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Abstract We present a method for tracking and distin-
guishing multiple C. elegans in a video sequence, including
when they are in physical contact with one another. The
worms are modeled with an articulated model composed of
rectangular blocks, arranged in a deformable configuration
represented by a spring-like connection between adjacent
parts. Dynamic programming is applied to reduce the
computational complexity of the matching process. Our
method makes it possible to identify two worms correctly
before and after they touch each other, and to find the body
poses for further feature extraction. All joint points in our
model can be also considered to be the pseudo skeleton
points of the worm body. It solves the problem that a
previously presented morphological skeleton-based reversal
detection algorithm fails when two worms touch each other.
The algorithm has many applications in the study of
physical interactions between C. elegans.
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1 Introduction

The nematode Caenorhabditis elegans is widely used for
studies of nervous system function and behavior. The C.
elegans nervous system has a small number of neurons, all
of which have been individually identified and characterized.
Moreover, the ease of genetic manipulation in these animals
makes it straightforward to isolate mutant strains with
abnormalities in behavior and rapidly identify the mutant
gene by molecular cloning. However, in order to rigorously
study the relationship between genes and behavior in C.
elegans, precise quantitative assays for behaviors such as
locomotion, feeding and egg-laying are required. Because
some of these behaviors occur over long time scales that are
incompatible with real-time scoring by a human observer,
automated systems consisting of a tracking microscope and
image processing software have been developed and used to
follow and analyze animals. Some of these systems [1–4]
perform tracking of individual worms at high magnification,
while others have been designed to track multiple worms at
lower magnification [5, 6].

Both types of system currently in use have disadvantages
for the collection of behavioral data. Single-worm systems
can provide a considerable amount of information about
each animal that is recorded, but since statistically-
significant characterization of any worm type requires the
analysis of multiple animals, collecting data one animal at a
time is often frustratingly slow. On the other hand,
multiple-worm recordings do not typically provide as much
information as single worm recordings due to their lower
magnification. In addition, in most existing multi-worm
systems, any time two individuals touch, segmentation of
separate animals is difficult and so their individual
identities are lost by the system. When the animals separate,
the system is unable to determine the correspondence
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between individuals before and after touching. This is the
problem we solve in this paper. The inability to separately
segment and track individual animals when they touch
seriously limits the ability of a multi-worm system to
characterize the behavior of an individual in a population
over time. Moreover, some behaviors of significant interest
to researchers, such as mating and social feeding [6, 7], by
their very nature involve physical interaction between
animals. For any automated system to be useful in
characterizing these behaviors, it is essential that the
position and body posture of a worm can be followed
during and after physical contact with another animal.

Here we describe a new method for tracking multiple C.
elegans that makes it possible to accurately resolve the
individual body postures of two worms in physical contact
with one another by using a modeling algorithm. Model
matching algorithms can be roughly divided into two
categories [8, 9]. The first class is “contour based” which
represents objects in terms of their boundaries. One popular
approach is called active contours or “snakes”, which deform
elastically to fit the contour of the target structure [10].
Another method uses combinations of trigonometric func-
tions with variable coefficients to represent objects [11, 12].

The second class consists of “appearance-based”
approaches. In this case a model is used to simulate the
complete appearance (shape, color, texture, etc.) of the
target object in the image. Bajcsy and Kovacic [13]
describe a volume model that deforms elastically to cover
the object region. In [14], a model composed of a collection
of parts is used to represent objects in terms of a
constellation of local features. All parts in this model are
constrained with respect to a central coordinate system.
There have been other part-based modeling algorithms.
Fischler and Elschlager [15] introduce an articulated model
with all parts arranged in a deformable configuration which
is represented by spring-like connections between pairs of
parts. This articulated model has recently been used for
tracking an individual person in videos [16, 17]. In [18],
this method is further improved with an efficient algorithm
for finding the best match of a person and a car in images.
A number of methods to track a 3D human figure using
articulated models also have been proposed. [19] uses a 3D
articulated model combined with a modified particle filter
to recover full articulated human body motion. [20] tracks a
3D human body with 2D contours using information from
multiple cameras with different viewpoints. [21] presents an
algorithm which projects 3D motion of a figure onto an
image plane instead of using multiple cameras.

Multiple object tracking has been an intensive area of
research due to its many applications [22–24]. However,
traditional methods fail when the objects are in close
proximity or present occlusions. A snake, for example, can
be used to track individual deformable moving binary

objects. But when two binary objects touch each other, the
boundary between them is not represented in the image
data, and so a snake algorithm would likely fail without
usable image information at the boundary. Tracking
multiple objects separately in videos is achievable by using
appearance-based models. Some methods track and sepa-
rate people with occlusions by using cues such as
appearance (color and texture of clothing, etc.) from frame
to frame [25–28]. Some approaches are able to track
multiple rigid objects in simple interactions. In [29], Khan
uses particle filtering combined with a pairwise penalty
function that only depends on the number of pixels which
overlap between the appearance templates associated with
the two targets to track multiple ants. In [30], Qu uses the
“magnetic potential” and “inertia potential” to solve the
“error merge” and “false object labeling” problems after
severe occlusion of targets.

Although there have been numerous algorithms for
multiple-object tracking, additional issues arise when
tracking C. elegans worms. The worm tracking problem
differs from previous tracking experiments in several
respects: (1) The worms are not rigid bodies; they are
highly deformable, (2) the actual worm body is transparent,
and (3) the worm moves almost entirely in a 2D plane. The
fact that the worm body is transparent means that color
information is completely unavailable and even grayscale
can be unreliable. Therefore we cannot use the color or
texture to easily distinguish the animals from the back-
ground of transparent bacteria layers. To solve this
technical problem, the illumination of the microscope is
chosen to make the worm body look dark and the
background look bright in grayscale images. This means
the grayscale images are very nearly binary, and in fact we
convert them to binary as a pre-processing step. While the
binary nature of the images makes it relatively easy to
compute body posture features for single-worm videos, it is
a difficult problem to track and distinguish touching
deformable binary blobs when there is more than one
object in the scene. The fact that the worm moves almost
entirely in a 2D plane also makes this tracking problem
somewhat different from many prior studies. Although
portions of a worm’s body can cross over/under its own
body or the body of another worm, the worm’s body is
sufficiently flat that such crossings do not involve appre-
ciable curvature up and out of the plane of the agar plate.
Thus the projection of the worm’s body onto the plane of
the plate has a roughly constant length.

These three significant differences make the worm-
tracking problem quite unique compared to other multiple
object tracking problems, such as those involving people
and cars. Prior research on tracking multiple C. elegans is
limited to [31] and [32], of which the latter is a preliminary
version of the research presented here. In [31], a deform-
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able worm model and several motion patterns are used to
define an overall locomotory space of C. elegans and to
describe its general dynamic movements. Using a combina-
tion of “predicted energy barrier” and multiple-hypothesis
tracking, multiple touching worms can be identified and
separated with a high success rate. The algorithm presented
in [31] focuses on the crawling mechanism, which means
sudden position-shift of the worm bodies caused by the
swimming mechanism of the worm or even the movement
of the stage may lead to loss of a track. Our work differs
from [31] in that the algorithm presented here can
accommodate both crawling and swimming mechanisms
or other causes of sudden shifts such as stage movement.
Our work also differs in that we introduce various pixel-
based, feature-based, and human observation based methods
for evaluating the accuracy of the body matching algorithm,
and we evaluate some features (angle change rate, reversals)
extracted from the matched body positions.

In this paper, we also choose an appearance-based
method to match the bodies of C. elegans. We combine a
part-based articulated model [18, 33] with a dynamic
programming algorithm to determine the correct location
of the individual worm bodies. Our work accurately
resolves the individual body postures of two worms in
physical contact with one another and identifies them
correctly before and after they touch each other, and can
still maintain track of the worms when their bodies have
non-crawling displacement. Furthermore, we solve the
problem that the skeleton-based reversal detection algo-
rithm in [34] fails when two worms touch each other
because of the difficulty of obtaining morphological

skeletons. The basic algorithms described here appeared
in abbreviated form in a preliminary paper [32]. This longer
version includes an expanded exposition of the algorithm,
as well as completely new results (in Tables 2 and 4) and
expansions to the earlier results presented in Tables 1 and 3.
In particular, we now show that a parameter such as angle
change rate (related to body curvature) can be extracted
from the model, verifying that our algorithm accurately
simulates worm body poses, and we also examine the rate
of movement before and after touching, and we extract
parameters during the time the animals touch (reversal rate,
duration of touching). Our algorithm shows good perfor-
mance in the analysis of real worm videos, and should have
many applications in the study of C. elegans behavior.

2 Materials and Methods

2.1 Strains and Culture Methods

Routine culturing of C. elegans was performed as described
[35]. All worms analyzed in these experiments were young
adults; fourth-stage larvae were picked the evening before
the experiment and tracked the following morning. Exactly
two experimental animals were placed on a plate and they
were allowed to acclimate for 5 minutes before their
behavior was analyzed. Plates for tracking experiments
were prepared fresh the day of the experiment; a single
drop of a saturated LB (Luria broth) culture of E. coli strain
OP50 was spotted onto a fresh NGM (nematode growth
medium) agar plate and allowed to dry for 30 minutes

Table 1 Comparison results between automatically and manually generated models.

File name 005 006 007 008 011 012 015 016 017 018 020

Automatically generated
model against manually
generated model

Non-touching (%) 82.7 77.8 81.1 74.7 77.8 79.6 74.1 75.3 79.8 72.1 82.4
77.5 76.8 81.3 80.1 80.7 81.1 69.2 79.2 81.1 74.9 67.7
(78) (25) (45) (5) (104) (38) (113) (46) (139) (144) (56)

Touching (%) 80.2 73.3 76.6 76.0 78.2 76.0 76.6 77.8 79.4 80.2 79.4
73.8 75.3 78.4 77.2 78.7 79.2 78.4 80.7 78.6 81.9 77.7

(122) (176) (155) (144) (55) (94) (64) (51) (61) (55) (143)
Automatically
generated model
(predicted positive; %)

89.5 92.4 87.9 91.2 92.0 90.5 94.7 85.0 90.9 84.2 92.1
86.2 89.3 88.5 91.5 87.5 86.5 80.5 90.9 90.2 85.4 86.4

Automatically generated
model (true positive; %)

83.3 82.8 89.8 75.3 68.3 76.9 70.6 77.7 82.3 83.3 83.1
77.9 78.3 88.2 82.4 83.5 83.0 74.5 80.4 81.7 80.1 73.7

Manually generated model
(predicted positive; %)

87.1 86.2 80.9 82.4 92.4 88.4 88.2 86.6 84.9 80.7 87.5
86.2 88.8 85.2 85.9 85.0 84.9 83.8 89.3 87.3 89.1 87.1

Manually generated model
(true positive; %)

81.8 75.5 83.9 68.8 67.6 73.9 68.0 78.5 76.8 78.6 80.1
76.6 76.7 85.1 77.2 80.0 80.4 72.0 75.9 78.3 76.9 71.3

The correct percentages between automatically generated model and manually generated model for the two worms are listed in rows 1–3 and 4–6.
Predicted positive values and true positive rates for the two worms are listed in rows 7–8 and 9–10 (automatically generated model) and rows 11–
12 and 13–14 (manually generated model). Values in parenthesis are the numbers of image frames.
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before use. The worms used in these experiments were npr-
1(ky13) mutants. Unlike the laboratory standard N2 strain
which is a solitary feeder, tending to disperse on encoun-
tering bacterial food, npr-1(ky13) mutants are social
feeders, strongly aggregating together, thus providing an
opportunity to study touching behavior.

2.2 Acquisition of Image Data

C. elegans locomotion was tracked with a Zeiss Stemi
2000-C microscope mounted with a Cohu high perfor-
mance CCD video camera essentially as described [4]. The
microscope was outfitted for brightfield illumination from a
12 V 20 W halogen bulb reflected from a flat mirror
positioned at an angle of approximately 45°. To record the
locomotion of animals, an image frame of the animals was
captured every 0.125 s (8 Hz) with a resolution of 640×
480 pixels and then saved as AVI video files. The
microscope was fixed to the magnification of 2.5× during
observation. In order to focus on the goal of identifying the
body postures of two worms in physical contact, each video
used in this experiment contains exactly two animals. For
each video, the recording is initiated when the worms are
separated. The recording continues until they touch and
then move apart. The length of every video is different,
ranging from 30 to 178 s because the time length for each
pair of worms to aggregate and separate is different. All
acquired images are grayscale with intensity level from 0 to
255 and contain exactly two animals of low intensity (dark)
surrounded by bright background. The images are some-
times cluttered with other objects such as worm eggs, blobs
of food, or irregularities in the surface of the agar. In order
to save a great deal of computation and make further
processing easier, a local thresholding was applied on the
grayscale images by using a 5×5 moving window. The
center pixel inside the moving window was assigned to 1 if
the mean value of the window was less than 70% of the
background pixel value or the standard deviation was larger
than 30% of the mean value. Otherwise, the center pixel
was assigned to 0 as background [4].

2.3 Worm Model

Because the C. elegans worm body is more or less
cylindrical, in this paper, we model its projection as being
composed of N rectangular parts with length L and width W
in the ratio 2:1. To generate a more accurate and robust
worm body model, parameters N, L and W are learned from
the image data. They can differ for different input videos.
For a given video, let l and w be the average length and
width of the worm body calculated from all non-touching
frames. These values are calculated automatically using the
method described in [4]. Typical values of l and w were
approximately 95 and 6 pixels respectively. Then we set W=
0.9w and L=2W and N ¼ round l

L

� �
. In this experiment, W

ranged from 4 to 8 pixels (L ranged from 8 to 16 pixels) and
N ranged from six to nine parts. The position of each part in
the image can be defined by the triple (x, y, θ), which
specifies the coordinate of the center and the orientation of
the part (Fig. 1a). Adjacent parts are connected by two joint
points (Fig. 1b), which may coincide (Fig. 1c) but also might
be chosen to not be coincident. When (x, y, θ) is determined
for each of the N rectangular parts composing the worm
body model, we refer to this as a worm body pose.

We seek to find the best match of the worm model to the
actual binary worm image data. The concept of best match
incorporates both how well the rectangular parts fit the
image pixel data, and also how well the rectangular parts fit
worm body anatomy. By “worm body anatomy” we mean
how well the parts fit with each other into a smooth worm
body (for example, adjacent parts should not have large
gaps between their joint points) [15, 18, 33], as will be
discussed in the next paragraphs.

We begin by considering how well a rectangular part
fits the image pixel data and deterministically examining
the set of K most plausible pixel positions from the object
(K can vary based on different image resolutions used in
different experiments). These are the positions which have
the lowest match cost to place our rectangular part. The
match cost m(I,pi) of a part pi with 12 different possible
orientation angles (15°, 30°, 45°,…, 180°) at every

n
(xn,yn)

w
L

(xmn ,ymn )

J

p
n

p
n

p
m

p
m

(x ,ynm)n

Joint points

(a) (b) (c)

θ

nm

Figure 1 a One rectangular part
and its parameters, L and W are
the length and width of the
rectangle and (x, y, θ) specifies
the coordinates of the center and
the orientation of the part, b two
parts of the worm model and
their joint points, c two parts of
the worm model with the joint
points coinciding.
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possible integer pixel position (x,y) can be computed by
convolving the binary worm image I with a convolution
kernel composed of a “match” rectangle with different
orientation angles (with the same size as our rectangular
part) embedded in a larger “no match” rectangle [18, 33].
The entries of this convolution kernel are defined by the
following equation:

k x; yð Þ ¼
�1 ; if x; yð Þ 2 No Match

WL
S e � 2x2

W 2 þ 2y2

L2

� �
; if x; yð Þ 2 Match

:

(

where S ¼ P
x;yð Þ2Match

e�
2x2

W2þ2y2

L2

� �
, W and L are the width and

length of a rectangular part and (x,y) are the coordinates
relative to the center of the kernel �W

2 � x � W
2 ;

�
�L
2 � y � L

2Þ. In this convolution kernel, points close to
the y axis (x=0) have larger weights. Despite the fact that
we set W=0.9w which means that the rectangular model
part has a width that is only 90% of the average width of
the animal in non-touching frames, in some images, it is
possible that the original worm body width is slightly
smaller than the width W of the rectangular part. By using
this kernel, pixel positions close to the middle of the body
will have relatively smaller match cost than positions close
to the edge of the body, which means the likelihood for a
part to be placed along the middle line is larger than other
possible positions. By exhaustively evaluating the match
cost for each integer pixel position and each of the 12
orientation angles, we generate a list of the K most
plausible positions for individual rectangular body parts.

For each image frame, as will be discussed in Section 2.3.2,
we generate a list of M plausible body poses, from which we
would like to choose the best ones for each of the two
worms. These M poses are the ones which have the lowest
values of the match cost plus the deformation cost. The
deformation cost measures how each worm body pose
agrees with worm body anatomy. The pairwise deformation
cost is defined as the following:

d pm; pnð Þ ¼ Wx � xm;n � xn;m
�� ��þWy � ym;n � yn;m

�� ��
þWq � qm � qnj j ð1Þ

where :j j denotes absolute value, and xm,n, xn,m, ym,n and yn,m
are the xy coordinates of joint points between adjacent parts
pm and pn (Fig. 1a). The angle θm is the orientation angle in
degrees of the part pm. Wx, Wy and Wq are weights for the cost
associated with a horizontal (x-direction) offset between joint
points of adjacent parts, a vertical (y-direction) offset between
joint points of adjacent parts, and a difference in the
orientation angle between the two parts. The deformation cost
attains its minimum value of 0 when two parts have the same
orientation angle and the joint points between them coincide.
In the next two sections, we show how to generate a list of M
plausible body poses, which is decided by how well the model

matches the object in the image and how well it lowers the
deformation cost. To make finding the best match computa-
tionally efficient, we use a dynamic programming algorithm.

2.3.1 Dynamic Programming

Dynamic programming is a class of methods for solving
sequential decision problems with a compositional cost
structure in which the decisions at one stage become the
conditions governing the succeeding stages [36, 37]. We try
to minimize the cost function defined by both the match
quality of the model and the restrictions between pairs of
parts [15, 38]. The model contains N rectangular parts. We
suppose the general cost function of each part pi can be
expressed by the following equation:

Ei pið Þ ¼ d pi�1; pið Þ þ m I ; pið Þ þ Ei�1 pi�1ð Þ for i ¼ 1 to N � 1

ð2Þ
where pi is defined by (xi, yi, θi) as previously described,
d(pi-1,pi) defined in Eq. 1 measures how much the adjacent
parts pi-1 and pi contribute to the deformation cost, and
m(I,pi) measures how well the part pi matches the image I
with its current position.

2.3.2 Worm Body Poses Sampling

To generate a list of body poses, we begin by taking the K
3 (x0,

y0, θ0) triples with the lowest match cost from the previously
generated list of K positions, to place our first part p0, which
is one of the two end parts (it could be either the head or the
tail). The reason why the lowest match cost for placement of
one single part will correspond almost surely to one of the
two ends is because background pixels on three sides of the
central “match” region will be correctly included in the “no
match” region of the kernel, whereas for a typical part in the
middle of the worm, background pixels only on two sides of
the central “match” region will appropriately correspond
with the “no match” region of the kernel. Using only the
one-third best positions of all K positions only for part p0
slightly reduces complexity without significantly increasing
the chance of generating bad worm body poses. After the
part p0, all K positions will be possible candidates to place
parts from p1 to pN-1.

The cost function E0(p0) of each part p0 is just the match
cost at the position because p0 is the first part of the model.
If E0(p0) of each p0 is known and we define pi�1 pið Þ to be
the best position for the part pi-1 as a function of the
position of the next part pi, then the best position of the part
p0 in the input image I is:

p0 p1ð Þ ¼ arg min
p0

d p0; p1ð Þ þ m I ; p1ð Þ þ E0 p0ð Þð Þ ð3Þ
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That is, the best position of the part p0 can be decided
given the position of its next part p1. The minimum cost
function E*i (p1) of the given part p1 (minimized over all
possible values of p0) becomes:

E*1 p1ð Þ ¼ min
p0

d p0; p1ð Þ þ m I ; p1ð Þ þ E0 p0ð Þð Þ ð4Þ

Based on the same concept, the best location of the part pi-1
(1<i<N) as a function of the position of the next part pi is:

pi�1 pið Þ ¼ argmin
pi�1

d pi�1; pið Þ þ m I ; pið Þ þ E*i�1 pi�1ð Þ
� �

ð5Þ
and then E*i (pi) will be:

E*i pið Þ ¼ min
pi�1

d pi�1; pið Þ þ m I ; pið Þ þ E*i�1 pi�1ð Þ
� �

ð6Þ

We continue this forward process until the other end of
the model pN-1 is reached. Finally for the part pN-1, the best
configuration is the one that has the minimum cost EN-1.

pN�1opt ¼ argmin
pN�1

E*N�1 pN�1ð Þ
� �

and the optimum positions of all parts can now be traced in
the backward step from the part pN-1 to p0 by using Eqs. 3,
4, 5 and 6. In our experiment, we chose the M configu-
rations with minimum cost to be the plausible poses for
each frame.

2.3.3 Multi-Worm Match

In all of our multi-worm videos, the two worms start out
separated. Each video can therefore be divided automatically
into subsections which are of two types: (a) where the two
worms are clearly separated (the distance between the centroids
of the two worms is longer than the length of the worm body)
and (b) where the worms are close to or touch each other.

Type A For any subsection of the video in which the two
worms are clearly separated, after M possible worm poses
are composed in each frame, we apply a dynamic
programming algorithm again over the time domain to find
the best temporal sequence of poses that move smoothly for
the first worm within that first separated section of the
video. This time we try to minimize the cost function L that
combines the match cost of the whole worm body pose
mtotal, which is equal to EN-1 in Eq. 2, and the Euclidean
distance dtotal between the current and the previous worm
body poses:

L ¼ Wd � dtotal þWm � mtotal ð7Þ

The weight Wd is associated with the distance between
the worm body in one frame and in the previous one. The
weight Wm is associated with the pixel mismatch between
the pose of the worm body model in a frame and the actual
foreground pixels in that frame. We set Wm to be 1, and
then the selection of the Wd parameter adjusts the relative
cost given to within-frame pixel mismatch compared to
inter-frame pose mismatch. Based on limited experimenta-
tion by a human observer, Wd was chosen to be 5e−2. The
Euclidean distance between two body poses is calculated as
the following:

dtotal ¼
XN�1

n¼0

d pi�1
n ; pin

� �

where pin is the nth part of the body pose in the ith image
frame. Then we remove the first worm from the images in
the sequence and repeat the dynamic programming algo-
rithm to find the best sequence for the second worm.

Type B For the close/touching portion of the video, we
begin by using the fact that the area where two worms
touch each other is thicker than other areas to divide
touching worms (Figs. 2a, 2b). For any close/touching
frame, in order to remove non-touching worm body parts,
we first erode the touching worm body object W

2 times
(where W is the width of a rectangular part in the body
model) with a 3×3 structuring element (Fig. 2c), then we
subtract the eroded image from the original binary image to
get a new image. The two worms may be only partially
separated in the new image (Fig. 2d). But this method will
increase the chance of finding good worm body poses by
heightening the match cost for those body poses over-

T

Non-touching Areas

Touching Area

(a)  (b) 

(c) (d) 
Figure 2 a Two worms in the original grayscale image, b two worms
in the binary image, c the binary image after eroding, d image b minus
image c shows the two worms partially separated.
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lapping with the non-filled area. If the two worms are only
close to each other without touching or crossing each other,
the new image will be just equal to the original binary
image because there will be no object in the eroded image.

The dynamic programming approach can make the
process of finding the best sequence more computationally
efficient, and therefore we use it for the portion of the video
where the worms do not touch, which is the majority of the
video and also the portion of the video where the body-
fitting is easier. However, for touching/close frames, it is a
more difficult problem to simulate the two worm body
poses correctly. When worms touch, the binary foreground
blob can be much larger than a typical single worm body,
and therefore choosing good body poses in a frame requires
not only (as in Section 2.3.2) the match cost between image
blob pixels and model pixels, and the deformation cost of
deforming the model, but also must rely on the overlapping
cost of the two worm bodies (a cost which doesn't enter into
the case where the two worms are far apart), as well as the
distance between the current possible pose and the previous
poses (a cost which only entered into the dynamic
programming in the second step, as we try to find the
sequence of poses).

For this reason, we modify our approach. For each
touching/close frame, one of the two worms will be chosen

as the primary worm. As discussed in Section 2.3.2, we
have a set of M plausible body poses for the frame,
obtained using the dynamic programming approach to
minimize the match cost and deformation cost. From this
set, first the best H body poses are chosen to be candidates
for the primary worm based on both the match cost of the
whole body pose and the distance between the pose in the
current frame and the pose in the previous frame. For each
of these H candidates, we find the best body pose for the
secondary worm from those M poses to fill the remainder of
the object based on the overlapping cost. The overlapping
cost is defined to be the sum of two terms: (1) the number
of object pixels covered by both the primary worm body
and the secondary worm body, (2) the number of object
pixels not covered by any worm body. Then we choose the
best single set of body poses for the two worms, which is
the set that achieves minimum value of the overlapping cost
plus the Euclidean distance between the current pose and
the previous pose for both worms from those H sets. To
avoid the whole result being dominated by only one worm,
the assignment of the primary worm and the secondary
worm alternates from one frame to the next.

As a final step for all frames in both the separated
portion and the close/touching portion of the video, we
apply a two dimensional Gaussian filter to smooth the final
results of every frame. The block diagram of the whole
multi-worm match process is shown in Fig. 3 and the
pseudo code of the main program is written in the Appendix.

For the reversal detection discussed later, after the best
match configurations of both worms are decided, we can
manually assign one of the two end parts to be the head/tail
part by using the original images as references. The manual
assignment does not need to be done on each frame. It is
done only once per video.

3 Results

The experiments were performed using Matlab on a
2.33 GHz Pentium-IV desktop computer. The algorithm
was run on 29 different videos which contained 10,579
frames in total and each sequence varies from 131 to 498
frames. K, M, and H were set to be 3,000, 1,000, and 10
respectively, where K is the number of sampled pixel
positions, M is the number of sampled worm body poses for
each image, and H is the number of the candidate body
poses for each worm in each frame as previously described.
The weights Wx, Wy, and Wq in Eq. 1 were chosen in the
ratio 4:4:3 based on limited subjective evaluation over a set
of values. The choice of relative weight Wq should allow
the worm body pose to have appropriate bending but still
agree with the worm body anatomy which can be verified
by human observers. Binary images are obtained from the
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Figure 3 Block diagram of the multi-worm tracking algorithm.
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original images by using the thresholding algorithm from
[4]. Some pictorial results are shown in Fig. 4. Images a, b
and c are frames 13, 111, 134 extracted from the first video,
images d, e and f are frames 86, 143, 206 from the second
video, and images g, h, and i are frames 16, 63, 91 from the
third video (with two worms crossing each other). In each
image, the left side shows the original grayscale image and
the right side shows the matching result. These examples
illustrate the ability to identify two worms correctly before
and after they touch each other. Their body poses are
simulated and clearly distinguished during the time the two
animals are touching.

First, we evaluate how well the algorithm performs on
the three major goals: (1) to find the best body poses for
both worms for further extraction of motion related
features, (2) to identify two worms correctly before and
after they touch each other in every video and (3) to detect

reversals even when morphological skeletons are not
available due to the two worms touching.

3.1 Good Estimated Pose and Motion-Related Features

In [31], tracking accuracy is evaluated using the “editing
extent,” which is defined as the distance between the
automatically and manually detected head locations, nor-
malized by the worm length for those worms that are
considered incorrectly segmented by the human observer.
In order to emphasize that our algorithm can simulate the
highly deformable nature of the worm body, we use pixel-
based, feature-based and human observer based methods to
evaluate the match quality of our algorithm. We begin the
evaluation of the algorithm by comparing how well it does
against a manual fit of the body model frame by frame. The
algorithm was tested on 1,913 images (including 793 non-
touching frames and 1,120 touching frames) randomly
chosen from 11 videos with a different pair of worms in
each video. Given an original image and the number of

(a)

(g)

(b)

(h)

 (c)

(i)

(d)   (e) (f) 

Fig. 4 Nine images from three videos show the best matching
configuration. Images a–c are frames 13, 111, 134 extracted from the
first video, images d–f are frames 86, 143, 206 from the second video,

and images g–i are frames 16, 63, 91 from the third video (with two
worms crossing each other). In each image pair, the left side shows the
original grayscale image and the right side shows the matching result.

(b) (a)
Figure 5 a Eight joint points chosen manually for the seven parts in
this frame, b body pose built from manually selected joint points.

Figure 6 An example of the
comparison between the
automatically generated model
and the manually generated
model. The black area is
covered by both models; the
gray area is the difference
between these two models.

120 K.H. Huang et al.



parts N in it, we first chose N+1 joint points (including two
end points) manually in every frame by clicking with the
mouse on the image (Fig. 5a). Then these points are used to
compute x, y and θ of each part and to build worm body
poses (Fig. 5b). This is followed by Gaussian smoothing.

We compare the results from our algorithm to these
manually built body poses and evaluate the accuracy by
computing the correct percentages defined by the following
equation:

correct percentage ¼ NAM

NA

where NAM is defined as the number of object pixels
covered by both the automatically generated model and the
manually generated model, and NA is defined as the number
of pixels covered by the automatically generated model. A
higher value for this percentage indicated that the body
poses decided by the algorithm agree more with the
manually generated body poses (Fig. 6).

For frames without touching, because the two worms are
separated and each worm can be easily extracted to
calculate its area, we also compare our matching results
against both worm bodies in the original images. We
compute two different scores:

1ð Þ predicted positive value ¼ NMO

NM
and ð2Þ true positive rate ¼ NMO

NO

where NMO is the number of pixels covered by both the
model (either manually or automatically generated) and the
worm body in the original image, NM is the number of
pixels covered by the model, and NO is the number of
pixels covered by the worm body in the original binary
image. Predicted positive value is an indication of the
probability that a given pixel which our model says is part
of the worm body actually is part of the worm body. True

positive rate tells us the percentage of the actual worm body
covered by our model. The predicted positive value will
decrease and the true positive rate will increase if we use
models with larger sizes (for example, if we choose model
part width W = average body width w instead of W=0.9w).

All results are listed in Table 1. We notice that the correct
percentages between automatically generated model and
manually generated model all range from 72% to 83%
except in two videos (015 and 020). In these two videos, the
result is better for touching frames than non-touching frames.
That is because the background is not very clear due to
the un-evenness in the bacteria layer or crawl track left by
the worms in these videos, which may cause the size of the
binary worm body in some images to be abnormally larger
than its usual size and predicted positive values to be very
low. Predicted positive values are also over 85% and true
positive rates are higher than 70% for almost all frames. In
order to reduce the possibility of two worms overlapping in
our results for touching frames, the width W of the model is
always chosen to be 90% of the actual average body width
as calculated from non-touching frames. For this reason, the
model tends to be covered by the whole worm body which
will cause the predicted positive value to be generally larger
than the true positive rate. The results of the comparison
between manually generated models and original images are
also listed in the last four rows in this table, which clearly
shows that our automatic matching algorithm outperforms
human observers.

The angle change rate is also computed from both the
manually generated model and the model generated by our
algorithm. The results are shown in Table 2. The angle
change rate is defined in [1, 4] as the ratio of the average
angle difference between every pair of consecutive seg-
ments connected by skeleton points. The angle change rate
is an important feature characterizing body postures of
mutants, and was shown in [1], for example, to be

Table 2 Angle change rate verification results.

File name 005 006 007 008 011 012 015 016 017 018 020

Automatically generated model Separated 32.6 33.7 37.9 37.0 29.8 29.2 31.7 33.1 32.3 36.1 36.6
33.0 30.6 31.0 39.0 30.9 35.1 34.9 29.3 32.4 34.3 41.3

Close 30.0 33.7 36.2 32.4 27.6 30.6 25.0 30.0 30.2 28.8 38.0
31.4 30.3 31.8 33.6 33.6 32.1 34.3 24.8 29.3 32.3 35.4

Manually generated model Separated 33.5 34.5 40.7 34.6 33.3 30.7 31.9 33.5 34.0 37.5 36.1
36.2 32.7 32.5 40.5 29.8 34.3 38.9 24.7 34.6 34.2 43.4

Close 30.4 33.6 41.0 34.2 28.6 31.0 29.9 30.9 32.5 29.4 42.2
30.6 29.4 32.3 34.4 30.8 34.3 31.2 24.5 33.3 31.7 38.6

Difference Percentage Separated (%) 2.6 2.2 6.9 6.8 10.4 4.9 0.7 1.0 5.0 3.8 1.2
8.6 6.5 4.6 3.7 3.8 2.5 10.4 18.5 6.3 0.2 4.8

Close (%) 10.4 2.6 0.6 1.2 16.4 0.9 6.9 8.3 4.4 27.6 14.4
18.2 11.4 0.6 17.8 3.4 0.2 24.7 0.9 3.8 7.9 12.3

The two numbers for each parameter are the angle change rates for the two worms
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significant in distinguishing between goa-1(n1134) mutants
and wild-type. In this paper, we use the joint points of the
parts to be our skeleton points to calculate angle change
rate. From Table 2, we see that the difference percentages
of average angle change rate between our algorithm and
manually generated models are lower than 10% for non-
touching (separated) frames and 20% for touching frames
(close) in most of the videos.

3.2 Correct Identification

Both worms in all videos are also tracked by a human
observer to see if our method can correctly identify worms
separately after they touch. From Table 3, we see that our
program can identify both worms correctly in 26 of 29
videos.

3.3 Reversals

C. elegans usually moves in a sinusoidal wave. When a
worm is touched or presented with a toxic chemical
stimulus, it will switch the direction of the wave, causing
the animal to instantaneously crawl backward instead of

forward. This backward movement is defined as a reversal.
In [34], we used two skeleton points near the two ends as
our reference points to decide if the worm was moving
forward or backward. However, this reversal detection
algorithm requires the skeleton points from each worm
body which can not be obtained using the method in [39]
when two worms touch each other. By using our modeling
algorithm, after all parameters of all parts are obtained with
our algorithm, all joint points can be considered to be
pseudo skeleton points. We can use the two joint points
nearest the two ends to be our reference points to detect
reversals. Table 3 shows that there were 86 reversals
correctly detected by our automatic algorithm. Of these,
57 occurred during the close/touching portion of the video.
In addition, the automatic algorithm incorrectly declared
seven events to be reversals (six of them were in the close/
touching portion of the video). Only three actual reversals
were missed (of which one was in the close/touching
portion of the video). So our algorithm has a high rate of
correct detections while maintaining a low rate of false
alarms and false dismissals.

3.4 Analyzing Physical Contact

As described in Section 2.3.3, our algorithm can automat-
ically locate those portions of the video where two worms
are close to or touching each other. We can therefore
calculate the length of time they are in physical contact. We
also examine the average speed and rate of reversals from
the video portions before and after the two worms touch.
The results are shown in Table 4. All worms were npr-1
(ky13) mutants. In Table 4, we show the data for 6
individual videos as well as the average values over all 29
videos in the last column. Row 2 shows the length of time
the worms touch each other. The average speed and the rate

Table 3 Identification results and reversal verification results.

Number of tested videos 29

Number of correct identifications 26
Number of wrong identifications 3
Number of reversals correctly
detected with results from our
algorithm and the method in [22]

Touching Overall
57 (98.3%) 86 (96.6%)

Number of wrong detections 6 (9.5%) 7 (7.5%)
Number of reversals missed 1 (1.7%) 3 (3.4%)

Table 4 Experimental results from six individual videos as well as average values over all 29 videos.

File name 001 002 003 004 005 006 Average

Time length of two worms touching (s) 17.4 21.6 19.8 10.6 16.4 27.0 22.14
Ave speed before touching (pixel/s) 5.7 6.0 9.2 8.0 7.8 12.1 8.21

6.8 3.9 8.0 10.6 6.8 5.8 8.11
Rate of reversals before touching (1/s) 0.17 0.14 0 0.19 0.06 0 0.07

0.11 0.09 0.05 0.19 0 0.04 0.07
Ave speed after touching (pixel/s) 7.6 7.3 13.2 8.6 9.2 7.0 10.33

9.9 11.3 12.7 7.1 10.4 9.7 10.55
Rate of reversals after touching (1/s) 0 0 0 0 0.12 0.04 0.05

0 0 0 0 0.06 0 0.04

Row 2 shows the length of time the worms touch each other. The average speed and the rate of reversals before touching events are in rows 3–4 and
5–6. The average speed and the rate of reversals after touching events are in rows 7–8 and 9–10. Other than the time length of touching, the
parameters listed have two numbers for each video because they represent results for the two worms in the video.
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of reversals before touching events are in rows 3–4 and 5–6.
The average speed and the rate of reversals after touching
events are in rows 7–8 and 9–10. One can observe that the
animals move faster after physical contact than before.

4 Conclusion

This paper presents a method that combines articulated
models and dynamic programming for simulating the body
poses of C. elegans in multi-worm videos. The models are
composed of a number of rectangular parts arranged in a
deformable configuration. For each video, we begin by
using a dynamic programming algorithm to generate many
worm body poses in every frame. For those portions of the
video where the two worms are clearly separated, a
dynamic programming algorithm is used again to find the
best sequences over time for both worms. For those
portions of the video where the two worms are close or
touching each other, we find the best match configuration
for the two worms based on the Euclidean distances
between pairs of body poses in adjacent image frames.

There are several contributions in this paper. First, the
presented method allows us to identify two worms correctly
before and after they touch each other in 90% of our videos.
Second, we can use these models to accurately resolve the
individual body postures of two worms in physical contact
with one another. We note that this tracking algorithm for two
worms is fully automated and requires no human annotation at
any point (including no need for human annotation of the first
frame). When this algorithm was combined with a previously
described algorithm for detection of reversals, human anno-
tation was required to identify head and tail once per video,
which was needed to identify reversals. However the tracking
algorithm itself involves no human intervention, so it is
suitable for analyzing large numbers of videos where human
annotation would be tedious. We also showed that reversal
behaviors of multiple worms can be accurately detected by
using our model even when their bodies are in physical
contact with one another.

This algorithm will provide many applications towards
characterizing physical interactions between animals. Previ-
ous research on automated analysis of C. elegans videos has
shown that large numbers of biologically relevant features
can be automatically extracted. These features include, for
example, body length and width, average speed, curvature,
depth of body bends, and frequency and duration of
reversals. These features and others have been shown to be
important in classifying and characterizing many different
mutant strains [4]. Using the algorithm described in this
paper, the body poses of two worms can be identified, so the
various features extracted in prior research for single-worm
videos can now be extended to videos with two worms. In

this paper, we examined two of these features (angle change
rate and reversals) in these two-worm videos. In addition,
new features characterizing the interactions themselves such
as average duration of bodily contact can be extracted across
different mutant strains and different environmental con-
ditions. We intend to characterize how interactions between
animals affect various features of body movement and
posture in future work.

Acknowledgment The authors would like to thank the Caenorhabditis
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Appendix: Pseudo Code for the Multi-Worm Tracking
Algorithm

This appendix provides pseudo code for the multi-worm
tracking algorithm. The worm video data and source code
in Matlab for our algorithms are available from the web site
[40].

READ l—learned length of worm body
READ w—learned width of worm body
COMPUTE W—width of rectangle as 0.9×w
COMPUTE L—length of rectangle as 2×W
COMPUTE N—number of rectangles as round(l/L)
SET Index1 to 1—the indices of subsections where two

worms are separated
SET Index2 to 0—the indices of subsections where two

worms are close or touching

Pseudo code for dividing the whole video into two
subsections (close/touching and non-touching)

FOR each image frame in the video
COMPUTE the number of worms
IF the number of worms is equal to 2
COMPUTE match cost at each integer pixel position
OBTAIN K integer pixel positions with the lowest match

cost
OBTAIN M worm body poses with the lowest match

cost plus deformation cost.
COMPUTE Dc—the distance between two centroids in

the current image frame
READ Dp—the distance between two centroids in the

previous image frame
IF Dc ≧ l and Dp ≧ l
ADD the image frame to subsection of Index1
ELSE IF Dc ≦ l and Dp ≧ l
INCREMENT index2
ADD the image frame to subsection of Index2
ELSE IF Dc ≧ l and Dp ≦ l
INCREMENT index1
ADD the image frame to subsection of Index1
END IF

Using Articulated models for tracking multiple C. elegans 123



ELSE
OBTAIN new binary image where two worms are

partially separated
COMPUTE match cost at each integer pixel position
OBTAIN K integer pixel positions with the lowest match

cost
OBTAIN M worm body poses with the lowest match

cost plus deformation cost
ADD the image frame to subsection of Index2
END IF
ENDFOR

Pseudo code for finding the best sequences within one
non-touching subsection

FOR subsection 1 to Index1
Finding the best sequence for one worm
FOR each image in the subsection
IF the current image is the first image in the subsection
FOR each worm body pose in the current image
SET accumulated cost function = 0
END FOR
ELSE
FOR each worm body pose in the current image
FOR each possible worm body pose in the previous

image
READ accumulated cost function of the worm body

pose in the previous image
COMPUTE Euclidean distance d between the current

and the previous body poses
COMPUTE C = Euclidean distance d + match cost of

the current body pose + accumulated cost function of the
previous body pose

END FOR
OBTAIN the minimum of C and the corresponding body

pose in the previous image
SAVE accumulated cost function of the current worm

body pose = min(C)
SAVE the corresponding worm body pose in the

previous image
END FOR
END IF
END FOR
OBTAIN the minimum overall accumulated cost function

and the corresponding worm body pose in the last image
OBTAIN corresponding body poses in previous image

frames

Finding the best sequence for the second worm
OBTAIN the image sequence with the first worm being

removed

OBTAIN the best image sequence for the second worm
using the above method

END FOR

Pseudo code for finding the best sequences within one
close/touching subsection

FOR subsection 1 to Index2
FOR each image in the subsection
SET the primary worm differently from the previous

image frame
OBTAIN the 10 best worm body poses for the primary

worm
FOR each primary worm body pose
OBTAIN the best worm body pose for the secondary

worm
END FOR
OBTAIN the best set of two worm body poses
END FOR
END FOR
Gaussian smoothing
SHOW new video
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