the operands it needs from outside

the loop (the data can be replicated if useful) in its own register file. Successive iterations

will kill the data or continue to use it but in both cases access to data computed outside the

loop is executed only once. Hence this communication is negligible as compared to the data

movements that occur with the loop body for the number of loop iteration executions.

With these (justified) simplications, we are able to insulate the graph within the loop body

from that outside of the loop. At this point, the DCG has been built and modified so that all and

only the data flow movements that mufit be considered for code partitioning are present.

Phase 2: Code Partitioning

The graph partitioning algorithm is applied to the DCG in order to find a minimum partition

cutset. The minimum number of communications is not directly related to the slowdown in the

code since some edges might cause the remainder of the algorithm to lengthen the resulting code

while others might not.

However, the basic idea is that by limiting the amount of communication, we should be able

to limit the number of movement operations to be inserted and therefore minimize the increase in

the cycle time.

The cutset is simplified according to a simple consideration; once data ha-s been moved from

a register file to another it must not be moved again unless the <lata in the destination register

is killed. Therefore we can get rid of unnecessary e<lges by looking through the communications

that take place from the same operation to the same cluster and performing a lifetime analysis to

check for retlundancies.

Phase 3: Recompact Code in Partitions

Once the graph has been partitioned the code must be modified to execute data movements

across partition boundaries only through explicit operations. This is accomplished through a two

step process.

• The first step is to insert, for each edge between different partitions' clusters, an empty

instruction. The subinstruction corresponding to the cluster to which the source operation

is allocated is filled with the movement operation needed (in the case where multiple edges

share the same starting instruction, only a new empty instruction is created).

• The second step is to apply a modified version of the resource constrained scheduler (RCS)

to compact the code and to ensure that no more than the allowed number of movements

operations are in the same instruction. Obviously the RCS is allowed to move operations

only within the code substream to ensure that the current partitioning scheme is maintained.

The resulting code is now consistent with the model of execution adopted: each instruction

contain max^p operations homogeneouslydivided into i^clusters subinstructions. Each necessary

communication between operations in different clusters is accomplished through an explicit data

movement operation, and no more than bandwidth of these operations are allowed per instruction.

We illustrate this approach with a simple example. Figure 3 shows a simple DAG on the left;

this graph corresponds to the following parallelized (ideal VLIW) code:

set a 100 ; set b 10
set c 1 ; nop
loop:

add y a b ; add x c b
mul a y b ; mul c x bft ccO ab;nop

r ccO loop nop
endloop;

Using our approach, the DAG is simplified, partitioned in two substreams, and a necessary

move is added corresponding to the interbank communication. Some preloop code is inserted to

distribute the variable b in both the clusters (variables with suffix i are from cluster i).

Figure 2: A simple DAG

Figure 3: Simplified DCG

The resulting code corresponding to the right side of Figure 3 is:

set al 100 — set c2 1

set bl 10 — nop
preloop:

mov bl b2 — nop
loop:

add yl al bl — add x2 c2 b2
mill al yl bl — imil c2 y2 b2
nop — mov c2 cl
gt ccO al cl — nop
or ccO loop — nop

endloop;

3.3 Algorithm Implementation

The DCG partitioning algorithm is based on the Lee, Park and Kim (LPK) [21], and the Fiduccia

and Mattheyses [13] algorithms. It is modified to improve flexibility and to explore a wider search

space. The detailed algorithm is explained in [5]. A brief outline is given here.

The algorithm is built around three nested loops. The two inner loops repr^ent the determin

istic part of the algorithm and essentially implements the LPK partitioning algorithm.

The innermost loop assigns, in each iteration, a node to the partition that results in the greatest

increase in the cost function. After all the nodes have been a.ssigned. only the assignments that

maximize the overall cost function benefit are accepted, while all the others are discarded. The

central loop controls the repetition of these steps until no further improvement can be achieved.

Some changes were made to ensure that the structure of the code (i.e.. number of operations

per cluster belonging to the same instruction) is not altered. Therefore each complete execution

of the two inner loops starts from a (possibly unbalanced) partition to output, a new balanced

partition whose cost function is minimized.

The third and outermost loop is responsible for widening the search space. The approach is

to randomly select a new starting partition from the best known solution and feed it to the inner

part of the code. This process is governed by a parameter that defines the average distance, that

is the number of nodes allocated to different clusters, of the best solution from the new generated

starting point. This parameter is reduced, according to a monotonic function, at each iteration of

the outermost loop until a new improved solution is found, in which case the process is restarted,

or a threshold is reached, in which case the algorithm terminates.

The basic idea is to increase the search space randomly picking up starting points at a given

distance from the best solution. This process is repeated for decreasing distances with the goal of

exiting local minima.

This technique merges a stochastic approach similar to simulated annealing [19] with a deter

ministic technique as the LPK algorithm with two major advantages: it does not suffer from the

long run times typically required for simulated annealing runs and it widens the search space typi

cally cover by a deterministic approach. The time complexity for the algorithm is superquadratic,

that is 0{N^a{N)) with a{N) = o{N), where N is the number of nodes in the graph.

4 Experiments

The code partitioning methodology was applied to produce code for different configurations of a

Limited Connectivity VLIW architecture. A set of benchmarks consisting of straight line code

loops was used; Livermore Loops #7, #8, #9, #10, #13 the Crale #10 loop, ajid a loop provided

by Motorola Co., named motorola. These benchmarks constitute a good base for experimental

tests since the number of instructions per iteration in the sequential 3-address code spans across

a wide range: from 31 to 218; this provides a good testbed for experimentation since different

speedup behaviors can be observed when different parallelization techniques are applied.

Our experimental results and analysis are drawn from a large design space obtained by varying

three key architectural parameters for the LC VLIW; the number of functional units, the number

of clusters and the number of movement operations allowed per instruction. The ideal VLIW

code was partitioned and compiled into each architectural design point to determine the resulting

performance for a given set of parameters. The design space is clearly not homogeneous since

certain architectural configurations are not meaningful; therefore we constrain the values of the

parameters to only meaningful and consistent triplets.

4.1 Tradeoff Measures

Tables 1 show the number of cycles per loop in the code after it heis been compiled and partitioned

for different architectural models with 1, 2, 3, 4, 6 and 8 functional units. Each row present

results for a VLIW model with different number of FUs, RFs and and Bandwidth. Within the

row there is also an indication of the number of ports required for each register file from that

specific configuration. The percentage figures on the right of each penalty measure indicates the

percentage slowdown with respect the ideal VLIW model with the same number of FUs. Results

were obtained without the renaming.

Some of the benchmarks, especially those with a limited number of instructions, do not scale

linearly with the number of functional units, that is, do not achieve a linear speedup when in

creasing the number of FUs.

Some loops, especially small ones, top the achievable speedup (without renaming) for a small

number of functional units. Because the partitioning algorithm tries to compact code to avoid

inter-RF communication, when the clusters are larger than a certain threshold, the code can be

executed in a limited number of clusters (sometimes even in just one cluster). This results in a

limited amount of communication, yielding a small or even no slowdown.

4.2 Tradeoff Analysis

A preliminary look at the results shows very little sensitivity of the performance penalty to the

relative bandwidth. Therefore the relative bandwidth can be treated as a second order parameter

and can be used to fine tune the final architecture. The most important parameters appear to be

the number of FUs and the number of clusters in the architecture.

Given this fairly large design space, we can use different design goals to guide the tradeoff

analysisof the penalties versus the important architectural parameters. We propose three different

approaches for analyzing the data obtained through our partitioning approach.

• +

= 1leguter file

O =2Kgislec files

= } tEgisterfiles

= 4 legfsier files

2 4 03 10 12 14 16

t +
° +
$ +

Motomla loop

+ =Iregisierfile

D - 2 teguter files

- i Kgistec files

4- =4rsgisier files

2 4 6 S 10 12 14 16

Figure 4: Instructions per iteration vs. number of output ports for LL9 and Motorola loops

The first approach is based on the^ assumption of a limited number of ports for each RF. Note

that this is a practical constraint, particularly important for realizing RFs using current CMOS

design techniques, and is one of the major reasons for going to a LC VLIW architecture.

The achievable gain obtained through the use of partitioned architecture can be visualized by

plotting the penalty data versus the number of output ports for each implementation. Figure 4

shows the plots of the number of steps versus the number of ports using a different number of

RFs for the Motorola and LL9 loops. Note that that a reasonable increase in performance can

be obtained by constraining the number of ports and replicating the largest ideal VLIW model

that can be built with the maximal number of ports. For instance, if we constrain ourselves to

2-output-ports per RF, we can achieve a 55% speedup using a 2-cluster architecture (where each

cluster contains a single FU connected to a RF), and a 98% speedup with 3 clusters.

Although this straightforward approach is useful as a guideline for tradeoff analysis when we

are primarily limited by the number of ports on a RF, we can use other approaches to better

search the entire design space based upon other design goals.

We illustrate the other tradeoff analysis schemes by generating a fairly comprehensive design

space that covers a different number of ports, different number of register files and different

Penalty

Register Files
. 1

Output Ports

Figure 5: Number of instructions vs output ports vs clusters in Motorola loop

communication bandwidths. To get a better understanding of the tradeoff space, we recall the

area/delay complexity figures previously outlined: the area of a RF is roughly proportional to

the square number of ports, while the access time is roughly proportional to the logarithm of the

number of output ports.

Tables 2, 3, 4 and 5 present the ilata for the Motorola and LL9 loops. The penalties are

displayed on a two dimensional matrix: tlie horizontal dimension defines the number of clusters

and the vertical dimension measures the number of ports per register file for that configuration.

The remaining parameters (number of functional units and bandwidth) are printed on the side of

each penalty number. Tables 2 and 3 refer to the global number of ports while Tables 4.and 5 refer

to output ports only. Figure 5 presents the results for the Motorola loop in a three-dimensional

We now propose two other general tradeoff schemes that scan the entire design space in an

attempt to perform tradeoffs. The top-down approach begins with a fully-connected, ideal VLIW

model and investigates the effects of successively partitioning this ideal mo<iel into a number

of VLIW clusters to meet a constraint such as the desired number of clusters. The bottom-up

approach, on the other hand, starts with a small, ideal VLIW. and attempts to replicate tliese

ideal VLIW "slices" to build the target machine; the major goal is then to study the performance

penalty relative to the size of the repUcable VLIW "slice". For the rest of this section, we illustrate

the tradeoff analysis using the top-down approach approach; a similar analysis can be performed

for the bottom-up approach.

Since the top-down approach compares the advantages and disadvantages of splitting an ideal

VLIW architecture, thanks to the complexity figures defined, we can use it to compare more

feeisible LC VLIW design models in terms of the area and access time required by the RFs.

Consider Table 4 which shows the variation of number of instructions per loop to output ports

for the Motorola loop. If we start with a large, e.g., 8-FU idea! VLIW (i.e., with I RF), splitting

the architecture into two results in an increased penalty from 35 to 43 steps, versus 56 steps for

a 4-FU ideal architecture (i.e., with I RF). The two cluster 8-FU architecture and the ideal 4-

FU architecture have the same number of output ports, so it is reasonable (due to our previous

assumptions) that the register access time is about the same. We can therefore conclude that 50%

(43/35) of the achievable speedup in the ideal model (56/35) can be achieved in the partitioned

architecture with the same number of output ports.

We must also consider that for an 8-port RF, the memory cycle time can be squeezed to

loglis) ^times the 16-port cycle time; although this percentage is not directly proportional
to the execution cycle time, this reduction can be used to meet a specification. This weighted

penalty figure for the Motorola loop is displayed in figure 6, where the results of Table 4 are

weighted with the logarithm of the numl)er of output ports.

Partitioning the 8-FU architecture into two allows us to reduce the area of each RF by a factor

of s5 2.25 •*. If we simply duplicate the register file, that is, assign each cluster a register file

with as many registers as in the fully connected model, the total area is almost the same (about the

90% of the original area). This assumption is probably too restrictive since each cluster has half

the FUs and thus probably requires a smaller number of registers. However, it can be considered

as an upper limit for the total area that must be reserved for the registers.

The overall result is that using a 2-cluster architecture, we can design a machine with a 30%

smaller register cycle time and whc»e motorola benchmark code is 22% longer; a smaller area is

^ Refer to section 2.3
*Idem

Register Files

Weighted Penalty

Output Ports

Figure 6: Weighted numberof steps (Instr*log(Out Prt.)) vs. number ofoutput ports for Motorola

loop

needed for the memory and a much smaller number of ports per register file are re(|uired. Table 2
shows 14 total ports for a 8-FU VLIVV with 2clusters versus vs 24 total ports for an ideal 8-FU
architecture. The same configurations require respectively 8 vs 16 output ports, as can be seen
on Table 4. This seems to suggest that we can achieve about the same performance as a fully
connected architecture, but with a smaller amount of area reserved for registers and with the
number of ports significantly reduced.

These results can be improved when a 4-cluster 8-FU model is considered. Table 2 shows It

takes 56 step to execute the Motorola benchmark but because it needs only 4output ports per
RF, the memory cycle time can be cut in half, maybe more, since the 4-output port RF can be
built using a different that is faster as compared to a 16-output port RF. Following the thread
of reasoning outlined above we can conclude that the area can improved by a factor of four, and
although we have to pay a larger cost in terms ofnumber ofregisters because now there are four
register files, it seems reasonable for the substantial improvement achieved. This model can be

compared with the 4-FU fully connected (ideal) VLIW (i.e I RF) that takes the same number

of steps to execute, but has a 50% longer register cycle time due to the larger number of output
ports (8 vs. 4, see Table 4). Hence the partitioned approach still appears to be better in terms of

performance.

Using the bottom-up approach, we can perform a similar tradeoff analysis. If we duplicate a
2-FU ideal VLIW using the interconnection scheme proposed earlier, we obtain a 35% speedup for
a 2-cluster, a 63% for a 3-cluster and a 78% for a 4-cluster architecture; all with the same number

of ports on the RF and hence with the same register access time.

Table 4shows that the 4-cluster B-Ff' VLIW requires the same number of steps to execute the
Motorola loop as the ideal 4-FU VLIW, but with half the number of output ports (that is 4vs 8).
This means a 50% faster register cycle time for the 4-cluster approach. In table 4 it can be seen
that the LC VLIW with 8moves allowed per instruction uses the same number of ports as a ideal
4-FU VLIW requires, but this measure can be improved ifwe allow only 2moves per instruction;
the total number of ports per RF then goes down to 8 (from 12) and the number of steps only
grows by 7%.

A final tradeoff consideration can be made by looking at the Figure 6 that gives a three-
dimensional view of the weighted penalty variation. The figure shows the delay contribution,
calculated as the number of instructions per loop times the logarithm of the number of output
ports in the configuration, ofthe register access to the data-path cycle time.

From this figure, it is clear that the penalty is no longer a monotonic function of the number

of functional units. Note that this penalty now refers to an estimated RF access delay times the

number of steps taken to execute a loop iteration, and hence does not directly relate to a real

execution time. However, this figure suggests that if the RF access time is the major bottleneck for

the system clock cycle, then the fastest VLIW architectures are built by replicating small clusters,

rather than by increasing the number of FUs in the ideal VLIW.

5 Summary

This paper described the need to examine architectural tradeoffs for Limited Connectivity VLIWs,

since the ideal VLIW requires a RF with an unrealizable number of ports. We claim that a

partitioned architecture is a suitable way to design VLIWs since it allowed us to sensibly reduce

the complexity of each cluster with a reasonable amount of execution overhead. The reduced

complexity can be used to exploit better hardware performances and to design components that

can be feasibly implemented.

We presented a sample Limited Connectivity VLIW architecture that uses multiple, port-

limited RFs for architectures that are realizable in CMOS technologies. We described a code

partitioning technique that can be used to map the ideal VLIW code into this Limited Connec

tivity VLIW architecture under different constraints such as a fixed number of partitions, a fixed

number of data moves between partitions and a maximum number of ports per RF partition.

The partitioning of code into multiple RFs (each with a limited number of ports) may result in a

degradation of performance due to the extra moves required to transfer data from one partition to

another. We therefore presented the re.sulis of some experiments using standard benchmarks that

allow a designer to perform a tradeoff analysis between limiting the number of ports in a RF, the

size of each RF partition, and the effects on the performance of the specific VLIW realization.

We presented these results, along with an analysis that provides some insights for architectural

tradeoffs in the actual implementation of these Limited Connectivity VLIWs.

a«iifrf-ss 3 ti\v

liilly conii-:r.-l. 2 ops p.-r msn-. 'l i^orts/UF r.-.unv,!

LL" LL.S LL:.< LLlO
24 %2l L'O 3U7c 35 47 9? 34

I'lilly cQiin- '̂-t-rd. 3 ops per mstr. 0 ports/HF i-eoiiire.-j'
LL8 LLy LLlCI

J« 53 18 17
3 clii.sttrrs, 3 ops p.-r mstr. 5 p.jrts/RF r'.iuire.l

LL8 LLC LLIO
23 27% 8rJ 28 55% 32

!••> 15 312clusters, 4 ops per msfr, 4 moves per insir, 8 ports/RF ivnuiiwi
LLS CL9 Exio ' LL13

1'^ 0% 55 14% 18 20%. 19 2fi% 31
_2c^ters, 4 ops per mstr, 2 moves i>er mstr 8 pnrr«/nF r...,
lt; LL8 ult^ LLIO ixrr
t3 0% 53 14% ta 20% 19 26% 33
4 clusters, 4 ops per mstr. 4 moves per mstr, fi ports/RF reonireH

I LLIO LLI323 35% 79 64% 23 53% 29 93 % 43
•I dusters, 4 ops per mstr. 2 moves per mstr. 5 oorcs/RF rennlreH

n38 LL9 LLIO [Til
23 35% 80 % 23 53% 30 100% 45

I •-onnecr.ed 0 ops per mstr, 18 ports/RF required
LL9 LLIO LL13

_i° 13 13 31
3 clusters, 6 ops per instr, 3 moves per mstr, 8 porta/kF remiir^H

^ LL9 LLIO rL13 "
13% 16 23% 17 30% 34

3 dusters. 6 ops per mstr, 6 moves per mstr in J

I ^ nno ixt^
53 14% 16 23% 17 30% 34

, I. a ops per instr. 24 ports

^ ^ LL9 LUO EXT^46 12 12 31
2 duster (limited connectivity). 8 ops per mstr. 8 moves r>er m;r7~T7-

n:® CO LLTo ^ r { .0
5% 14 18% 15 25% 31

2 duster (limited conrtectivity), 8 ops per mstr, 4 moves ner mstr ifi

TF^ ~ LL9 LTrT LL!31® 0^ 48 5% 14 18% 15 ->5% 31
2 duster (limited connectivity), Sops per instr. 2 moves per itistr. 14"

— "7 It 18% 15 25% 31
4_c^8ter (limited connectivity), 8 ods oerm.srr Kmove, .nc. 1•>
r.r.7 r r a » r « , . . _ : 1LL7 LL8
18 0% 53 15%
4 duster (limited connectivit
LL- LL8
18 0% 53 15%
4 duster (limited connectivit
LL7 LL8
18 0% 55 19%

)• 8 ops per mstr. 4 moves per mstr, 10
LL9 LLIO LL13
_i5 25% 16 33% 34
), 8 ops per mstr, 2 moves per instr, 8 i

cralelO

11

cralelO

9

cralelO

5

cralelO

6

cralelO

6

cralelO
8

cralelO

9

cralelO

3

cralelO

4

cralelO

4

cralelO

3

cralelO
3

cralelO
3

cralelO

0% 3
ports/RF

cralelO

10% 4
ports/RF

cralelO

10% 4
>ort8/RF ~

crale 10

10% 4

mo to l o Ia

218

motorola

140

motorola

70

motorola

110

motorola

56

motorola

74

motorola

74

motorola

98

motorola
98

motorola

41

motorola

62

motorola

61

motorola

35

motorola

43

motorola

43

motorola

43

motorola

56

motorola

60

motorola

62

Table 1: Number of instructions per loop, different configurations

r
4 ports

5 ports
fi ports
7 port's
8 ports

ports
10 ports
11 ports
12 ports
i:i ports
1-1 ports
l"j ports
li) ports
17 ports
IH ports
10 ports
20 ports
2 I ports
22 ports
24 ports

arts 1 RrKistt-r Fik Hv^istrr Fiks :i RemstVr Files -1 K-rKister Fil--
^ l-KJ (2l'ii/2mv)

I10(3fu/3mv)
100 (2rul

70 (3fu)

50 (4rul

41 (6fu)

35 (8fii)

08 (4fii/4mv)

74 (4fu/(2/4)mv) 62 {6fu/3mv) 60 (8fu/2mv)

61 (6fu/6mv) 60 (afu/4mv)

43 (8fu/(2mv)

43 (8fu/(8/4)mv)

56 (8fu/8mv)

Table 2: Number of itistructions vs ports vs clusters Motorola loop

4 ports . 35 (2fu/2mv)
" •"« •

5 ports
- - 28 (3fu/3mv) .

6 ports 23 (2fu)
• - 23 (4fu/4mv)

7 ports
• - - .

8 ports
- 18 (4fu/(2/4)mv) 16 (6fu/3mv) 15 (8fu/2mv)

9 ports 18 (3fu) - . .

10 ports
- - 16 (6fu/6mv) 15 (8fu/4mv)

11 ports
- - .

12 ports 15 (4fu) - . 15 (8fu/8mv)
13 ports - . .

14 ports
- 14 (8fu/{2niv) . .

15 ports - . . _

16 ports
- 14 (8fu/(8/4)mv) -

17 ports - - .

18 ports 13 (6fu) - .

19 ports - - . _

20 ports - . .

21 ports - . .

22 ports - .

24 ports 12 (8fu) - . _

Table 3: Number of instructions vs ports vs clusters LL9 loop

1 ports
2 ports
3 ports
4 ports

5 ports
6 ports
7 ports
8 ports
9 ports
10 ports
XI ports
12 ports
13 ports
14 ports
15 ports
16 ports

gister Fil*?

218 (Ifu)

100 (2ru)

70 (3fu)

56 (4ru)

41 (6fu)

2 Register Files

140 (2fu/2mv)

74 (4fu/(2/4))mv

43 (8fu/(2/4/8)mv)

gi8t«r Files 4 Register Files

110 (3ru/3mv) 98 (4fu/4mv)

62 (6fu/3mv) 60 (8fu/(2/4)inv)
61 (6fu/6mv) 56 (8fu/8mv)

Table 4: Number of instructions vs. output ports vs clusters in Motorola loop

output ports I Refiister File 2 Register Files 3 Register Files 4 Register Files
1 ports - • - -

2 ports 39 (Ifu) 35 (2fu/2mv) 28 (3fu/3mv) 23 (4fu/4mv)
3 ports - • - -

4 ports 23 (2fu) 18 (4fu/(2/4Jmv} 16 (6fu/(3/6)mv) 60 (8fu/(2/4/8)mv)
5 ports - - - -

6 ports 18 {3fu) - - -

7 ports - - - -

8 ports 15 (4fu) 14 (8fu/(2/4/8)mv) - -

9 ports - - - -

10 ports - - - -

11 ports - - - -

12 ports 13 (6fu) - - -

13 ports - - - -

14 ports - - - -

15 ports - - - -

H5 ports 12 (8fu)
- - •

Table 5: Number of instructions vs output ports vs clusters in LL9 loop

References

[1] A. Abnous, C. Chrislensen, J, Gray, J. Lenell, A. Naylor, and N. Bagherzadeh. VLSI Design
of the Tniy RISC Microprocessor. Technical report. University of California, Irvine, I99I.

[2] M,L, Anido, D,J, Allerton, and E,J, Zaluska, Athree-port/ three-acce.ss register file for
concnrrent processing and I/O communication in a RISC like graphics engine. In The 16th
Annual International Sijmpostum on COMPUTER ARCHITECTURE, page 354, 1989,

[3] Mark Atkins, Performance and the i860 microprocessor, IEEE Micro, Il(,5), October I99I,

[4] S, H, Bokhari, AShortest Tree Algorithm for Optimal Assignments Across Space and Time in
aDistributed Processor System. IEEE Trans, on Software Engineering, SE-7(6), November
1981.

[5] Andrea Capitanio, Nikil Dutt, and Alexander Nicolan, An Improved Partitioning Algorithm,
Technical Report 92-57, UC Irvine, ICS Dept., 1992.

[6] Andrea Capitanio, Nikil Dutt. and Alexander Nicolan, Design Considerations for Limited
Connectivity VLIW Architectures, Technical Report 92-59, UC Irvine, ICS Dept., 1992,

[7] Andrea Capitanio, Nikil Diitt, and Alexander Nicolan, Multi ported register file complexity
analysis. Technical Report 92-58. UC Irvine, ICS Dept., 1992.

[8] P, P. Chang, S, A, Mahlke, W, Y. Chen, N, J, Warter, and W. W. Hwu, IMPACT: An
Architectural Framework for Multiple Instruction Issne Processors, In The ISth Annual
Internatwnal Symposium on Computer Architecture, page 266, May 1991.

[9] Robert P. Colwell, Robert P. Nix, John J, O'Donnell, David B, Papwoth, and Paul K. Rod
man, AVLIW Architecture for aTrace Sceduling Compiler, IEEE Trans, on Computers,
37(8):967, August 1988.

[10] K, Ebcioglu, Some Design Ideas for aVLIW Architecture for Sequential Natured Software. In
Parallel Processing, Proc. IFIP WG 10.3 Working Conference on Parallel Processing, 1988,

[11] Jonh R, Ellis, Bulldog: Acompler for VLIW Architectures. PhD thesis. Vale University,
Dept. ofComputer Science, 1985.

[12] VV. Maly et alii. Moniory rliip for 24-pori global n^gi.ster fil^. Technical report. Technical

Report. Carnegie Mellon L'niversity, 1990.

[13] C M. Ficicliiccia and R.M. Mattheyses. A Linear Time Heuristic for Improving Network

Partitioning. In 19th Design Automation Conference, page 175. 1982.

[14] J. Fisher, J. Ellis, J. Ruttenberg, and A. Nicolau. Parallel Processing: A Smart Compiler

and a Dumb Machine. In Proc. ACM SIGPLAN 84. Symp. on Compiler Constr.. pages 34 -

37, June 1984,

[15] J. A. Fisher. Trace Scheduling: A technique for Global Microcode Compaction. IEEE Trans,

on Computers. 30:478. July 1981.

[16] J. A, Fisher and B. R. Rau. Instruction Parallel Processing. Science. (253):1233 - 1241,

September 1991.

[17] Dan Gajski. Dual port register file. Personal Communication, 1989.

[18] Intel, i860 - 64 Bit Microprocessor, Assembler and Linker Reference Manual, 1989.

[19] S. Kirkpartrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Annealing. Science,

vol. 220(no. 4598):671 - 680, 1983.

[20] M. Kuga, K. Murakami, and S. Tomita. DSNS: Yet Another Superscalar Processor Architec

ture. Computer Architecture News (SIGARCH), 19{4):14, June 1991.

[21] C.H. Lee, C.l. Park, and M. Kim. Efficient Algorithm for graph partitioning problem using

a problem transformation method. Computer Aided Design, 21(10):611, December 1989.

[22] S. Lee and J.K. Aggarwal. A Mapping Strategy for Parallel Processing. IEEE Trans, on

Computers, C-36(4), April 1987.

[23] David M. Nicol. Optimal Partitioning of Random Programs Across Two Processors. IEEE

Trans, on Software Engineering, SE-15(2), February 1989.

[24[Alexander Nicolau. Perculation Sceduling: a Parallel Compilation Technique. Technical

report, TR 85-678, Cornell University, 1984.

[25] Roni Potasiiian. Perculation Oased CompHiug for Evaluation of Parallelism and Hardware

Design Trade-Offs. PhD thesis, l^niversity of California, Irvine. Dept. of Information and

Computer Science, 1992.

[26] C. Stephens, B. Cogswell, J. Heinlein, G. Palmer, and J. P. Shen. Instruction Level Profil

ing and evaluation of the IBM RS/6000. In The 18th Annual Inieniational Symposium on

Computer Architecture, ACM SIGARCH, page 180, May I99I.

