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ABSTRACT

This paper expands our previous numerical studies predicting the optical properties of highly
ordered mesoporous thin films from two-dimensional (2D) nanostructures with cylindrical
pores to three-dimensional (3D) structures with spherical pores. Simple, face centered, and
body centered cubic lattice of spherical pores and hexagonal lattice of cylindrical pores
were considered along with various pore diameter and porosity. The transmittance and
reflectance were numerically computed by solving 3D Maxwell’s equations for transverse
electric and transverse magnetic polarized waves normally incident on the mesoporous thin
films. The effective optical properties of the films were determined by an inverse method.
Reflectance of 3D cubic mesoporous thin films was found to be independent of polarization,
pore diameter, and film morphology and depended only on film thickness and porosity. By
contrast, reflectance of 2D hexagonal mesoporous films with cylindrical pores depended on
pore shape and polarization. The unpolarized reflectance of 2D hexagonal mesoporous films
with cylindrical pores was identical to that of 3D cubic mesoporous films with the same
porosity and thickness. The effective refractive and absorption indices of 3D films show
good agreement with predictions by the 3D Maxwell-Garnett and Nonsymmetric Bruggeman
effective medium approximations, respectively.
Keywords: Mesoporous; Optical materials; Photocatalysis; Coatings; Optoelectronics de-
vices; Dielectric constant; Effective Medium Approximation.



1 INTRODUCTION

Mesoporous thin films have been studied extensively in recent years [1–7]. Potential applica-
tions include dye-sensitized solar cells [8–10], low-k dielectric materials [11, 12], photocatal-
ysis [13, 14], biosensors [15–17], optoelectronics [18–20], and antireflecting and self-cleaning
coatings [21], to name a few. In these applications, predicting the effects of porosity and pore
shape, size, and spatial arrangement on the optical and dielectric properties is essential to the
design of mesoporous materials with desired performances or for material characterization
purposes.

Significant progresses have been made in synthesizing mesoporous thin films with vari-
ous morphologies as well as pore shapes and sizes using evaporation induced self-assembly
of micelles in polymer precursors [1–6]. Highly ordered mesoporous materials made of di-
electrics (e.g., SiO2, [1–5]) or semi-conductors (e.g., TiO2 [3], Si [6], Ge, Ge/Si alloys [7])
have been synthesized in the form of films, fibers, and/or powders [1]. The choices of sur-
factant (e.g., Cetyl trimethylammonium bromide, Pluronics, Brij) and of the initial alco-
hol/water/surfactant mole fractions determine the size and shape of the pores as well as the
final mesostructure [1]. For example, P63/mmc space group structure featuring spherical
pores arranged in 3D compact hexagonal packing, Pm3n space group structure with spher-
ical pores in compact cubic arrangement, and p6m space group structure where cylindrical
pores arranged in 2D compact hexagonal lattice have been synthesized [1–5]. The dielectric
and optical constants of the mesoporous materials can then be tailored by controlling the
porosity [22,23] or by introducing optically active materials within the pores [14,21].

Various effective medium approximations (EMAs) have been proposed to predict the
dielectric and/or optical properties of heterogeneous nanocomposite thin films by treating
them as homogeneous with some effective refraction and absorption indices denoted by neff

and keff , respectively [24]. The most commonly used EMAs are the Maxwell-Garnett the-
ory (MGT) [24, 25], Drude [26, 27] (also called the Silberstein formula [24, 28]), symmetric
and nonsymmetric Bruggeman [24, 29], Lorentz-Lorenz [26, 30–32], parallel [33] (also called
Birchak formula [24]) and Volume Averaging Theory (VAT) [34,35] models. Expressions for
these models are summarized in Table 1. The MGT model is expressed for both 3D spherical
inclusions (3D MGT) and 2D cylindrical inclusions (2D MGT) [24]. In brief, the effective
properties (subscript “eff”) are expressed as functions of the porosity and the properties of
the continuous phase (subscript “c”) and of the dispersed phase (subscript “d”). However,
these EMAs are independent of polarization, pore size, shape, or spatial arrangement. Note
that the VAT model is identical to the Drude model when continuous and dispersed phases
are non-absorbing, i.e., kc = kd = 0.0. Most models have been developed for the effective
dielectric constant or refraction index but not for the absorption index. Given the multitude
of models one may wonder which one to use and the choice has often been arbitrary. Oth-
ers may wish to achieve further tuning of the effective dielectric and optical properties by
controlling the pore size and the film morphology. This study aims to address both of these
questions. It was enabled by advances in computational methods and parallel computing as
well as ever greater available computer resources.

Previous studies [36–38] established that reflectance and effective optical properties of
two-dimensional (2D) mesoporous thin films with cylindrical pores exposed to normally
incident transverse electric (TE) and transverse magnetic (TM) waves depended on electro-
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Table 1: Expressions of different Effective Medium Approximations (EMAs) widely used in
the literature.

EMA Model Formula Ref.

3D Maxwell-Garnett Theory n2
eff = n2

c

[
1−

3fv(n2
c − n2

d)

2n2
c + n2

d + fv(n2
c − n2

d)

]
[25]

(3D MGT)

2D Maxwell-Garnett Theory n2
eff = n2

c

[
1−

2fv(n2
c − n2

d)

n2
c + n2

d + fv(n2
c − n2

d)

]
[24]

(2D MGT)

Drude (or Silberstein) n2
eff = (1− fv)n

2
c + fvn

2
d [26, 27]

Symmetric Bruggeman (1− fv)
n2
c − n2

eff

n2
c + 2n2

eff

+ fv
n2
d − n2

eff

n2
d + 2n2

eff

= 0 [24,29]

Nonsymmetric Bruggeman 1− fv =

(
n2
eff

n2
c
− n2

d
n2
c

)
[(

n2
eff

n2
c

)1/3 (
1− n2

d
n2
c

)] [24]

Lorentz-Lorenz
n2
eff − 1

n2
eff + 2

= (1− fv)

(
n2
c − 1

n2
c + 2

)
+ fv

(
n2
d − 1

n2
d + 2

)
[31, 32,43]

A = fv(n
2
d − k2d) + (1− fv)(n

2
c − k2c )

B = 2ndkdfv + 2nckc(1− fv)

Volume Averaging Theory n2
eff =

1

2

[
A+

√
A2 +B2

]
[34, 35]

(VAT)

k2eff =
1

2

[
−A+

√
A2 +B2

]

Parallel (or Birchak) neff = (1− fv)nc + fvnd [24]

magnetic (EM) wave polarization. For TE polarization, the pore shape and size had no effect
on the effective optical properties which were predicted by the VAT model [36,37]. For TM
polarization, the parallel model was in good agreement with the retrieved effective optical
properties for pores with cylindrical cross-section [38]. In addition, pore shape and spatial
arrangement had a strong effect on the retrieved effective properties.

The present study extends our previous investigations of 2D non-absorbing [36] and ab-
sorbing nanocomposite films with cylindrical pores [37,38] to 3D absorbing mesoporous thin
films with spherical pores. Three-dimensional Maxwell’s equations were solved numerically
to compute the transmittance and reflectance over the spectral range of 400 to 900 nm. The
numerical results were compared with predictions from the different EMAs and with results
previously reported [38].
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Figure 1: Schematic of the 3D physical model of simple cubic mesoporous thin films simulated
with fv= 6.5% and L/D = 6.0.

2 Analysis

2.1 Governing Equations and Numerical Implementation

The cubic mesoporous thin films simulated consisted of a continuous solid matrix with em-
bedded spherical pores. They were deposited on a non-absorbing substrate (medium 3,
m3 = n3 − ik3 = n3 - i0.0) and surrounded by a vacuum (medium 1, m1 = 1.0 − i0.0)
where mj = nj − ikj is the complex index of refraction of medium ”j” and nj and kj are the
refraction and absorption indices, respectively. All interfaces were assumed to be optically
smooth. Linearly polarized TE or TM plane waves were normally incident to the top surface
of the mesoporous thin films. Here, transverse electric (TE) and magnetic (TM) polariza-
tions are defined such that the incident electric and magnetic field vectors are parallel to the
cylindrical pores main axis, respectively. In other words, the incident electric field vector is
such that ~E0 = E0~ez for TE polarization and ~E0 = E0~ey for TM polarization as illustrated
in Figure 1.

Figure 1 shows a physical model of a simple cubic mesoporous thin film with three
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Table 2: Boundary Conditions Associated with Maxwell’s Equations for TE and TM polar-
izations [39].

Boundary TE polarization TM polarization

Source surface ~n× (5× ~E)− iωn
c0
~n× ( ~E × ~n) = ~n× (5× ~E)− iωn

c0
~n× ( ~E × ~n) =

(Scattering BC) −~n× [ ~E0 × i
ωn

c0
(~n−~k)]e−i~k.~r

√
µrµ0
εrε0

~n× [(~k× ~H0)× i
ωn

c0
(~n−~k)]e−i~k.~r

Film-substrate
interface

~n× ~H +

√
µrµ0
εrε0

~Ez = 0 −~n× ~E +

√
µrµ0
εrε0

~Hz = 0

Dispersed- continuous ~n× ( ~H1 − ~H2) = ~0 ~n× ( ~E1 − ~E2) = ~0
phase interface

Symmetry ~n× ~E = ~0 at boundaries normal to ~E0 ~n× ~E = ~0 at boundaries normal to ~E0

boundaries ~n× ~H = ~0 at boundaries normal to ~H0 ~n× ~H = ~0 at boundaries normal to ~H0

spherical pores of diameter D = 5 nm, film thickness L = 30 nm, and lattice side length dk
= 10 nm. For this morphology, the porosity is expressed as fv = πD3/6d3k = 6.54%.

Three-dimensional time-harmonic TE and TM polarized electromagnetic plane waves
propagating through space have time-dependent electric and magnetic fields expressed as,

~E(x, y, z, t) = [Ex(x, y, z, t)~ex + Ey(x, y, z, t)~ey + Ez(x, y, z, t)~ez] e
iωt (1)

~H(x, y, z, t) = [Hx(x, y, z, t)~ex +Hy(x, y, z, t)~ey +Hz(x, y, z, t)~ez] e
iωt (2)

where ~H is the magnetic field, ~E is the electric field, while ~ex , ~ey and ~ez are unit vectors
in the cartesian coordinate system, and ω = 2πc0/λ is the angular frequency of the EM

wave of wavelength λ in vacuum. Electric and magnetic fields ~E and ~H satisfy the 3D wave
equations for general time-varying fields given by [39],

5×
[

1

µrµ0

5× ~E(x, y, z, t)

]
− ω2εrε0 ~E(x, y, z, t) = ~0 (3)

5×
[

1

εrε0
5× ~H(x, y, z, t)

]
− ω2µrµ0

~H(x, y, z, t) = ~0 (4)

where ε0 and µ0 are the dielectric permittivity and the magnetic permeability of vacuum,
respectively while µr is the relative magnetic permeability of the medium, and ε∗r = m2 =
n2−k2−i2nk is its complex dielectric constant. Maxwell’s equations for TE and TM polarized
waves traveling in heterogeneous structures are subject to the boundary conditions provided
in Table 2 [39].

The energy flux of the EM wave corresponds to the magnitude of the Poynting vector ~π,
defined as, ~π = ~E× ~H [40]. The time-averaged Poynting vector at location ~r = x~ex+y~ey+z~ez

averaged over the period 2π/ω is given by |~π| = 1
2
Re
{
~E × ~H∗

}
where ~H∗ is the complex

conjugate of vector ~H [40]. The film transmittance is defined as Tnum = |πx,t|avg / |πx,0|avg
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where |πx,t|avg is the x -component of the time-averaged transmitted Poynting vector further
averaged over the film-substrate interface while |πx,0|avg is the x -component of the time-
averaged incident Poynting vector averaged over the film-vacuum interface. Similarly, the
reflectance is defined as Rnum = |πx,r|avg / |πx,0|avg where |πx,r|avg is the x -component of the
time-averaged reflected Poynting vector averaged over the film-vacuum interface.

COMSOL Multiphysics 3.4 was used to numerically solve the 3D Maxwell’s equations
and the associated boundary conditions using the Galerkin finite element method on un-
structured meshes and using parallel computing on a Dell Precision 690 with two 2.33 GHz
Quad-Core Intel Xeon CPU and 24 GB of RAM. Transmittance and reflectance were com-
puted for 40 wavelengths between 400 and 900 nm. The numerical results were determined
to be converged by increasing the number of finite element meshes by a factor of 1.3 until
the maximum relative error in reflectance and transmittance between two consecutive mesh
refinements was less than 3% and 1%, respectively. A total of 65,310 and 16,472 tetrahedral
elements were necessary to obtained a converged solution for cubic and hexagonal meso-
porous films, respectively. The average relative differences in reflectance and transmittance
between two consecutive mesh refinements for all wavelengths were less than 1.2% and 0.47%,
respectively. This resulted in a maximum relative difference for neff and keff between two
mesh refinements of less than 0.73% and 0.71%, respectively.

2.2 Retrieval of Effective Complex Index of Refraction

The effective refraction and absorption indices neff and keff of the mesoporous thin film
were retrieved from numerically computed reflectance and transmittance by minimizing the
root mean square of the relative error for transmittance δT and reflectance δR expressed as,

δT 2 = 1
N

N∑
i=1

[
Tth(λi)− Tnum(λi)

Tth(λi)

]2
and δR2 = 1

N

N∑
i=1

[
Rth(λi)−Rnum(λi)

Rth(λi)

]2
(5)

where Tth(λi) and Rth(λi) correspond to EM wave theory predictions at N = 40 different
incident wavelengths λi treating the mesoporous film as homogeneous with some effective
optical properties neff and keff . Expressions for Tth(λi) and Rth(λi) are well-known and can
be found in Equations (18) to (20) in Ref. [38] and need not be repeated. The effective index
of refraction neff and absorption index keff that minimize δT+δR were determined using the
generalized reduced gradient nonlinear optimization method [41]. Treating mesoporous thin
films as homogeneous rests upon the assumption that EM wave scattering by the pores is
negligible which prevails when the size parameter 2πD/λ is much smaller than unity where D
is the pore diameter and λ is the wavelength [40]. For all simulations reported in this study,
the x -component of the local time-averaged transmitted Poynting vector |πx,t| was nearly
uniform and always within 0.1% of its surface-averaged value |πx,t|avg. Furthermore, the
magnitudes of the y- and z -components of the time-averaged Poynting vector averaged over
the film-substrate interface were found to be negligible compared with |πx,t|avg. Indeed, the

maximum values of the ratios |πy,t|avg / |πx,t|avg and |πz,t|avg / |πx,t|avg were less than 2.3×10−3

and 1.1× 10−3, respectively for all simulations. Thus, scattering the EM wave by the pores
was found to be negligible and the mesoporous films could be treated as homogeneous with
some effective optical properties.
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2.3 Validation of the Numerical Procedure and Retrieval Method

In order to validate the numerical procedure predicting reflectance and transmittance as well
as the retrieval method for neff and keff , an absorbing dense film (Medium 2) with known
properties was simulated. The film was 600 nm thick and its refraction and absorption indices
were assumed to be constant and equal to n2 = 1.44 and k2 = 0.01. It was deposited on a
non-absorbing substrate with index of refraction n3 = 3.39. The medium above the dense film
was a vacuum (n1 = 1.0 and k1 = 0.0). The numerical transmittance and reflectance were
calculated for TE and TM polarized incident waves. The maximum relative error between
the numerical and theoretical transmittance and reflectance for TE and TM polarization
was 0.012% and 0.011%, respectively. The retrieved complex index of refraction was m2 =
1.44− i0.0099 for TE polarization and m2 = 1.4339− i0.0099 for TM polarization instead of
the input value of m2 = 1.44− i0.01. This difference is small and acceptable. Therefore, the
3D numerical simulation tools used to determine the spectral transmittance and reflectance
as well as the inverse method to retrieve the film complex index of refraction were validated
and were used for cubic and hexagonal mesoporous thin films.

3 RESULTS AND DISCUSSION

3.1 Effect of Pore Diameter and Film Thickness

The effect of polarization, film thickness, and pore diameter was investigated by modeling
absorbing simple cubic mesoporous thin films consisting of continuous and dispersed phases
such that mc = 1.4 − i0.01 and md = m1 = 1.0 − i0.0. The film substrate was such that
m3 = 3.39 − i0.0. Two values of pore diameter D were tested namely 2 and 50 nm. The
film thickness L was varied so that the L/D ratio ranged from 10 to 250. A numerically
converged solution was obtained with 33,000 to 100,000 tetrahedral elements for L/D ratio
ranging from 10 to 250.

Figure 2 plots the evolution of the retrieved effective refraction and absorption indices
neff and keff for TE and TM polarizations as a function of L/D for mesoporous thin films
with porosity of 9.76%. However, for L/D ≥ 150, the relative difference in neff and keff
between pore diameters of 2 and 50 nm and TE and TM polarization was less than 0.03%
and 0.57%, respectively. In other words, the effective refraction and absorption indices of the
3D simple cubic films were independent of polarization, film thickness, and pore diameter
for L/D ≥ 150. This is consistent with results reported by Braun and Pilon [36] for TE
polarized waves on 2D films with cylindrical pores. Thus, all mesoporous thin films simulated
in the remaining of this study were such that L/D ≥ 150.

3.2 Effective Medium Approximations for TE and TM waves

Most of the EMAs summarized in Table 1 have been developed for the effective dielectric
constant with specific arrangements. For instance, the MGT model was derived for randomly
organized spherical inclusions and small volume fractions [24, 25]. The Bruggeman model
treats both phases identically as each spherical inclusion is embedded in the effective medium
itself [24, 29]. The Lorentz-Lorenz model was developed for sets of spherical particles in
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Figure 2: Evolution of the retrieved effective refraction and absorption indices of mesoporous
thin films for TE and TM polarizations as a function of L/D for fv= 9.76% and D = 2 or
50 nm.

air [31, 32]. However, as previously discussed, these models have been used for the index
of refraction of various composite materials regardless of the validity of the assumptions for
which they had been developed. In other words they have often been chosen arbitrarily and
used extensively as discussed in details in [42].

In order to assess the validity of the different effective medium approximation EMAs
for 3D mesoporous thin films, the continuous phase complex index of refraction was chosen
as mc = 4.0 − i0.01 while md = m1 = 1.0 − i0.0 and m3 = 3.39 − i0.0 over the spectral
range from 400 to 900 nm. These values were chosen to ensure large enough differences
between EMAs and were yet realistic. Figure 3 compares the retrieved effective refraction
and absorption indices for the simulated mesoporous films with the different EMAs listed
in Table 1 for porosity ranging from 0 to 50%. It shows the previously obtained results for
TE and TM polarizations on 2D mesoporous films with cylindrical pores [38] and the results
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Figure 3: Effective refraction and absorption indices as a function of porosity for 2D and
3D simple cubic films exposed to normally incident TE and TM polarized waves and having
mc = 4.0− i0.01 and md = 1.0− i0.0 over the spectral range of 400 to 900 nm.

for 3D films with spherical pores arranged in simple cubic mesostructure. It is evident that
the retrieved neff and keff decreased as porosity increased. As previously reported, both
neff and keff for 2D mesoporous films are accurately predicted by the VAT model for TE
polarization [36, 37]. For TM polarization however, neff is accurately predicted by the 2D
MGT model while keff is better predicted by the parallel model [38]. On the contrary, the
same values of neff and keff were retrieved for TE and TM polarized waves incident on 3D
mesoporous films. Indeed, the maximum relative error for neff and keff between TE and
TM polarization was 0.52% and 0.71%, respectively. This result was expected by virtue of
the fact that the material is isotropic so that TE and TM polarizations which can be defined
numerically, are physically equivalent or undefined. However, this gives further confidence
in the proper implementation of the numerical simulations as well as in the reported results.

For 3D cubic mesoporous films, the numerical results for the effective index of refraction
neff agrees with the 3D MGT model with a maximum relative error of 1.86%. Note that this
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Figure 4: Schematic of numerically simulated morphologies identical to those of body cen-
tered cubic (BCC), face centered cubic (FCC), and hexagonal synthesized mesoporous thin
films. Simple cubic morphology is shown in Figure 1.

was expected since the 3D MGT model was specifically derived for spherical inclusions and
small volume fractions. On the other hand, results for the effective absorption index keff
were best approximated by the nonsymmetric Bruggeman model with a maximum relative
error of 0.57%. Although no EMA was derived for the effective absorption index keff this
information is of interest from a practical point of view. Finally, these results confirm that
EMAs for neff and keff should not be chosen arbitrarily.

3.3 Effect of Morphologies

According to the EMAs listed in Table 1, the effective optical properties depend only on
porosity and are independent of polarization, and pore size, shape, and spatial arrange-
ment. However, these assumptions were found to be erroneous for 2D mesoporous films
with cylindrical pores [38]. This was also investigated in the present study for 3D films. To
do so, mesoporous thin films with simple cubic, body centered cubic (BCC), and face cen-
tered cubic (FCC) arrangements with spherical pores, along with hexagonal arrangements
with cylindrical pores (see Figure 4) were numerically simulated. For all morphologies the
porosity was set to be 30%, the film thickness was 300 nm, and mc = 1.44 − i0.0 while
md = m1 = 1.0− i0.0 and m3 = 3.39− i0.0. The pore size was adjusted to keep the porosity
identical for all films and was equal to 4.16 nm for simple cubic, 3.30 nm for BCC and 2.60
nm for FCC.
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The pore diameter and lattice side length were adjusted to preserve the same porosity for
all films.

Figure 5 shows the computed reflectance for simple cubic, BCC, and FCC mesoporous
films with spherical pores and that for hexagonal mesoporous film with cylindrical pores. Due
to their symmetric morphology, the reflectance of simple cubic, BCC, and FCC mesoporous
films was found to be independent of polarization. Figure 5 indicates that the reflectance of
cubic films was independent of pore size and morphology. On the contrary, the computed
reflectance from hexagonal mesoporous thin films was different for TE and TM polariza-
tions [38]. The reflectance of the different cubic mesoporous thin films with spherical pores
fell between that of the hexagonal mesoporous film with cylindrical pores for TE and TM
polarizations. The reflectance of the hexagonal film exposed to unpolarized incident light
corresponds to the arithmetic mean of the reflectance for TE and TM polarizations. It was
found to be nearly identical to that of simple cubic, BCC, and FCC mesoporous films.

These results establish that the effective optical properties of 3D structures with spherical
pores are only dependent on porosity as assumed by the EMAs. The maximum relative
differences in neff and keff for the different morphologies were 0.3% and 3.3%, respectively.
Finally, actual mesoporous silica films are open nanostructure featuring interconnected pores.
However, the interconnection does not contribute significantly to the overall film porosity
and therefore the above conclusions also apply to actual films as validated with experimental
data by Hutchinson et al. [42].
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4 CONCLUSION

This study expanded our previous studies for 2D mesoporous films with cylindrical pores
[36–38] by numerically simulating mesoporous films in 3D with spherical pores exposed to
TE and TM polarized incident waves. 3D Maxwell’s equations were numerically solved to
compute the transmittance and reflectance of the mesoporous thin films over the spectral
range from 400 to 900 nm. The effective optical properties of the simple cubic films were
found to be independent of morphology, polarization, pore size, and film thickness for L/D ≥
150 and depended only on porosity. This study also established that the size, and spatial
arrangement (simple cubic, BCC, or FCC) of the spherical pores have no effect on the
reflectance or the effective index of refraction and absorption index of mesoporous thin films
of identical porosity. Finally, the 3D MGT and the nonsymmetric Bruggeman should be
used to predict the refractive and absorption indices of 3D cubic mesoporous thin films with
spherical pores.

NOMENCLATURE

c Speed of light [m/s]
dk Lattice side length [nm]
D Pore diameter [nm]
~E Electric field vector [V/m]
~ex, ~ey, ~ez Unit vectors of Cartesian coordinate system
~H Magnetic field vector [A/m]
k Absorption index
~k Wavevector [m−1]
L Thickness of the mesoporous thin film [nm]
m Complex index of refraction, m = n - ik
n Refractive index
~n Normal vector to surface of interest
N Number of wavelengths considered
~r Position vector (~r = ~ex + ~ey + ~ez) [m]
R Reflectance
T Transmittance
t Time [s]
x, y, z Spatial coordinates [m]
Greek Symbols
ε0 Permittivity of free space (= 8.85×10−12 F/m)
ε′r, ε

′′
r Real and imaginary parts of ε∗r

ε∗r Complex dielectric constant,ε∗r = m2 = ε′r − iε′′r
fv Porosity
λ Wavelength [nm]
µ0 Magnetic permeability of free space (= 4π × 10−7 H/m)
µr Relative permeability, µr = µ/µ0

~π Poynting vector [W/m2]
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|~π| Time-averaged Poynting vector [W/m2]
σ Electrical Conductivity [1/Ωm]
ω Angular frequency [rad/s]
Subscripts
0 refers to vacuum, or an incident wave
1 Refers to surroundings in thin-film system
2 Refers to thin film
3 Refers to substrate
avg Refers to surface-averaged value
c Refers to continuous phase
d Refers to dispersed phase
eff Refers to effective property
i Refers to summation index
num Refers to numerical result
r Refer to reflected Poynting vector
th Refers to theoretical calculation (see Ref. [38])
t Refers to transmitted Poynting vector
x Refers to x- component
y Refers to y- component
z Refers to z- component
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