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Abstract

How we move and interact with our surroundings can reveal
a lot about us as an individual. This study delves into the
interplay of music, movement, and individual identity within
the framework of embodied cognition. Drawing inspiration
from Carlson et al. (2020)’s work, which showcased remark-
ably high accuracy in identifying individuals based on free-
form dance movements in a marker-based setting, our investi-
gation extends their work into two novel contexts: markerless-
choreographic and marker-based-dyadic dance settings. In the
choreographic setting, professional dancers perform identical
routines in a markerless setting. In the dyadic setting, individ-
uals danced with a partner. We found that the dancer identifi-
cation accuracy was at least two times better than the chance
level in the choreographic setting and notably high accuracy in
the dyadic setting. These results showcase the robustness of
Carlson et al. (2020)’s method in generalizing to new settings
and the presence of motoric fingerprints in choreographic as
well as dyadic settings.

Introduction
Music can evoke emotions, stimulate cognitive processes,
increase social bonding, and improve mental and physical
health. Among its multifaceted functions, a particularly
salient aspect is its ability to induce movements. In a study
by Lesaffre et al. (2008), approximately 95% of participants
reported engaging in spontaneous movements in response to
the music they heard. The relationship between movement
and music goes beyond being a response; some argue that
movement is integral to parsing and comprehending musical
sounds. Basing their argument on music performance studies,
sound-tracing studies where listeners depict their impressions
of audio stimuli through drawing, and dance movement stud-
ies, Godøy et al. (2016) offered support for the concept of
sound-motion similarity, rooted in the motor theory of per-
ception. This theory suggests that we move our bodies to
comprehend the sounds we hear, akin to the movements in-
volved in producing those sounds. This bold assertion aligns
with the idea of embodied cognition from psychology. Em-
bodied cognition challenges the conventional perspective that
cognition solely relies on stimuli collected through sensory
organs by acknowledging the role of the body in cognitive
processes.(Shapiro, 2007; Wilson and Golonka, 2013). Em-
bodied music cognition, as articulated by Leman (2008),
stems from the broader concept of embodied cognition. Le-
man posits a direct experience with music where the listener
parses the moving sonic forms in the music through bodily
imitation, either internally or externally.

Music-induced movements embody rich information about
gender (Hufschmidt et al., 2015), mood, emotion, personal-
ity (Camurri et al., 2003; Luck et al., 2010; Van Dyck et al.,
2013; Carlson et al., 2016; Carlson et al., 2018), and culture
(Tommi and Marc R., 2011). Machine learning methods have
also been used to predict gender and personality traits from
free-form dance movements (Agrawal et al., 2022). There-
fore, it is reasonable to expect different individuals to move
differently to the same music stimulus. Johansson (1973)’s
seminal study laid the foundation for investigations into the
individuality of movement. His findings demonstrated that
humans possess the ability to perceive walking from point-
light animations featuring key joints. Cutting and Kozlowski
(1977)’s study illustrated that friends could identify each
other based on point-light displays of their gait. Troje et
al. (2005) extended this line of inquiry, revealing that human
observers have the ability to learn to distinguish individuals
from the point-light animations of their walk. In their investi-
gation, identification performance was measured under vari-
ous conditions, including displays normalized for size, shape,
and walking frequency, as well as rotations of the walker by
90 degrees. Remarkably, the identification performance was
three times higher than the chance level. In a subsequent
study, Westhoff and Troje (2007) used Fourier analysis and
removed the first harmonic, which contains the majority of
individual information, yet the performance remained above
the chance level. Music-induced movements can also be
considered a motoric fingerprint, encompassing information
that can be used to identify an individual. Both human ob-
servers and machine learning algorithms have demonstrated
success in this area. Humans can recognize themselves from
their motion-captured dance movements(Sevdalis and Keller,
2009; Bläsing and Sauzet, 2018). Carlson et al. (2020) em-
ployed machine learning methods and achieved a remarkably
high accuracy of 94% in identifying individuals from their
motion-captured data using only movement features while
doing free-form dance movements to the music of eight gen-
res.

All the above-mentioned studies have used naturalistic
free-form movements as a medium for dancer identification.
These movements could be influenced by an individual’s
anatomy, diverse dancing training, and other factors outlined
previously. This leads to an intriguing question: To what ex-
tent can we identify individuals based on their movements

2465
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



Figure 1: Summary of both datasets

within a more constrained setting, where each subject per-
forms the same routine? Unlike free-form environments, con-
strained settings offer limited scope for variations between
subjects. The distinctions, if they exist, are subtle and may
manifest, for instance, in aspects like flowy versus jerky ren-
ditions of the same choreography 1. To investigate chore-
ographic settings, it becomes imperative to involve profes-
sional dancers with substantial experience, ensuring strict ad-
herence to the prescribed choreography. This work tries to
verify the notion of the personal style of a dancer. In addition
to this, these studies have employed a marker-based motion
capture system for recording dance movements. However,
there are several challenges associated with using marker-
based systems for capturing movements. Marker-based sys-
tems necessitate extensive preparation time for subjects, lim-
iting their practicality. They cannot be used in environments
where their placement could impede the studied activity, such
as sports. Furthermore, the placement of markers can alter
the naturalness of subjects’ movements. Hence, it is impor-
tant to capture music-induced movements in a markerless set-
ting. Advancements in computer vision, particularly lever-
aging modern deep learning methods, have significantly en-
hanced the efficacy of human pose estimation in a marker-
less setting. Human pose estimation and tracking, a com-
puter vision task, includes detecting, associating, and track-
ing semantic key points such as ”right shoulders” and ”left
knees” from images and videos. OpenPose stands out as a
noteworthy library capable of 2D/3D pose estimation (Cao et
al., 2019). Despite the challenges in human pose estimation,
including occlusions due to viewing angles, several research
studies have substantiated the accuracy of these systems in
tracking the key points. Nakano et al. (2020) conducted a
study involving participants engaging in activities like walk-
ing, countermovement jumping, and ball throwing, utilizing
both marker-based and Openpose-based markerless motion
capture systems to record the activity. The differences were
quantitatively analyzed using mean absolute errors, revealing
that 80% of the errors were less than 30mm. Notably, recent

1Please note that in the two videos video1 and video2, despite
doing the same routine, each dancer infuses a personal touch to it

studies have underscored the success of markerless systems,
offering a promising alternative in overcoming the limitations
associated with marker-based approaches. Hence, we should
be able to validate Carlson et al. (2020)’s findings in a marker-
less setting. We hypothesize that despite dancing to the same
choreography there is a unique signature of a dancer that is
identifiable in a markerless setting.

Dance is a social activity and, therefore, often occurs in
groups. In particular, we look at dyadic dance, which is a
good example of rhythmic social entrainment. In contrast to
solo dancing, where movements are primarily influenced by
the music, in dyadic settings, dance movements are not just
influenced by the auditory cues but also the visual informa-
tion derived from the partner. We have evidence that dyadic
dancing is different from dancing alone. Carlson et al. (2018)
found that individuals in dyads tend to move their hands more
than when dancing alone for the same music stimulus, and
this difference is statistically significant. They also showed
that the same individual can move differently when dancing
with different partners, and this happens particularly in indi-
viduals with high self-reported empathy scores. Interpersonal
coordination has also been studied in dyadic dancing with two
perceptual variables: interaction and similarity. Hartmann et
al. (2019) showed that high interaction is linked with how
closely the dyads are horizontally oriented toward each other,
referred to as torso orientation. In the subsequent study, Hart-
mann et al. (2023) studied mirroring, sequential, and simul-
taneous coupling in the dyadic context. We can conclude
from the above-mentioned studies that participants tend to
synchronize their movements with their partners and some-
times also change their movement patterns depending on the
partner. The individuality of movements in the context of
dyadic settings has not been studied yet. We hypothesize that
the unique signature of individual movements persists when
individuals dance with a partner.

In summary, this work endeavors to assess the exter-
nal validity, a critical yet often overlooked aspect, of Carl-
son’s study, particularly within markerless-choreographic and
marker-dyadic settings. By extending the investigation into
these contexts, the aim is to evaluate the robustness, broader
applicability, and generalizability of Carlson’s findings.
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Figure 2: 17 key-point’s locations in COCO-format

Methods
Datasets
AIST++ We employed the AIST++ dataset from Li et al.
(2021) for the choreographic-markless setting. AIST++ is a
large-scale 3D dance motion dataset generated from the AIST
dance database (Tsuchida et al., 2019). AIST is just a collec-
tion of dance videos in 9 camera angles without any 3D in-
formation. AIST++ provides 17 COCO-format (Ronchi and
Perona, 2017) human joint locations in 2D and 3D for each
frame, along with camera and SMPL pose parameters. 17
COCO-format joint locations are depicted in the Figure 2.

The subjects of the study were 40 professional dancers (15
females) with more than five years of experience. It is a rich
dataset covering ten dance genres: Ballet Jazz, Street Jazz,
Krump, House, LA-style Hip-hop, Middle Hip-hop, Waack,
Lock, Pop, and Break. Each dancer specializes in a partic-
ular dance genre. Notably, the choreography undertaken by
dancers in one genre differs from that of dancers performing
in other genres.

The dataset comprises 1,408 dance sequences; basic dance
constitutes 85%, and advanced dance includes the remaining
15%. Within the basic dance category, each genre includes
ten choreographies performed by three dancers in four im-
pressions: intense, loose, hard, and soft. In the advanced
dance category, dancers were asked to choreograph their own
moves. Some dancers shared their choreographies with oth-
ers. For each genre, there were seven choreographies per-
formed by three dancers. We will be using the basic dance
category for our analysis.

Dyadic Carlson et al. (2020)’s dataset was utilized for the
dyadic setting. 73 participants (54 females) aged 19–40 years
(M = 25.75, SD = 4.72) were recruited for the motion capture
study. The participants, hailing from 24 different nationali-
ties and possessing diverse musical and dance training back-
grounds.

The motion capture was conducted using a twelve-camera
optical system (Qualisys Oqus 5+), tracking 21 reflective
body markers in three-dimension of the subject at a frame
rate of 120 Hz. Marker locations are represented in Figure
3(A).

The participants were grouped in sets of three or four.
Within each group, data was recorded both individually and

Figure 3: A) Marker locations B) Transformed joint locations

between every pair in the group. While every participant
completed the individual recording, 64 participants (52 in
groups of four and 12 in groups of three) completed the
dyadic recording. Notably, in some groups of size four, cer-
tain markers of a participant were not captured in any of
their dyad recordings. These participants were excluded from
the analysis, effectively converting the groups to size three.
To ensure balanced classes, we selected two dyads with the
highest torso orientation from groups of size four and one
dyad from groups of size three, ensuring each participant was
present in only one dyad. Please refer to Hartmann et al.
(2019) for torso orientation computation. Following these fil-
tering steps, we arrived at a total of 864 recordings compris-
ing 27 dyads (54 participants) dancing to 16 musical stimuli
for the final classification analysis.

During the recording, participants were instructed to move
freely, either individually or in dyads, in response to musical
stimuli, simulating a dance club or party setting. The stimuli
covered 8 genres: Dance, Blues, Country, Metal, Jazz, Reg-
gae, Pop, and Rap. There were 2 stimuli per genre. These
stimuli represents the selected genres accurately and were se-
lected based on social tagging data. For a detailed account of
the selection process, please refer to Carlson et al., 2017.

Pre-processing
The Motion Capture (MoCap) Toolbox (Burger and Toivi-
ainen, 2013) was employed for data pre-processing in MAT-
LAB. In the case of the dyadic dataset, the movement data
for the 21 markers in the three dimensions underwent ini-
tial trimming to align with the duration of the musical ex-
cerpts. Linear interpolation was applied to address missing
data and then resampled to 60Hz. Subsequently, the data was
transformed into a set of 20 secondary markers called joints.
Figure 3(B) illustrates the locations of these 20 joints. For a
detailed understanding of the transformation process, please
refer to Carlson et al. (2020).

In the AIST++ dataset, each recording was initially in the
form of (T,17,3), with T representing the number of frames. It
was then flattened to (T,54) to facilitate further processing in
the MoCap Toolbox. Gaps were filled linearly, and an addi-
tional step of smoothing was carried out using a Butterworth
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Figure 4: Machine Learning pipeline

smoothing filter (2nd order; 12 Hz cutoff frequency) for all
markers in all three dimensions.

For both datasets, Instantaneous velocity was computed
through time differentiation and a Butterworth smoothing fil-
ter (2nd order; 12 Hz cutoff frequency) for all markers in
all three dimensions, as outlined in Burger and Toiviainen
(2013). Subsequently, for the dyadic data, the recordings of
each dancer were transformed into a local coordinate system
to account for the fact that different individuals may have ori-
ented themselves differently in the recording space. In this
coordinate system, the root marker (marker A in Figure 3(B)
is the origin, and the line joining the hip markers defines the
mediolateral axis.

Machine learning analysis
Support Vector Machine (SVM) algorithm was used for the
dancer identification task. SVM works by identifying the
line that optimally segregates data points into distinct classes
such that future data points are classified correctly. This
line, known as the Optimal Separating Hyperplane (OSH), is
positioned to maximize the margin between the two classes,
thereby minimizing the risk of misclassification for new
data (G. Guo et al., 2000; Mammone et al., 2009). The data
points closest to the hyperplane are referred to as support
vectors. It is hard to draw separating lines in real-world data
without making some errors. The SVM has a parameter C,
which plays a crucial role in balancing the trade-off between
training error and margin size. By regulating the penalty
for misclassified data points during training, C influences
the width of the margin. A smaller C value favors a larger
margin, allowing more misclassifications, while a larger C
prioritizes minimizing training error, resulting in a narrower
margin. Relevant feature identification is important when
working with SVM; otherwise, the SVM algorithm might
struggle to classify samples accurately. It is essential to note
that SVM can work with any number of dimensions and is
also not limited to linearly separable classes. We rigorously
adhered to the machine-learning pipeline outlined in Carlson
et al. (2020), which is illustrated in the Figure 4.

Feature Extraction Based on the findings by Troje et al.
(2005) that show how markers move in relation to each other
(as opposed to their spatial relationships) plays some role
in the human perceptual identification of walkers, the co-
variance measure between the velocity of any two marker
time series of any dimension was used for feature extrac-
tion. Such Covariance-based features have been used in vari-
ous applications, including time series classification (Ergezer
and Leblebicioglu, 2018), action recognition (K. Guo et al.,
2009), pedestrian detection (Tuzel et al., 2008), and the pre-
diction of individual characteristics such as gender and per-
sonality (Agrawal et al., 2022). Carlson et al. (2020) found
that using correntropy or Radial Basis Function(RBF) ker-
nel as a covariance measure yielded much higher accuracy
than linear covariance. Hence, only correntropy is used in
this study. Correntropy between any two-time series xi and x j
was computed as (Liu et al., 2007):

K (xi,x j) = e
−∥xi−x j∥2

2
2σ2T 2 (1)∥∥xi − x j

∥∥
2 denotes the L2 norm; T denotes the number

of frames employed to accommodate samples of varying
lengths. The parameter sigma governs the steepness of the
distribution of the generated features, with higher sigma
values yielding negatively skewed feature distribution and
vice versa. To improve the discriminability of the produced
covariance-based features between different subjects, the
optimization of sigma for each feature separately was
achieved through the downhill simplex algorithm, aiming
to minimize the absolute value of skewness in the produced
features. We utilized the Python library ”scipy.optimize”
with the ”Nelder-Mead” method for this optimization step.
Ultimately, these optimized features were normalized to zero
mean and one standard deviation.

The resulting covariance matrix is symmetric, and the di-
agonals have zero values. Consequently, only the lower tri-
angular portion is flattened to generate a feature vector. In
the dyads dataset, this vector has a length of 1770, given 20
markers in three dimensions. For the AIST++ dataset, which
features 17 markers in three dimensions, the resulting feature
vector has a length of 1275.

Feature Selection With numerous features, employing fea-
ture selection becomes crucial to diminish dimensionality
and mitigate the risk of model overfitting. We utilized Lin-
ear SVM with an L1 penalty for feature selection (Zhu et
al., 2003). This approach results in many feature weights
learned by the model having almost zero values, facilitating
the filtering of irrelevant features. The L1 norm SVM is bet-
ter suited at feature selection than the L2 norm and it also
avoids overfitting (Ng, 2004). Employing the one-vs-all strat-
egy for training the classifier yields feature weights for each
class. The L1 norm of these weights is computed across each
class and feature, serving as a measure of the importance of
that particular feature. The classifier is trained on the entire
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dataset on features iteratively introduced in decreasing order
of importance. The number of features to be retained be-
comes a hyperparameter. 100 features were selected for the
dyadic dataset, and 200 features were selected for AIST++
dataset.

Classification Linear SVM with an L2 penalty was used
to predict the dancer from the selected features. A nested
cross-validation technique was employed to check the gener-
alizability of the model. The outer cross-validation holds a
part of the dataset as the test set. The inner cross-validation
helps in hyperparameter tuning, parameter ‘C’ of SVM in our
case. This approach is superior to the single cross-validation
used by Carlson et al. (2020), as it utilizes only a portion of
the dataset provided by the outer cross-validation, reducing
the risk of overfitting the entire dataset. It is important to
note that optimal hyperparameters were computed using only
the training fold in the outer cross-validation. The dyadic
dataset used the leave-one-genre-out technique for the outer
cross-validation to ensure the generalizability of dancer iden-
tification in new genres. For the AIST++ dataset, we aim to
capture the subtle differences between dancers following the
same routine. Hence, it is crucial to train the model for each
dance genre while also ensuring that no choreography over-
laps between the training and test datasets. We have 120 data
points for each genre covering 3 participants. Employing a
Stratified k-fold with five folds for the outer cross-validation
ensures that classes are evenly distributed in both training and
test sets. We also trained a dance genre classifier using the
same pipeline and employed a Stratified K-fold with three
folds. We also ensured that different participants were present
in both the training and test sets for the dance genre classifier.
Consequently, dancer identification becomes a two-step pro-
cess: initially predicting the dance genre from the movements
and subsequently using the model specific to that genre to
predict the individual dancer. Additionally, a dancer identifi-
cation model was trained on the entire dataset for comparison
purposes.

Results

AIST++

We attained a mean cross-validation accuracy of 47.6% with
a standard deviation of 0.05 for dancer identification across
the entire dataset. The dance genre classifier demonstrated
a mean cross-validation accuracy of 88.25% with a standard
deviation of 0.02. The mean cross-validation dancer identi-
fication accuracy for each dance genre is presented in Table
1.

Dyadic

We attained an exceptionally high mean cross-validation ac-
curacy of 96.75% with a standard deviation of 0.04. Accu-
racy when each musical genre was held as test set is depicted
in Table 2.

Table 1: Cross-validation dancer identification accuracy for
each dance genre (AIST++)

Dance Genres Mean Std
Break 63.89 0.07
House 91.67 0.08
B Jazz 79.07 0.12
S Jazz 65.51 0.14
Krump 67.72 0.11
L Hip-hop 81.67 0.09
Lock 85.00 0.09
M Hip-hop 86.67 0.07
Pop 70.00 0.12
Waack 78.90 0.14

Table 2: Dancer Identification accuracy when that musical
genre was held as test-set (Dyadic)

Musical Genre Accuracy
Reggae 98.15
Pop 99.07
Metal 87.96
Jazz 95.37
Dance 100.00
Country 96.30
Blues 99.07
Rap 98.11

Discussion
Inspired by the findings of Carlson et al. (2020), who demon-
strated high accuracy in predicting individuals solely based
on their movement features using machine learning, our study
delves into the exploration of whether music-induced move-
ments retain their status as motoric fingerprints within novel
contexts. We initially ventured into a choreographic setting
(AIST++ dataset)—a more restrictive environment compared
to free-form dance—anticipating greater challenges in distin-
guishing individuals when everyone adheres to the same rou-
tine. In an effort to overcome the limitations associated with
marker-based systems, we opted for markerless data acquisi-
tion in this setting. Subsequently, we extended our investi-
gation to the dyadic setting, introducing an additional layer
of complexity over dancing individually as individuals now
synchronize their movements with a partner.

In our training over the entire AIST++ dataset, we at-
tained an accuracy of 47.6%, surpassing the chance level
of 3.33%. However, given the model’s dual challenge, that
is, discriminating between individuals across diverse genres
with distinct movements and discerning subtle differences
within each genre, the achieved accuracy is reasonable. Rec-
ognizing these complexities, we adopted a two-step approach
to dancer identification. First, we performed genre classifi-
cation using the same machine learning pipeline, achieving
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Figure 5: Number of individuals vs Misclassification count
when utilizing features from individual dance settings to pre-
dict dancers using the dyadic model

Figure 6: Empathy vs Misclassification count

an impressive 88.25% accuracy (against a 10% chance level).
Then, we use the model specific to that genre to predict the
individual. The dancer identification accuracy ranged from
63.89% to 91.67% across different dance genres, all surpass-
ing the chance level of 33.33%. These outcomes underscore
the existence of a distinctive personal style for each dancer,
further corroborating the efficacy and robustness of Carlson’s
methods in dancer identification.

We accomplished a mean cross-validation accuracy of
96.75% in the dyadic dataset. To further unravel the fac-
tors contributing to surpassing the accuracy Carlson et al.
(2020) achieved, we extended our analysis to include train-
ing on the individual portion of the dataset. Employing
a nested cross-validation approach, we achieved a notable
mean cross-validation accuracy of 97.04%, surpassing Carl-
son et al. (2020) results. This improvement can be attributed
to the use of nested cross-validation rather than single cross-
validation. These results underscore the notion that our move-
ments retain unique characteristics even when dancing with
a partner. We observed lower accuracy in metal and jazz
genres compared to pop, rap, and others, which is consistent
with Carlson et al. (2020). Metal and jazz genres are associ-
ated with stereotypical moves, which may cause individuals
to move more similarly than in other genres. Headbanging is

common in the Metal subculture (Snell and Hodgetts, 2007;
Bryson, 1996; Straw, 1984), and moves like Charleston and
swing are common in the Jazz subculture (Lena and Peterson,
2008; Monaghan, 2001). The influence of distinctive move-
ment stereotypes within these subcultures may contribute to a
higher degree of movement similarity and potentially impact
identification accuracy.

Feature importance analysis conducted on dyadic settings
and across all dance genres within the AIST++ dataset reveals
a consistent pattern. Joint pairs aligned in the same direction,
such as both Antero-Posterior (AP), hold greater importance
compared to pairs in different directions, like one in AP and
the other vertical. Proximity also plays a role, with pairs oc-
curring in nearby locations, such as fingers and wrists, being
more important. Further, individual joint importance was de-
termined by summing the importance values of pairs involv-
ing that joint. The analysis underscores the significance of
limb joints, including shoulders, ankles, wrists, and knees,
along with hips, in predicting individuals. This aligns with
the findings of Carlson et al. (2020), providing a consistent
narrative across studies. Please refer to the appendix for the
detailed visualization of important key-points/joints pairs and
key-points/joints.

Utilizing data encompassing both individual and dyadic
dance performances for the same individuals, we employed
the model trained on dyadic performances to predict individ-
uals based on features extracted from their individual perfor-
mances. Remarkably, we achieved an accuracy of 83.23% us-
ing the important features derived from the dyadic model for
the prediction task. Our subsequent misclassification analysis
revealed intriguing patterns (refer to Figure 5). Notably, cer-
tain individuals were accurately predicted by the dyad model
without any errors, while others remained unpredicted by the
dyad model altogether. This suggests a variance in how indi-
viduals express their movements between solo and partnered
settings. While initial suspicions pointed towards empathy as
a potential factor, plotting Empathizing Quotient (EQ) scores
against misclassification count (see Figure 6) did not reveal
a discernible pattern. This finding needs further warrant and
investigation. Future research should explore how the interac-
tion between personality traits, the empathy levels of individ-
uals in dyads, and the music genre may collectively contribute
to these observations.
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