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Causal Learning from Trending Time-Series 
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Abstract 

Two studies investigated how people learn the strength of the 
relation between a cause and an effect in a time series setting 
in which both variables exhibit temporal trends. In prior 
research, we found that people control for temporal trends by 
focusing on transitions, how variables change from one 
observation to the next in a trial-by-trial presentation (Soo & 
Rottman, 2018). In Experiment 1, we replicated this effect, 
and found further evidence that people rely on transitions 
when there are extremely strong temporal trends. In 
Experiment 2, we investigated how people infer causal 
relations from time series data when presented as time series 
graphs. Though people were often able to control for the 
temporal trends, they had difficulty primarily when the cause 
and effect exhibited trends in opposite directions and there 
was a positive causal relationship. These findings shed light 
on when people can and can’t accurately learn causal relations 
in time-series settings. 

Keywords: causal learning, temporal trend, time-series 

Introduction 
Much real-world causal induction involves learning about 

relationships between causes and their effects as they unfold 
over time. This can be a complex task because variables 
may undergo temporal trends that obscure the underlying 
causal relationships (Yule, 1926). For example, a patient 
may experience increasing pain from a chronic disease over 
several months and take increasing amounts of pain 
medication to cope (a positive correlation), even though the 
medicine reduces pain on shorter timescales.  

Recently, there have been a couple studies focusing on 
how people learn causal relations from time-series data that 
exhibit trends (Rottman, 2016; Soo & Rottman, 2018; 
White, 2015). In the present research, we investigated how 
people learn the strength of causal relationships when the 
cause and effect are continuous-valued, and exhibit strong 
trends over time. We evaluated if people are able to make 
correct causal inferences despite the trends, and what factors 
affect their ability to make accurate causal inferences. 

Learning Causal Strength from Time-Series 
The problem of causal learning from time-series data is 

that when a cause (X) and an effect (Y) exhibit trends over 
time, time is a confound. Due to the confound, the simple 
correlation of the absolute states of X and Y, cor(X, Y), 
often fails to capture the true causal strength. We refer to 
this model of causal strength induction from states, cor(X, 
Y), as rStates. 

Soo and Rottman (2018) proposed another model of 
how people estimate causal strength from time series data, 

which is called rTransitions. rTransitions estimates causal strength 
by taking the correlation of the changes in X and the 
changes in Y, cor(∆X, ∆Y). ∆ refers to the first order 
difference score, the change in a variable from one 
observation to the next.1 

Unlike rStates, we have argued that rTransitions uncovers the 
true causal influence of X on Y when a linear temporal 
confound is present. Soo and Rottman (2018; Appendix A) 
provide proofs and simulations demonstrating how rTransitions 
partials out linear temporal trends in the variables. This is 
the same reason that time series analysts use difference 
scores to control for non-stationarity (Shumway & Stoffer, 
2011). For this reason, we say that using rTransitions helps 
people accurately estimate causal strengths. 

Soo and Rottman (2018) demonstrated that when 
assessing the influence of a cause on an effect from time 
series data, peoples’ judgments are sensitive to both rStates 
and rTransitions, though they are more sensitive to rTransitions, 
meaning that on the whole people tend to correctly infer 
causal strength despite temporal trends. (We regard these 
inferences as “correct” because we have previously argued 
that rTransitions actually uncovers the true causal strength when 
there are linear temporal trends.) 

Rottman and Soo (2018) presented participants with 
observations of a cause and effect. All stimuli had rStates = 
.70 or -.70. The datasets were reordered to create versions 
with all positive transitions (from one observation to the 
next, X and Y changed in the same direction, producing a 
strongly positive rTransitions), or all negative transitions (X and 
Y changed in opposite directions, creating a strongly 
negative rTransitions), or the trials were randomized, producing 
a mix of transitions. (The first three columns of Figure 1 
display the different orderings of the 20 data points.) The 
data were presented to participants in a trial-by-trial fashion 
with X and Y represented using vertical gauges (Figure 2). 
Although participants’ estimates of causal strength were 
influenced by both transitions (rTransitions) and states (rStates), 
the effect of transitions was considerably stronger.  

Rottman and Soo (2018) also investigated two different 
versions of rTransitions. One captured the magnitude of the 
change, and another captured only the direction of the 
change (∆X and ∆Y are encoded as +1 for increases and -1 
for decreases). 

                                                             
1This model assumes that the influence of X on Y occurs 

without a delay; the model associates the change in X from Time 1 
to 2 with the change in Y from Time 1 to 2. These studies did not 
investigate situations in which the change in X produces a change 
in Y at a later time, which we leave for future research. 
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Though the two models are often highly correlated, we 
found that only the version that captured the direction of the 
changes explained unique variance in participants’ 
judgments. Thus, in the current studies we only focus on 
this simpler version of rTransitions. 

What Happens with Extremely Strong Trends? 
In Experiment 1, we sought to further test the theory that 

people focus on transitions for causal learning with time 
series data. In particular, we examined situations in which 
one variable exhibits an extremely strong monotonic trend 
such that from one trial to the next, it always increases (or 
always decreases) across time. We used the same datasets 
from prior studies, but sorted them by X or Y, such that one 
of those variables always increased or decreased. 

One motivation for studying this case is theoretical. As 
explained below, the rTransitions model predicts a causal 
strength of zero despite there being very strong rStates 
predictions, which further helps to discriminate these two 
models. Furthermore, the case of monotonic trends can be 
investigated using the same datasets from prior studies by 
reordering the trials, allowing us to hold rStates constant. 

Another motivation is revealed upon looking at the 
“monotonic trend” condition in Figure 1; it is a situation in 
which one variable exhibits a smooth monotonic trend and 
the other exhibits a noisy but roughly linear trend. Given 
that smooth processes exist in the real world, we thought 
this was an interesting time series case to study. 

The rightmost column in Figure 1 shows the new 
monotonic trend condition with a monotonic trend in X. 
Consider the top-right panel in Figure 1. Both X and Y 
increase over time and the correlation between the two is 

quite strong (rStates = .70). However, just because two 
variables increase together does not mean that one causes 
the other; it could be that they are both just exhibiting 
trends. In contrast, consider the positive transitions 
condition in which rStates = .70. In that graph, both X and Y 
increase overall. Additionally, within a shorter timescale, 
increases in X are accompanied by increases in Y, and vice 
versa. This pattern provides strong evidence for a positive 
causal relation.  

Based on the rTransitions model, the monotonic trend 
condition does not provide evidence for a causal relation. If 
X always increases from one observation to the next, there 
is no variance in ∆X (i.e. all the ∆X scores are +1), so 
cor(∆X, ∆Y) cannot be computed. For this reason, we 
treated the prediction of rTransitions as zero in the trend 
condition.2 We predicted that their causal strength 
judgments would be close to zero because the variable 
exhibiting the monotonic trend does not exhibit much 
variance after accounting for the trend. Experiment 1 
investigated whether participants would give causal strength 
judgments close to zero in the monotonic trend condition, or 
whether their judgments would be influenced by the strong 
correlation of the absolute states (rStates = .70 or -.70).  

                                                             
2 For the version of rTransitions in which the magnitude of change 

scores are encoded, not just the direction, the value of cor(∆X, ∆Y) 
is close to zero for all the datasets in this study, so the predictions 
are essentially the same for both versions of rTransitions. 
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Figure 1: Time-series graphs of an example dataset used in Experiment 1, and Experiment 2 (without the monotonic trend condition). 
All datasets within the top row, and within the bottom row, have the exact same 20 states, but different orderings.
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Figure 2: Visual presentation of stimuli in Experiment 1 and 

in the “trial-by-trial gauges” condition in Experiment 2. 

Presentation Format Moderates Use of Transitions 
How can time-series data be presented to people to optimize 
their causal inferences? In our previous research, we found 
that people were able to make fairly accurate judgments 
from a trial-by-trial presentation that involved two gauges 
representing the magnitude of the cause and the effect 
(Figure 2). Peoples’ ability to infer causal relations fairly 
well in a trial-by-trial format is good news because it 
mimics how we often experience events in our daily lives.  

We further demonstrated that people are much better in a 
naturalistic format (in which the gauge level represents 
magnitude) than when presented with trial-by-trial numbers 
representing magnitude, presumably because transitions are 
more salient when presented naturalistically. 

However, lay people also often need to reason about data 
presented graphically, such as economic data in news 
reports (Fox & Hendler, 2011), and time-series graphs are 
the standard visualization for such data (Friendly, 2006; 
Javed, McDonnel, & Elmqvist, 2010). Experiment 2 
investigated how well people infer causal relations 
controlling for temporal trends from time-series graphs. 

We predicted that observing the data in a time-series 
graph would decrease the salience of transitions relative to 
the trial-by-trial presentation, making it harder for people to 
accurately infer causal relations. Instead, they might focus 
on the correlation between the absolute states of X and Y. 

In Experiment 2, we compared causal judgments from 
participants observing stimuli presented in a trial-by-trial 
visual format (Figure 2) vs. a static time-series graph format 
(Figure 1). In addition, we created an intermediate format 
which involved a times-series graph, but instead of 
participants viewing the entire graph at once, the 20 
observations were revealed sequentially. We hypothesized 
that revealing the data sequentially could make the 
transitions more salient, thereby leading to more accurate 
judgments than the static graph format. 

Experiment 1 
Experiment 1 tested whether learners used transitions in 
addition to states to estimate the causal strength between a 
cause (X) and an effect (Y) in a time-series setting. We used 
datasets in which the states were held constant, but the order 
of observations was manipulated to produce varied patterns 
of transitions (Figure 1). We predicted that participants’ 

causal strength judgments would be strongest for datasets 
with all positive or negative transitions, followed by 
datasets with random orderings, and would be weakest for 
datasets with a monotonic trend in either the cause or effect 
because the rTransitions value was zero. 

Method 
Subjects 50 participants were recruited on MTurk and were 
paid $1.40. The experiment lasted between 7-10 minutes.  
Design and stimuli Each learning dataset had 20 
observations of X and Y, and each variable could take on 
values between 0 and 100. The design was a 2 (positive vs. 
negative rStates) × 5 (negative transitions, random order, 
positive transitions, monotonic trend in X, or a monotonic 
trend in Y) within-subjects design (see Figure 1). 

The datasets were created in the following way. Using the 
corgen function from the R package ecodist, we generated 
20 datasets with rStates = .70. Copies of each dataset with 
rStates = -.70 were made by flipping the values of X around 
the midpoint of the scale (X = 50). For the random order 
conditions, these datasets were presented with the trials in a 
random order. In the positive states random order condition 
most of the transitions were positive (Mean rTransitions = .59, 
SD = .12), but in the negative states random order transition 
most of the transitions were negative (Mean rTransitions = -.59, 
SD = .12). This is because with random trial orders, rStates 
and rTransitions are correlated. 

The 20 trials of these datasets were reordered to produce 
the other four conditions. In the positive transitions 
conditions, the trials were reordered so that increases in X 
were always accompanied by increases in Y (rTransitions = 1). 
In the negative transitions conditions, X and Y always 
changed in opposite directions (rTransitions = -1). Finally, the 
conditions with monotonic trends in X or Y were ordered 
such that either X or Y always increased or decreased across 
the 20 trials; all these datasets had rTransitions = 0. (Datasets 
that had repeated values of X or Y (e.g., X was exactly 56 
on two trials) were slightly modified (e.g., one trial was 
changed to 58) so that the trials could be ordered to increase 
monotonically, and this change in the dataset was made to 
all the conditions).  

Lastly, the observation order was counterbalanced to be 
presented forwards or in reverse (i.e. from 1-20 or 20-1 in 
Figure 1) randomly for each scenario a participant viewed. 
Procedure Participants evaluated how the dosage of a drug 
(X) influenced the size of a microorganism (Y) over 20 
observations (“days”). On each new day, participants 
clicked on a button to view a new drug dosage that was 
injected and the microorganism’s resulting size. X and Y 
were displayed using gauges (Figure 2). After clicking the 
button on each day, the button was disabled for two seconds 
before the participant was allowed to advance.  

After 20 days, the gauges disappeared and participants 
judged the causal strength of the drug on a scale from 8 
(“high levels of the drug strongly cause the microorganism 
to increase in size”) to -8 (“high levels of the drug strongly 
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cause the microorganism to decrease in size”), with zero 
indicating there was no causal relationship.  

Participants viewed all 10 conditions in randomized order. 
Each scenario involved a different drug-microorganism pair. 

Results and Discussion 
The means for the conditions are displayed in Figure 3. 
There was no difference in causal judgments for conditions 
with monotonic trends in X vs. Y (p = .32), so we collapsed 
those two conditions into a general “monotonic trend” 
condition. In the positive states conditions (gray triangles), 
the random order condition is displayed to the right of the 
monotonic trend condition, because it has positive rTransitions. 
In the negative states conditions (black circles), the random 
condition is to the left of the monotonic trend condition 
because it has positive rTransitions. 

There is an effect of rStates such that the rStates = .70 
conditions are judged more positively than the rStates = -.70 
conditions. The negative transitions, random order, and 
positive transitions conditions exhibited the same pattern as 
past research; there is a strong effect of transitions such that 
the negative transitions conditions are judged much more 
negatively than the positive transitions conditions. In the 
random order conditions, the judgments are strongly 
positive when rStates = .70 but fairly negative when rStates = -
.70. In conditions in which the states and transitions 
conflicted, the transitions “overrode” the states. 

The new finding in this study is seen in the monotonic 
trend condition; participants’ judgments were quite close to 
zero and considerably attenuated compared to the random 
transitions conditions. We compared judgments between 
these conditions using regressions with by-subject random 
intercepts and slopes for rStates and transitions. In the 
negative rStates condition, the judgments in the monotonic 

trend condition were significantly higher than the random 
order condition (B = 2.40, SE = 0.56, p < .001, partial-R2 = 
.11). In the positive rStates condition, judgments in the 
monotonic trend condition were significantly lower than the 
random order condition (B = -3.15, SE = 0.43, p < .001, 
partial-R2 = .23). That said, comparing the two monotonic 
trend conditions still revealed a difference between the 
positive vs. negative rStates conditions (B = 1.74, SE = 0.44, p 
< .001, partial-R2 = .09). In sum, the effect of states was 
partially attenuated in the monotonic trend condition. 

We also fitted an overall regression predicting all 
judgments with each dataset’s rState and rTransition value using 
a multivariate regression with a by-subject random intercept 
for repeated measures, as well as by-subject random slopes 
for rStates and rTransitions. Controlling for transitions, there was 
a significant effect of states (B = 1.95, SE = 0.22, p < .001, 
partial-R2 = .14). However, the effect of transitions after 
controlling for states was two times stronger than the effect 
of states in terms of variance explained (B = 3.27, SE = 
0.31, p < .001, partial-R2 = .30).  

 
In summary, Experiment 1 provides additional evidence 

that people use transitions for inferring causal relations, and 
in particular, when one variable exhibits a very strong 
monotonic trend, there is only a small effect of states. 

Experiment 2 
In Experiment 2, we compared how well people learn causal 
relations from time-series data when presented in a trial-by-
trial format like Experiment 1 vs. a static time-series graph 
vs. a hybrid in which the time-series graph was sequentially 
revealed. We predicted that in both the trial-by-trial and 
gradually-revealed graph conditions, participants’ 
judgments would be more strongly influenced by transitions 
compared to in the static graph condition. 

Method 
Subjects 150 participants were recruited on MTurk and paid 
$0.90. The experiment lasted between 4-7 minutes. 
Design and stimuli We used a 2 (positive vs. negative 
rStates) × 3 (positive transitions vs. random order vs. negative 
transitions) × 3 (trial-by-trial gauges vs. gradual graph vs. 
static graph) design. States and transitions were manipulated 
within-subjects, like in Experiment 1. We omitted the 
conditions with monotonic trends in X and Y for simplicity. 
Presentation format was manipulated between-subjects.  

The datasets used in the present experiment were the 
same as those used in Experiment 1. 
Procedure The procedure in the trial-by-trial gauges 
condition was identical to Experiment 1. Data in both graph 
conditions were shown to participants using line graphs 
programmed using d3.js. These graphs were similar in 
appearance to those in Figure 1. 

In the gradual graph and the static graphs conditions, the 
graphs looked very similar to Figure 1 except without 
gridlines and labels. In the gradual graph condition, 
participants clicked on a button to reveal the observations 
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for the next “day”, gradually revealing the entire graph. 
After the final day’s observations were revealed, the graph 
disappeared from the screen and participants made a causal 
judgment for that scenario.  

In the static graph condition, the entire graph was 
revealed at the beginning of the scenario and kept on the 
screen for 40 seconds (this was the time it took to advance 
through 20 observations in the trial-by-trial gauges and 
gradual graph conditions if participants always advanced 
immediately to the next observation after viewing each 
transition). After 40 seconds, the graph disappeared from 
the screen and participants made a causal judgment for that 
scenario. 
Attention check We included an attention check because 
the static graph condition did not require participants to 
actively watch the screen (in the other two conditions, 
participants had to wait for the button to become active and 
then click it to advance to the next trial, keeping their 
attention on the screen). Between 25-35 seconds after the 
start of the scenario, a common five-letter word was flashed 
on the screen for three seconds. Participants had to report 
the word prior to making their causal judgment at the end of 
the scenario. Participants knew that the word would appear 
sometime during the scenario, but not when, so they had to 
remain attentive. Different five-letter words were used on 
each scenario. For consistency, the attention check was also 
implemented in all three presentation format conditions. In 
the other two conditions, the word was flashed between 
observations 15-18. Almost all the participants noticed and 
could report the word correctly. Two correctly recalled 4 of 
the 6 words, 21 recalled 5 out of the 6, and the remaining 
127 participants correctly recalled all 6 words. Because 
attention seemed to be close to ceiling, and there was not 
differential attention across conditions, we did not exclude 
any of the data. 
Results and Discussion 
The means for all conditions are displayed in Figure 4. We 
first analyzed data from each presentation format condition 
separately. We tested the relative fits of rStates and rTransitions 

to participants’ judgments using multivariate regressions 
with by-subject random intercepts and by-subject random 
slopes for each model for repeated measures.  

In the trial-by-trial gauges condition (the same format as 
Experiment 1), there was a significant effect of both states 
(B = 2.74, SE = 0.35, p < .001, partial-R2 = .22) and 
transitions (B = 2.13, SE = 0.27, p < .001, partial-R2 = .22), 
but no interaction between them. The effect of transitions 
was weaker than in Experiment 1, possibly because the 
attention-check distracted participants from the transitions. 

In the gradual graph condition, the effect of transitions (B 
= 3.24, SE = 0.40, p < .001, partial-R2 = .31) was much 
stronger than the effect of states (B = 1.76, SE = 0.36, p < 
.001, partial-R2 = .07), and there was a small but significant 
interaction (B = 1.18, SE = 0.31, p < .001, partial-R2 = .03). 
People are able to learn from transitions in time-series 
graphs if observations are revealed sequentially. 

A regression including data from both the trial-by-trial 
gauges and gradual graph conditions (including by-subject 
random intercepts and slopes for rStates and rTransitions) 
revealed a significant interaction between transitions and 
presentation format (p = .02); the effect of transitions was 
stronger in the gradual graph condition than the trial-by-trial 
gauges condition. This was due to the smaller effect of 
transitions in the gauges condition compared to Experiment 
1 and past experiments (Soo & Rottman, 2018), in which 
the effect of transitions was stronger than that obtained in 
the gradual graph condition here. 

In the static graph condition, the effect of states (B = 3.29, 
SE = 0.47, p < .001, partial-R2 = .19) was much stronger 
than transitions (B = 1.06, SE = 0.34, p = .003, partial-R2 = 
.04). There was a significant interaction between states and 
transitions (B = 1.68, SE = 0.38, p < .001, partial-R2 = .05). 
In the static graph condition in Figure 4, the effect of 
transitions is visibly present in the positive states conditions, 
but not in the negative states conditions. 

As predicted, the effect of transitions in the static graph 
condition was weaker than both the trial-by-trial gauges (p = 
.01) and the gradual graph conditions (p < .001). This 
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finding is intuitive; the static graph presentation does not 
highlight transitions by sequentially revealing observations. 
However, it was surprising that the effect of transitions was 
attenuated exclusively in the negative states conditions. 
Note, it is not that participants were biased to see a positive 
relation (see function learning research by Kalish, 
Lewandowsky, & Kruschke, 2004). Instead, the issue is that 
they continued to infer a negative relation even when the 
causal relation, as revealed by the transitions, was positive. 

In the condition with both positive transitions and states, 
the fact that X and Y both increase and decrease together is 
fairly salient in the graph since the X and Y lines overlap so 
strongly (Figure 1). However, in the condition with positive 
transitions and negative states, the lines only briefly overlap, 
making it harder to see if the transitions in X and Y are in 
the same or opposite directions. Participants may be focused 
on how X and Y are negatively correlated and infer a 
negative causal strength based on rStates. 

The effect of presentation format found here suggests that 
different methods for communicating temporal data can 
greatly influence the inferences people draw from the data. 
In particular, the difference between dynamic and static 
visualizations can determine the relationships people 
perceive between variables. 

General Discussion 
Prior research on how people infer causal strength from time 
series data has found that people rely on both the absolute 
states of X and Y at individual points in time, and even 
more so the changes in X and Y from observation to the 
next. Furthermore, attending to changes or transitions 
allows people to control for temporal trends in X and Y, 
which can otherwise obscure the underlying causal relation.  

In Experiment 1, we gathered further evidence showing 
that in time-series settings, people are able to control for 
temporal trends by attending to transitions. In particular, 
when one of the variables increases or decreases 
monotonically over time and the other variable increases or 
decreases but with more noise, people give fairly weak 
causal strength judgments. This makes sense in that the 
monotonic increase could be due simply to a trend over time 
rather than any relation with the other variable. Overall, this 
finding suggests that attending to the changes from one 
observation to the next is a simple heuristic that people 
often use and helps them make accurate causal inferences. 

In Experiment 2, we tested if people control for trends 
when inferring causal strength from data presented in time-
series graphs, which are ubiquitous in scientific and popular 
communications of temporal data. We found that people 
still attend to transitions when the graph was revealed 
gradually. However, presenting data in a static graph 
revealed an interesting boundary condition: people do not 
learn from transitions when the states of X and Y are 
negatively correlated. This suggests there are limits to 
peoples’ ability to correctly infer causal relations from time-
series graphs, but we also found that a simple animation 
dramatically improved performance. 

Why might subjects have performed well in the static 
graph condition in Experiment 2 when there was a positive 
rStates correlation but not when there was a negative 
correlation? We suspect that learning was still good in the 
positive states condition because the two lines are largely 
overlapping, which could highlight the transitions. In 
contrast, in the negative states condition, the two lines cross, 
which makes it harder to see how the sequential changes in 
one variable correspond to changes in the other variable. 

This explanation raises the possibility of another 
boundary condition. Even if there is a positive rStates 
correlation, it is possible that the two variables could be on 
very different scales (e.g., X in the range of 1-50, and Y in 
the range of 200-300). In this case, it might again become 
difficult to notice the correlations of the transitions. 

In sum, subtle and non-obvious features of graphs may 
make it easier or harder to notice and compare the 
transitions among two variables, which would affect how 
well people control for trends and how accurate their causal 
inferences are. Future research is needed to determine 
guidelines for graphs that are easy to interpret.  
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