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SHARP QUADRATIC MAJORIZATION IN ONE DIMENSION

JAN DE LEEUW AND KENNETH LANGE

Abstract. Quadratic majorizations for real-valued functions

of a real variable are analyzed, and the concept of sharp ma-

jorization is introduced and studied. Applications to logistic

, probit and robust loss functions are discussed. The univari-

ate quadratic majorizations can be combined with regression,

principal component analysis, and multidimensional scaling

models to create simple iterative algorithms for complicated

multivariate techniques.

1. Introduction

Majorization algorithms, including the EM algorithm, are used for

more and more computational tasks in statistics [De Leeuw, 1994;

Heiser, 1995; Lange et al., 2000; Hunter and Lange, 2004]. The basic

idea is simple. A function g majorizes a function f at a point y if

g ≥ f and g(y) = f(y). If we are minimizing a complicated objec-

tive function f iteratively, then we construct a majorizing function

at the current best solution x(k). We then find a new solution x(k+1)

by minimizing the majorization function. Then we construct a new

majorizing function at x(k+1), and so on.

Majorization algorithms are worth considering if the majorizing

functions can be chosen to be much easier to minimize than the
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2 JAN DE LEEUW AND KENNETH LANGE

original objective function, for instance linear or quadratic. In this

paper we will look in more detail at majorization with quadratic

functions. We restrict ourselves to functions of a single real vari-

able. This is not as restrictive as it seems, because many functions

F(x1, · · · , xn) in optimization and statistics are separable in the

sense that

F(x1, · · · , xn) =
n∑
i=1

fi(xi),

and majorization of the univariate functions fi automatically gives

a majorization of F .

Many of our results generalize without much trouble to real-valued

functions on Rn and to constrained minimization over subsets of

Rn. The univariate context suffices to explain most of the basic

ideas.

2. Majorization

2.1. Definitions. We formalize the definition of majorization at a

point.

Definition 2.1. Suppose f and g are real-valued functions on Rn.

We say that g majorizes f at y if

• g(x) ≥ f(x) for all x,

• g(y) = f(y).

If the first condition can be replaced by

• g(x) > f(x) for all x 6= y ,

we say that majorization is strict.

Thus g majorizes f at y if d = g − f has a minimum, equal to

zero, at y . And majorization is strict if this minimum is unique. If

g majorizes f at y , then f minorizes g at y . Alternatively we also

say that f supports g at y .
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It is also useful to have a global definition, which says that f can

be majorized at all y .

Definition 2.2. Suppose f is a real-valued functions on Rn and g is

a real-valued function on Rn ⊗ Rn. We say that g majorizes f if

• g(x,y) ≥ f(x) for all x and all y ,

• g(x,x) = f(x) for all x.

Majorization is strict if the first condition is

• g(x,y) > f(x) for all x 6= y .

2.2. Majorization Algorithms. The basic idea of majorization al-

gorithms is simple. Suppose our current best approximation to

the minimum of f is x(k), and we have a g that majorizes f in x(k).
If x(k) already minimizes g we stop, otherwise we update x(k) to

x(k+1) by minimizing g. If we do not stop, we have the sandwich

inequality

f(x(k+1)) ≤ g(x(k+1)) < g(x(k)) = f(x(k)),

and in the case of strict majorization

f(x(k+1)) < g(x(k+1)) < g(x(k)) = f(x(k)).

Repeating these steps produces a decreasing sequence of func-

tion values, and appropriate additional compactness and continu-

ity conditions guarantee convergence of the algorithm. In fact, it

is not necessary to actually minimize the majorization function;

it is sufficient to have a continuous update function h such that

g[h(y)] < g(y) for all y . In that case the sandwich inequality still

applies with x(k+1) = h(x(k)).

2.3. Majorizing Differentiable Functions. We first show that ma-

jorization functions must have certain properties at the point where

they touch the target.
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Theorem 2.1. Suppose f and g are differentiable at y . If g ma-

jorizes f at y , then

• g(y) = f(y),
• g′(y) = f ′(y).

If f and g are twice differentiable at y , then in addition

• g′′(y) ≥ f ′′(y).

Proof. If g majorizes f at y then d = g − f has a minimum at y .

Now use the familiar necessary conditions for the minimum of a

differentiable function, which say the derivative at the minimum is

zero and, for a twice-differentiable function, the second derivative

is non-negative. �

Theorem 2.1 can be generalized in many directions if differentia-

bility fails. If f has a left and right derivatives in y , for instance,

and g is differentiable, then

f ′R(y) ≤ g′(y) ≤ f ′L(y).

If f is convex, then f ′L(y) ≤ f ′R(y), and f ′(y) must exist in order

for a differentiable g to majorize f at y . In this case g′(y) =
f ′(y). For nonconvex f more general differential inclusions are

possible using the four Dini derivatives of f at y .

3. Quadratic Majorizers

As we said, it is desirable that the subproblems in which we mini-

mize the majorization function are simple. One way to guarantee

this is to try to find a quadratic majorizer. This will generally be

convex quadratic majorizers, because concave ones have no min-

ima and are useless for algorithmic purposes (at least in the case

of unconstrained minimization).
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The first result, which has been widely applied, applies to functions

with a continuous and uniformly bounded second derivative [Böh-

ning and Lindsay, 1988].

Theorem 3.1. If f is twice differentiable and there is an B > 0 such

that f ′′(x) ≤ B for all x, then for each y the convex quadratic

function

g(x) = f(y)+ f ′(y)(x −y)+ 1
2
B(x −y)2.

majorizes f at y.

Proof. Use Taylor’s theorem in the form

f(x) = f(y)+ f ′(y)(x −y)+ 1
2
f ′′(ξ)(x −y)2,

with ξ on the line connecting x and y . Because f ′′(ξ) ≤ B, this

implies f(x) ≤ g(x), where g is defined above. �

This result is very useful, but it has some limitations. In the first

place we would like a similar result for functions that are not every-

where twice differentiable, or even those that are not everywhere

differentiable. Second, the bound does take into account that we

only need to bound the second derivative on the interval between

x and y , and not on the whole line. This may result in a bound

which is not sharp.

Why do we want the bounds on the second derivative to be sharp?

The majorization algorithm corresponding to this result is

x(k+1) = x(k) − 1
B
f ′(x(k)),

By Ostrowski’s Theorem [Ortega and Rheinboldt, 1970, Theorem

10.1.3] this sequence converges linearly, say to x∞, with rate

lim
k→∞

‖x(k+1) − x∞‖
‖x(k) − x∞‖

= 1− 1
B
f ′′(x∞).

The smaller we choose B, the faster our convergence. The result

remains true in the more general situation we study in this paper,
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where B continuously depends on the majorization point y , pro-

vided the algorithm converges to a point with f ′(x∞) = 0. In that

case the linear convergence rate is 1− f ′′(x∞)/B(x∞).

Example 3.1. If a quadratic g majorizes a twice-differentiable con-

vex function f at y , then g is convex. This follows from g′′(y) ≥
f ′′(y) ≥ 0.

Example 3.2. If a concave quadratic gmajorizes a twice-differentiable

function f at y , then f is concave at y . This follows from 0 ≥
g′′(y) ≥ f ′′(y).

Example 3.3. Quadratic majorizers can be concave. Take f(x) =
−x2 and g(x) = −x2 + 1

2(x −y)2.

Example 3.4. Quadratic majorizers may not exist anywhere. Sup-

pose, for example, that f is a cubic. If g is quadratic, then d = g−f
is a cubic, and d(x) is negative for at least one value of x.

Example 3.5. Quadratic majorizers may exist almost everywhere,

but not everywhere. Suppose, for example, that f(x) = |x|. Then

f has a quadratic majorizer at each y except y = 0. If y 6= 0 we

can use, following Heiser [1986], the arithmetic mean-geometric

mean inequality in the form√
x2y2 ≤ 1

2
(x2 +y2),

and find

|x| ≤ 1
2|y|x

2 + 1
2
|y|.

If g majorizes |x| at 0, then we must have ax2 + bx ≥ |x| for

all x 6= 0, and thus a|x| + b sign(x) ≥ 1 for all x 6= 0. But for

|x| < 1+|b|
a and sign(x) = −sign(b), we have a|x| + b sign(x) < 1.

Example 3.6. For a nice regular example we use the celebrated func-

tions

φ(x) = 1√
2π

e−z
2/2,

Φ(x) =
∫ x
−∞
φ(z)dz.
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Then

Φ′(x) = φ(x),

Φ′′(x) = φ′(x) = −xφ(x),

Φ′′′(x) = φ′′(x) = −(1− x2)φ(x),

Φ′′′′(x) = φ′′′(x) = −x(x2 − 3)φ(x).

It follows, by setting various derivatives to zero and checking for

maxima and minima, that

0 ≤ Φ′(x) = φ(x) ≤ φ(0),

−φ(1) ≤ Φ′′(x) = φ′(x) ≤ φ(1),

−φ(0) ≤ Φ′′′(x) = φ′′(x) ≤ 2φ(
√

3).

Thus we have the quadratic majorizers

Φ(x) ≤ Φ(y)+φ(y)(x −y)+ 1
2
φ(1)(x −y)2,

and

φ(x) ≤ φ(y)−yφ(y)(x −y)+φ(
√

3)(x −y)2.

This is illustrated for both Φ and φ at the points y = 0 and y = −3

in Figures 1 and 2.

[Figure 1 about here.]

[Figure 2 about here.]

4. Sharp Quadratic Majorization

We now drop the assumption that the objective function is twice

differentiable, even locally, and we try to improve our bound esti-

mates at the same time.
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4.1. Differentiable Case. Let us first deal with the case in which f
is differentiable in y . Consider all a > 0 for which

f(x) ≤ f(y)+ f ′(y)(x −y)+ 1
2
a(x −y)2

for a fixed y and for all x. Equivalently, we must have

a ≥ f(x)− f(y)− f
′(y)(x −y)

1
2(x −y)2

.(1)

Define the function

δ(x,y) = f(x)− f(y)− f
′(y)(x −y)

1
2(x −y)2

for all x 6= y . The inequalities (1) have a solution if and only if

A(y) = sup
x
δ(x,y) <∞.

If this is the case, then any a ≥ A(y) will satisfy (1). Because

we want a to be as small as possible, we will usually prefer to

choose a = A(y). This is what we mean by the sharp quadratic

majorization. If the second derivative is uniformly bounded by B,

we have A(y) ≤ B, and thus our bound improves on the uniform

bound considered before.

The function δ has some interesting properties. If f is convex

we have δ(x,y) ≥ 0 and for a concave f we have δ(x,y) ≤ 0.

For strictly convex and concave f these inequalities are strict. If

δ(x,y) ≤ 0 for all x and y , then f must be concave. Consequently

A(y) ≤ 0 only if f is concave, and without loss of generality we

can exclude this case from consideration.

Clearly δ(x,y) is closely related to the second derivative at or near

y . If f is twice differentiable at y , then

lim
x→y

δ(x,y) = f ′′(y).(2)

If f is three times differentiable, this can be sharpened to

lim
x→y

δ(x,y)− f ′′(y)
x −y = 1

6
f ′′′(y).
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Moreover, in the twice differentiable case, the mean value theorem

implies there is a ξ in the interval extending from x to y with

δ(x,y) = f ′′(ξ). We can also derive an integral representation of

δ(x,y) and its first derivative with respect to x [Tom Ferguson,

Personal Communication, 03/12/04].

Lemma 4.1. δ(x,y) can written as the expectation

δ(x,y) = E{f ′′[Vy + (1− V)x]},

where the random variable V follows a β(2,1) distribution. Likewise

δ′(x,y) = 1
3

E{f ′′′[Wy + (1−W)x]},

where the random variable W follows a β(2,2) distribution. Thus

δ(x,y) and δ′(x,y) can be interpreted as smoothed versions of f ′′

and f ′′′.

Proof. The first representation follows from the second-order Tay-

lor’s expansion

f(x) = f(y)+f ′(y)(x−y)+ (x−y)2
∫ 1

0
f ′′[vy + (1−v)x]v dv

with integral remainder [Lange, 2004]. This form of the remainder

can be deduced by integration by parts. Differentiation under the

integral sign yields the second representation. �

In view of Lemma 4.1, δ(x,y) is jointly continuous in x and y
when f ′′(x) is continuous. Furthermore, if f ′′(x) tends to ∞ as x
tends to −∞ or +∞, then δ(x,y) is unbounded in x for each fixed

y . Thus, quadratic majorizations do not exist for any y if the

second derivative grows unboundedly. It also follows from Lemma

4.1 that the best quadratic majorization does not exist if the third

derivative f ′′′ is always positive (or always negative). This happens,

for instance, if the first derivative f ′ is strictly convex or strictly

concave. Thus as mentioned earlier, cubics do not have quadratic

majorizations.



10 JAN DE LEEUW AND KENNETH LANGE

Example 4.1. Majorization may be possible at all points y without

the function A(y) being bounded. Suppose the graph of f ′′(x) is

0 except for an isosceles triangle centered at each integer n ≥ 2. If

we let the base of the triangle be 2n−3 and the height of the triangle

be n, then the area under the triangle is n−2. The formulas

f ′(x) =
∫ x

0
f ′′(y)dy, f (x) =

∫ x
0
f ′(y)dy

define a nonnegative convex function f(x) satisfying

f ′(x) ≤
∞∑
n=2

1
n2

<∞.

To prove the A(y) is finite for every y , recall the limit (2) and

observe that

δ(x,y) = f
′(w)(x −y)− f ′(y)(x −y)

1
2(x −y)2

= f
′(w)− f ′(y)

1
2(x −y)

for some w between x and y . It follows that δ(x,y) tends to 0 as

|x| tends to ∞. Because A(n) ≥ f ′′(n) = n, it is clear that A(y) is

unbounded.

4.2. Computing the Sharp Quadratic Majorization. Let us study

the case in which the supremum of δ(x,y) over x 6= y is attained

at, say, z 6= y . In our earlier notation A(y) = δ(z,y). Differentiat-

ing δ(x,y) with respect to x gives

δ′(x,y) =
1
2(x −y)2[f ′(x)+ f ′(y)]− (x −y)[f(x)− f(y)]

1
4(x −y)4

,

and

f(z)− f(y)
z −y = 1

2
[f ′(z)+ f ′(y)](3)

is a necessary and sufficient condition for δ′(z,y) to vanish. At

the optimal z we have

A(y) = δ(z,y) = f
′(z)− f ′(y)
z −y .(4)
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It is interesting that the fundamental theorem of calculus allows

us to recast equations (3) and (4) as

1
2
[f ′(z)+ f ′(y)] =

∫ 1

0
f ′[z + t(y − z)]dt

A(y) =
∫ 1

0
f ′′[z + t(y − z)]dt.

When f is convex, A(y) ≥ 0. For the second derivative at z, we

have

δ′′(z,y) = (z −y)
2f ′′(z)− [f ′(z)− f ′(y)](z −y)

1
2(z −y)4

.

At a maximum we must have δ′′(z,y) ≤ 0, which is equivalent to

f ′′(z) ≤ f
′(z)− f ′(y)
z −y = A(y).(5)

We can achieve more clarity by viewing these questions from a

different angle. If the quadratic g majorizes f at y , then it satisfies

g(x) = f(y)+ f ′(y)(x −y)+ 1
2
a(x −y)2

for some a. If z is a second support point, then g not only inter-

sects f at z, but it also majorizes f at z. The condition g′(z) =
f ′(z) yields

a = f
′(z)− f ′(y)
z −y .

If we match this value with the requirement δ(z,y) = a, then we

recover the second equality in (4). Conversely, if a point z satisfies

the second equality in (4), then it is a second support point. In this

case, one can easily check condition (3) guaranteeing that z is a

stationary point of δ(x,y).

4.3. Optimality with Two Support Points. Quadratic functions with

two support points have occurred in various instances in specific

majorization algorithms. For simple symmetric examples involv-

ing the absolute value function and other symmetric robust loss

functions we refer, for example, to Heiser [1987] and Verboon and
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Heiser [1994]. For quadratic approximations to penalized likeli-

hood functions used for variable selection in linear regression we

refer to Fan and Li [2001] and Hunter and Li [2005]. In both cases

the existence and location of the second support point naturally

follows from the symmetry around zero of the robust loss func-

tions and the various penalty functions.

Extensions to the general case, and explicit introduction of the no-

tion of sharp quadratic approximation, started with work by Groe-

nen et al. [2003]. Van Ruitenburg [2005] proves that a quadratic

function g majorizing a differentiable function f at two points

must be a sharp majorizer. We now summarize in our language

Van Ruitenburg’s lovely proof of this fact.

Lemma 4.2. Suppose two quadratic functions g1 6= g2 both majorize

the differentiable function f at y . Then either g1 strictly majorizes

g2 at y or g1 strictly majorizes g2 at y .

Proof. We have

g1(x) = f(y)+ f ′(y)(x −y)+
1
2
a1(x −y)2,(6)

g2(x) = f(y)+ f ′(y)(x −y)+
1
2
a2(x −y)2,(7)

with a1 6= a2. Subtracting (6) and(7) proves the theorem. �

Lemma 4.3. Suppose the quadratic function g1 majorizes a differ-

entiable function f at y and z1 6= y and that the quadratic function

g2 majorizes f at y and z2 6= y . Then g1 = g2.

Proof. Suppose g1 6= g2. Since both g1 and g2 majorize f at y ,

Lemma 4.2 applies. If g2 strictly majorizes g1 at y , then g1(z2) <
g2(z2) = f(z2), and g1 does not majorize f . If g1 strictly majorizes

g2 at y , then similarly g2(z1) < g1(z1) = f(z1), and g2 does not

majorize f . Unless g1 = g2, we reach a contradiction. �

We now come to Van Ruitenburg’s main result.
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Theorem 4.4. Suppose a quadratic function g1 majorizes a differen-

tiable function f at y and at z 6= y , and suppose g2 6= g1 majorizes

f at y . Then g2 strictly majorizes g1 at y .

Proof. Suppose g1 strictly majorizes g2. Then g2(z) < g1(z) =
f(z) and thus g2 does not majorize f . The result now follows

from Lemma 4.2. �

[Figure 3 about here.]

Example 4.2. It is not true, by the way, that a quadratic majorizer

can have at most two support points. There can even be an infinite

number of them. Consider the function h(x) = c sin2(x) for some

c > 0. Clearly h(x) ≥ 0 and h(x) = 0 for all integer multiples

of π . Now define f(x) = x2 − h(x) and g(x) = x2. Then g is

a quadratic majorizer of f at all integer multiples of π . This is

plotted in Figure 3 for c = 10.

Example 4.3. There is no guarantee that a second support point z 6=
y exists. Consider the continuously differentiable convex function

f(x) =

x
2 if ≤ 1

2x − 1 if x > 1,

and fix y > 1. For x > 1

δ(x,y) = 2x − 1− 2y + 1− 2(x −y)
1
2(x −y)2

= 0.

For x ≤ 1

δ(x,y) = x2 − 2y + 1− 2(x −y)
1
2(x −y)2

= (x − 1)2
1
2(x −y)2

.

It follows that limx→−∞ δ(x,y) = 2. On the other hand, one can

easily demonstrate that δ(x,y) < 2 whenever x ≤ 1. Hence,

A(y) = 2, but δ(x,y) < 2 for all x 6= y .
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4.4. Even Functions . Assuming that f(x) is even simplifies the

construction of quadratic majorizers. If an even quadratic g satis-

fies g(y) = f(y) and g′(y) = f ′(y), then it also satisfies g(−y) =
f(−y) and g′(−y) = f ′(−y). If in addition g majorizes f at ei-

ther y or −y , then it majorizes fat both y and −y , and Theorem

4.4 implies that it is the best possible majorization at both points.

This means we only need an extra condition to guarantee that g
majorizes f . The next theorem, essentially proved in the refer-

ences Jaakkola and Jordan [2000]; Groenen et al. [2003]; Hunter

and Li [2005] by other techniques, highlights an important suffi-

cient condition.

Theorem 4.5. Suppose f(x) is an even, differentiable function on R

such that the ratio f ′(x)/x is decreasing on (0,∞). Then the even

quadratic

g(x) = f ′(y)
2y

(x2 −y2)+ f(y)

is the best majorizer of f(x) at the point y .

Proof. It is obvious that g(x) is even and satisfies the tangency

conditions g(y) = f(y) and g′(y) = f ′(y). For the case 0 ≤ x ≤
y , we have

f(y)− f(x) =
∫ y
x
f ′(z)dz

=
∫ y
x

f ′(z)
z

z dz

≥ f ′(y)
y

∫ y
x
zdz

= f ′(y)
y

1
2
(y2 − x2)

= f(y)− g(x).

It follows that g(x) ≥ f(x). The case 0 ≤ y ≤ x is proved in

similar fashion, and all other cases reduce to these two cases given

that f(x) and g(x) are even. �



SHARP QUADRATIC MAJORIZATION IN ONE DIMENSION 15

There is an condition equivalent to the sufficient condition of The-

orem 4.5 that is sometimes easier to check.

Theorem 4.6. The ratio f ′(x)/x is decreasing on (0,∞) if and only

f(
√
x) is concave. The set of functions satisfying this condition is a

closed under the formation of (a) positive multiples, (b) convex com-

binations, (c) limits, and (d) composition with a concave increasing

function g(x).

Proof. Suppose f(
√
x) is concave and x > y . Then the two in-

equalities

f(
√
x) ≤ f(

√
y)+ f

′(√y)
2
√y (x −y)

f(
√
y) ≤ f(

√
x)+ f

′(
√
x)

2
√
x
(y − x)

are valid. Adding these, subtracting the common sum f(
√
x) +

f(√y) from both sides, and rearranging give

f ′(
√
x)

2
√
x
(x −y) ≤ f ′(√y)

2
√y (x −y).

Dividing by (x −y)/2 yields the desired result

f ′(
√
x)√
x

≤ f ′(√y)
√y .

Conversely, suppose the ratio is decreasing and x > y . Then the

mean value expansion

f(
√
x) = f(

√
y)+ f

′(
√
z)

2
√
z
(x −y)

for z ∈ (y,x) leads to the concavity inequality.

f(
√
x) ≤ f(

√
y)+ f

′(√y)
2
√y (x −y).

The asserted closure properties are all easy to check. �

As examples of property (d) of Theorem 4.6, note that the func-

tions g(x) = lnx and g(x) = √
x are concave and increasing.
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Hence, if f(
√
x) is concave, then lnf(

√
x) and f(

√
x)1/2 are con-

cave as well.

The above discussion suggests that we look at more general trans-

formations of the argument of f . If we define f̃ (x) = f(α + βx)
for an arbitrary function f(x), then a brief calculation shows that

Ã(y) = β2A(α+ βy)

z̃(y) = z(α+ βy)−α
β

using the identity δ̃(x,y) = β2δ(α+βx,α+βy). An even function

f(x) satisfies f̃ (x) = f(x) for α = 0 and β = −1.

4.5. Non-Differentiable Functions. If f is not differentiable at y ,

then we must find a and b such that

f(x) ≤ f(y)+ b(x −y)+ 1
2
a(x −y)2.

for all x. This is an infinite system of linear inequalities in a and

b, which means that the solution set is a closed convex subset of

the plane.

Analogous to the differentiable case we define

δ(x,y, b) = f(x)− f(y)− b(x −y)1
2(x −y)2

,

as well as

A(y,b) = sup
x
δ(x,y, b).

If A(y,b) < +∞, we have the sharpest quadratic majorization for

given y and b. The sharpest quadratic majorization at y is given

by

A(y) = inf
b
A(y,b).



SHARP QUADRATIC MAJORIZATION IN ONE DIMENSION 17

5. Examples

5.1. Logistic. Our first example is the negative logarithm of the

logistic cdf

Ψ(x) = 1
1+ e−x .

Thus

f(x) = log(1+ e−x).

Clearly

f ′(x) = − e−x

1+ e−x = Ψ(x)− 1,

and

f ′′(x) = e−x

(1+ e−x)2 = Ψ(x)[1− Ψ(x)].
This shows that f(x) is strictly convex. Since f ′′(x) ≤ 1/4, a uni-

form bound is readily available.

The symmetry relations

f(−x) = x + f(x),

f ′(−x) = −[1+ f ′(x)] = −Ψ(x),
f ′′(−x) = f ′′(x).

demonstrate that z = −y satisfies equation (3) and hence maxi-

mizes δ(x,y). The optimum value is determined by (4) as

A(y) = δ(z,y) = 2Ψ(y)− 1
2y

.

The same result was derived, using quite different methods, by

Jaakkola and Jordan [2000] and Groenen et al. [2003].

[Figure 4 about here.]

We plot the function δ(x,y) for y = 1 and y = 8 in Figure 4.

Observe that the uniform bound 1/4 is not improved much for y
close to 0, but for large values of y the improvement is huge. This

is because A(y) ≈ (2|y|)−1 for large |y|.
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Alternatively, we can majorize f(x) = log(1+ e−x) by writing

log(1+ e−x) = −1
2
x + log(ex/2 + e−x/2)

and majorizing the even function h(x) = log(ex/2+e−x/2). Straight-

forward but tedious differentiation shows that[
h′(x)
x

]′
= 1− e2x + 2xex

2x2(1+ ex)2

= 1
2x2(1+ ex)2

∞∑
k=2

[
2x
xk

k!
− (2x)

k+1

(k+ 1)!

]

= 2
2x2(1+ ex)2

∞∑
k=2

xk+1

k!

[
1− 2k

k+ 1

]
≤ 0.

Hence, h′(x)/x is decreasing on (0,∞), and Theorem 4.5 applies.

Of course minimizing a single function f(x) = log(1+ e−x) is not

interesting. But a weighted sum of such functions defines logistic

regression, and our non-uniform quadratic majorization provides

an algorithm for logistic regression with a rapid convergence rate.

In De Leeuw [2006a,b] quadratic logistic majorization is used to de-

fine majorization algorithms for principal component analysis of

binary data. This is extended to multi-category data and to various

distance-based association models for cross-tables and indicator

matrices in De Leeuw [2006c,d]. The corresponding algorithms are

all based on sharp quadratic majorization of the logistic function.

5.2. Probit. In Probit and Tobit analysis the negative log-likelihood

is a weighted sum of terms involving f(x) = − logΦ(x), with Φ
the cumulative standard normal. It is well-known that f is strictly

convex, implying that f ′′(x) > 0 for all x. It was shown by Böhning

[1999] that in addition f(x) < 1 for all x as well, which provides a

uniform bound for quadratic majorization.

De Leeuw [2006b] gave an alternative proof, based on simple in-

equalities for Mill’s Ratio derived by Sampford [1953]. He also
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stated, but did not prove, that uniform quadratic majorization is

sharp. In fact, that last result follows easily from the asymptotic

expansion of Mill’s Ratio. We can use

1− Φ(x) ∼ φ(x)
x

as x → ±∞ to show that limx→±∞ δ(x,y) = 1 for all y .

Consequently, from the computational point of view, there is an

important difference between logit and probit techniques. In the

logistic case, which includes applications to logistic regression,

Rasch models, and multivariate logistic item response models, we

can accelerate convergence by optimal quadratic majorization. For

solutions with logistic probabilities close to zero and one, the ac-

celeration will be very substantial. But the corresponding probit

techniques cannot be optimized in the same way, because uniform

quadratic majorization is already sharp. This makes a large dif-

ference in optimizing logistic or probit regression, and the more

complicated techniques for principal component analysis and mul-

tidimensional scaling discussed before.

5.3. The Absolute Value Function. Because |x| is even, Theorem

4.5 yields the majorization

g(x) = 1
2|y|(x

2 −y2)+ |y| = 1
2|y|x

2 + 1
2
|y|,

which is just the result given by the arithmetic/geometric mean

inequality in Example 3.5. When y = 0, recall that no quadratic

majorization exists.

If we approach majorization of |x| directly, we need to find a > 0

and b such that

a(x −y)2 + b(x −y)+ |y| ≥ |x|

for all x. Let us compute A(y,b). If y < 0 then b = −1, and thus

A(y,−1) = sup
x 6=y

|x| + x
1
2(x −y)2

= 1
|y| .
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If y > 0 then b = +1, and again

A(y,+1) = sup
x 6=y

|x| − x
1
2(x −y)2

= 1
|y| .

In both cases, the best quadratic majorizer can be expressed as

g(x) = 1
2

1
|y|(x −y)

2 + sign(y)(x −y)+ |y|

= 1
2|y|x

2 + 1
2
|y|.

5.4. The Huber Function. Majorization for the Huber function, specif-

ically quadratic majorization, has been studied earlier by Heiser

[1987] and Verboon and Heiser [1994]. In those papers quadratic

majorization functions appear more or less out of the blue, and it

is then verified that they are indeed majorization functions. This

is not completely satisfactory. Here we attack the problem by ap-

plying Theorem 4.5. This automatically leads to the sharpest qua-

dratic majorization.

The Huber function is defined by

f(x) =


1
2x

2 if |x| < c,
c|x| − 1

2c
2 otherwise.

Thus we really deal with a family of even functions, one for each

c > 0. The Huber functions are differentiable with derivative

f ′(x) =


x if |x| < c,
c if x ≥ c,
−c if x ≤ −c.

Since it is obvious that f ′(x)/x is decreasing (0,∞), Theorem 4.5

immediately gives the sharpest majorizer

g(x) =


1
2
c
|y|(x −y)2 − cx −

1
2c

2 if y ≤ −c,
1
2x

2 if |y| < c,
1
2
c
|y|(x −y)2 + cx −

1
2c

2 if y ≥ +c.
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6. Iterative Computation of A(y)

In general, one must find A(y) numerically. Observe that in pre-

vious papers heuristics were used to find a second support point.

In some cases, however, thee are no heuristics, and we need to

actually optimize δ(x,y) over x for given y

For a convex function f , two similar iterative algorithms are avail-

able. They both depend on minorizing f by the linear function

f(x(k))+ f ′(x(k))(x − x(k)) at the current point x(k) in the search

for the maximum z of δ(x,y). This minorization propels the fur-

ther minorization

δ(x,y) ≥ f(x(k))+ f ′(x(k))(x − x(k))− f(y)− f ′(y)(x −y)
1
2(x −y)2

= [f ′(x(k))− f ′(y)](x −y)+ f(x(k))+ f ′(x(k))(y − x(k))− f(y)
1
2(x −y)2

.

Maximizing the displayed minorizer drives δ(x,y) uphill. Fortu-

nately, the minorizer is a function of the form

h(w) = cw + d
w2

= c
w
+ d
w2

with w = x − y . The stationary point w = −2d/c furnishes the

maximum of h(w) provided

h′′
(
−2d
d

)
= 2c
w3

∣∣∣
w=−2d/c

+ 6d
w4

∣∣∣
w=−2d/c

= c4

8d3

is negative. If f(x) is strictly convex, then

d = 2
[
f(x(k))+ f ′(x(k))(y − x(k))− f(y)

]
,

is negative, and the test for a maximum succeeds. The update can

be phrased as

x(k+1) = y − 2
f(x(k))+ f ′(x(k))(y − x(k))− f(y)

f ′(x(k))− f ′(y) .
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A brief calculation based on equations (3) and (4) shows that the

iteration map x(k+1) = g(x(k)) has derivative

g′(z) = f ′′(z)(z −y)
f ′(z)− f ′(y) =

f ′′(z)
A(y)

at the optimal point z.

On the other hand, the Dinkelbach [1967] maneuver for increasing

h(w) considers the function e(w) = cw+d−h(w(k))w2 with value

e(w(k)) = 0. If we choose

w(k+1) = c
2h(w(k))

to maximize e(w), then it is obvious that h(w(k+1) ≥ h(w(k)). This

gives the iteration map

xn+1 = y +
1
2[f

′(x(k))− f ′(y)](x(k) −y)2
f(x(k))− f(y)− f ′(y)(x(k) −y) = y +

f ′(x(k))− f ′(y)
δ(x(k), y)

with derivative at z equal to f ′′(z)/A(y) by virtue of equations

(3) and (4). Hence, the two algorithms have the same local rate of

convergence. We recommend starting both algorithms near y . In

the case of the Dinkelbach algorithm, this entails

h(w) ≈ δ(x,y) ≈ f ′′(y) > 0

for f(x) strictly convex. Positivity of h(w(0)) is required for proper

functioning of the algorithm.

In view of the convexity of f(x), it is clear that f ′′(z)/A(y) ≥ 0.

The inequality f ′′(z) ≤ A(y) follows from the condition A(y) =
A(z) determined by Theorem 4.4 and inequality (5). Ordinarily,

strict inequality f ′′(z) < A(y) prevails, and the two iteration maps

just defined are locally contractive. Globally, the standard conver-

gence theory for iterative majorization (MM algorithms) suggests

that limn→∞ |x(k+1) − x(k)| = 0 and that the limit of every conver-

gent subsequence must be a stationary point of δ(x,y) [Lange,

2004].
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Figure 1. Quadratic majorization of cumulative normal
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