
Lawrence Berkeley National Laboratory
LBL Publications

Title
Reducing latency cost in 2D sparse matrix partitioning models

Permalink
https://escholarship.org/uc/item/7sx989h2

Authors
Selvitopi, Oguz
Aykanat, Cevdet

Publication Date
2016-09-01

DOI
10.1016/j.parco.2016.04.004

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sx989h2
https://escholarship.org
http://www.cdlib.org/

Reducing latency cost in 2D sparse matrix partitioning models I

Oguz Selvitopia, Cevdet Aykanata,∗

aBilkent University, Computer Engineering Department, 06800, Ankara, TURKEY

Abstract

Sparse matrix partitioning is a common technique used for improving performance of parallel linear iterative
solvers. Compared to solvers used for symmetric linear systems, solvers for nonsymmetric systems offer more
potential for addressing different multiple communication metrics due to the flexibility of adopting different
partitions on the input and output vectors of sparse matrix-vector multiplication operations. In this regard,
there exist works based on one-dimensional (1D) and two-dimensional (2D) fine-grain partitioning models
that effectively address both bandwidth and latency costs in nonsymmetric solvers. In this work, we propose
two new models based on 2D checkerboard and jagged partitioning. These models aim at minimizing total
message count while maintaining a balance on communication volume loads of processors; hence, they address
both bandwidth and latency costs. We evaluate all partitioning models on two nonsymmetric system solvers
implemented using the widely adopted PETSc toolkit and conduct extensive experiments using these solvers
on a modern system (a BlueGene/Q machine) successfully scaling them up to 8K processors. Along with
the proposed models, we put practical aspects of eight evaluated models (two 1D- and six 2D-based) under
thorough analysis. To the best of our knowledge, this is the first work that analyzes practical performance
of 2D models on this scale. Among evaluated models, the models that rely on 2D jagged partitioning obtain
the most promising results by striking a balance between minimizing bandwidth and latency costs.

Keywords: Parallel iterative solvers, Nonsymmetric linear systems, Sparse matrix-vector multiplication,
Sparse matrix partitioning, Latency overhead, Bandwidth overhead
2010 MSC: 00-01, 99-00

1. Introduction

Many scientific and engineering applications necessitate solving a linear system of equations. The meth-
ods used for this purpose are categorized as direct and iterative methods. When the linear system is large
and sparse, iterative methods are preferred to their direct counterparts due to their speed and flexibility.
Most widely used iterative methods for solving large-scale linear systems are based on Krylov subspace
iterations.

A single iteration in Krylov subspace methods usually consists of one or more Sparse Matrix–Vector
multiplications (SpMV), dot product(s) and vector updates. In a distributed setting, SpMV operations
require regular or irregular point-to-point (P2P) communication depending on the sparsity pattern of the
coefficient matrix in which each processor sends/receives messages to/from a subset of processors. On the10

other hand, dot products necessitate global communication that involves a reduction operation on one or a
few scalars in which all processors participate. Vector updates usually do not require any communication.

A common model to capture the cost of communicating a single message of m words consists of two
major components and is given by the formula ts + mtw. Here, ts is the startup time and signifies the

IThis work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant
EEEAG-114E545.

∗Corresponding author
Email addresses: reha@cs.bilkent.edu.tr (Oguz Selvitopi), aykanat@cs.bilkent.edu.tr (Cevdet Aykanat)

Preprint submitted to Journal of Parallel Computing December 11, 2015

costs related to preparation of the message (referred to as latency cost). The tw component is the time
required to transfer a single word between two processors and is equal to the reciprocal bandwidth (referred
to as bandwidth cost). Latency cost is proportional to the number of messages whereas bandwidth cost
is proportional to the number of words. Among these two components, latency costs prove to be more
vital for parallel performance as they are generally harder to avoid and improve [1]. Although both costs
are reduced within time, the gap between them gradually increases in favor of bandwidth costs with an20

approximately 20% annual improvement over latency costs [1, 2]. Furthermore, computation speeds evolve
faster than communication speeds, making communication costs more critical for performance. With the
latest developments in the scientific computing field, communication costs are likely to be a major factor
in ranking fastest high performance computing (HPC) systems [3]. This work focuses on reducing latency
costs of parallel SpMV operations in the context of nonsymmetric iterative solvers. The models and methods
proposed in our work apply to matrices both with regular and irregular sparsity patterns. However, the
benefits are more evident for the irregular ones, which are usually harder to exploit.

1.1. Related work

Communication requirements of iterative solvers have been of interest for more than three decades.
There are numerous works on reducing communication overhead of global reduction operations in iterative30

solvers. Several works in this category aim at decreasing the number of global synchronization points
in a single iteration of the solver by reformulating it [4, 5, 6, 7, 8, 9, 10, 11, 12]. Another important
area of study is s-step Krylov subspace methods, which focus on further reducing the number of global
synchronization points by a factor of s by performing only a single reduction once in every s iterations [8,
13, 14, 15, 16, 17]. The performance gain of s-step methods comes at the cost of deteriorated stability and
complications related to integration of preconditioners. However, these methods recently gained popularity
again and promising studies address these shortcomings [13, 16, 18, 19]. Another common technique is to
overlap communication and computation with the aim of hiding global synchronization overheads [20, 21].
Especially with the introduction of nonblocking collective constructs in the MPI-3 standard, this technique
is gaining attraction [22, 23, 24]. Overlapping is commonly used for SpMV operations as well. In addition, a40

recent work proposed hierarchical and nested Krylov methods that constrain global reductions into smaller
subsets of processors where they are cheaper [25]. Another recent work uses the idea of embedding SpMV
communications into global reductions to avoid latency overhead of SpMV communications [26].

The performance of iterative solvers is also addressed by minimizing communication costs related to
parallel SpMV operations, which is also addressed by this work. There are studies that can handle sparse
matrices that are well-structured and have predictable sparsity patterns, generally arising from 2D/3D
problems [16, 27, 28, 29]. However, the studies in this field generally focus on combinatorial models that are
capable of exploiting both regular and irregular patterns to obtain a good partition of the coefficient matrix.
In this regard, graph and hypergraph partitioning models are widely utilized with successful partitioning
tools such as MeTiS [30], PaToH [31], Scotch [32], Mondriaan [33]. These models can broadly be categorized50

as one-dimensional (1D) and two-dimensional (2D) partitioning models. In 1D models [30, 31, 34, 35, 36,
37, 38, 39], each processor is responsible for a row/column stripe, whereas in 2D models, each processor
may be responsible for a submatrix block (generally defined by a subset of rows and columns) or as in
the most general case, each processor may be responsible for an arbitrarily defined subset of nonzeros.
Compared to 1D models, 2D models possess more freedom in partitioning the coefficient matrix. Some
works on 2D models do not take the communication volume into account, however they provide an upper
bound on the number of messages communicated [40, 41, 42, 43, 44]. On the other hand, there are 2D
models that aim at reducing volume, with or without providing a bound on the maximum number of
messages [33, 45, 46, 47, 48, 49, 50]. 2D partitioning models in the literature can further be categorized
into three classes: checkerboard partitioning [47, 49, 50] (also known as coarse-grain partitioning), jagged60

partitioning [45, 49] and fine-grain partitioning [46, 48, 49]. Notably, a recent work [50] proposes a fast 2D
partitioning for scale-free graphs via a two-phase approach. This method uses 1D partitioning to reduce
volume in the first phase and an efficient heuristic in the second phase to obtain a bound on the maximum
number of message. This work differs from ours as it does not explicitly minimize the message count, instead,
it uses a property of the Cartesian distribution of the matrices to provide the mentioned upper bound.

2

1.2. Motivation and contributions

Most of the aforementioned and other existing partitioning models optimize the objective of minimizing
total communication volume, which is an effort to reduce bandwidth costs. However, communication cost
is a function of both bandwidth and latency, with the latter being at least as important as the former, as
the current trends indicate. The need for partitioning models that also consider other cost metrics has been70

noted in other works [26, 34]. There are a few notable works that focus on different communication cost
metrics. Balancing communication volume is one of them [33, 51, 52]. More important and overlooked work
targets multiple communication metrics including latency [53], on which this study is based. Compared
to [53], this study concentrates more on practical aspects.

In this work, we claim and show that attempting to minimize a single communication objective hurts
parallel performance and achieving a tradeoff between bandwidth and latency costs is the key factor for
achieving scalability. The basic motivation is to employ a nonsymmetric partition in the solver. Note
that in parallel SpMV operations of the form w = Ap, one needs to partition the input vector p and the
output vector w in addition to A. This can be achieved either by using a symmetric partition where the
same partition is imposed on both input and output vectors, or by using a nonsymmetric partition where80

a distinct partition is employed for input and output vectors. The latter alternative is more appealing and
it should be adopted whenever convenient since it is more flexible and allows operating in a broader search
space. A nonsymmetric partition can be utilized in nonsymmetric linear system solvers such as the conjugate
gradient normal equation error (CGNE) [54, 55, 56] and residual method (CGNR) [54, 55, 56, 57], and the
standard quasi-minimal residual (QMR) [58] where the coefficient matrix is square and nonsymmetric. The
details of how to utilize nonsymmetric partitioning without incurring communication during linear vector
update operations are explained for CGNE and CGNR solvers in Appendix E. We constrain ourselves to
nonsymmetric square matrices in this work, but all proposed models apply to certain iterative methods that
involve rectangular matrices as well.

Our work is based on [53], which also achieves a nonsymmetric partition through a two-phase method-90

ology with a model called communication hypergraph. Our contributions and differences from [53] are as
follows:

i) We propose two new partitioning models for reducing latency which are based on 2D checkerboard and
jagged partitioning. These models aim at reducing latency costs usually at the expense of increasing
bandwidth costs. Similar models have been investigated [48, 53], but they are based on 1D and 2D
fine-grain models.

ii) All proposed and investigated partitioning models are realized on two iterative methods CGNE and
CGNR implemented with the widely adopted PETSc toolkit [59]. We describe how to obtain a non-
symmetric partition on the vectors utilized in these solvers using the communication hypergraph model
and thoroughly evaluate partitioning requirements of them via experiments. In this manner, we dif-100

fer from [53], in which the proposed methods were tested with a code developed by the authors that
contains only parallel SpMV computations.

iii) We conduct extensive experiments for the mentioned iterative solvers. Although better suited to large-
scale systems, the communication hypergraph model was originally tested only for 24 processors on a
local cluster and only for 1D partitioning. In this work, we test and show this model’s validity on a
modern HPC system (a BlueGene/Q machine) successfully scaling up to 8K processors.

iv) We compare one 1D-based, three 2D-based models (checkerboard, jagged and fine-grain), and these
four models’ latency-improved versions, making a total of eight partitioning models. Among these,
the 2D models are somewhat overlooked in the literature, never being tested in a realistic setting on
a large-scale system. Although their theoretical merits are of no question, their practical merits are110

not appreciated. In our experiments, we put these methods’ practical aspects into a thorough analysis.
The experiments show surprising results with 2D jagged partitioning and its latency-improved version
performing better in the majority of the matrices.

The rest of the paper is organized as follows. Sections 2.1 and 2.2 describe the proposed partitioning
models to reduce the latency overhead of checkerboard and jagged models, respectively. These two sections

3

describe basic checkerboard and jagged models as well. We also briefly review the fine-grain model and its
latency-improved version in Section 2.3, since they are included in our experiments. We compare commu-
nication properties of all partitioning models in Section 3. Section 4 contains the results and discussions
of the extensive large-scale experimental evaluation of eight partitioning models on a BlueGene/Q system
with 28 matrices. Our experiments range from 256 to 8192 processors. Final remarks are given in Section 5.120

The presentation of the paper relies on the assumption that the reader is already familiar with the commu-
nication hypergraph model for 1D partitioning [53]. The unfamiliar reader can find a detailed background
with explanatory examples about the communication hypergraph model in Appendix D.

2. Reducing latency cost in 2D partitioning models

2D models work at a finer level of partitioning granularity compared to 1D models by allowing nonzeros of
a single row/column to be assigned to more than one processor. In this manner, they possess more flexibility
in partitioning since they do not constrain the search space by assigning all nonzeros of a row/column to
the same processor. This leads them to exploit existing partitioning tools better. 1D models necessitate a
row-parallel/column-parallel algorithm (Appendix B), whereas 2D models necessitate a row-column-parallel
algorithm. The fundamental difference between them is that the former necessitates a single communication130

stage in parallel SpMV operations, which is either pre-communication if the matrix is partitioned rowwise,
or post-communication if the matrix is partitioned columnwise, whereas the latter necessitates two distinct
communication stages: one before the local SpMV computations (on the input vector in a pre-communication
stage via expand communication tasks) and one after the local SpMV computations (on the output vector
in a post-communication stage via fold communication tasks), For more details on implementation issues
regarding 2D partitioning, see [49].

(a) Checkerboard (b) Jagged

Figure 1: A sample of 2D checkerboard and jagged partitionings on a 16 = 4× 4 virtual processor mesh.

In this section, we describe how to reduce latency overhead of 2D checkerboard and jagged partitioning
models. For these models, we assume a K = P ×Q virtual processor mesh. A simple example depicting a
matrix partitioned with these two models are given in Figure 1. Compared to their original counterparts, the
proposed models are likely to increase the bandwidth costs by increasing communication volume. However,140

this issue is addressed by maintaining a balance on this metric. We also briefly review the 2D fine-grain
model and compare it to checkerboard and jagged models as we evaluate it in our experiments. Note
that a model to reduce latency overhead of fine-grain partitioning has already been investigated [48]. All
proposed models are discussed on parallel w = Ap. However, the arguments are also valid for z = AT r
as communication requirements of w = Ap and z = AT r are the dual of each other and minimizing the
objective function in w = Ap is equivalent to minimizing the objective function in z = AT r.

2.1. Checkerboard partitioning

Checkerboard partitioning is a two-phase process in which each phase utilizes a 1D partitioning model.
The second phase depends on the first phase by using information obtained in the first phase to determine

4

multiple vertex weights utilized in the second phase. For the rest of the section, we assume a 1D rowwise150

partition in the first phase and a 1D columnwise partition in the second phase. For the arguments made in
this section, an analogous discussion holds for the dual scheme as well.

Consider a K = P ×Q processor mesh and an n×n square matrix A. In the first phase, the column-net
hypergraph model HR = (VR,NC) is used to obtain a P -way partition ΠR = {V1, . . . ,VP }, which induces a
P -way rowwise partition {R1, . . . ,RP } of A. Here, Rα denotes the set of rows that correspond to vertices
in Vα, for α = 1, . . . , P . The rows in Rα form a row stripe Aα whose size is nα × n, with nα = |Vα|. At the
end of the first phase, the assignment of rows of A is determined by associating row stripe Aα with the Q
processors in row α of the processor mesh, Pα,∗.

In the second phase, the row-net hypergraph model HC = (VC ,NR) is used to obtain a Q-way partition
ΠC = {V1, . . .VQ}, which induces a Q-way columnwise partition {C1, . . . , CQ} of A. Here, Cβ denotes the160

set of columns that correspond to vertices in Vβ , for β = 1, . . . , Q. The columns in Cβ form column stripe
Aβ whose size is n × nβ , with nβ = |Vβ |. At the end of the second phase, we complete the assignment of
columns of A and actually obtain a Q-way columnwise partition of each row stripe Aα, forming Q submatrix
blocks Aα,1, . . . , Aα,Q. Hence, (ΠR,ΠC) defines an assignment for rows and columns of A where processor
Pα,β is responsible for the set of rows in Rα and the set of columns in Cβ . In other words, nonzero aij is
assigned to Pα,β if ri ∈ Rα and cj ∈ Cβ .

This two-phase process aims at minimizing total communication volume for the pre- and post-communication
stages in the first and second phases, respectively, while maintaining computational load balance [47, 49].
A notable property of checkerboard partitioning is that it confines the communication in expand and fold
operations to the processors in the same column and row of the processor mesh, respectively. It achieves a170

Cartesian distribution of the matrix, in which each processor owns an intersection of a subset of rows and
a subset of columns. A row (column) is said to be coherent if the nonzeros of this row (column) generate
partial results for (require) the same w-vector (x-vector) element. Consider a row ri that is assigned to Rα
at the end of the first phase. The coherency of this row is preserved at this point as it is modeled by vi
in HR. In the second phase, the nonzeros of this row can be distributed among Q processors in row α of
the processor mesh, which is also the case for all other rows in Rα. Hence, row coherency is respected in a
coarse level by assigning nonzeros of rows in Rα to the processors in the same row of the processor mesh,
Pα,∗. A coarse level here implies that the nonzeros belonging to a subset of rows are distributed among the
same subset of processors (in this case among P processors in a specific column of the processor mesh). This
provides the upper bound Q−1 on the number of messages communicated in the post-communication stage180

as there are Q processors in row α of the processor mesh. With a similar argument, column coherency is
also respected in a coarse level by assigning nonzeros of columns in Cβ to the processors in the same column
of the processor mesh, P∗,β . This provides the upper bound P −1 on the number of messages communicated
in the pre-communication stage as there are P processors in column β of the processor mesh. Hence, the
maximum number of messages handled by a single processor is bounded by P + Q − 2. In checkerboard
partitioning, the second phase is performed with P -way multi-constraint [60, 61] partitioning to balance
computational loads.

2.1.1. Communication matrices

The expand communication tasks in the checkerboard model are bound to distinct columns of the pro-
cessor mesh. For this reason, to summarize the communication requirements of expand tasks in the pre-190

communication stage, we form Q distinct communication matrices. Let pCβ denote the vector elements
that necessitate communication in column β of the processor mesh, for 1 ≤ β ≤ Q. Note that at most P
processors can participate in communicating pCβ , confined to the set of processors in P∗,β . We summarize
the communication operations in column β of the mesh with the P ×|pCβ | communication matrix Mβ . Rows
of Mβ correspond to processors in P∗,β and columns of Mβ correspond to expand tasks on pCβ . There exists
a nonzero mαj ∈Mβ if and only if there is a non-empty column segment in submatrix Aα,β at the respective
column. The nonzeros in column j of Mβ represent the set of processors that participate in communicating
pCβ [j], which is a subset of processors in P∗,β . The nonzeros in row α of Mβ represent the expand tasks
processor Pα,β participates in. Note that vector elements corresponding to internal columns (those which
have a single non-empty column segment in P row stripes) do not incur communication and they are not200

5

Cβ

These do not require communication
(not included in the communication matrix)

×

×

×

×

×

×
×

×
×

×
×

×

×
×

×
×
×

×
×
×

×
×

×
×

×

×
×

×

×

Matrix A

(P ×Q = 4× 4)

Input vector p

× × × × × ×

P1,3

P2,3

P3,3

P4,3

×P1,3 × ××P2,3 ×
P3,3 × ××P4,3 ××

Communication
matrix Mβ

pCβ

Vector elements

that necessitate

communication via

expand operations
Processors (P∗,β)

involved in com-

municating pCβ

Form communication

matrix for column β = 3

Figure 2: Formation of the communication matrix for the third column of the processor mesh (β = 3) to
summarize expand operations in the pre-communication stage.

included in Mβ . These vector elements should be assigned to the respective processors to avoid unnecessary
communication. An example in Figure 2 is presented to illustrate the formation of communication matrix
Mβ for the third column of the processor mesh (β = 3) to summarize the expand tasks. There are four
input vector elements that necessitate communication (denoted by pCβ) and they form columns of Mβ . For
instance, the first column of Mβ has nonzeros corresponding to processors P1,3, P2,3 and P4,3 since in matrix
A, there exist nonzero column segments in the respective submatrix blocks. Two vector elements–second
and fifth–corresponding to internal columns do not incur communication and they are not included in Mβ ;
these elements should be assigned to P3,3 and P2,3, respectively, to avoid unnecessary communication.

The fold communication tasks in checkerboard model are bound to distinct rows of the processor mesh.
Following a similar approach, we form P distinct communication matrices to summarize the communication210

requirements of fold tasks in the post-communication stage. Let wCα denote the vector elements that
necessitate communication in row α of the processor mesh, for 1 ≤ α ≤ P . We summarize the communication
operations in row α of the mesh with the |wCα |×Q communication matrix Mα, where there exists a nonzero
miβ ∈ Mα if and only if there is a non-empty row segment in submatrix Aα,β at the respective row. An
example is presented in Figure 3 to illustrate the formation of communication matrix Mα in the third row
of the processor mesh (α = 3) to summarize the fold tasks. The dual of the discussions made for Mβ in
Figure 2 follows also for Mα.

We form a total of P +Q communication matrices to summarize communication requirements of checker-
board partitioning. We can address the communication requirements of both pre- and post-communication
stages independently since communication operations in these stages are bound to distinct columns and rows220

of the processor mesh, respectively. Formation of these communication matrices is illustrated in Figure 4.

2.1.2. Formation of communication hypergraphs

We form Q hypergraphs from Q communication matrices for the pre-communication stage. For each Mβ ,
a communication hypergraph HCMβ is formed using the row-net hypergraph model, for 1 ≤ β ≤ Q. The net

set of HCMβ represents the processors in column β (P∗,β) of the processor mesh and the vertex set of HCMβ
represents the expand tasks on pCβ . Hence, there are P nets and |pCβ | vertices in HCMβ . A vertex vj in HCMβ
is connected by the set of nets corresponding to processors that communicate the respective vector element

6

Rα

These do not require communication
(not included in the communication matrix)

× × ×× ×
× ×

× × × × ×
× × × × ×

× ×
× × × × × × × ×

Matrix A

(P ×Q = 4× 4)

Output

vector w

×
×
×
×
×
×

P3,1 P3,2 P3,3 P3,4 ×P
3
,1

P
3
,2

×P
3
,3

×P
3
,4

× ×× ××× ×
Communication

matrix Mα

wCα

Vector elements

that necessitate

communication via

fold operations

Processors (Pα,∗)

involved in com-

municating wCαForm

communication

matrix for

row α = 3

Figure 3: Formation of the communication matrix for the third row of the processor mesh (α = 3) to
summarize fold operations in the post-communication stage.

pCβ [j]. In all Q communication hypergraphs, the total number of vertices is equal to |pC | =
∑Q
β=1 |pCβ | and

the total number of nets is equal to Q× P = K.
In a similar manner, we form P hypergraphs from P communication matrices for the post-communication230

stage. For each Mα, a communication hypergraph HCMα is formed using the column-net hypergraph model,
for 1 ≤ α ≤ P . The net set of HCMα represents the processors in row α (Pα,∗) of the processor mesh and the
vertex set of HCMα represents the fold tasks on wCα . Hence, there are Q nets and |wCα | vertices in HCMα .
A vertex vi in HCMα is connected by the set of nets corresponding to the processors that communicate the
respective vector element wCα [i]. In all P communication hypergraphs, the total number of vertices is equal

to |wC | =
∑P
α=1 |wCα | and the total number of nets is equal to P ×Q = K.

In total, we form P +Q communication hypergraphs from P +Q communication matrices. This process
is illustrated in Figure 4.

2.1.3. Partitioning of the communication hypergraphs

We partition HCMβ to get a P -way partition Πβ = {V1,V2, . . . ,VP } and obtain a distribution of expand240

tasks among P processors in column β of the processor mesh for the pre-communication stage, for 1 ≤ β ≤ Q.
The responsibility of the expand tasks represented by the vertices in Vα ∈ Πβ is assigned to processor Pα,β .
Consider a net nα,β in HCMβ that represents Pα,β . The connectivity set of this net contains the parts that
correspond to the processors each of which send a message to Pα,β . The size of this set can be at most P since
HCMβ is partitioned into P , bounding the number of messages sent/received by a single processor by P −1 in
the pre-communication stage. Hence, this feature of original checkerboard partitioning is still respected. In
partitioning HCMβ , the partitioning objective of minimizing cutsize corresponds to minimizing the number
of messages communicated in column β of the processor mesh in the pre-communication stage, and the
partitioning constraint of maintaining balance among part weights corresponds to obtaining a balance on
the communication volume loads of these processors.250

Similarly, we partition HCMα to get a Q-way partition Πα = {V1,V2, . . . ,VQ} and obtain a distribution
of fold tasks among Q processors in row α of the processor mesh for the post-communication stage, for
1 ≤ α ≤ P . HCMα is partitioned into Q, bounding the number of messages sent/received by a single processor
by Q− 1 in the post-communication stage. Hence, this feature of original checkerboard partitioning is also
respected. The partitioning objective and the balancing constraint are identical to those in partitioning
HCMβ .

The formed P + Q hypergraphs can be independently partitioned since they do not depend on each
other in any way. The maximum number of messages handled by a single processor is still P + Q − 2 as

7

RP

Rα

R1

C1 Cβ CQ

. . .

. . .

M1wC1

P
1
,1 . . .

P
1
,β . . .

P
1
,Q

...

MαwCα

P
α
,1

. . .

P
α
,β . . .

P
α
,Q

...

MPwCP

P
P
,1

. . .

P
P
,β . . .

P
P
,Q

M1

pC1

P1,1

...

Pα,1
...

PP,1

. . . Mβ

pCβ

P1,β

...

Pα,β
...

PP,β

. . . MQ

pCQ

P1,Q

...

Pα,Q
...

PP,Q

P
co
m
m
.
m
a
trices

p
o
st-co

m
m
.
sta

g
e

Q comm. matrices

pre-comm. stage

HCM
1

...

HCM
α

...

HCM
P

HCM
1

. . . HCM
β

. . . HCM
Q

P
co
m
m
.
h
y
p
erg

ra
p
h
s

co
lu
m
n
-n
et

m
o
d
el

Q comm. hypergraphs

row-net model

HCM
β

vertices = expand tasks on pCβ

nets = processors in P∗,β
partition into P parts to get Πβ

HCM
α

vertices = fold tasks on wCα

nets = processors in Pα,∗
partition into Q parts to get Πα

Figure 4: Minimizing latency cost in checkerboard partitioning model.

in the original checkerboard partitioning. As a result, we improve latency costs in each row/column of the
processor mesh independently while respecting basic characteristics of checkerboard partitioning.260

2.2. Jagged partitioning

Jagged partitioning consists of two phases. The first phase consists of a single 1D partitioning model,
whereas the second phase consists of multiple, independent and same type of 1D partitioning models. The
second phase depends on the first phase by using the partitioning information obtained in the first phase
to determine vertex sets and vertex weights for the models formed in the second phase. For the rest of the
section, we assume a 1D rowwise partition in the first phase and a 1D columnwise partition in the second
phase. For the arguments made in this section, an analogous discussion holds for the dual scheme as well.

Assume a K = P × Q processor mesh and an n × n square matrix A. The first phase of jagged
partitioning is exactly the same as the first phase of checkerboard partitioning: a column-net hypergraph
model HR = (VR,NC) is used to obtain a P -way partition ΠR = {V1, . . . ,VP }, which induces a rowwise270

partition {R1, . . . ,RP } of A. At the end of this phase, the rows in row stripe Aα are associated with the Q
processors in row α of the processor mesh, Pα,∗.

In the second phase, we form a hypergraph Hα for each row submatrix Aα obtained in the former phase
using the row-net hypergraph model, for 1 ≤ α ≤ P . In total, P hypergraphs are formed. In this aspect,
jagged partitioning differs from checkerboard partitioning – which forms a single hypergraph in the second
phase. The net set of Hα represents rows of Aα and the vertex set of Hα represents columns of A that
have a nonzero column segment in Aα. Hence, the same vertex can appear in multiple hypergraphs since

8

the corresponding column may have nonzero column segments in more than one row stripes. These P
hypergraphs are independently partitioned into Q parts to obtain a Q-way partition of each row stripe.
At the end of the second phase, for each row stripe Aα, we obtain Q submatrix blocks Aα,1, . . . , Aα,Q by280

partitioning vertices corresponding to columns of Aα.
The first and the second phase aim to minimize the volume of communication in pre- and post-communication

stages, respectively, while maintaining computational load balance [47, 49]. In contrast to checkerboard
partitioning, the objective in the second phase of the jagged partitioning is addressed independently by par-
titioning row stripes separately in distinct hypergraphs. The jagged model also differs from the checkerboard
model as it does not lead to a Cartesian distribution of the matrix. Jagged partitioning is more flexible in
this sense since it allows nonzeros of a column to be distributed among any processor that is in distinct
rows of the processor mesh – not just among the processors that are in the same column of the mesh, as is
the case for checkerboard partitioning. Hence, the column coherency is not preserved in the assignment of
columns. This leads to improved communication volume for expand tasks in the pre-communication stage290

at the expense of increasing the upper bound on the number of messages handled by a single processor. In
other words, the jagged model sacrifices the coarse level coherency of columns and causes the number of
messages handled by a single processor in the pre-communication stage to be at most P×Q−Q = K−Q. In
this stage, a processor may communicate with any other processor except the processors that are in the same
row of the processor mesh as this processor. On the other hand, the coherency of rows owned by a processor
is respected in a coarse level as in checkerboard partitioning. This is because nonzeros of these rows are
distributed among processors in the same row of processor mesh, Pα,∗, if the respective processor is in row α.
Hence, the number of messages handled by a single processor for fold tasks in the post-communication stage
is bounded by Q − 1 as there are Q processors in a single row of the processor mesh. Consequently, the
maximum number of messages handled by a processor can be at most (K −Q) + (Q− 1) = K − 1 in jagged300

partitioning.

2.2.1. Communication matrices

The expand communication tasks in the jagged model are not bound to distinct columns of the processor
mesh. For this reason, we form a single communication matrix to summarize the communication require-
ments of expand tasks in the pre-communication stage. Let pC denote the vector elements that necessitate
communication. We summarize the communication operations with the (K = P ×Q)×|pC | communication
matrix MR. Rows of MR correspond to all processors and columns of MR correspond to expand tasks
on pC . Consider two vector elements owned by the same processor. Although these two elements can be
communicated by at most P processors (each of which belongs to a distinct row of the processor mesh), they
do not necessarily need to be confined to the same column of the processor mesh. For this reason, we include310

all processors in MR. The formation of MR essentially resembles that of 1D row-parallel w = Ap (Appendix
D.1): mkj 6= 0 if and only if column cj has a nonzero column segment in kth row stripe of A. Nonzeros in
column cj ∈ MR represent the set of processors that participate in communicating pC [j] and nonzeros in
row rk ∈MR represent the expand tasks Pk participates in. The difference is, however, as a consequence of
jagged partitioning, each column in MR can have at most P nonzeros instead of K. As usual, vector elements
corresponding to internal columns are not included in MR since they do not necessitate communication.

In contrast to expand tasks, the fold communication tasks are bound to distinct rows of the processor
mesh. The communication requirements of fold tasks in the post-communication stage are thus summarized
by P distinct communication matrices, Mα, for 1 ≤ α ≤ P . The formation of these matrices are the same as
the formation of matrices for summarizing communication requirements of fold tasks in checkerboard parti-320

tioning. The semantics of nonzeros in rows and columns of Mα are identical to those of Mα in checkerboard
partitioning.

We form a total of P + 1 communication matrices to summarize communication requirements of jagged
partitioning. We can address the communication requirements of the post-communication stage indepen-
dently using P matrices. However, since communication operations in the pre-communication stage are not
bound to the processors in the same column of the processor mesh, the expand tasks are represented in a
single matrix with all K processors. Formation of these communication matrices is illustrated in Figure 5.

9

...

...

RP

Rα

R1

1 2

. . .

Q

1 2

. . .

Q

1 2

. . .

Q

M1wC1

P
1
,1 . . .

P
1
,β . . .

P
1
,Q

...

MαwCα

P
α
,1

. . .

P
α
,β . . .

P
α
,Q

...

MPwCP

P
P
,1

. . .

P
P
,β . . .

P
P
,Q

MR

pC

P1,1

...

Pα,β

...

PP,Q

P
co
m
m
.
m
a
trices

p
o
st-co

m
m
.
sta

g
e

single comm. matrix

pre-comm. stage

HCM
1

...

HCM
α

...

HCM
P

HCM
R

P
co
m
m
.
h
y
p
erg

ra
p
h
s

co
lu
m
n
-n
et

m
o
d
el

single comm. hypergraph

row-net model

HCM
R

vertices = expand tasks on pC
nets = all processors

partition into P ×Q parts to get ΠR

HCM
α

vertices = fold tasks on wCα

nets = processors in Pα,∗
partition into Q parts to get Πα

Figure 5: Minimizing latency cost in jagged partitioning model.

2.2.2. Formation of the communication hypergraphs

For the pre-communication stage, we form a single communication hypergraphHCMR from communication
matrix MR using the row-net hypergraph model. The net set of HCMR corresponds to K processors and330

the vertex set of HCMR corresponds to expand tasks on pC . Hence, there are K nets and |pC | vertices in
HCMR . A vertex vj in HCMR is connected by the set of nets corresponding to processors that communicate
the respective vector element pC [j]. Note that vj can be connected by at most P nets, i.e., dj ≤ P .

For the post-communication stage, we form P communication hypergraphs from P communication ma-
trices. The formation of these communication hypergraphs is actually the same as for checkerboard parti-
tioning. A communication hypergraph HCMα is formed using the column-net hypergraph model for matrix
Mα, for 1 ≤ α ≤ P . The semantics of these hypergraphs are also the same: the net set of HCMα represents
the processors in row α of the processor mesh, Pα,∗, and the vertex set of HCMα represents the fold tasks on
wCα . Similarly, there are |wC | vertices and K nets in all communication hypergraphs.

In total, we form P + 1 communication hypergraphs from P + 1 communication matrices. This process340

is illustrated in Figure 5.

2.2.3. Partitioning of the communication hypergraphs

Communication hypergraph HCMR is partitioned to obtain a K-way partition ΠR = {V1,V2, . . . ,VK} to
induce a distribution of expand tasks in the pre-communication stage. The responsibility of the expand tasks
represented by the vertices in Vk is assigned to processor Pk. Consider a net nk in HCMR that represents

10

2D fine-grain
partitioned matrix A
among K processors

MCwC

P
1 . . . P
k . . .

P
K

MR

pC

P1

...

Pk

...

PK

sin
g
le

co
m
m
.
m
a
trix

p
o
st-co

m
m
.
sta

g
e

single comm. matrix

pre-comm. stage

HCM
C

HCM
R

sin
g
le

co
m
m
.
h
y
p
erg

ra
p
h

co
lu
m
n
-n
et

m
o
d
el

single comm. hypergraph

row-net model
HCM

R
vertices = expand tasks on pC

nets = K processors
partition into K parts to get ΠR

HCM
C

vertices = fold tasks on wC

nets = K processors
partition into K parts to get ΠC

Figure 6: Minimizing latency cost in fine-grain partitioning model.

Pk. The connectivity set of this net corresponds to processors each of which send a message to Pk. Since
HCMR is partitioned into K parts, the size of this set can be at most K. Thus, the maximum number of
messages sent/received by a single processor is K− 1 in the pre-communication stage (note that it is K−Q
in the original jagged partitioning). In partitioning HCMR , the partitioning objective of minimizing cutsize
corresponds to minimizing the number of messages communicated in the pre-communication stage, and the350

partitioning constraint of maintaining balance among part weights corresponds to obtaining a balance on
the communication volume loads of K processors.

Communication hypergraph HCMα is partitioned to obtain a Q-way partition Πα = {V1,V2, . . . ,VQ}, for
1 ≤ α ≤ P , to induce a distribution of fold tasks in the post-communication stage among Q processors in
row α of the processor mesh. The partitioning of these communication hypergraphs have the same semantics
with those in checkerboard partitioning.

The formed P +1 hypergraphs can be partitioned independently, since they do not depend on each other
in any way. Note that the maximum number of messages handled by a single processor is slightly increased
from K−1 to K+Q−2, which is caused by the partitioning for distributing tasks in the pre-communication
stage. However, the cases beyond this are expected to be rare as a good partitioning tool will avoid them. As360

a result, we improve latency costs while respecting most characteristics of the original jagged partitioning.

2.3. Fine-grain (nonzero-based) partitioning

We briefly review fundamental properties of fine-grain partitioning. This model is first proposed in [46]
and its communication costs are improved in a later work using the CHG model [48]. Both of these models
are included in our experiments.

11

The fine-grain model forms a hypergraph in which vertices represent nonzeros of A and nets represent
rows and columns of A. Nets corresponding to columns of A capture the communication volume incurred
in the pre-communication stage, while nets corresponding to rows of A capture the communication volume
incurred in the post-communication stage. Partitioning this hypergraph into K parts induces a distribution
of nonzeros of the matrix among K processors. This leads to a completely arbitrary distribution of fine-370

grain computational tasks on a nonzero basis, where each vertex signifies a scalar multiplication with a
single nonzero. Therefore, the fine-grain model respects neither row nor column coherence. In this aspect,
it accommodates the highest level of flexibility by not restraining the computational tasks to coarser levels
(i.e., nonzeros of a row and/or column) compared to checkerboard, jagged and 1D models. As a result, a
processor may communicate with any other processor. Thus, the maximum number of messages handled by
a single processor is K−1 in the pre-communication stage and is also K−1 in the post-communication stage,
summing up to a total of 2(K − 1) messages. The fine-grain model correctly minimizes the total volume of
communication volume while maintaining computational load balance. Fore more details, see [46, 49].

The approach to improve communication requirements of the fine-grain model [48] consists of forming two
communication matrices: one matrix for summarizing communication operations in the pre-communication380

stage and one matrix for summarizing communication operations in the post-communication stage. Com-
pare this to the formation of communication matrices in the checkerboard and jagged models. We address
the communication requirements in the checkerboard model by separately forming a total of P +Q commu-
nication matrices since they are confined to distinct columns and rows of the processor mesh. Also in the
jagged model, we form P communication matrices for the post-communication stage. These are not valid
for the fine-grain model since the resulting partition is arbitrarily defined on the nonzeros of the matrix and
any of the K processors may communicate with any other processor in both pre- and post-communication
stages. For this reason, the whole set of processors and all vector elements that necessitate communication
are included in two communication matrices. The process for reducing the communication costs of the
fine-grain model is illustrated in Figure 6.390

3. Comparison of partitioning models

We compare the basic properties of the investigated partitioning models to aid the discussions of the
results in experiments. It is assumed that P = Q =

√
K in P×Q processor mesh for the ease of presentation.

flexibility in partitioningleast most

1D models Checkerboard Jagged Fine-grain

Figure 7: Comparison of models in terms of partitioning flexibility.

Figure 7 compares the partitioning models in terms of flexibility they provide during partitioning. 1D
models lie at the left extreme of the spectrum since they represent each row/column of the coefficient matrix
with a single distinct vertex as an atomic task. This leads to the assignment of all nonzeros of a row/column
to an individual processor as a whole. Hence, 1D models respect row/column coherency at the individual
processor level. The fine-grain model lies at the right extreme of the spectrum since in this model each vertex
represents an atomic task corresponding to a single nonzero of the matrix. This is the most flexible and the
finest level of partitioning granularity available, where neither row nor column coherency is preserved. So, in400

theory, nonzeros of a row/column can be distributed among K processors. Between these two extremes, the
checkerboard and jagged models strive to distribute nonzeros of a row/column among a subset of processors.
By doing so, they obtain a coarse-level row/column coherency at the processor mesh’s row/column level.
The checkerboard model leverages a coarse-level coherency in both partitioning phases whereas the jagged
model leverages it in a single partitioning phase.

Among these partitioning models, 2D models are expected to achieve lower bandwidth costs compared
to 1D models since they offer more flexibility in optimizing the objective of minimizing total communication
volume. Among 2D models, fine-grain is expected to obtain the best results in terms of bandwidth costs,

12

Table 1: Comparison of partitioning models in terms of latency overhead and partitioning granularity.

number of
messages

2D partitioning models

comm. stage 1D Checkerboard Jagged Fine-grain

pre K − 1
√
K − 1 K −

√
K K − 1

max post N/A
√
K − 1

√
K − 1 K − 1

overall K − 1 2(
√
K − 1) K − 1 2(K − 1)

total overall K(K − 1) 2K(
√
K − 1) K(K − 1) 2K(K − 1)

Row/column coherency Either entire row or Coarse-level on both Coarse-level on either
None

(Partitioning granularity) Entire column Rows and columns Rows or columns

whereas checkerboard is likely to obtain the worst. The metrics related to latency costs (as upper bounds
on the maximum number of messages) are presented in Table 1. Checkerboard has the lowest overhead with410

2(
√
K − 1) maximum messages per processor, whereas fine-grain has the highest overhead with 2(K − 1).

Although 1D and jagged models have the same upper bound K − 1, in practice jagged partitioning is more
likely to achieve better results in this metric since it restricts the number of messages in both stages of
communication.

The discussions made so far in this section reflect the characteristics of the original partitioning models in
which the communication hypergraph model is not used. The original models completely focus on minimizing
bandwidth costs, disregarding latency-related objectives. Using the communication hypergraph model as
a further step reduces latency costs at the expense of increasing bandwidth costs while respecting certain
characteristics of the original models as much as possible. Our experimental evaluation shows that latency
should definitely be on the table to achieve scalable performance.420

4. Experiments

We evaluate two 1D-based and six 2D-based models, that is, a total of eight partitioning models. The
evaluated models are based on 1D rowwise partitioning (1D), checkerboard partitioning (CKBD), jagged
partitioning (JGD) and fine-grain partitioning (FG). Four of the evaluated models are the baseline models in
which the communication tasks are assigned to processors using a simple heuristic that aims at balancing the
communication volume loads while respecting total volume attained in the initial partitioning. This heuristic
is also utilized in [53] and is an adaptation of the best-fit-decreasing heuristic used in solving the NP-hard K-
feasible Bin Packing (BP) problem [62]. These BP-enhanced baseline models are referred to as 1D+BP, CKBD+BP,
JGD+BP and FG+BP. These four baseline models aim to reduce two important volume-related communication
cost metrics total volume and maximum volume. The remaining four evaluated models are the CHG-enhanced430

versions in which the communication tasks are assigned to processors using communication hypergraph
model. These CHG-enhanced models are referred to as 1D+CHG, CKBD+CHG, JGD+CHG and FG+CHG. These aim
to reduce total message count and maximum volume. Hence, we evaluate the merit of reducing a latency-
related cost metric in partitioning. We use PaToH [31, 61] to partition the computational hypergraphs
formed in the first phase of all models and the communication hypergraphs formed in the second phase of
the CHG-enhanced models.

We implemented CGNE and CGNR solvers via the PETSc toolkit [59] and utilized the mentioned models
for partitioning the coefficient matrix and vectors in these solvers. Since obtained runtime results for both
solvers are similar, we only present speedup results corresponding to CGNR. Note that the metrics regarding
partitioning models (Section 4.1) such as total volume, message count, etc. are the same for both solvers as440

they contain the same type of communication operations.
All models are tested with 28 matrices chosen from the UFL matrix collection [63]. The properties of

these matrices are presented in Table 2. The evaluated models are tested on a BlueGene/Q system with
varying number of processors K ∈ {256, 512, 1024, 2048, 4096, 8192}. A node on this system consists of 16
cores (single PowerPC A2 processor) with 1.6 GHz clock frequency and 16 GB memory. The nodes are
connected by a 5D torus chip-to-chip network. We only consider the case of strong scaling.

13

Table 2: Test matrices and their properties.

Nonzeros

Number of per row per column

Matrix rows/cols nonzeros avg min max min max

venkat01 62,424 1,717,792 27.52 16 44 16 44
mc2depi 525,825 2,100,225 3.99 2 4 2 4
poisson3Db 85,623 2,374,949 27.74 6 145 6 145
thermomech dK 204,316 2,846,228 13.93 7 20 7 20
stomach 213,360 3,021,648 14.16 7 19 6 22
FEM 3D thermal2 147,900 3,489,300 23.59 12 27 12 27
laminar duct3D 67,173 3,833,077 57.06 1 89 3 89
xenon2 157,464 3,866,688 24.56 1 27 1 27
iChem Jacobian 274,087 4,137,369 15.10 5 17 5 17
torso3 259,156 4,429,042 17.09 7 22 6 21
tmt unsym 917,825 4,584,801 5.00 3 5 3 5
t2em 921,632 4,590,832 4.98 1 5 1 5
Hamrle3 1,447,360 5,514,242 3.81 2 6 2 9
largebasis 440,020 5,560,100 12.64 4 14 4 14
Chevron4 711,450 6,376,412 8.96 2 9 2 9
cage13 445,315 7,479,343 16.80 3 39 3 39
PR02R 161,070 8,185,136 50.82 1 92 5 88
atmosmodl 1,489,752 10,319,760 6.93 4 7 4 7
kim2 456,976 11,330,020 24.79 4 25 5 25
memchip 2,707,524 14,810,202 5.47 2 27 1 27
Freescale1 3,428,755 18,920,347 5.52 1 27 1 25
circuit5M dc 3,523,317 19,194,193 5.45 1 27 1 25
fem hifreq circuit 491,100 20,239,237 41.21 12 110 12 110
rajat31 4,690,002 20,316,253 4.33 1 1252 1 1252
CoupCons3D 416,800 22,322,336 53.56 20 76 20 76
Transport 1,602,111 23,500,731 14.67 5 15 5 15
ML Laplace 377,002 27,689,972 73.45 26 74 26 74
RM07R 381,689 37,464,962 98.16 1 295 1 245

For the pre-communication stages of CKBD+CHG and JGD+CHG, we opted not to apply the communication
hypergraph model since the partitioning corresponding to this stage leads to a number of very small com-
munication hypergraphs in which the number of communication tasks (that is, vertices) and the number
of messages per processor are very low. Hence, utilizing a dedicated tool to partition these hypergraphs450

often does not pay off. Instead, the simple aforementioned heuristic is able to obtain comparable partition
qualities in a shorter amount of time. Hence, the pre-communication stages (expand tasks) of CKBD+BP and
CKBD+CHG models, and JGD+BP and JGD+CHG models have the same quantities for the statistics presented in
Section 4.1. However, for the post-communication stage, the respective quantities drastically differ in these
models as the benefits of using the communication hypergraph model are more apparent.

4.1. Bandwidth and latency costs of partitioning models

Table 3 displays the metrics related to latency and bandwidth costs for the evaluated models. The metrics
related to latency are highlighted under “Number of messages” columns and the metrics related to bandwidth
are highlighted under “Communication volume” columns. The statistics for both total and maximum metrics
are presented. The columns “Expand” and “Fold” in the table indicate the results obtained in the pre- and460

post-communication stages of 2D models, respectively. Recall that the 1D models (1D+BP and 1D+CHG) have
a single communication stage, which is the pre-communication stage in our case. The values are averaged
over 20 test matrices separately for each K. The communication volume statistics are in terms of words.
Note that the total/maximum number of messages and maximum volume of communication of CKBD+BP and
CKBD+CHG, and JGD+BP and JGD+CHG are the same since they use the same heuristic to distribute expand
tasks. Total communication volume of two successive K values (512 and 1024, 2048 and 4096, etc.) are
the same for the models that are based on checkerboard and jagged partitioning since there exists same
number of processor columns in the corresponding processor mesh. For instance, at K=512 and K=1024,

14

Table 3: Average communication requirements and speedups.

Number of messages Communication volume

Total Maximum Total Maximum

K Model Expand Fold Sum Expand Fold Sum Expand Fold Sum Expand Fold Sum Speedup

1D+BP 2464 - 2464 17.9 - 17.9 164470 - 164470 728 - 728 143
1D+CHG 1640 - 1640 13.5 - 13.5 245514 - 245514 1234 - 1234 148

CKBD+BP 414 1728 2141 4.8 6.6 11.4 38476 145554 184029 367 759 1125 142
256 CKBD+CHG 414 1423 1836 4.8 5.8 10.5 38476 214657 253133 367 1176 1542 138

JGD+BP 850 1266 2117 10.0 4.9 14.9 38476 112712 151188 311 599 910 158
JGD+CHG 850 1131 1982 10.0 5.0 15.0 38476 165081 203557 311 959 1270 153

FG+BP 1959 1751 3710 15.5 6.8 22.3 107993 48359 156352 546 275 821 150
FG+CHG 1513 1257 2770 12.5 4.6 17.1 173449 74672 248121 847 377 1223 150

1D+BP 5683 - 5683 21.6 - 21.6 226127 - 226127 513 - 513 236
1D+CHG 3496 - 3496 15.5 - 15.5 327581 - 327581 829 - 829 231

CKBD+BP 1019 3590 4608 6.4 6.8 13.1 57434 195114 252548 264 530 794 225
512 CKBD+CHG 1019 2885 3904 6.4 6.6 13.0 57434 280548 337981 264 804 1067 220

JGD+BP 2088 2604 4692 11.7 5.6 17.3 57434 147488 204922 220 405 626 247
JGD+CHG 2088 2267 4355 11.7 4.5 16.2 57434 212002 269436 220 609 829 238

FG+BP 4261 3784 8045 17.7 8.0 25.7 144968 70492 215460 374 205 580 228
FG+CHG 3165 2622 5787 13.8 4.8 18.6 228987 106423 335410 566 273 839 229

1D+BP 13201 - 13201 27.0 - 27.0 314109 - 314109 359 - 359 294
1D+CHG 7451 - 7451 16.9 - 16.9 441340 - 441340 568 - 568 343

CKBD+BP 1587 9624 11211 5.9 9.1 15.0 57434 288909 346343 167 399 567 320
1024 CKBD+CHG 1587 6897 8484 5.9 7.1 13.0 57434 404550 461984 167 534 701 320

JGD+BP 3571 6775 10346 11.7 7.4 19.1 57434 223665 281099 138 314 452 354
JGD+CHG 3571 5266 8837 11.7 5.2 16.9 57434 314303 371737 138 430 568 341

FG+BP 9286 8141 17427 20.6 8.5 29.1 192165 103683 295848 252 153 405 318
FG+CHG 6537 5420 11957 15.1 6.1 21.3 297236 152370 449606 376 201 577 327

1D+BP 30651 - 30651 30.9 - 30.9 437009 - 437009 256 - 256 355
1D+CHG 16028 - 16028 19.0 - 19.0 591207 - 591207 389 - 389 450

CKBD+BP 3885 21008 24892 7.3 9.4 16.7 82863 395862 478725 116 277 393 421
2048 CKBD+CHG 3885 14275 18159 7.3 8.5 15.8 82863 533056 615920 116 362 478 429

JGD+BP 8301 14621 22921 14.1 7.4 21.5 82863 297989 380852 99 214 313 468
JGD+CHG 8301 10833 19134 14.1 5.6 19.6 82863 404389 487252 99 284 383 457

FG+BP 20050 17669 37719 22.3 10.3 32.6 251398 154339 405737 171 116 287 412
FG+CHG 13494 11272 24766 16.3 8.2 24.5 379611 221040 600651 243 152 395 440

1D+BP 71313 - 71313 37.0 - 37.0 615662 - 615662 185 - 185 372
1D+CHG 36563 - 36563 21.8 - 21.8 810012 - 810012 267 - 267 530

CKBD+BP 6122 55186 61308 6.7 13.5 20.3 82863 579257 662121 72 209 280 511
4096 CKBD+CHG 6122 32230 38352 6.7 8.7 15.4 82863 747663 830526 72 252 324 556

JGD+BP 13440 38102 51543 12.9 10.4 23.2 82863 449614 532477 62 163 225 584
JGD+CHG 13440 24711 38151 12.9 6.7 19.5 82863 584442 667306 62 203 264 586

FG+BP 43084 38239 81323 24.8 11.0 35.7 326646 228666 555312 114 87 201 516
FG+CHG 28683 24606 53289 18.0 8.8 26.7 486581 323623 810204 160 117 278 554

1D+BP 160507 - 160507 42.9 - 42.9 871090 - 871090 137 - 137 392
1D+CHG 81592 - 81592 26.0 - 26.0 1040719 - 1040719 175 - 175 560

CKBD+BP 14589 125660 140249 7.9 15.7 23.6 115948 814437 930384 49 149 198 593
8192 CKBD+CHG 14589 70942 85531 7.9 10.7 18.6 115948 1003817 1119764 49 171 220 667

JGD+BP 28838 85171 114009 13.9 11.4 25.2 115948 618294 734242 43 114 157 683
JGD+CHG 28838 52882 81720 13.9 6.5 20.3 115948 769539 885486 43 137 180 701

FG+BP 90483 81319 171801 26.3 13.3 39.6 430725 327017 757741 77 65 142 591
FG+CHG 59692 52380 112072 19.8 10.1 29.9 572597 432085 1004682 99 84 183 663

The bold values in five columns total/maximum number of messages (Sum), total/maximum communication
volume (Sum) and Speedup indicate the best values obtained by the respective model at a specific K.

15

the processor meshes are of sizes 32 × 16 and 32 × 32, respectively. We also present the average speedup
values obtained by models to give an idea about the efficiency. A more detailed and accurate discussion470

with performance profiles and speedup curves can be found in the next section.
The major factors that determine overall latency and bandwidth costs are the maximum number of

messages and the maximum volume of communication handled by a single processor, respectively. As seen
in Table 3, with increasing number of processors, the maximum number of messages increases sharply,
whereas maximum volume decreases despite the increase in total volume. For instance, for 1D+BP, when
K increases from 256 to 8192 processors, the maximum number of messages increases from 17.9 to 42.9,
whereas maximum volume decreases from 728 to 137 words, on average. Hence, the latency overhead on
average increases by a factor of 2.4, whereas the bandwidth overhead on average decreases by a factor of 5.3.
Moreover, the total message count increases more sharply compared to total volume: 65.1 times versus 5.3
times. These figures imply that with increasing number of processors, latency costs steadily become more480

important than bandwidth costs in determining overall communication cost of parallel SpMV operations.
Hence, reducing latency costs should pay off with improved scalability, as will be seen in the following
section. Observe that similar arguments hold for other partitioning models as well.

If we compare the partitioning models that do not use the communication hypergraph model among
themselves (i.e., 1D+BP, CKBD+BP, JGD+BP and FG+BP) in terms of total communication volume, we see from
Table 3 that JGD+BP obtains the best results, whereas CKBD+BP obtains the worst results. FG+BP is expected
to achieve the best results in this metric since it offers the highest flexibility by performing the partitioning
on a nonzero basis – the finest granularity available. However, the reason why JGD+BP achieves slightly
better results than FG+BP in this metric is related not to models themselves but to the shortcomings of
recursive bisectioning used in partitioning. The shortcomings of recursive bipartitioning are well known for490

high partitioning values [64, 65]. For example at K = 4096, FG+BP directly partitions the input matrix into
4096 parts whereas JGD+BP first partitions it into 64 parts, and for each of these parts, it partitions them
into 64 parts again to obtain a 4096-way partition. Hence, by using smaller partition values compared to
FG+BP, JGD+BP is relatively able to mitigate the drawbacks of recursive bisection. The poor performance
of CKBD+BP in this metric is due to the use of multi-constraint partitioning. This limits the search space
drastically, where the higher the number of constraints, the harder it is to get good quality partitions
as the search space narrows down with increasing number of constraints. However, this is a tradeoff for
CKBD+BP as it often achieves good results in total message count, which are comparable to those of JGD+BP
at lower processor counts. At higher processor counts, like 4096 and 8192, JGD+BP achieves better results
in total message count. This is again because the high number of constraints at high values of K leads to500

poor total volume in CKBD+BP, which in turn affects the total message count as a side effect by causing an
increase. As expected, the smallest maximum number of messages is obtained by CKBD+BP as it bounds the
communication to specific rows and columns of the processor mesh in both stages of communication. FG+BP
is often the worst in terms of total and maximum number of messages because it causes increases in these
metrics in order to reduce total volume.

To aid the assessment of benefits of the communication hypergraph, we present Table 4. In this table,
each latency-improved (CHG-enhanced) model’s performance metrics are normalized with respect to those of
their baselines. In other words, the results of 1D+CHG are normalized with respect to those of 1D+BP, the
results of CKBD+CHG are normalized with respect to those of CKBD+BP, etc. The normalization is performed
on a matrix basis and the averages of these normalized values over 28 matrices are given separately for each510

K. As seen from the table, CHG-enhanced models improve the total message count drastically, as minimizing
this metric is one the main objectives in these models. For example at 2048 processors, 1D+CHG achieves
36% improvement over 1D+BP, CKBD+CHG achieves 23% improvement over CKBD+BP, JGD+CHG achieves 13%
improvement over JGD+BP, and FG+CHG achieves 23% improvement over FG+BP. However, this comes at
the cost of increased total volume. Again at 2048 processors, 1D+CHG increases the total volume by 40%,
CKBD+CHG by 33%, JGD+CHG by 30%, and FG+CHG by 49%. The crucial observation, however, is that the
message count improvements of partitioning models that rely on the communication hypergraph model
tend to increase with increasing number of processors. For example, 1D+CHG achieves a 24% improvement
over 1D+BP at K = 256 in total message count and this improvement becomes 37% at K = 8192. This
improvement increases from 11% to 33%, 2% to 24%, and 14% to 24% for CKBD+CHG, JGD+CHG and FG+CHG,520

16

Table 4: Comparison of partitioning models with communication hypergraphs normalized with respect to
their baseline counterparts averaged over all matrices for each K.

Number of messages Communication volume

Total Maximum Total Maximum

K Model Expand Fold Sum Expand Fold Sum Expand Fold Sum Expand Fold Sum

1D+CHG 0.76 - 0.76 0.85 - 0.85 1.51 - 1.51 1.66 - 1.66
256 CKBD+CHG 1.00 0.86 0.89 1.00 1.01 0.98 1.00 1.49 1.41 1.00 1.54 1.38

JGD+CHG 1.00 0.95 0.98 1.00 1.21 1.09 1.00 1.45 1.35 1.00 1.53 1.36
FG+CHG 0.87 0.85 0.86 0.96 0.81 0.90 1.56 1.51 1.56 1.53 1.26 1.47

1D+CHG 0.72 - 0.72 0.84 - 0.84 1.48 - 1.48 1.62 - 1.62
512 CKBD+CHG 1.00 0.85 0.88 1.00 1.41 1.08 1.00 1.46 1.37 1.00 1.52 1.35

JGD+CHG 1.00 0.92 0.96 1.00 0.97 0.97 1.00 1.42 1.32 1.00 1.50 1.33
FG+CHG 0.85 0.84 0.84 0.94 0.80 0.88 1.55 1.50 1.54 1.52 1.23 1.44

1D+CHG 0.67 - 0.67 0.77 - 0.77 1.44 - 1.44 1.61 - 1.61
1024 CKBD+CHG 1.00 0.78 0.81 1.00 1.03 0.97 1.00 1.44 1.38 1.00 1.37 1.27

JGD+CHG 1.00 0.86 0.91 1.00 0.88 0.94 1.00 1.41 1.34 1.00 1.42 1.29
FG+CHG 0.81 0.81 0.80 0.86 1.37 0.87 1.53 1.48 1.51 1.51 1.24 1.43

1D+CHG 0.64 - 0.64 0.74 - 0.74 1.40 - 1.40 1.57 - 1.57
2048 CKBD+CHG 1.00 0.74 0.77 1.00 1.02 0.99 1.00 1.39 1.33 1.00 1.33 1.23

JGD+CHG 1.00 0.82 0.87 1.00 0.94 0.95 1.00 1.37 1.30 1.00 1.37 1.25
FG+CHG 0.77 0.77 0.77 0.82 0.96 0.84 1.51 1.45 1.49 1.46 1.32 1.41

1D+CHG 0.65 - 0.65 0.68 - 0.68 1.39 - 1.39 1.54 - 1.54
4096 CKBD+CHG 1.00 0.66 0.69 1.00 0.77 0.84 1.00 1.35 1.31 1.00 1.27 1.19

JGD+CHG 1.00 0.74 0.80 1.00 0.82 0.90 1.00 1.33 1.29 1.00 1.33 1.23
FG+CHG 0.77 0.78 0.77 0.82 0.85 0.81 1.50 1.46 1.49 1.45 1.38 1.42

1D+CHG 0.63 - 0.63 0.69 - 0.69 1.35 - 1.35 1.47 - 1.47
8192 CKBD+CHG 1.00 0.64 0.67 1.00 0.79 0.84 1.00 1.30 1.26 1.00 1.23 1.16

JGD+CHG 1.00 0.69 0.76 1.00 0.70 0.85 1.00 1.29 1.25 1.00 1.30 1.21
FG+CHG 0.76 0.76 0.76 0.82 0.75 0.78 1.47 1.42 1.45 1.44 1.40 1.42

respectively. This implies that the benefits obtained using the communication hypergraph model are more
prominent at higher processor counts. Note that for CKBD+CHG and JGD+CHG, normalized total message
average is closer to fold message average rather than expand message average, which is also the case for
normalized average volume. This is because the message count and communication volume in the post-
communication stage are much higher than the pre-communication stage in these models. This is also where
the communication hypergraph model is expected to perform well.

The models that use the communication hypergraph model improve the maximum number of messages
as well. This is a consequence of the reduction in total message count. In Table 3, if we compare partitioning
models in this metric, it can be seen that CKBD+CHG obtains the best results which is usually followed by
JGD+CHG. For example, at 8192 processors on average, the maximum number of messages handled by a single530

processor for CKBD+CHG is only 18.6 and for JGD+CHG it is only 20.3. These values are followed by CKBD+BP

with 23.6 and JGD+BP with 25.2. When we examine the other important metric the maximum volume in
Table 4, it is seen that the models that rely on communication hypergraph model close the gap with their
baseline counterparts with increasing K. For instance, when K increases from 256 to 8192 processors,
the increase in maximum volume incurred by the use of the communication hypergraph model decreases
from 66%, 38%, 36% and 47% to 47%, 16%, 21% and 42% in 1D+CHG, CKBD+CHG, JGD+CHG and FG+CHG,
respectively, compared to their baseline counterparts. This is an important benefit of the communication
hypergraph model since it strives for balancing volume.

The sequential partitioning times of the evaluated models are given in Table 5 averaged over all matrices
and K values. The CHG times (indicated via +CHG row include only the partitioning times of communication540

hypergraphs formed for the respective model. As expected, the fine-grain model has the highest partitioning
time as the hypergraphs formed in this model are typically larger. The partitioning times of the communi-

17

Table 5: Average partitioning times (sequential, in seconds).

1D+BP CKBD+BP JGD+BP FG+BP

32.43 33.79 21.68 114.22
+CHG 1.68 0.98 1.13 1.98

cation hypergraphs are quite low compared to the respective original partitionings since they are small as
they contain only the vertices that correspond to the vector elements that necessitate communication. Note
that CKBD+CHG, JGD+CHG and FG+CHG form a number of communication hypergraphs that can independently
be partitioned, hence the partitioning of them can easily be parallelized. A more healthy comparison of
partitioning overhead for 2D models can be found in [49].

4.2. Speedup analysis

For a detailed comparison of the partitioning models in terms of parallel solver running times/speedups,
we present the performance profiles in Figure 8. Performance profiles provide a better understanding of the550

characteristics of the compared models as they capture the relative performance of the compared models
more accurately [66]. A point x, y in a profile reads as the respective model is within the x factor of the
best result in y fraction of the test instances. In other words, the closer the performance profile of a scheme
to the y-axis, the better it is. A test instance in our case is the parallel solver running time obtained for a
specific matrix and K. We compare the performances of partitioning models for all K values in Figure 8b
and for K ∈ 4096, 8192 in Figure 8c. The former contains 168 instances and the latter contains 56 instances.

When we compare the models considering all K values in Figure 8b, JGD+BP is clearly the best performing
model followed by JGD+CHG. JGD+BP obtains the best results for more than 40% of the test cases and
exhibits very good performance for a very large fraction of the test cases. These two models are followed by
two models that use communication hypergraph: 1D+CHG and FG+CHG. Except jagged model, applying the560

communication hypergraph seems to improve performance of the partitioning models as 1D+CHG, CKBD+CHG
and FG+CHG perform better than 1D+BP, CKBD+BP and FG+BP, respectively. 1D+BP obtains the worst results,
proving itself to be not a viable partitioning model compared to the 2D models as long as communication
hypergraph is not used for it.

Figure 8c is presented to better assess the benefits of using the communication hypergraph model.
As discussed, latency gets more important with increasing K and it is expected that the models using
the communication hypergraph model should be performing better as K increases. If we consider the
performances of parittioning models at only 4096 and 8192 processors, it can be seen from the figure that
the models that use communication hypergraph improve the performance much more compared to the case
when all K values are considered. In other words, for example, if we compare CKBD+BP and CKBD+CHG570

in Figure 8b and Figure 8c the performance difference between them increases in favor of CKBD+CHG in
Figure 8c. This can be observed for all parittioning models, i.e., by comparing 1D+BP and 1D+CHG, CKBD+BP
and CKBD+CHG, JGD+BP and JGD+CHG, FG+BP and FG+CHG in Figure 8b and Figure 8c. This is also validated
as JGD+CHG can be said to be the best performing model in Figure 8c followed by JGD+BP. These two models
are again followed by two models that use the communication hypergraph: FG+CHG and CKBD+CHG. These
figures show that the communication hypergraph proves to a valuable method for achieving scalability.

We present the obtained speedup values of eight evaluated models in Figure 9. Among 28 matrices, we
present the speedups of 12 matrices here to keep the discussions simpler. The rest are given in Appendix G.
The number of processors varies from 256 to 8192. The experiments are performed with the CGNR solver
which is implemented via the PETSc toolkit.580

As seen from the speedup curves, the models that adopt the communication hypergraph model often
exhibit better scalability compared to their baseline counterparts. Moreover, the difference gets more promi-
nent with increasing number of processors as latency becomes the determining factor for performance. When
we compare 1D+BP with 1D+CHG, 1D+CHG achieves superior scalability in all matrices. In 2D models, applying
the communication hypergraph model usually improves scalability. For example, in matrices circuit5M dc,
CoupCons3D, fem hifreq circuit, Freescale1, memchip, ML Laplace, rajat31 and RM07R, the partition-
ing models CKBD+CHG, JGD+CHG and FG+CHG improve performance of their baseline counterparts CKBD+BP,

18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.25 1.5

fr
a

c
ti
o

n
 o

f
te

s
t

c
a

s
e

s

Partitioning model relative to the best

Performance profile

(b) K ∈ {256, 512, 1024, 2048, 4096, 8192}.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.25 1.5
fr

a
c
ti
o

n
 o

f
te

s
t

c
a

s
e

s
Partitioning model relative to the best

Performance profile

(c) K ∈ {4096, 8192}.

Figure 8: Performance profiles of eight partitioning models.

JGD+BP and FG+BP, respectively. In the remaining matrices, latency-improved versions of 2D models either
achieve close or slightly worse performance. This is mainly due to the fact that in these matrices, the latency
costs obtained in the initial partitionings are already very low due to the characteristics of these matrices590

and further trying to improve them does not pay off since, at the other hand, the bandwidth costs are
increased.

In terms of speedup values, it can be said that 2D models generally exhibit better scalability than 1D
models. In most of the matrices, the best of 2D models exhibits better scalability than the best of 1D
models, by obtaining lower runtime results. With increasing number of processors, this difference becomes
more obvious. This can be attributed to the fact that 2D models have more flexibility in partitioning, which
leads them to optimize communication objectives better.

Among all models, the performance of JGD+BP and JGD+CHG is especially worth to note. On average,
these two models achieve quite good performance in terms of speedup. In matrices atmosmodl, Chevron4
and kim2, JGD+BP obtains better speedup values. The communication costs of these matrices are largely600

determined by bandwidth costs rather than by latency costs. From this point of view, FG+BP might be
expected to achieve the best results. However, FG+BP usually causes high latency costs, even in the case of
these matrices which are not latency bound. JGD+BP, on the other hand, obtains slightly worse bandwidth
costs while drastically improving latency costs compared to FG+BP, finding a balance between FG+BP and
CKBD+BP, hence performing best in these matrices.

In the remaining nine matrices, the latency-improved versions of 2D models obtain better scalability.
The JGD+CHG model is almost always among the two best performing models. When comparing CKBD+CHG,
JGD+CHG and FG+CHG, although CKBD+CHG has the lowest maximum number of messages, it has the highest
maximum volume, whereas JGD+CHG obtains slightly worse maximum number of messages compared to
CKBD+CHG and has the lowest maximum volume among these three models. Hence it is able to strike a610

good balance between minimizing latency and bandwidth costs, which leads to better scalability. Although
FG+CHG has low bandwidth costs, its high latency costs cause it to perform relatively poorly among these
models (for example for rajat31 matrix, the maximum number of messages of FG+CHG at 4096 processors
is around hundreds).

A noteworthy case is seen for the cage13 matrix. This matrix is characterized with its very high latency
cost. For example, at K = 8192 the maximum number of messages is 345 for 1D+BP. In such matrices,
bounding and reducing the message count works better than by solely reducing it. As seen in Figure 9, the
two models that do so, CKBD+BP and CKBD+CHG, achieve better scalability.

19

 100

 200

 300

 400

 500

 600

 700

256 512 1024 2048 4096 8192

s
p

e
e

d
u

p

Number of processors

atmosmodl

 0

 50

 100

 150

256 512 1024 2048 4096 8192
Number of processors

cage13

 200

 300

 400

 500

 600

 700

256 512 1024 2048 4096 8192
Number of processors

Chevron4

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

256 512 1024 2048 4096 8192

s
p

e
e

d
u

p

Number of processors

circuit5M_dc

 100

 200

 300

 400

 500

 600

 700

 800

 900

256 512 1024 2048 4096 8192
Number of processors

CoupCons3D

 200

 300

 400

 500

 600

 700

 800

 900

256 512 1024 2048 4096 8192
Number of processors

fem_hifreq_circuit

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

256 512 1024 2048 4096 8192

s
p

e
e

d
u

p

Number of processors

Freescale1

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192
Number of processors

kim2

 200

 400

 600

 800

 1000

 1200

 1400

256 512 1024 2048 4096 8192
Number of processors

memchip

 200

 400

 600

 800

 1000

256 512 1024 2048 4096 8192

s
p

e
e

d
u

p

Number of processors

ML_Laplace

 200

 400

 600

 800

 1000

 1200

 1400

256 512 1024 2048 4096 8192
Number of processors

rajat31

 100

 200

 300

 400

 500

 600

 700

 800

 900

256 512 1024 2048 4096 8192
Number of processors

RM07R

Figure 9: Speedup curves.

20

Judging from performance profiles and speedup curves, we can safely recommend the use of JGD+CHG
model when latency costs prove vital in performance, and JGD+BP model when latency and bandwidth costs620

are comparable. Although other models may perform better for specific matrices in some cases, it can be
said that JGD+BP and JGD+CHG will not perform too inferior even in these cases (for example, circuit5M dc

matrix).

5. Conclusions

This work focused on reducing latency costs of parallel sparse-matrix vector operations by proposing and
utilizing several models based on 1D and 2D matrix partitioning. The latency costs are improved by using
the communication hypergraph models, where the main motivation is to minimize the number of messages
communicated in parallel operations. The described and tested models are realized with CGNE and CGNR
solvers via PETSc toolkit on a modern HPC system. We compared a total of eight partitioning models,
scaling them up to 8K processors.630

The results of extensive experiments indicate that along with the bandwidth costs, latency costs should
certainly be considered in order to achieve scalable performance. Solely addressing a single of them hurts
scalability and leads to poor performance. Our findings indicate that among the partitioning models, the 2D
jagged model and its latency-improved version obtain the most promising results. This superior performance
is the result of obtaining a good balance between minimizing latency and bandwidth costs.

Acknowledgements

We acknowledge PRACE (Partnership for Advanced Computing In Europe) for awarding us access to
resource Juqueen (Blue Gene/Q) based in Germany at Jülich Supercomputing Centre.

Appendix A. Hypergraph partitioning

A hypergraph H = (V,N) consists of a set of vertices V and a set of nets N [67]. Each net nj ∈ N640

connects a subset of vertices, which are referred to as pins of nj . The set of nets that connect vertex vi is
denoted by Nets(vi). The degree of a vertex is equal to the number of nets that connect this vertex, i.e.,
di = |Nets(vi)|. A weight value wi is associated with each vertex vi.

Given a hypergraph H = (V,N), Π = {V1,V2, . . . ,VK} is called a K-way partition of vertex set V if each
part Vk is non-empty, parts are pairwise disjoint and the union of K parts is equal to V. In Π, a net is said to
connect a part if it connects at least one vertex in that part. The set of parts connected by a net nj is called
its connectivity set and is denoted by Λ(nj). The connectivity λ(nj) = |Λ(nj)| of nj is equal to the number
of parts connected by this net. Net nj is said to be an internal net if it connects only one part (λ(nj) = 1),
and an external net if it connects more than one part (λ(nj) > 1). In Π, the weight of a part is the sum
of the weights of vertices in that part. In the hypergraph partitioning (HP) problem, the objective is to650

minimize the cutsize, which is defined as cutsize(Π) =
∑
nj∈N (λ(nj)− 1). This objective function is known

as the connectivity-1 cutsize metric and is widely used in the scientific computing community [31, 68, 69].
The partitioning constraint is to satisfy a balance on part weights, (Wmax −Wavg)/Wavg ≤ ε, where Wmax

and Wavg are the maximum and the average part weights, respectively, and ε is the user-defined imbalance
ratio. The HP problem is known to be NP-hard [70]. Nonetheless, there exist successful HP tools such as
PaToH [31], hMeTiS [60] and Mondriaan [33].

21

(a) Row-parallel w = Ap.

16 × × × × ×
15 × × × × ×
14 × ×
13 × × ×
12 × × × × × ×
11 × × × ×
10 × × ×
9 × × × × ×
8 × × ×
7 × × × ×
6 × ×
5 × ×
4 × × × × × × × ×
3 × × × × ×
2 × ×
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

× × ×

AT

r
× × × × × × × × × × × × × × × ×

z
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

=

P1 P2 P3 P4

(b) Column-parallel z = AT r.

Figure B.10: Row-parallel matrix-vector and column-parallel matrix-transpose-vector multiplication.

Appendix B. Communication requirements of 1D partitioning

In 1D partitioning, n × n matrix A is partitioned either rowwise or columnwise. Assume that A is
permuted into a K ×K block structure as follows:

ABL =


A11 A12 . . . A1K

A21 A22 . . . A2K

...
...

. . .
...

AK1 AK2 . . . AKK

 ,
where K denotes the number of processors in the parallel system and the size of block Akl is nk × nl. In
rowwise partitioning, processor Pk is responsible for the kth row [Ak1 . . . AkK] of size nk×n. In columnwise
partitioning, processor Pk is responsible for the kth column block [AT1k . . . A

T
Kk]T of size n×nk. Throughout660

this section, without loss of generality, we assume a rowwise partition of A.
The vectors in an iterative solver should be partitioned conformally in order to avoid redundant com-

munication during linear vector operations. For example, in the conjugate gradient solver, all vectors are
partitioned conformally. In some solvers, we can utilize distinct vector partitions that separately apply to
certain vectors. For example in CGNE and CGNR, it is possible to utilize two distinct partitions on the
vectors. This enables utilization of a nonsymmetric partition for the coefficient matrix (see Appendix E
for the details). The main motivation for adopting a nonsymmetric partition is that instead of enforcing
the same partition on all vectors in the solver, we have more freedom by using a different partition on
each distinct vector space – which accommodates more potential for reducing communication overheads in
parallelization.670

In a parallel solver, inner product operations necessitate global collective communications whereas
matrix-vector or matrix-transpose-vector multiplications necessitate P2P communications. Consider par-
allel w = Ap and z = AT r multiplies. An example for these operations is illustrated in Figure B.10 for
K = 4 processors. Without loss of generality, assume that Pk is responsible for the kth row stripe of A, and
thus the kth column stripe of AT . Note that a rowwise partition on A induces a columnwise partition on
AT (Appendix E). Here, w = Ap is performed with the row-parallel algorithm while z = AT r is performed
with the column-parallel algorithm. The row-parallel algorithm necessitates a pre-communication stage in
which the input vector elements are communicated. Each Pk sends the input vector elements that corre-
spond to the nonzero column segments in off-diagonal blocks Aik, 1 ≤ i 6= k ≤ K. This is also referred

22

to as the expand operation since the same vector element can be sent to multiple processors. The vector680

elements that correspond to the columns which have at least one nonzero column segment in off-diagonal
blocks (called coupling columns) necessitate expand operations. In Figure B.10a, eight elements of the input
vector (p[3], p[4], p[7], p[8], p[9], p[12], p[15], p[16]) need to be communicated. For example, P3 sends p[12]
to P2 and P4, which need this element in their local computations. On the other hand, the column-parallel
algorithm necessitates a post-communication stage in which the partial results of the output vector elements
are communicated. Each Pk receives the output vector entries that correspond to the nonzero row segments
in off-diagonal blocks Akj , 1 ≤ j 6= k ≤ K. This is also referred to as the fold operation since the partial
results for the same vector element can be received from multiple processors. The vector elements that
correspond to the rows which have at least one nonzero row segment in off-diagonal blocks (called coupling
rows) necessitate fold operations. In Figure B.10b, eight elements of the output vector (z[3], z[4], z[7], z[8],690

z[9], z[12], z[15], z[16]) need to be communicated. For example, P3 receives partial results for z[12] from
P2 and P4 to compute the final value of z[12]. Observe that the communication of p[12] in the row-parallel
algorithm is the dual of the communication of z[12] in the column-parallel algorithm.

It is possible to obtain 1D partitioning of sparse matrices using column-net and row-net hypergraph
models. The details of these two models are given in Appendix C.

Appendix C. Two computational hypergraph models for 1D partitioning

There are several ways of obtaining a 1D rowwise/columnwise partitioning of coefficient matrix A. We
briefly discuss two hypergraph models since they are central to the models proposed in this work. These
models are also referred to as computational hypergraph models.

The column-net hypergraph model HR = (VR,NC) can be used to obtain a rowwise partitioning of700

A [31]. In this model, vertex set VR represents the rows of A and net set NC represents the columns of A.
There is a vertex vi ∈ VR for each row ri and there is a net nj ∈ NC for each column cj . Net nj connects a
subset of vertices that correspond to the rows that have a nonzero element in column cj , i.e., vi ∈ nj if and
only if aij 6= 0. The weight wi of vertex vi is equal to the number of nonzeros in row ri and represents the
computational load associated with vi.

The row-net hypergraph model HC = (VC ,NR) can be used to obtain a columnwise partitioning of A [31].
In this model, vertex set VC represents the columns of A and net set NR represents the rows of A. There is
a vertex vj ∈ VC for each column cj and there is a net ni ∈ NR for each row ri. Net ni connects a subset
of vertices that correspond to the columns that have a nonzero element in row ri, i.e., vj ∈ ni if and only
if aij 6= 0. The weight wj of vertex vj is equal to the number of nonzeros in column cj and represents the710

computational load associated with vj .
Partitioning hypergraphs HC and HR with the objective of minimizing cutsize corresponds to minimizing

total communication volume incurred in parallel sparse-matrix vector multiplication while maintaining the
partitioning constraint on part weights corresponds to maintaining a balance on computational loads of
processors.

Appendix D. Communication hypergraph model for 1D partitioning

The communication hypergraph (CHG) model [53] is a means of distributing communication tasks among
processors with the aim of minimizing latency. A communication task is defined as a subset of processors
that involve in communicating a data object with a certain size. The CHG model strives to reduce the
total number messages usually at the expense of increasing communication volume. However, although720

it increases the volume, it tries to obtain a balance on it. Reducing latency is a key factor to achieve
scalability in large-scale systems as we show with our experiments. In this section, we review the CHG
model for reducing latency overhead of 1D partitioned parallel w = Ap and z = AT r multiplies.

23

×P1

3×4 7 8×9 1
2

1
5

1
6

×P2 ×××× ×
P3 × ××
P4 ××× ×××

Communication matrix MR

(for row-parallel w = Ap)

×3

P
1

×P
2

P
3

P
4

×4 ××
7 × ×
8 × ××9 ×

12 ×××
15 ××
16 × ×

Communication matrix MC

(for column-parallel z = AT r)

row-nethypergraph model

column-net

hyperg
raph model 12

8

4

15

7

16

3

9

n3

n1

n4

n2

V3

V1

V4

V2

Communication hypergraph

vertices = communication tasks

nets = processors

Figure D.11: Formation of the communication hypergraph from communication matrix, and a four-way
partition on this hypergraph. Matrices MR and MC summarize the communication requirements of w = Ap
and z = AT r operations illustrated in Figure B.10.

Appendix D.1. Communication matrix

As the first step, we form communication matrices MR and MC to summarize the communication
requirements of row-parallel w = Ap and column-parallel z = AT r, respectively. For row-parallel w = Ap,
let pC denote the p-vector elements that necessitate communication (via expand tasks). Communication
matrix MR is then a K × |pC | matrix where the rows of MR correspond to processors and the columns of
MR correspond to expand communication tasks. In MR, mkj 6= 0 if and only if the corresponding coupling
column cj has a nonzero column segment in the kth row stripe of A. For example in A (Figure B.10a),730

column 12 has a nonzero at the second row stripe, thus there exists a nonzero at the corresponding entry in
MR in Figure D.11 at the intersection of row P2 and column 12. The nonzeros of column cj ∈MR signify the
set of processors that participate in communicating pC [j]. The nonzeros of row rk ∈MR signify all expand
tasks that Pk takes part in. In Figure D.11, the third row in MR has nonzero elements corresponding to
columns 4, 12 and 15, indicating that P3 is involved in communicating p[4], p[12] and p[15]. Hence, a nonzero
mkj ∈MR actually implies that Pk participates in the communication of pC [j].

For column-parallel z = AT r, let zC denote the z-vector elements that necessitate communication (via
fold tasks). Communication matrix MC is then a |zC | ×K matrix where the rows of MC correspond to fold
communication tasks and the columns of MC correspond to processors. In MC , mik 6= 0 if and only if the
corresponding coupling row ri has a nonzero row segment in the kth column stripe of AT . For example in740

AT (Figure B.10b), row 12 has a nonzero at the second column stripe, thus there exists a nonzero at the
corresponding entry in MC in Figure D.11 at the intersection of row 12 and column P2. The nonzeros of
row ri ∈MC signify the set of processors that participate in communicating zC [i]. The nonzeros of column
ck ∈ MC signify all fold tasks that Pk takes part in. In Figure D.11, the third column in MC has nonzero
elements corresponding to rows 4, 12 and 15, indicating that P3 is involved in communicating z[4], z[12] and
z[15]. Hence, a nonzero mik ∈MC actually implies that Pk participates in the communication of zC [i].

Appendix D.2. Formation of communication hypergraph

The communication matrix is then used to form a hypergraph called communication hypergraph. We ap-
ply the row-net hypergraph model to communication matrix MR (vertices = columns, nets = rows) to obtain
the communication hypergraph HCMR and we apply the column-net hypergraph model to communication750

matrix MC (vertices = rows, nets = columns) to obtain the communication hypergraph HCMC . The vertex
and net set of both hypergraphs are the same (see Figure D.11). In both hypergraphs, nets correspond to

24

Algorithm 1: CGNE and CGNR.
Set initial x0

r0 = b−Ax0

p0 = AT r0
for i = 0, 1, . . . do1

αi = 〈ri, ri〉/〈pi,pi〉 B CGNE2

αi = 〈AT ri,A
T ri〉/〈Api,Api〉 B CGNR

xi+1 = xi + αipi3

ri+1 = ri − αiApi4

βi = 〈ri+1, ri+1〉/〈ri, ri〉 B CGNE5

βi = 〈AT ri+1,A
T ri+1〉/〈AT ri,A

T ri〉 B CGNR

pi+1 = AT ri+1 + βipi6

processors (there are K of them) and vertices correspond to communication tasks (there are |pC | = |zC | of
them). However, the semantics of these hypergraphs differ: the vertices in HCMR represent expand tasks in
w = Ap, while the vertices in HCMC represent fold tasks in z = AT r. A net nk in both hypergraphs connects
the set of vertices that correspond to communication tasks Pk participates in. Each vertex vi is associated
with a weight that signifies the volume of communication incurred by the corresponding expand or fold task.
This value is generally equal to one less than the number of the nets vi is connected by, i.e., di − 1.

Appendix D.3. Partitioning of the communication hypergraph

Obtaining a K-way partition Π = {V1,V2, . . . ,VK} on HCMR or HCMC induces a communication task760

distribution for parallel matrix-vector or matrix-transpose-vector multiplies. Without loss of generality,
assume that processor Pk is associated with part Vk. Expand or fold communication tasks represented by
the vertices in Vk are assigned to Pk by making this processor responsible for storing vector elements that
necessitate these tasks. For instance in Figure D.11, since v12 ∈ V3, P3 is held responsible for storing p[12]
and z[12], and expand and fold tasks necessitated by these elements. Consider a net nk in HCMR with the
connectivity set Λ(nk). All parts except Vk in this set correspond to the processors that send a message to
Pk, hence, λ(nk) − 1 (or λ(nk) if Vk /∈ Λ(nk)) is equal to the number of messages Pk receives. In a dual
manner, consider the same net in HCMC again with the connectivity set Λ(nk). All parts except Vk in this
set correspond to the processors that receive a message from Pk, hence, λ(nk)− 1 (or λ(nk) if Vk /∈ Λ(nk))
is equal to the number of messages Pk sends. In Figure D.11, the connectivity sets of nets are as follows:770

Λ(n1) = {V1,V2}, Λ(n2) = {V2,V3 V4}, Λ(n3) = {V1,V3} and Λ(n4) = {V1,V3,V4}, making a total of
(λ(n1)− 1 = 1) + (λ(n2)− 1 = 2) + (λ(n3)− 1 = 1) + (λ(n4)− 1 = 2) = 6 messages. In [53], it is proven that
partitioning a communication hypergraph with the aim of minimizing cutsize minimizes the total message
count, while maintaining a balance among part weights preserves a balance on the communication volume.

By applying the CHG model, we obtain a different partition on rows and columns of the coefficient
matrix and thus on its input and output space (for details, see Appendix F). Adopting a different partition
finds its application in nonsymmetric sparse iterative solvers that allow distinct partitions on vectors and
can be used to improve their scalability.

Appendix E. Partitioning vectors in CGNE and CGNR solvers

We describe why it is possible to use different partitions on the vectors used in CGNE and CGNR solvers.780

For other solvers, refer to [71]. We make the distinction between input and output space for the vectors in
the solver. A vector is said to be in the input space of A if it is multiplied with A or it participates with the
vectors in the input space of A through linear vector operations. On the other hand, a vector is said to be
in the output space of A if it is obtained by multiplying A with another vector or it participates with the
vectors in the output space of A through linear vector operations.

25

We present CGNE and CGNR algorithms in Algorithm 1. In each iteration of the solvers, there are
two inner products, three SAXPY operations (for forming vectors p, r, x), one matrix-vector multiply of
the form w = Ap and one matrix-transpose-vector multiply of the form z = AT r. In w = Ap, vectors p
and w are in the input and output space of A, respectively. In z = AT r, vectors r and z are in the input
and output space of AT , respectively. Consider a rowwise (columnwise) partition of A. This induces a790

columnwise (rowwise) partition on AT . Hence, the input space of A coincides with the output space of
AT , and vice versa. This implies that the partition on vector p is conformal with the partition on vector
z, and the partition on vector w is conformal with the partition on vector r. Since x is involved in linear
vector operations with vector p (line 3), it should be partitioned conformally with vectors p and z to avoid
unnecessary communication. As a result, we can have two distinct vector partitions in CGNE and CGNR:
one on vectors p, z and x, and another one on vectors w and r.

Appendix F. Obtaining different vector partitions using communication hypergraph model

The communication hypergraph (CHG) model can be regarded as a post-processing phase to distribute
the communication tasks. Although any partitioning model could be used, assume that the column-net
computational hypergraph model is used in the first phase for w = Ap (Appendix C). As computational800

tasks are represented by vertices that correspond to rows of the matrix, partitioning this hypergraph actually
induces a partition of the rows of the matrix. The result of this partitioning determines the communication
tasks in the second phase. Applying the CHG in the second phase induces a partition of the columns of
the matrix since communication tasks represented by the vertices are expand-type tasks performed on input
vector elements. Hence, in the first phase, we minimize the communication volume by obtaining a partition
of the rows, and in the second phase we minimize the number of messages by obtaining a different partition
of the columns. An example of these two phases can be traced from Figures B.10a and D.11. Assume that
the result of the first phase is the partition obtained on A in Figure B.10a. Here, P3 owns rows 8, 9, 10, 11,
12 and columns 10, 11, 12. The column partition is subject to change after applying the CHG model, which
assigns vertices 8 and 12 to V3, thus assigning columns 8 and 12 to P3. Since columns 10 and 11 do not810

necessitate communication, they are not included in the CHG model and directly assigned to P3 at the end
of the first phase. As a result, P3 owns columns 8, 10, 11, 12. Hence, we obtained a nonsymmetric partition
of the rows and columns assigned to P3.

Appendix G. Additional speedup curves

We provided 12 speedup curves in Section 4.2. In this section, we provide 16 speedup curves that belong
to the remaining matrices. Note that these curves do not change the findings of the paper and they are
added here for the sake of completeness.

26

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

s
p
e
e
d
u
p

Number of processors

FEM_3D_thermal2

 100

 200

 300

 400

 500

 600

 700

256 512 1024 2048 4096 8192
Number of processors

Hamrle3

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192
Number of processors

iChem_Jacobian

 0

 50

 100

 150

256 512 1024 2048 4096 8192
Number of processors

laminar_duct3D

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192

s
p
e
e
d
u
p

Number of processors

largebasis

 100

 150

 200

 250

 300

 350

 400

256 512 1024 2048 4096 8192
Number of processors

mc2depi

 50

 100

 150

 200

 250

 300

 350

 400

 450

256 512 1024 2048 4096 8192
Number of processors

poisson3Db

 100

 150

 200

 250

 300

 350

 400

256 512 1024 2048 4096 8192
Number of processors

PR02R

 100

 150

 200

 250

256 512 1024 2048 4096 8192

s
p
e
e
d
u
p

Number of processors

stomach

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192
Number of processors

t2em

 150

 200

 250

 300

 350

 400

 450

 500

 550

256 512 1024 2048 4096 8192
Number of processors

thermomech_dK

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192
Number of processors

tmt_unsym

 100

 150

 200

 250

 300

256 512 1024 2048 4096 8192

s
p
e
e
d
u
p

Number of processors

torso3

 200

 400

 600

 800

 1000

256 512 1024 2048 4096 8192
Number of processors

Transport

 40

 60

 80

 100

 120

 140

 160

256 512 1024 2048 4096 8192
Number of processors

venkat01

 100

 150

 200

 250

 300

256 512 1024 2048 4096 8192
Number of processors

xenon2

Figure F.12: Speedup curves for the remaining 16 matrices.

27

References

[1] D. A. Patterson, Latency lags bandwith, Commun. ACM 47 (2004) 71–75.
[2] S. L. Graham, M. Snir, C. A. Patterson (Eds.), Getting Up to Speed, The Future of Supercomputing, The National820

Academies Press, 2006.
[3] J. Dongarra, M. A. Heroux, Toward a New Metric for Ranking High Performance Computing Systems, Technical Report

SAND2013-4744, Sandia National Laboratories, 2013.
[4] H. M. Bücker, M. Sauren, A parallel version of the unsymmetric Lanczos algorithm and its application to QMR, 1996.
[5] T.-X. Gu, X.-Y. Zuo, X.-P. Liu, P.-L. Li, An improved parallel hybrid bi-conjugate gradient method suitable for distributed

parallel computing, J. Comput. Appl. Math. 226 (2009) 55–65.
[6] L. Yang, R. P. Brent, The improved BiCGStab method for large and sparse unsymmetric linear systems on parallel

distributed memory architectures, in: Algorithms and Architectures for Parallel Processing, 2002. Proceedings. Fifth
International Conference on, 2002, pp. 324–328. doi:10.1109/ICAPP.2002.1173595.

[7] T. P. Collignon, M. B. van Gijzen, Minimizing synchronization in IDR(s), Numerical Linear Algebra with Applications830

18 (2011) 805–825.
[8] A. Chronopoulos, C. Gear, S-step iterative methods for symmetric linear systems, Journal of Computational and Applied

Mathematics 25 (1989) 153 – 168.
[9] G. Meurant, Multitasking the conjugate gradient method on the CRAY X-MP/48, Parallel Computing 5 (1987) 267 –

280.
[10] E. F. D’Azevedo, V. L. Eijkhout, C. H. Romine, Conjugate Gradient Algorithms With Reduced Synchronization Overheads

on Distributed Memory Processors, Technical Report 56, Lapack Working Note, 1993.
[11] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM Journal on Scientific and

Statistical Computing 6 (1985) 865–881.
[12] L. T. Yang, R. P. Brent, The improved BiCG method for large and sparse linear systems on parallel distributed memory840

architectures, in: Proceedings of the 16th International Parallel and Distributed Processing Symposium, IPDPS ’02, IEEE
Computer Society, Washington, DC, USA, 2002, pp. 315–. URL: http://dl.acm.org/citation.cfm?id=645610.661567.

[13] Z. Bai, D. Hu, L. Reichel, A newton basis GMRES implementation, IMA Journal of Numerical Analysis 14 (1994)
563–581.

[14] A. T. Chronopoulos, S-step iterative methods for (non)symmetric (in)definite linear systems, SIAM J. Numer. Anal. 28
(1991) 1776–1789.

[15] A. Chronopoulos, C. Swanson, Parallel iterative S-step methods for unsymmetric linear systems, Parallel Computing 22
(1996) 623 – 641.

[16] M. Hoemmen, Communication-avoiding Krylov Subspace Methods, Ph.D. thesis, Berkeley, CA, USA, 2010. AAI3413388.
[17] W. D. Joubert, G. F. Carey, Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory,850

International Journal of Computer Mathematics 44 (1992) 243–267.
[18] E. Carson, N. Knight, J. Demmel, Avoiding Communication in Two-Sided Krylov Subspace Methods, Technical Report

UCB/EECS-2011-93, EECS Department, University of California, Berkeley, 2011. URL: http://www.eecs.berkeley.edu/
Pubs/TechRpts/2011/EECS-2011-93.html.

[19] L. Grigori, S. Moufawad, Communication Avoiding ILU0 Preconditioner, Rapport de recherche RR-8266, INRIA, 2013.
URL: http://hal.inria.fr/hal-00803250.

[20] J. W. Demmel, M. T. Heath, H. A. van der Vorst, Parallel numerical linear algebra, Acta Numerica 2 (1993) 111–197.
[21] E. de Sturler, H. A. van der Vorst, Reducing the effect of global communication in GMRES(m) and CG on parallel

distributed memory computers, Appl. Numer. Math. 18 (1995) 441–459.
[22] T. Hoefler, P. Gottschling, A. Lumsdaine, W. Rehm, Optimizing a conjugate gradient solver with non-blocking collective860

operations, Parallel Comput. 33 (2007) 624–633.
[23] P. Ghysels, T. Ashby, K. Meerbergen, W. Vanroose, Hiding global communication latency in the GMRES algorithm on

massively parallel machines, SIAM Journal on Scientific Computing 35 (2013) C48–C71.
[24] P. Ghysels, W. Vanroose, Hiding global synchronization latency in the preconditioned conjugate gradient algorithm,

Parallel Computing 40 (2014) 224 – 238. 7th Workshop on Parallel Matrix Algorithms and Applications.
[25] L. C. Mcinnes, B. Smith, H. Zhang, R. T. Mills, Hierarchical Krylov and nested Krylov methods for extreme-scale

computing, Parallel Comput. 40 (2014) 17–31.
[26] O. Selvitopi, M. Ozdal, C. Aykanat, A novel method for scaling iterative solvers: Avoiding latency overhead of parallel

sparse-matrix vector multiplies, 2014. doi:10.1109/TPDS.2014.2311804.
[27] G. Ballard, J. Demmel, O. Holtz, O. Schwartz, Minimizing communication in numerical linear algebra, SIAM Journal on870

Matrix Analysis and Applications 32 (2011) 866–901.
[28] J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, Avoiding communication in sparse matrix computations, in: Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, 2008, pp. 1–12. doi:10.1109/IPDPS.
2008.4536305.

[29] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing communication in sparse matrix solvers, in: Proceedings
of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, ACM, New York, NY, USA,
2009, pp. 36:1–36:12. URL: http://doi.acm.org/10.1145/1654059.1654096. doi:10.1145/1654059.1654096.

[30] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput.
20 (1998) 359–392.

[31] U. Çatalyurek, C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication,880

IEEE Trans. Parallel Distrib. Syst. 10 (1999) 673–693.

28

http://dx.doi.org/10.1109/ICAPP.2002.1173595
http://dl.acm.org/citation.cfm?id=645610.661567
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-93.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-93.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-93.html
http://hal.inria.fr/hal-00803250
http://dx.doi.org/10.1109/TPDS.2014.2311804
http://dx.doi.org/10.1109/IPDPS.2008.4536305
http://dx.doi.org/10.1109/IPDPS.2008.4536305
http://dx.doi.org/10.1109/IPDPS.2008.4536305
http://doi.acm.org/10.1145/1654059.1654096
http://dx.doi.org/10.1145/1654059.1654096

[32] F. Pellegrini, J. Roman, Scotch: A software package for static mapping by dual recursive bipartitioning of process and
architecture graphs, in: H. Liddell, A. Colbrook, B. Hertzberger, P. Sloot (Eds.), High-Performance Computing and
Networking, volume 1067 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1996, pp. 493–498. URL:
http://dx.doi.org/10.1007/3-540-61142-8_588. doi:10.1007/3-540-61142-8_588.

[33] B. Vastenhouw, R. H. Bisseling, A two-dimensional data distribution method for parallel sparse matrix-vector multipli-
cation, SIAM Rev. 47 (2005) 67–95.

[34] B. Hendrickson, T. G. Kolda, Graph partitioning models for parallel computing, Parallel Comput. 26 (2000) 1519–1534.
[35] W. J. Camp, S. J. Plimpton, B. A. Hendrickson, R. W. Leland, Massively parallel methods for engineering and science

problems, Commun. ACM 37 (1994) 30–41.890

[36] O. C. Martin, S. W. Otto, Partitioning of unstructured meshes for load balancing, Concurrency: Practice and Experience
7 (1995) 303–314.

[37] U. Çatalyurek, C. Aykanat, Decomposing irregularly sparse matrices for parallel matrix-vector multiplication, in: Pro-
ceedings of the Third International Workshop on Parallel Algorithms for Irregularly Structured Problems, IRREGULAR
’96, Springer-Verlag, London, UK, 1996, pp. 75–86. URL: http://dl.acm.org/citation.cfm?id=646010.676990.

[38] C.-W. Ou, S. Ranka, Parallel incremental graph partitioning, Parallel and Distributed Systems, IEEE Transactions on 8
(1997) 884–896.

[39] A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing, 2nd ed., Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[40] A. Ogielski, W. Aiello, Sparse matrix computations on parallel processor arrays, SIAM Journal on Scientific Computing900

14 (1993) 519–530.
[41] J. G. Lewis, R. A. van de Geijn, Distributed memory matrix-vector multiplication and conjugate gradient algorithms, in:

Proceedings of the 1993 ACM/IEEE conference on Supercomputing, Supercomputing ’93, ACM, New York, NY, USA,
1993, pp. 484–492. URL: http://doi.acm.org/10.1145/169627.169788. doi:10.1145/169627.169788.

[42] B. Hendrickson, R. Leland, S. Plimpton, An efficient parallel algorithm for matrix-vector multiplication, International
Journal of High Speed Computing 7 (1995) 73–88.

[43] A. Buluç, K. Madduri, Parallel breadth-first search on distributed memory systems, in: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11, ACM, New York, NY, USA,
2011, pp. 65:1–65:12. URL: http://doi.acm.org/10.1145/2063384.2063471. doi:10.1145/2063384.2063471.

[44] A. Yoo, A. H. Baker, R. Pearce, V. E. Henson, A scalable eigensolver for large scale-free graphs using 2D graph partitioning,910

in: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’11, ACM, New York, NY, USA, 2011, pp. 63:1–63:11. URL: http://doi.acm.org/10.1145/2063384.2063469. doi:10.
1145/2063384.2063469.

[45] U. V. Çatalyürek, Hypergraph Models for Sparse Matrix Partitioning and Reordering, Ph.D. thesis, 1999.
[46] U. Çatalyürek, C. Aykanat, A fine-grain hypergraph model for 2D decomposition of sparse matrices, in: Proceedings of

the 15th International Parallel & Distributed Processing Symposium, IPDPS ’01, IEEE Computer Society, Washington,
DC, USA, 2001, pp. 118–. URL: http://dl.acm.org/citation.cfm?id=645609.663255.

[47] U. Çatalyürek, C. Aykanat, A hypergraph-partitioning approach for coarse-grain decomposition, in: Proceedings of the
2001 ACM/IEEE Conference on Supercomputing, SC ’01, ACM, New York, NY, USA, 2001, pp. 28–28. URL: http:

//doi.acm.org/10.1145/582034.582062. doi:10.1145/582034.582062.920

[48] B. Uçar, C. Aykanat, Minimizing communication cost in fine-grain partitioning of sparse matrices, in: A. Yazıcı,
C. Şener (Eds.), Computer and Information Sciences - ISCIS 2003, volume 2869 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2003, pp. 926–933. URL: http://dx.doi.org/10.1007/978-3-540-39737-3_115. doi:10.1007/
978-3-540-39737-3_115.

[49] U. V. Çatalyürek, C. Aykanat, B. Uçar, On two-dimensional sparse matrix partitioning: Models, methods, and a recipe,
SIAM J. Sci. Comput. 32 (2010) 656–683.

[50] E. G. Boman, K. D. Devine, S. Rajamanickam, Scalable matrix computations on large scale-free graphs using 2D graph
partitioning, in: Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13, ACM, New York, NY, USA, 2013, pp. 50:1–50:12. URL: http://doi.acm.org/10.1145/2503210.2503293.
doi:10.1145/2503210.2503293.930

[51] R. H. Bisseling, W. Meesen, Communication balancing in parallel sparse matrix-vector multiply, Electronic Transactions
on Numerical Analysis 21 (2005) 47–65.

[52] U. V. Çatalyürek, M. Deveci, K. Kaya, B. Uçar, UMPA: A Multi-objective, multi-level partitioner for communication
minimization, in: D. A. Bader, H. Meyerhenke, P. Sanders, D. Wagner (Eds.), Graph Partitioning and Graph Clustering
2012, volume 588 of Contemporary Mathematics, AMS, 2013, pp. 53–66. URL: http://hal.inria.fr/hal-00763563.
doi:10.1090/conm/588/11704.

[53] B. Uçar, C. Aykanat, Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for
parallel matrix-vector multiplies, SIAM J. Sci. Comput. 25 (2004) 1837–1859.

[54] R. W. Freund, G. H. Golub, N. M. Nachtigal, Iterative solution of linear systems, Acta Numerica 1 (1992) 57–100.
[55] N. Nachtigal, S. Reddy, L. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM Journal on Matrix Analysis940

and Applications 13 (1992) 778–795.
[56] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadel-

phia, PA, USA, 2003.
[57] H. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations., Dissertation Abstracts Inter-

national Part B: Science and Engineering[DISS. ABST. INT. PT. B- SCI. & ENG.], 43 (1982) 1982 – 1982.
[58] R. Freund, N. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numerische Mathe-

29

http://dx.doi.org/10.1007/3-540-61142-8_588
http://dx.doi.org/10.1007/3-540-61142-8_588
http://dl.acm.org/citation.cfm?id=646010.676990
http://doi.acm.org/10.1145/169627.169788
http://dx.doi.org/10.1145/169627.169788
http://doi.acm.org/10.1145/2063384.2063471
http://dx.doi.org/10.1145/2063384.2063471
http://doi.acm.org/10.1145/2063384.2063469
http://dx.doi.org/10.1145/2063384.2063469
http://dx.doi.org/10.1145/2063384.2063469
http://dx.doi.org/10.1145/2063384.2063469
http://dl.acm.org/citation.cfm?id=645609.663255
http://doi.acm.org/10.1145/582034.582062
http://doi.acm.org/10.1145/582034.582062
http://doi.acm.org/10.1145/582034.582062
http://dx.doi.org/10.1145/582034.582062
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://doi.acm.org/10.1145/2503210.2503293
http://dx.doi.org/10.1145/2503210.2503293
http://hal.inria.fr/hal-00763563
http://dx.doi.org/10.1090/conm/588/11704

matik 60 (1991) 315–339.
[59] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, K. Rupp, B. F. Smith, H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 - Revision
3.5, Argonne National Laboratory, 2014. URL: http://www.mcs.anl.gov/petsc.950

[60] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph partitioning: applications in VLSI domain, IEEE
Trans. Very Large Scale Integr. Syst. 7 (1999) 69–79.

[61] C. Aykanat, B. B. Cambazoglu, B. Uçar, Multi-level direct k-way hypergraph partitioning with multiple constraints and
fixed vertices, J. Parallel Distrib. Comput. 68 (2008) 609–625.

[62] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, Rockville, MD, USA, 1978.
[63] T. A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Softw. 38 (2011) 1:1–1:25.
[64] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in: Proceedings of the 36th Annual ACM/IEEE Design

Automation Conference, DAC ’99, ACM, New York, NY, USA, 1999, pp. 343–348. URL: http://doi.acm.org/10.1145/
309847.309954. doi:10.1145/309847.309954.

[65] H. D. Simon, S.-H. Teng, How good is recursive bisection?, SIAM J. Sci. Comput. 18 (1997) 1436–1445.960

[66] E. D. Dolan, J. J. Mor, Benchmarking optimization software with performance profiles, Mathematical Programming 91
(2002) 201–213.

[67] C. Berge, Graphs and Hypergraphs, Elsevier Science Ltd, 1985.
[68] C. Aykanat, A. Pinar, U. V. Çatalyürek, Permuting sparse rectangular matrices into block-diagonal form, SIAM J. Sci.

Comput. 25 (2004) 1860–1879.
[69] B. Uçar, C. Aykanat, Revisiting hypergraph models for sparse matrix partitioning, SIAM Rev. 49 (2007) 595–603.
[70] T. Lengauer, Combinatorial algorithms for integrated circuit layout, John Wiley & Sons, Inc., New York, NY, USA, 1990.
[71] B. Uçar, C. Aykanat, Partitioning sparse matrices for parallel preconditioned iterative methods, SIAM J. Sci. Comput.

29 (2007) 1683–1709.

30

http://www.mcs.anl.gov/petsc
http://doi.acm.org/10.1145/309847.309954
http://doi.acm.org/10.1145/309847.309954
http://doi.acm.org/10.1145/309847.309954
http://dx.doi.org/10.1145/309847.309954

	Introduction
	Related work
	Motivation and contributions

	Reducing latency cost in 2D partitioning models
	Checkerboard partitioning
	Communication matrices
	Formation of communication hypergraphs
	Partitioning of the communication hypergraphs

	Jagged partitioning
	Communication matrices
	Formation of the communication hypergraphs
	Partitioning of the communication hypergraphs

	Fine-grain (nonzero-based) partitioning

	Comparison of partitioning models
	Experiments
	Bandwidth and latency costs of partitioning models
	Speedup analysis

	Conclusions
	Hypergraph partitioning
	Communication requirements of 1D partitioning
	Two computational hypergraph models for 1D partitioning
	Communication hypergraph model for 1D partitioning
	Communication matrix
	Formation of communication hypergraph
	Partitioning of the communication hypergraph

	Partitioning vectors in CGNE and CGNR solvers
	Obtaining different vector partitions using communication hypergraph model
	Additional speedup curves

