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Abstract

Microscale Simulation of the Mechanical and Electromagnetic Behavior of Textiles

by

Alejandro Francisco Queiruga
Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair

A computational framework for assisting in the development of novel textiles is pre-
sented. Electronic textiles are key in the rapidly growing field of wearable electronics for
both consumer and military uses. Fabric actuators can be made with electrically function-
alized fabrics that can be manipulated by externally applied electromagnetic fields when
electric current is run through the yarns of the fabric. There are two main challenges to
the modeling of electronic textiles: the discretization of the textile microstructure and the
interaction between electromagnetic and mechanical fields.

The fully coupled mechanical, thermal, and electromagnetic behavior of a textile can be
simulated in the context of quasistatic material property prediction and dynamic analysis
of high speed impacts. Director-based beam formulations are used to discretize the fabric
at the level of individual fibrils. Instead of solving Maxwell’s equations in full detail, a
quasistatic approximation is used to solve the electric potential in the presence of a moving
material medium. While this formulation alleviates the spatial and temporal discretization
restrictions, the coupled problem is a Di�erential Algebraic Equation requiring special treat-
ment. Diagonally Implicit Runge-Kutta methods using a monolithic Newton’s method solver
are used to integrate the resulting nonlinear coupled systems in time. The finite element
model is implemented using the open source package FEniCS. Contact integrals were added
into the FEniCS framework so that multiphysics contact laws can be incorporated in the
same framework, leveraging the code generation and automatic di�erentiation capabilities
of FEniCS to produce the tangents needed by the implicit solution method.

The nonlinear deformation of a current-carrying elastic string is solved analytically. The
computational model for a single fibril is validated using by comparison the static problem
and verifying the convergence orders for higher-order finite element basis functions. The
time stepping method for the fully coupled di�erential algebraic equation is verified using
the convergence orders of the higher-order Runge-Kutta methods. The computational model
is used to construct and determine the mechanical, thermal, and electrical properties of
representative volume elements of textiles using dynamic relaxation to solve the decoupled
fields in a static context. The dynamic deformation of a small electronic textile under
various orientations of magnetic fields is solved. An electromagnetically-enhanced textile
armor system impacted by a projectile is simulated.
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Chapter 1

Introduction

1.1 Motivation
Textiles are one of the most common materials used and have widespread applications.

They are characterized by their multiscale structure, wherein a single sheet of fabric is
composed of a woven or knitted network of yarns, which are in turn composed of spun
fibrils. Fabrics with novel mechanical, thermal, or electrical properties can be created by
weaving di�erent types of yarns made from di�erent types of fibrils in various patterns. This
work is directly interested in textiles that are functionalized using conductive yarns created
by spinning metal fibrils together with high strength fibrils. The resulting textile can be
manipulated by externally applied electric and magnetic fields when an electric current is run
through the yarns of the fabric. Electronic textiles have applications as electronic substrates,
active armors, energy harvesting devices, and actuators. Designing new textile materials with
exotic properties requires models with predictive capabilities for the multiphysics behavior.

This work is driven by the model problem of designing novel electromagnetically-enhanced
armors employing electronic-textiles. High strength textiles are a fundamental component
of armors in multiple applications, where they may be supported by other components such
as metal and ceramic plates. Many nontraditional strategies for improving the e�ectiveness
of armors are possible. For example, reactive armors—where a counter-explosive is deto-
nated against an incoming projectile—have been pivotal in mechanized warfare. Even more
strategies are possible, such as embedding ballistic textiles in shear thickening fluids to in-
crease energy dissipation [78]. Prospective applications of electromagnetic e�ects in armor
systems have been explored. For example, non-explosive electromagnetic launchers replacing
explosive reactive armor have been demonstrated [23, 108, 122, 127], as well as passive sys-
tems designed to negate the e�ectiveness of armor-piercing shaped chargers [59, 119]. One
such configuration for making use of electronic textiles in a ballistic system is diagrammed
in Figure 1.1.2. The high-speed and destructive nature of armor systems allows for the
exploration of e�ects of electromagnetic systems not normally observed from the perspec-
tives of the analyses of the theoretical formulations, applications of numerical methods, and
engineering design.

In the following chapters, a computational model for the dynamic behavior of electromag-
netically functionalized textiles is developed. The textile microstructure is discretized using
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Figure 1.1.1: Example of a functionalized electronic textile with actuating yarn in the vertical
direction and conductive and structural yarns in the horizontal direction. See [52] for a
realized textile actuator of this design.
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Figure 1.1.2: Projectile interacting with an electrified ballistic fabric as an example armor
configuration.
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a director-based beam model on individual fibrils with thermal and electrical fields incorpo-
rated. The electromagnetic problem is simplified to yield a di�erential algebraic equation
(DAE) when coupled to the partial di�erential equations of continuum mechanics. Complex
multiphysics problems are di�cult to discretize and program. To assist in development, the
package FEniCS, a Domain Specific Language (DSL), is used to create the finite element
calculations for the complex fully coupled nonlinear equations. The capabilities of the pack-
age were extend to automatically generate code for contact integrals that are needed for the
textile model. Contact integrals are formulated in a manner that can be easily represented
by the existing DSL syntax for variational forms. The computational model is used to pre-
dict the mechanical and electrical properties of textile materials using representative volume
elements (RVEs) and simulate the dynamic behavior of a textile-based ballistic armor.

A brief overview of existing electronic textile research and design is provided in Section
1.2. The methods that have been used to analyze textiles, focusing on ballistic applications,
are reviewed in Section 1.3. Works in the simulation of electromagnetic structure interaction
are reviewed in Section 1.4. The programming methodology of using a Domain Specific
Language for code generation is described in Section 1.5. Finally, Section 1.6 outlines the
rest of the chapters in this work.

1.2 Electronic Textiles
Textiles are becoming a regular substrate for electronic devices. Circuits can be placed

onto fabrics by embroidering conductive yarns onto standard fabrics [84, 100], using con-
ductive paints [20, 68], or weaving conductive elements into the textile [26, 46, 73, 114].
Traditional electrical devices have been attached to textile circuits using di�erent methods,
such stitching through the pad of a standard circuit board [83, 84] or flexible circuit boards
[69], or bending a through-hole component into a sequin or soldering beads onto the ends of
surface mount device [19]. Circuit layouts from standard printed circuit board CAD formats
were automatically embroidered in [42]. Development kits for electronic textiles accessible
to children are even available with Arduino-based platforms such as a the Lilypad [18, 21]
or the FLORA [44].

The capability to embed complex electronic devices onto clothing has been demonstrated,
such as EKG pads for medical sensing [82], embroidered antennae [88], and even standard
USB data lines [120]. Electromechanical properties of yarns were studied experimentally in
[54] to quantify the signal transfer performance of structural yarns for composites. Organic
transistors have been placed between yarns in [76, 77] and [53] to create fabric circuits
capable of executing simple logic. Woven capacitors were demonstrated in [116]. User-
interface devices were embroidered into textiles in [47]. Textile based strain sensors have
been illustrated in [30, 24]. Analysis of the electrical properties of knitted electrical textiles
under mechanical strain was performed in [111, 124, 125]. Functionalized wearable textiles
capable of sensing ambient gasses and optical environmental states were demonstrated in
[81]. Textiles are also useful substrates for non-wearable devices. For examples, the flexible
nature was used to create a large deployable beam forming array in [92]. A review of
electronic textile applications can be found in [89].

Heterogenous textiles provide a way of combining yarns made from di�erent materials
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Figure 1.3.1: Multiscale structure of fabrics

into usable devices. Besides conductive elements, more exotic materials have been incor-
porated into fabrics to add functionality. In [52], a thermomechanical fibril was developed.
To create an easy to use actuator, the new fibrils were woven together using cotton yarns
for structural support and conductive yarns to heat up and activate the constriction of the
thermomechanical fibrils. Displays were created using thermochromic inks in [10]. Piezo-
electric fibrils have been made using electrospinning techniques [74]. Textiles incorporating
such yarns have applications in force sensing [73] and energy harvesting [114]. In [123],
functionalized yarns were made by using a conductive coating.

1.3 Analysis of Fabrics
Analytical relations for the behavior of ballistic fabrics and armors in impact have been

formulated[12, 15, 27, 28, 93, 98, 99, 115]. Analytical formulae for the properties of yarns
from their microscale structure in the context of wire ropes were developed in [31]. While
such equations can be useful, it is di�cult to analytically incorporate complicated e�ects,
such as multi-physics e�ects as in the couple of shear-thickening fluids or electromagnetism.
Examples of experimental studies of ballistic fabrics can be seen in [96, 97, 105]. The
e�ects of friction within the textile microstructure have been studied [17, 71, 70]. However,
experimental tests are costly and time consuming due to their inherently destructive nature.
The reader is directed to [25, 109, 33] for more exhaustive reviews of studies as well as
existing designs of ballistic armors.

Numerical simulations of ballistic fabrics are thus an appealing alternative, because var-
ious types and configurations of armor systems can be easily tested quickly and with little
cost. However, di�culties arise in forming computational models of textiles due to the mul-
tiple length scales of structure present, diagrammed in Figure 1.3.1. Standard continuum
mechanics based finite element analysis requires too fine a mesh to capture the complete
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Figure 1.3.2: Fabric discretization types.

microstructure to be computationally e�cient. The regular microstructure of woven fabrics
yields anisotropic properties (non-woven fabrics with random microstructures, such as felt,
can be isotropic.) The orthotropic nature of textiles is significant in determining the overall
behavior. In ballistic applications, the transverse wave front has a distinctive diamond-like
shape in a woven textile [105], resulting in the damage in the fabric spreading along the
yarns.[109, 130] For ballistic textiles, a yarn may contain on the order of eighty individ-
ual fibrils. Many approaches have been taken to model the fabric microstructure. The
discretization level in the microstructure is the primary distinguishing feature of a compu-
tational model of textiles. The discretization methods can be categorized as follows:

1. Macroscale continuum discretization using shell or thin solid finite elements with ho-
mogenized properties

2. Mesoscale discretization:
(a) Network models of connected yarn segments
(b) Beam models of yarns with e�ective responses
(c) Solid meshed yarns with homogenized continuum models

3. Microscale discretization:
(a) Solid meshing of microstructure for multiscale modeling
(b) Beam modeling of the fibril microstructure

These categories are illustrated in Figure 1.3.2.
Multi-scale finite element simulations have been used to reduce the degrees of freedom,

where a fully discretized unit cell of woven yarns is used to provide the response for plate
and shell elements [91, 95]. Highly local e�ects such as the damage and slipping of yarns
due to a projectile piercing the fabric or global properties such as the current along a single
damaged yarn are di�cult to represent with this approach.

Finite element simulations with the individual yarns discretized with solid meshes of the
textiles have been performed extensively [37, 50]. In [13], image processing techniques were
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used to post process the strains in fabrics, and corresponding finite element models of woven
and knitted textiles with meshed yarns were performed. Impact simulations using fully
meshed interwoven yarns were performed in [50, 106]. For example, finite element models
of textiles alone and embedded in composite matrix materials with di�erent weave patterns
under impact were performed in [67]. While the detail of such a discretization allows for
many properties to be modeled, the inherent geometric structure of the fabric forces a large
amount of degrees of freedom for even a small piece of fabric. A multiscale simulation of an
impact meshing a large sheet as solid yarns near the impact site, coupled to interwoven shell
elements, coupled to a membrane model for the far field e�ects in [95].

Discretizing the individual fibrils of a yarn is prohibitively expensive, thus some empirical
or analytical relation is required as a material model for the yarn. Multiscale models with
meshed fibril microstructures have been performed in [29]. An analytical solution of inter-
locking yarn beams is used as a constitutive model for a membrane finite element simulation
in [91]. In [43], the fibril microstructure is meshed fully to produce a representative volume
element of braided rope and used to produce e�ective properties for a beam model of the
resulting yarn.

In order to preserve the global and local properties of the woven yarn structure, while
still reducing the degrees of freedom required, lattice-network models are employed. In
such methods, the woven yarns are modeled as nodes interconnected by “yarn segments”,
which can be viewed as one-dimensional linear-elements, trusses, or springs (see Figure
1.3.2). A finite-element oriented approach for this technique is seen in [110]. An analytical
network model for textiles under impact can be seen in [79]. Empirical damage laws and
electromagnetic e�ects were incorporated into a network model in [132, 130, 131]. Advanced
summation techniques for designed for electronic textiles and applied to atomistic lattice
models was developed in [7]. Similar techniques have been applied to the analysis of cable
networks, such as the methods in [32, 22].

In [41], the stresses within yarn were analyzed with a fibril-level simulation and it was
concluded that a homogenized continuum yarn representation would be inadequate. Two
sets of methods employ a fibril-level microscale discretization that are similar to that used
in this work.

The multi-chain digital element method represents individual fibrils as pin-jointed rod
elements[118, 129]. The chains do not model the bending sti�ness of the material and are
given an artificial lateral sti�ness to alleviate the numerical issues associated with this lack
of sti�ness. (As will be discussed in Chapter 6, there are still numerical issues with the low
bending sti�ness of the fibrils even using beam models.) The method is capable of static
and sliding frictional contacts using a rod-rod contact geometry[90]. The digital elements
were coupled with a vacuum bag model to simulate composite manufacturing in [128]. The
method was used in [117] to perform a ballistic impact simulation on a fully discretized
textile sheet with up to 19 fibrils per yarn in a 33mm by 33mm sheet with approximately
44 yarns in each direction.

Fibrils are assembled into woven structures using a nonlinear beam description in [39,
40, 41] The same kinematic beam description is used in this work and will be described
in Chapter 6. This method has been used the study of non-woven fabrics, [39], biological
tissue engineering [75], and knot-forming [38]. In a similar vein to the goals of this work,
the methodology has also been used to analyze the fatiguing of superconducting wires due
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to stresses arising from thermal and electrical loads [3, 112].

1.4 Electromagnetic Structure Interaction Modeling
Electromagnetism provides a similar scaling challenge as the textile microstructure when

designing computational models. Even in the context of high speed ballistic impacts of
very small microstructures, the electromagnetic fields have very disparate spatial and tem-
poral time scales to the mechanical fields. Finite di�erence methods discretizing Maxwell’s
equations directly are extremely popular for electromagnetism [61]. The classic nodal fi-
nite element shape functions behave poorly for discretizing E and B and solving Maxwell’s
equations, but specially designed elements have been designed to enforce the curl-type and
divergence-type nature of the fields from the onset [94]. However, methods solving Maxwell’s
equations directly require timesteps on the order of 10≠14

s and similarly scaled spatial grids
to discretize individual electromagnetic waves [61]. The finite element method is applied to
solve the magnetic vector potential coupled to a saturable permeable material subject to
deformations in [102, 11]. An discontinuous Galerkin enhanced immersed boundary finite
element method for solving the electric potential with material discontinuities is presented
in [16] that is designed for problems in structure-interaction. The E and B fields are dis-
cretized with the large deformation of a thin membrane in [4]. Finite element analysis of
the electromagnetic fields has been used to model active electromagnetic launcher armors
[23, 122, 127] and passive electromagnetic armors [126].

1.5 Domain Specific Languages
High performance scientific codes for simulating physical systems, such as solving partial

di�erential equations, have two sides:
1. Performing a calculation on a small chunk data: the physical kernel
2. Distributing the kernel calculation and required data across a large amount of resources

for parallel computation
For a finite element method program, the calculation of the local element matrix is the kernel
that is the smallest unit of computational work to be distributed across processing nodes.
Developing algorithms and working code on both sides of the program is a challenge. During
the development of the computational model, this work focused on alleviating the di�culties
in the first of these points.

Higher order numerical algorithms for both temporal discretizations, such as many-stage
implicit Runge-Kutta methods, and spatial discretizations, such as high order finite element
basis functions, are, in the author’s opinion, underused owing to the great di�culties in
their implementation. A major barrier to using the more complex numerical schemes is
the generation of the tangent matrix: that is, the K in the problem Ku = f . Developing
the form of the matrix is manageable for linear problems, though quickly becomes di�cult
for nonlinear fully-coupled multiphysics problems. These types of problems are typically
described mathematically as either minimization problems on a Lagrangian or some other
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expression of a potential,
min

u

� (u) ,

or as nonlinear systems of equations,

f (u) = 0.

Solving these problems statically or with an implicit time stepping method usually centers
around linearizing the functions and employing Newton’s method, or some variant thereof,
and iterating over a series of linear systems,

f
1
uI

2
+ ˆf

ˆu

-----
u

I

�uI = 0,

with f = ˆ�

ˆu

if the problem was originally expressed with a potential. Even neglecting
the e�ort required to write the code itself, it can require many weeks of pencil-and-paper
work manipulating the mathematical expressions to produce a linearized equation. Explicit
time stepping schemes are thus very popular for time-dependent nonlinear problems, and can
perform very well [8]. However, complex constraints, such as the treatment of electromagnetic
fields in this work, adds implicit components cannot be side-stepped by an explicit scheme
(discussed in Chapters 2 and 6.)

The theory behind many numerical methods, especially the finite element method, has
been developed to the point where there is a robust “turn-the-crank” methodology for gener-
ating a working discretization. Computer programs can be written to automate steps in the
development of a numerical code that can be employed in di�erent ways to produce di�erent
workflows, illustrated in Figure 1.5.1. Domain Specific Languages (DSLs) provide a special-
ized environment for implementing numerical codes of a certain type. Common examples
are Matlab, which is tailored for linear algebra, and R, which is tailored for statistics.

To achieve high performance, the DSL compiler needs to compile the calculations into
machine-level code. The equations are specified in a high-level language, i.e. a DSL, that
is parsed by the compiler and translated into an intermediate code in a low-level language,
such as C, that is passed into the “real” compiler (such as gcc) to be turned into machine
code. This yields a meta-programming style, in which one writes code to write code. One
of the more popular combinations of tools is implementing the compiler in Python and have
it write C/C++ code that is compiled and dynamically linked back into the Python code
[9, 86]. The programming language Terra is specifically designed with the goal of seamlessly
implementing these types of languages [35].

In addition to translating physical equations into usable computer code, it is also desirable
to generate the expressions or code for the tangents to these equations. There are three
methods for the computerized generation of tangents:

1. numerical di�erentiation via divided di�erences,
2. symbolic di�erentiation on mathematical expressions, and
3. automatic di�erentiation.

Numerical di�erentiation is the easiest to implement, where one simply uses finite di�er-
ence stencils on the input to the code, but is the least stable and least e�cient [49]. (It
can be a useful method to employ for comparing against buggy handwritten tangent code.)
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Traditional workflow with all steps done by hand:

f (u) ≠æ ˆf

ˆu

Derivative

≠æ f

1
u =

ÿ
a„

2

Discretization

≠æ eval_f_&_df (a) {...}
Low-level Code

Workflow employing automatic di�erentiation of the source code:

f (u) ≠æ f

1
u =

ÿ
a„

2

Discretization

≠æ eval_f (a) {...}
Low-level Code

=∆ eval_df (a) {...}
Autogenerated Code

Workflow employing a DSL for code generation:

f (u) ≠æ f (u) ú dx

DSL Code

=∆ u =
ÿ

a„

Auto Discretization

=∆ ˆf

ˆa

Auto Derivative

=∆ eval_f_&_df (a) {...}
Autogenerated Code

Figure 1.5.1: Comparison of workflows for creating a numerical code for some function f (u)
with some discretization illustrated by q

a„. Solid arrows indicate steps taken by the human,
and double arrows indicate steps taken by a computer program. The final low-level code is
compiled into machine code in all cases illustrated.

Automatic di�erentiation is employed on a computer program directly to modify the orig-
inal program’s execution or create a new program that also calculates the derivative. The
methods themselves are outside of the scope of this work; the reader is directed to [49]
for a discussion on automatic di�erentiation. Many computer packages exist that employ
symbolic di�erentiation to assist in analytical mathematics, such as Mathematica, but these
are not tailored to creating high performance codes. (These packages can be used for code
generation; Mathematica was employed many times for minor things in this work.)

OpenFOAM is a numerical package for Finite Volume Method, where the user describes
the strong-form PDE in an application-specific syntax that is used to automatically create the
corresponding FVM (or FEM) code [64]. Liszt is another such language where the program
describes discretizations and operations to be applied a mesh that can be compiled into high
performance CPU or GPU code [34, 36]. Symbolic di�erentiation can be easily automated to
be used in scientific codes when restricted to a domain-specific context. The package Theano
performs both symbolic and automatic di�erentiation on expressions defined in Python and
generates C++ or CUDA code (to target nVidia GPUs) [6, 9].

The finite element package FEniCS is based around generating local FEM matrix calcu-
lations using its Unified Form Language to describe the weak form of the PDE [85, 86]. The
finite element shape functions, quadrature rules, and integral calculation are automatically
generated and translated into C++ code to be compiled into machine code. The lineariza-
tion process works symbolically at the coe�cient level, i.e. operating on equations after the
introduction of the discrete functions of the form u (x) = q

ai„i (x) where „i are the basis
functions.
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1.6 Outline of this work
In Chapter 2, continuum mechanics and electromagnetism are briefly covered, with focus

on the treatment material media is covered. In Section 2.8, the quasistatic electric potential
formulation that will be the basis for the coupling of the mechanical and electromagnetic
fields is developed. One basic problem that can be treated is the deformation of the current-
carrying wire in a magnetic field. This problem is solved analytically in Chapter 3.

The finite element beam formulation is developed in Chapter 4 with coupled mechanical,
thermal, and electromagnetic fields. The constitutive description and discretization of con-
tacts between beams is discussed in Section 4.3. The implementation of the models and the
incorporation of the contact formulation into the FEniCS framework is detailed in Chapter
5. The construction and solution of the numerical system that arrises from the coupled mul-
tiphysics finite element formulation is developed and analyzed in Chapter 6. The solution
from Chapter 3 is used as one of the benchmarks for the computational model. The behavior
of the numerical solution of the dynamic problem is also analyzed, without the assistance of
an analytical solution.

Complicated textiles are developed and analyzed in Chapter 7. A framework for using
the computational model to compute e�ective properties of representative volume elements
is described. The impact problem illustrated in Figure 1.1.2 is finally solved in Chapter
8, using the beam formulation to model yarns with homogenized properties. Chapter 9
discusses the future direction of this research, with potential applications for the developed
framework.

A sample script file for the calculations in Chapter 8 is listed in Appendix A. The quadra-
ture rules for circular cross sections used are listed in Appendix B. Appendix C lists the
Butcher Tableaus for the Runge-Kutta methods used. The visualization routine for gener-
ating volumetric meshes for beams is described in Appendix D.
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Chapter 2

Electromagnetism and Continuum
Mechanics

2.1 Introduction
The foundations of continuum mechanics and electromagnetism that are required in the

formulation of the fibril model are overviewed. Specifically, the transformation of Maxwell’s
equations into the rest frame and constitutive theory of moving bodies will be discussed. The
reader is directed to Kovetz [72] and Steigmann [107] in particular for the theoretical basis
for the coupling continuum mechanics and electromagnetism used throughout this work.

Firstly, the nomenclature used throughout this manuscript is provided in Tables 2.1 and
2.2. Scalar quantities will be regular type face, and typically lower case; vector and tensor
quantities will be bold faced, with vectors usually being lower cased and tensors usually being
upper case. The choice of units for all calculations is tabulated in Section 2.2. Continuum
mechanics and classical electromagnetism are then overviewed in Sections 2.3 and 2.4. The
treatment of material responses is discussed in Sections 2.5, 2.6 and 2.7. A quasistatic
potential approximation for a conducting body moving through a magnetic field is derived
in Section 2.8, and the final system of coupled partial di�erential equations to be solved is
summarized in 2.9.

2.2 Consistent Units
Various unit systems exist for electromagnetism with di�erent benefits; SI units are used

for easier coupling with mechanical fields. Standard SI units would be scaled poorly for the
small pieces of textiles are to be analyzed. It is necessary to keep the electromagnetic units
scaled properly with the mechanical units so that no explicit unit conversions are needed
within the computations. That is, the units chosen for each quantity should be consistent.
For example, in the standard SI units, f = qE requires consistency between [N ] = [C] [V/m]
and V =

´
Edl requires [V ] =

Ë
N
C

È
[m]. The millimeter, megapascal, newton, and ampere are

chosen, and the rest of the units follow from consistency. The units used are detailed in Table
2.3. One interesting note is that the consistent magnetic field strength for these “small” units
becomes the kilotesla, which is an extremely large quantity (a rare-earth natural magnet has
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Table 2.1: Nomenclature of Operators and Mechanical Quantities
t Time (s)
ei Coordinate orthonormal basis in spatial configuration
Ei Coordinate basis in reference configuration
x Laboratory frame spatial variable in orthogonal basis; Material position in cur-

rent configuration (m)
X Material rest frame spatial variable in curvilinear basis (reference configuration)

(m)
ˆ� Boundary surface of volume �, or boundary contour of open surface �
� fi � Union of two regions; all points in either regions
� fl � Intersection of two regions, or part of a surface contained in a body; all points

in both regions
�\� Subtraction of two regions; all points in � but not �.
(̇),d()

dt
Time derivative with respect to the material frame

ˆ()

ˆt

---
x

Time derivative with respect to a fixed coordinate in frame x

Òx, ˆ
ˆx

Gradient operator, nabla, with respect to coordinate frame x
[[a]] Jump of quantity a across a surface of discontinuity, a+ ≠ a≠ (= 0 if the field is

continuous). The unit normal n of the surface points towards the + side.
ú
() Flux derivative w.r.t. a moving frame with velocity v,

ú
X = ˆX

ˆt
+ (Ò · X) v ≠

Ò ◊ (v ◊ X)
||x||n The nth norm of the quantity x

|x| Magnitude of a vector (2-norm), determinant of a matrix, or volume of a region.
a · b Inner (dot) product, aibi

A:B Double inner product, AijBij

a ¢ b Tensor outer product, aibjei ¢ ej

fl Mass density (kg
/m3)

Á Specific energy (J
/kg)

T Temperature (K)
T Cauchy stress tensor (current configuration)(N

/m2)
P First Piola-Kirchho� stress tensor (two-footed) (N

/m2)
S Second Piola-Kirchho� stress tensor (reference configuration) (N

/m2)
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Table 2.2: Nomenclature of Electromagnetic Quantities
Q Total charge (C)
q Charge density (C

/m3)
J Current density (A

/m2)
‡ Surface charge density
k Surface current density
E Electric field (V

/m)
B Magnetic flux density (T )
D Electric displacement field (C

/m2)
H Magnetizing field (A

/m)
P Electric polarization (C

/m2)
M Magnetization (A

/m)
J Conduction current density (A

/m2)
E Electromotive intensity (V

/m)
H Magnetomotive intensity (A

/m)
M Lorentz Magnetization (A

/m)
V Electric potential (V )
A Magnetic vector potential (V s

/m)
‘

0

Permittivity of Free space
µ

0

Permeability of free space
� Relative Susceptibility
‘r Relative Permittivity
‘

0r Relative Permittivity in the reference configuration.



14

Table 2.3: Units
Used Unit Conversion Standard SI

Length mm 10≠3

m m

Time ms 10≠3

s s

Force N 1N N

Temperature K 1K K

Mass g 10≠3

kg kg

Pressure, Sti�ness MPa 106

Pa

N
m2

Current, I A 1A A

Charge, Q mC 10≠3

sA C, sA

Electric Field Strength, E, E V
mm

, N
mC

103

V
m

V
/m, N

C

Magnetic Field Strength, B kT 103

T T , kg
s2A

Electric Potential, V V 1V V , kgm2

s3A

Electric Conductivity, ‡

S
mm

10≠3

S
m

S
m

, A
V m

Electric Contact Resistance, ‡C
A

mm2V
106

A
m2V

A
m2V

Power W 1W W , kgm2

s3

Thermal Conductivity, k
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a strength of about 1T , for comparison.)

2.3 Mechanics
The current position of each particle point inside of a material located at a reference

position X is sought as a function of time. The path can be expressed as either the position
function x, or the displacement function u, related by

x (t, X) = X + u (t, X) .

The initial state of the material is not necessarily the reference configuration, i.e. x (t = 0) ”=
X, since a deformed state may be used to begin the analysis (of particular interest, consider
a woven textile where the fibrils are already deformed at the beginning of a simulation.) It is
also sometimes useful to define a configuration that is not the material’s stress-free state. It
will be convenient in the beam analysis developed in Chapter 4 when the beam is naturally
curved. Further configurations may also be used when constitutive models for damage are
utilized, but that will not be treated in this work. The following nomenclature for coordinate
frames will be used throughout this work:

• ⇠ is the ideal configuration, describing an ideal state for defining material points that
will be useful later for the assumed deformation function of the thin fibers in question;

• x (⇠, t) is the current configuration, the present position of material point in the body;
• x (⇠, t = 0) is the initial configuration, where the material point was at the beginning

of the calculation; and
• X

0

(⇠) is the reference, or natural, configuration, where the material point was when
the body “came out of the factory” and had no plastic or elastic deformation.
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Figure 2.3.1: Configurations for describing finite deformation problems

In many problems in solid mechanics, the reference configuration is used to define material
points, so all of the fields would be expressed as functions of X

0

. The various configurations
are illustrated in Figure 2.3.1.

The deformation gradient of the motion is defined as

F = ÒXx = ˆx
ˆX = I + ÒXu

and can be calculated in terms of either the material coordinates or the displacement field.
The determinant of the deformation gradient is often used,

J = det F

and is referred to in this context as the Jacobian of the deformation (though in the mathe-
matics terminology F is the Jacobian.) Strain measures that will be used later are the right
Cauchy-Green strain,

C = FT F
and the Green-Lagrange strain tensor,

E = 1
2

1
FT F ≠ I

2
.

Three stress measures are used: the Cauchy stress, T, the first Piola-Kirchho� stress,
P, and the second Piola-Kirchho� stress, S. Two possible definitions of the stress tensors
are possible which are transposes of each other. The following convention is used, where the
tensors are defined to operate on their respective unit normals, n in the current and N in
the reference configuration, to produce the traction in the spatial configuration,t, as so:

tda = Tnda = PNdA.
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The fundamental physical laws that need to be solved in mechanics are the balance of
mass, energy, and linear momentum. In the spatial configuration, these laws are, respectively,

fl̇ = ≠flÒx · v
flÁ̇ = T : Òxv ≠ Òx · q + r

flv̇ = Òx · T + f .

For a solid, the mass continuity equation simplifies to fl = (det F) fl

0

= Jfl

0

. The balance of
angular momentum is also required but is easily satisfied by the conditions

T = TT

FP = PT FT

S = ST

on the symmetries of the stress tensors. The force density is sometimes used as having units
of force per mass, so that the right hand side of the balance of linear momentum is instead
Òx · T + flb. The form of force per volume will be more convenient when coupling with
electromagnetic fields, whose forces are not associated with the mass density of the material,
but instead with the charge and current densities. Similarly, the heat generation term is
also sometimes given per unit mass, but the heat generation per unit volume will be more
applicable for electromagnetic sources.

2.4 Maxwell’s Equations
Here only the macroscopic fields are considered. The derivation of the macroscopic fields

from the presence of material media can be found in [63, 72]. Similar to continuum mechanics,
each field is a spatial average of a microscopic structure. The first equation is the principal
of charge conservation, which in its local form as a partial di�erential equation is

ˆq

ˆt

+ Òx · J = 0, (2.4.1)

or, as an integral equation, is
ˆQ

ˆt

+
˛

ˆ�

J · nd� = 0

where Q is the total charge in the domain. The total charge in a domain is generally the
total of the charge densities, surface charges, and discrete point charges,

Q =
ˆ

�

qd� +
ÿ

i

ˆ
S

i

‡dS +
ÿ

iœ�

Qi.

Surface containing surface charges are denoted by Si. The above local form only applies
when the charge is su�ciently smooth and only composes of a charge density field.
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As vector partial di�erential equations, Maxwell’s equations are

Òx ◊ E = ≠ˆB
ˆt

(2.4.2)

Òx · B = 0 (2.4.3)
Òx · D = q (2.4.4)

Òx ◊ H = J + ˆD
ˆt

. (2.4.5)

The corresponding integral forms are
˛

ˆA

E · dl = ≠ d

dt

ˆ
A

B · ndA

˛
�

B · ndA = 0
˛

�

D · ndA = Q

˛
ˆA

H · dl = I + d

dt

ˆ
D · ndA

where I is the total current passing through the area A. Similarly to the total charge, the
total current can be made of a current density and surface currents,

I =
ˆ

A

J · ndA +
ÿ

S
i

ˆ
S

i

flA

k · ndl,

where discrete line-currents are also possible but were neglected.
The fields E and B are paired together as di�erent components of the same four-

dimensional tensor field, as are D and H; however, the covariant formulation is beyond
the scope of this section. In a vacuum, these two pairs are related together by the aether
relations,

D = ‘

0

E
H = µ

≠1

0

B.

In the presence of a material medium, additional polarization and magnetization fields are
present that contribute to the displacement and magnetizing fields. In this case, the relations
between the two pairs of fields are

D = ‘

0

E + P
H = µ

≠1

0

B ≠ M.

This work uses the interpretation that the aether relations are always present—both in
the vacuum and in a material—and constitutive responses for media only appear in the
polarization and magnetization fields. To further this interpretation, the vacuum can be
interpreted to have the constitutive law P = 0 and M = 0.
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In this work the potential formulation will be used extensively. The magnetic vector
potential A and electric scalar potential V can be constructed so that

B = Òx ◊ A

E = ≠ÒxV ≠ ˆA
ˆt

.

This formulation automatically satisfies Equations 2.4.5 and 2.4.5 because the di�erential
operators Ò · Ò◊ and Ò ◊ Ò are zero.

2.5 Material Frame Invariance
The fundamental laws of mechanics, as well as any constitutive response laws developed,

are required to be invariant under rigid body (Galilean) transformations: i.e. the balance
laws on a body should be valid in any inertial frame. However, the Aether relations are
only invariant with respect to Lorentz transformations, of which Galilean transformations
are the non-relativistic limit. The Aether relations are posited to hold in some laboratory
frame, and do not hold in an arbitrary material frame. Using a relativistic formulation of
continuum mechanics would satisfy this issue, but taking care to switch between the fixed
laboratory frame and the material frame is much easier, and maintains compatibility with
the many years of continuum mechanics theory. To formulate constitutive responses between
the electromagnetic fields and a material body, the transformation of those fields onto the
body’s rest frame is required.

The Galilean transformation from frame x to x

+ has the form, stated using Einstein
summation convention,

x

+

i = Aij (xj ≠ ujt)

where X is a constant coordinate shift, A is a coordinate rotation, and u is the velocity of
the transformations. The electromagnetic fields transform as

E+ = E + u ◊ B
B+ = B
D+ = D
H+ = H ≠ u ◊ D.

The polarization and magnetization densities transform as their counter parts,

P+ = P
M+ = M + u ◊ D.

A charge moving with a material will be yield a current equal to J = qv when observed in
the lab frame, but since it is not moving relative to the material, no current is observed in
the material rest frame. Thus, when the frame is moving relative to a charge and current
density, the current density transforms as

J+ =J ≠ qu.
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The invariant quantities are the conduction current density, J , the electromotive inten-
sity, E , the magnetomotive intensity, H, and the Lorentz magnetization, M:

J = J ≠ qv
E = E + v ◊ B

H = H ≠ v ◊ D
M = M + v ◊ P.

The necessary Maxwell’s equations can be rewritten in terms of these invariants,

Òx ◊ E =
ú
B

Òx ◊ H = J +
ú
D

where
ú
X denotes the flux derivative,

ú
X = ˆX

ˆt
+ (Òx · X) v ≠ Òx ◊ (v ◊ X) in di�erential

notation. It satisfies the property for moving surfaces d
dt

´
A(t)

X · ndA =
´

A(t)

ú
X · ndA.

2.6 Constitutive Equations
A Neohookean hyperelastic constitutive law is used for the Helmholtz strain energy den-

sity,
Â = µ

2 (trC ≠ 3) ≠ µ log J + ⁄

2 (log J)2

.

The Lamé parameters µ and ⁄ can be calculated from the Young’s modulus E and Poisson
ratio ‹ by

µ = E

2 (1 + ‹)

⁄ = E‹

(1 + ‹) (1 ≠ 2‹) .

The second Piola-Kirchho� stress is obtained as the derivative of the Helmholtz strain energy
density with respect to the right Cauchy Green strain tensor,

S = ˆÂ

ˆC .

For the Neohookean constitutive law, this yields a form for the stress

S = µI + (⁄ log J ≠ µ) C≠T
.

By the chain rule, the following relations between to the strain energy to variational dis-
placement fields ”u are all the same:

”u · ˆÂ

ˆu = (ÒX”u) : ˆÂ

ˆF = (ÒX (”u) F) : ˆÂ

ˆC .
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These relationships will be exploited in the implementation, where the Gâteaux derivative
with respect to test functions on the strain energy will be used instead of the stress tensor
itself.

The internal stored energy has three components: the heat capacitance, the strain energy,
and energy stored in electromagnetic e�ects. The constitutive response is

fl

0

Á = wthermal + wstrain + wEM = fl

0

cpT + Â + wEM .

The electromagnetic stored energy will be neglected in this work due to the nature of the
assumptions used. Considering only the thermal and mechanical components, the rate of
change of energy is

fl

0

Á̇ = fl

0

cpṪ + Â̇.

The strain energy used only depends on the deformation and temperature, i.e. Â = Â (u, T ).
The material derivative of the strain energy can be manipulated by the chain rule to obtain

Â̇ = ˆÂ

ˆu · du
dt

+ ˆÂ

ˆT

dT

dt

= ˆÂ

ˆF : dF
dt

+ ˆÂ

ˆT

dT

dt

. (2.6.1)

The term ˆÂ
ˆF

: Ḟ cancels out the stress power term P : ÒXv in the balance of energy.
Responses for Â taking into account electromagnetic fields are possible and would need to
be taken into account in Equation 2.6.1. The derivative with respect to temperature of the
above Neohookean strain energy law is

ˆÂ

ˆT

= ˆµ

ˆT

31
2 (trC ≠ 3) ≠ log J

4
+ ˆ⁄

ˆT

1
2 (log J)2

.

Fourier’s law couples the heat flux vector to the temperature gradient,

q = ≠kÒxT

where k is the thermal conductivity tensor. Isotropy in the reference configuration will be
assumed, so that it can be treated as a scalar (or a diagonal tensor, k

0

= kI). Using the
above constitutive responses, the energy balance equation is simplified to

A

fl

0

cp + ˆÂ

ˆT

B

Ṫ = ÒX · k
0

ÒXT + r.

More care must be taken for electromagnetic responses. Constitutive laws must be written
in the rest frame of a material, so the Galilean invariants are used. The polarization of a
medium is PÕ = ‘

0

�E where � is the susceptibility of the material and ‘

0

is the free space
permittivity. The displacement field inside of a polarizable media moving through a magnetic
field can be calculated by

D = ‘

0

E + P = ‘

0

E + ‘

0

�E = ‘rE ≠ ‘

0

v ◊ B. (2.6.2)

Similarly, Ohm’s law for a conductor,

J = �E (2.6.3)
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where � is the electrical conductivity tensor, holds in the material’s rest frame (see [63] p572;
[72] p86,135). As with the thermal conductivity, only isotropic materials are considered, so
it will be treated as a scalar. The Seebeck e�ect will be briefly considered for the purpose
of adding a coupling to the system in Chapter 6. The e�ect induces an electromotive force
in response to temperature gradients, so that the constitutive response for the material is

J = � (E ≠ SÒxT )
where S is the Seebeck coe�cient that can be either positive or negative, depending on the
material. The reader is directed to Kovetz [72] for a formal development of electromagnetic
material constitutive responses.

2.7 Electromagnetic Forces and Sources
A moving particle observes a force dependent on the electric field in its rest frame,

F = QE , which has the familiar form F = Q (E + v ◊ B) when calculated in the laboratory
frame. The charge and current densities within a continuous media yield a force density of

f = qE + J ◊ B
or, as stated in the material rest frame,

f = qE + J ◊ B.

These body forces provide the coupling from the electromagnetic fields to the mechanical
fields.

Conducting materials also exhibit Joule heating,
r = J · E = E · �E .

2.8 Quasistatic Potential Approximation in the Pres-
ence of Moving Conducting Media

2.8.1 Assumptions
This work focuses on the scenario of electric conductors moving within an externally ap-

plied magnetic field, e.g. when a strong electromagnet is near the conductors. As discussed
in the previous chapter, solving Maxwell’s equations is infeasible. The electromagnetic prob-
lem is simplified and rephrased in terms of the electric potential. The following assumptions
are made in developing the formulation:

1. The magnetic B field is dominated by an externally applied field; the contribution by
the currents is negligible.

2. The average time derivative of the E field is zero on mechanical time scales
e

ˆ
ˆt

E

f---
”t

= 0
(a) Similarly, the B field is set to a constant; a gradually changing B field could be

applied by using
e

ˆ
ˆt

B

f---
”t

= ˆB
ˆt

---
applied

.
With a static external magnetic field, ˆB

ˆt
= 0, the magnetic vector potential will also be

constant, ˆA

ˆt
= 0.



22

2.8.2 Partial Di�erential Equation
The electric potential is not invariant, but the invariant quantity V

Õ = V ≠v·A is unwieldy
for this purpose due to its dependence of the magnetic vector potential. Let V be the Lab
Frame electric potential so that the electric field E then satisfies E = ≠ÒxV . Faraday’s law
is trivially satisfied by this formulation, since the curl of the gradient is zero, and Gauss’s
law for magnetism forms a constraint on the applied B that can be chosen. Three equations
remain, namely Equations 2.4.4,2.4.5, and 2.4.1. One is redundant, as charge conservation
can be obtained by combining the remaining two. Because magnetizing fields are not of
interest—and curl-type di�erential equations are a hassle to work with—the two equations
to be dealt with are Gauss’s law and charge conservation. In these two equations, there are
two unknowns: the electric potential V and the charge q.

Charge conservation can be written in terms of the conduction current density,

≠ˆq

ˆt

= Òx · j
= Òx · J + Òx · qv

Inserting Ohm’s Law and then inserting the lab frame potential,

≠ˆq

ˆt

= Òx · ‡E + Òx · qv
= ≠Òx · ‡ÒxV + Òx‡v ◊ B + Òx · qv.

Now to proceed with Gauss’s law,

q = Òx · D
= Òx · (‘

0

E + P)
= Òx · (‘

0

(1 + ‰) E + ‘

0

‰v ◊ B) ,

which can be written terms of the potential,

q = ≠Òx · ‘rÒxV + Òx · ‘

0

‰v ◊ B.

Multiplying by ‡
‘

r

,
Òx · ‡ÒxV = ≠ ‡

‘r

q + Òx · ‡

‰

1 + ‰

v ◊ B.

This result can be substituted back into the continuity equation to obtain an equation in
terms of the charge density only,

≠ˆq

ˆt

= ‡

‘r

q ≠ Òx · ‡

‰

1 + ‰

v ◊ B + Òx‡v ◊ B + Òx · qv

and simplified as

≠ˆq

ˆt

≠ Òx · qv = ‡

‘r

q ≠ Òx · ‡

A
‰

1 + ‰

≠ 1
B

v ◊ B

≠ˆq

ˆt

≠ Òx · qv = ‡

‘r

q + Òx · ‡

A
1

1 + ‰

B

v ◊ B
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Figure 2.8.1: A wire moving through a magnetic field.

yielding

≠‘r

‡

A
ˆq

ˆt

+ Òx · qv
B

= Òx · ‘r

A
1

1 + ‰

B

v ◊ B + q.

The term ˆq
ˆt

+Òx·qv is the derivative of the moving charge carriers with respect to the motion
of the material. The permittivity of free space ‘

0

is approximately equal to 8.85 ◊ 10≠12

F
m

and the conductivity ‡ of conductors is on the order of 106

S
m

. The ratio ‘
r

‡
is extremely small

and represents a very sti� time constant for the relaxation time of free charges. Taking the
limit as ‘

r

‡
æ 0, the steady state result can be used as an approximation. The charge in the

material will then satisfy the relation

q = ≠Òx · ‘

0

v ◊ B (2.8.1)

Using this result in Gauss’s law above,

≠Òx · ‘

0

v ◊ B = ≠Òx · ‘rÒxV + Òx · ‘

0

‰v ◊ B

yields an equation for the potential, as measured in the stationary lab frame, in the presence
of a moving conducting medium:

Òx · ‘rÒxV = Òx · ‘rv ◊ B.

2.8.3 Boundary Conditions
It is desirable to have boundary conditions that would yield a back electromotive force

e�ect, as is observed in an electric motor, for example. The simple case in Figure 2.8.1 will
be used in this work. Using two voltage boundary conditions has current-sourcing e�ects
that are not intuitive. One side of the wire is set to ground to pin the constant mode in the



24

PDE, and on the other side, a mixed boundary condition is used that couples the body to
an the external circuit.

The total current leaving the body and entering the circuit is I =
´

�

J · nd�. Assuming
V (0) = 0, the body has to match up with the circuit by the integral relation

V (L) = ≠R

ˆ
�

J (L) · nd� + �VE.

Assuming that there is an ideal electrical connection at the surface, with the area of the
surface being A = |�|, the above relation can be phrased in terms of the current density as

Jn|
�

= ≠ 1
RA¸ ˚˙ ˝
r̄

V |
�

+ �VE

RA¸ ˚˙ ˝
¯J

, (2.8.2)

thus giving a mixed boundary condition linearly relating the normal current density to the
potential with coe�cients r̄ and J̄ . Coupling to more complicated circuits requires solving
an additional Kirchho�’s law network system while solving the PDE.

2.9 Summary of Equations
The three coupled partial di�erential equations derived can be summarized by

flẍ = Òx · T + qE + J ◊ B + f
flcpṪ + fl

fl

0

Â̇ = Òx · kÒxT + T : Òxv + J · E + r

0 = Òx · ‘rÒxV ≠ Òx · ‘rv ◊ B.

where f and r are force and heat generation densities that are not electromagnetic in nature.
These equations are all stated in the current configuration, and it is often easier to use the
reference or ideal configuration to perform these calculations.

To push back these equations into the reference and ideal configurations, note that the
divergence of some vector transforms as Òx · a = ÒX · F≠1a = Ò› ·

1
ˆx

ˆ⇠

2≠1

a and its gradient
transforms as Òxa = (ÒXa) F≠1 = (Ò›a)

1
ˆx

ˆ⇠

2≠1

.1
The material properties k, � and � are evaluated in the spatial configuration, after the

material has been stretched. Let k
0

, �
0

and �
0

be the properties of the material in its
reference configuration. Using the di�erential forms above, it can be determined that these

1
This work tries to avoid index notation, but it is necessary to verify these transformations: using

Einstein summation convention, the divergence can be manipulated as

ˆ

ˆxi
a

i

=

ˆ

ˆXi

ˆXi
ˆxj

a

j

=

ˆ

ˆ›i

ˆ›i

ˆxj
a

j

and

the gradient can be manipulated as

ˆai
ˆxj

=

ˆai
ˆXk

ˆXk
ˆxj

=

ˆai
ˆ›k

ˆ›k

ˆxj
, where the inverses of the transformation

gradients are identified as

#
F≠1$

ij

=

ˆXi
ˆxj

.
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material properties must transform in response to material deformation as

k = 1
J

Fk
0

FT

� = 1
J

F�
0

FT

� = 1
J

F�
0

FT
.

As observed, a material once isotropic is not necessarily isotropic after it has been deformed.
The relative tensor permittivity is not a material property due to the aether relation of free
space. Thus, as the material deforms, the relative permittivity changes as

✏r = ‘

0

I + ‘

0

� = ‘

0

I + ‘

0

1
J

F�
0

FT
.

Applying these transformation rules, all of the derivatives can be made with respect to the
the reference configuration,

fl

0

ẍ = ÒX · P + fl

0

fl

(qE + J ◊ B + f)
A

fl

0

cp + ˆÂ

ˆT

B

Ṫ = ÒX · k
0

ÒXT + fl

0

fl

(J · E + r)

0 = ÒX · ‘

0

1
JF≠1F≠T + �

0

2
ÒXV ≠ ÒX · ‘

0

1
JF≠1F≠T + �

0

2
FT v ◊ B.

Note that in the potential equation, the permittivity tensor has both the reference tensor
susceptibility as well as a push back of free space into the reference configuration. The
conduction current density can be determined from the potential field by

J = 1
J

F‡

0

FT

Q

ca≠F≠T ÒXV + v ◊ B¸ ˚˙ ˝
=E

R

db .
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Chapter 3

Analytical Solution for the
Magnetically-Induced Deformation of
a Current-Carrying Wire

3.1 Introduction
Individual yarns and fibrils are able to experience large deformations due to their string-

like nature. It is useful to have an analytical solution when verifying numerical methods,
but this is di�cult with nonlinear problems. A very simple case of a single flexible current
carrying wire can be solved. The problem of discussion is illustrated in Figure 3.1.1. The
wire is pinned at both ends and an electrical current is set to flow through the wire. An
external magnetic field is applied, and the wire will deform in response. Self action will
be ignored under the assumption that the magnetic field produced by the current traveling
through the wire will be much smaller than the externally applied magnetic field.

First, the well known solution of a helical path of a charge particle traveling through
a magnetic field is stated to lay the foundation for the expected behavior of the charge
carriers flowing through the conducting wires. Then, the deformation of the wire is solved
in a manner similar to the Cateneray solution by treating it as a rigid string (i.e. its length
remains constant.) The solution is then refined by treating the wire as an elastic string, with
a linear elastic model. The solutions are not unique, and most parameter choices have two
valid chiralities and multiple valid circularities. The following chapters will develop a beam
based model that are solved numerically and compared to the analytical result.

3.2 Helix Parameterization
A helix can be parameterized by its axis a that is perpendicular to er,

x (s) = –sa + rR (Ês; a) er + d, (3.2.1)
where R (Ês; a) represents a rotation about the axis a by angle Ês. A generic rotation matrix
is constructed from the axis-angle representation by

R (◊; a) = cos ◊I + sin ◊ [a]◊ + (1 ≠ cos ◊) a ¢ a (3.2.2)
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Figure 3.1.1: The pinned wire. The magnetic field is chosen to be oriented along a =e
1

, the
pinned boundary conditions are in the xz plane located at ±�e

�

where the angle between
e

�

and a is equal to „. The wire is of length 2L, with its parameter s equal to 0 at its center
point, which, by symmetry, is located the y axis. The unit vector oriented along the length
of the wire is denoted by ew (s).

where [a]◊ represents the cross product matrix of a satisfying a ◊ v = [a]◊ v whose compo-
nents are

[a]◊ =

Q

ca
0 az ≠ay

≠az 0 ax

ay ≠ax 0

R

db . (3.2.3)

The first and second derivatives of the rotation matrix with respect to the angle are

d

ds

R (Ês; a) = ≠Ê sin ÊsI + Ê cos Ês [a]◊ + Ê sin Êsa ¢ a (3.2.4)

d

2

ds

2

R (Ês; a) = ≠Ê

2 cos ÊsI ≠ Ê

2 sin Ês [a]◊ + Ê

2 cos Êsa ¢ a (3.2.5)

Applying the rotation to e
2

,

R (Ês; a) er = cos Êser + sin Êsa ◊ er + (1 ≠ cos Ês) (a · er) a. (3.2.6)

Since er was picked to be was perpendicular to a, the parameterization and its derivatives
are

x = –sa + r cos Êser + r sin Êsa ◊ er + d (3.2.7)
dx
ds

= –a ≠ rÊ sin Êser + rÊ cos Êsa ◊ er (3.2.8)

d

2x
ds

2

= ≠rÊ

2 cos Êser ≠ rÊ

2 sin Êsa ◊ er. (3.2.9)
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3.3 Helical Particle Trajectory
The ansatz for the wire is motivated by the simple problem of a charged particle in a

magnetic field, so that solution is briefly stated here using the notation that will be used
in later sections. A particle of mass m and charge q moving with velocity v observes the
Lorentz force in an electromagnetic field, f = QE + Qv ◊ B. For a non-relativistic point
mass, the equation of motion for the particle is

mv̇ = Qv ◊ B (3.3.1)

with initial conditions x (t = 0) = x
0

and v (t = 0) = v
0

. Let the magnetic field be written
as B = Ba, where a is a unit vector that will be the axis—hence the “a”—of the helices.
It is typical to pick a coordinate system in which the magnetic field is oriented along one of
the principal axes, e.g. e

1

, but that will not be the best choice for the next section. Instead,
let a be in some direction and have another unit vector perpendicular to it er that will be in
the radial direction of the helix, such that a · er = 0. The velocity can be decomposed along
this frame as

v = vaa + vrer + v‹a ◊ er (3.3.2)
The balance of momentum can be written in this frame

dv
dt

= ≠QB

m

a ◊ v. (3.3.3)

Extracting the component of v along a by dotting the above equation by a, we see that
dv

a

/dt = 0, and therefore the component of the velocity in the same direction of the magnetic
field remains unchanged. Since a ◊ (a ◊ er) = ≠er,

a ◊ v = vra ◊ er ≠ v‹er (3.3.4)

and the equations of motion are

d

dt

va = 0 (3.3.5)
d

dt

v

2

= QB

m

va2

(3.3.6)
d

dt

va2

= ≠QB

m

v

2

. (3.3.7)

The solution of this problem is a helical trajectory that can be parameterized as in Appendix
3.2. The frequency of the rotation is Ê = QB

m
and the radius of the helix is dependent on the

component of the initial velocity perpendicular to the field, r = v‹(0)

Ê
. The initial radial unit

vector is perpendicular to the initial velocity and magnetic field, er = v0◊a

||v0◊a|| . The solution
can then be written as

x (t) = (v
0

· a) ta + r cos Êter + r sin Êta ◊ er + x
0

≠ rer

v (t) = (v
0

· a) a ≠ rÊ sin Êter + rÊ cos Êta ◊ er.
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3.4 Analytical solution of the shape of a wire in a mag-
netic field

3.4.1 Balance of linear momentum
Consider a string-like wire with a constant current I in a constant magnetic field B

that is free to flex laterally but, for now, not free to extend elastically. Let a solution be
sought that is similar to the Catenary chain solution. The configuration of the wire will be
parameterized by s,

x (s) = X (s) e
1

+ Y (s) e
2

+ Z (s) e
3

. (3.4.1)
Additionally, the tension in the string, T (s) is unknown.

The solution is constrained to have unit arch length at every point s,
.....

dx
ds

.....
2

= 1 (3.4.2)

or, in terms of its components,
Ò

X (s)2 + Y (s)2 + Z (s)2 = 1. (3.4.3)

The body force acting on this wire is

f (s) = flE + J ◊ B = I

A

ew (s) ◊ B (3.4.4)

where ew (s) couples the body force to the orientation of the wire (hence the w) at point s.
The orientation of the parameterized curve is

ew (s) =
dx

/ds

Îdx

/dsÎ
2

= dx
ds

(3.4.5)

which is simplified by the arch length constraint.
Consider now the balance of linear momentum of a segment of the wire from 0 to s, with

the tensions at each end of the segment and total force on the body, that can be written as

T

0

ew (0) =
ˆ s

0

Iew (sÕ) ◊ Bds

Õ + T (s) ew (s) . (3.4.6)

The body force integral can be integrated,

T

0

dx
ds

-----
0

=
ˆ s

0

I

dx
ds

Õ ◊ Bds

Õ + T (s) dx
ds

(3.4.7)

= I

Aˆ s

0

dx
ds

Õ ds

Õ
B

◊ B + T (s) dx
ds

(3.4.8)

= I [x (sÕ)]s
Õ
=s

sÕ
=0

◊ B + T (s) dx
ds

(3.4.9)

to yield an equation for x (s) and T (s) if T

0

is known and x (0) is given,
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T

0

dx
ds

-----
0

= I (x (s) ≠ x (0)) ◊ B + T (s) dx
ds

. (3.4.10)

To recover the local di�erential form of the force balance,

0 =
ˆ s

0

I

dx
ds

Õ ◊ Bds

Õ + T (s) dx
ds

≠ T (0) dx
ds

-----
0

(3.4.11)

=
ˆ s

0

I

dx
ds

Õ ◊ Bds

Õ +
ˆ s

0

d

ds

Õ

A

T (sÕ) dx
ds

Õ

B

ds

Õ (3.4.12)

yielding

0 = I

dx
ds

◊ B + d

ds

A

T

dx
ds

B

. (3.4.13)

This is the form that will be used in the following sections.

3.4.2 Ansatz
Motivated by the behavior of a single charged particle, an ansatz of a helix is used oriented

along the unit vector a and starting at a vertex x (s = 0) = rer + d, represented by

x (s) = –sa + r cos Êser + r sin Êsa ◊ er + d. (3.4.14)

The construction of the parameterization is included in Section 3.2. The s = 0 point is
placed at the center point of the wire so that its end points are at s = ≠L and s = L. By the
symmetry of the problem, er must be perpendicular to both a and e

�

. The choice of bases
is arbitrary, but the choice used in plotting the result is diagrammed in Figure 3.1.1: the
magnetic field is chosen to be oriented along the x-axis, so that a = e

1

, and e
�

is confined
to the xz plane. Therefore, er is oriented along the y-axis, e

2

.
The di�erential form of the force balance relation is

0 = d

ds

A

T

dx
ds

B

+ f = dT

ds

dx
ds

+ T

d

2x
ds

+ I

dx
ds

◊ B. (3.4.15)

The helix axis a is aligned with the magnetic field, so that B = Ba. Plugging into the force
balance,

0 = dT

ds

(–a ≠ rÊ sin Êse
2

+ rÊ cos Êsa ◊ e
2

) (3.4.16)

+T

1
≠rÊ

2 cos Êse
2

≠ rÊ

2 sin Êsa ◊ e
2

2
(3.4.17)

+IB (–a ≠ rÊ sin Êse
2

+ rÊ cos Êsa ◊ e
2

) ◊ a. (3.4.18)

The vectors a and e
2

are chosen to be both unit and orthonormal, so that (a ◊ e
2

) ◊ a = e
2

.
Also note that a ◊ a = 0 and e

2

◊ a = ≠a ◊ e
2

. Using these relations, the equation can be
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deconstructed into orthonormal vector components

0 = dT

ds

–a + (3.4.19)
A

≠dT

ds

rÊ sin Êse
2

≠ TrÊ

2 cos Ês + IBrÊ cos Ês

B

e
2

+ (3.4.20)
A

dT

ds

rÊ cos Ês ≠ TrÊ

2 sin Ês + IBrÊ sin Ês

B

a ◊ e
2

. (3.4.21)

The ansatz satisfies the di�erential equation with a uniform tension, dT
ds

= 0, of magnitude

T = IB

Ê

. (3.4.22)

3.4.3 Geometric Boundary Conditions
The wire is pinned at s = ≠L and s = L at points x (L) = �e

�

and x (≠L) = ≠�e
�

.
The orientation of the helix was chosen such that e

2

·e
�

= 0. The angle between the magnetic
field orientation a and the supports is „ so that a · e

�

= cos „ and e
�

◊ a = sin „e
2

.

�e
�

= –La + r cos ÊLe
2

+ r sin ÊLa ◊ e
2

+ de
2

. (3.4.23)

The variables will be extracted by dotting against the orthonormal basis formed by a, e
2

,
and a ◊ e

2

. Starting with a,

�e
�

· a = (–La + r cos ÊLe
2

+ r sin ÊLa ◊ e
2

+ de
2

) · a = –L (3.4.24)

resolves – to
– = � cos „

L

. (3.4.25)

Recalling the arc-length constraint –

2 + r

2

Ê

2 = 1,

r =
Û

1 ≠ (� cos „)2

Ê

2

L

2

. (3.4.26)

Proceeding to a ◊ e
2

,
�e

�

· (a ◊ e
2

) = r sin ÊL (3.4.27)
and cycling the scalar triple product yields the equation for the quantity ÊL

� sin „

Ò
1 ≠ (� cos „)2

= sin ÊL

Ò
(ÊL)2

. (3.4.28)

This equation must be solved numerically, but restricting the search to Ê > 0 simplifies the
equation to the familiar equation sin x

x
for x = ÊL. The final parameter can be determined

by dotting with e
2

,
d = ≠r cos ÊL. (3.4.29)
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3.4.4 Nondimensionalization
The length values can be nondimensionalized by dividing by L, e�ectively setting L = 1:

s

Õ = s
L

, p

Õ = p
L

, xÕ = x

L
. The ansatz has the form

xÕ (pÕ) = –p

Õa + rR (ÊÕ
p

Õ; a) e
2

+ dÕ (3.4.30)

where the parameters are scaled by dÕ = d

L
and Ê

Õ = ÊL. The clamped boundary condition
distance is scaled as

�Õ = �
L

(3.4.31)

The forces can be nondimensionalized by dividing by EA to obtain a characteristic force-
per-unit-length-per-unit-sti�ness of

k = IB

EA

. (3.4.32)

The problem can then be specified by only three values: the ratio of the clamp distance to
the length of the wire, �Õ; the angle of the magnetic field to the supports, „; and the ratio
of the applied force-per-length to the sti�ness of the wire, k.

3.4.5 Elastic Wire
Now, instead of a chain, consider a linear elastic wire whose tension is linearly related to

its strain at a point, such that

T (s) = EAÁ (s) = EA (U (s) ≠ 1) . (3.4.33)

Two coordinate frames are defined running along the length of the wire: p in the unstressed
reference configuration and s in the stretched configuration. The coordinates are related by

ds

dp

= 1 + Á = U. (3.4.34)

The constraint Îdx

/dsÎ
2

= 1 remains, but now the curve is parameterized along p, yielding
the relation .....

dx
dp

.....
2

= U (p) . (3.4.35)

The force balance equation is in the real length parameter, so it is pushed back into
the reference configuration to form the solution there. Plugging the constitutive law for the
tension into the force balance equation,

0 = dT

ds

dx
ds

+ T

d

2x
ds

2

+ I

dx
ds

◊ B (3.4.36)

= EA

dU

ds

dx
ds

+ EA (U ≠ 1) d

2x
ds

2

+ I

dx
ds

◊ B (3.4.37)

= EA

1
U

2

dU

dp

dx
dp

+ EA

(U ≠ 1)
U

2

d

2x
dp

2

+ I

1
U

dx
dp

◊ B. (3.4.38)
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Multiplying by U

2,

0 = EA

dU

dp

dx
dp

+ EA (U ≠ 1) d

2x
dp

2

+ IBU

dx
dp

◊ a. (3.4.39)

Using the above defined nondimensional variables, the above equation is

0 = dU

dp

dx
dp

+ (U ≠ 1) d

2x
dp

2

+ kU

dx
dp

◊ a. (3.4.40)

As in the rigid string case, substituting and collecting the components yields

0 = –

dU

dp

a + (3.4.41)
A

≠dU

dp

rÊ sin Êp ≠ (U ≠ 1) rÊ

2 cos Êp + kUrÊ cos Êp

B

e
2

(3.4.42)
A

dU

dp

rÊ cos Êp ≠ (U ≠ 1) rÊ

2 sin Êp + kUrÊ sin Êp

B

a ◊ e
2

(3.4.43)

It is determined that the stretch is constant, dU
/dp = 0, and equal to

U = Ê

Ê ≠ k

. (3.4.44)

3.4.6 Geometric boundary conditions for the elastic wire
Parametrized with p now, the position of the cure has the same form

x (p) = –pa + rR (Êp; a) e
2

+ d (3.4.45)

except that the arclength constrain is related to the stretch, yielding –

2 + r

2

Ê

2 = U

2.
Following the same procedure as before, where – is unchanged,

r =
Û

U

2 ≠ –

2

Ê

2

=
ı̂ıÙ 1

(Ê ≠ k)2

≠ (� cos „)2

Ê

2

. (3.4.46)

Note that in the limit as k æ 0, or EA ∫ IB, r approaches the value for the rigid chain.
The last boundary condition constraint of � sin „ = r sin Ê yields the equation

� sin „ = sin Ê

ı̂ıÙ 1
(Ê ≠ k)2

≠ (� cos „)2

Ê

2

(3.4.47)

which must be solved to obtain Ê.
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Figure 3.5.1: The multiple solutions for the deformation for � = 0.075, „ = fi
4

, and k = 0.
The constraint equation for Ê is shown on the left, with the roots marked with vertical lines.
The roots are numbered sequentially increasing with the magnitude of Ê. Only the positive
roots of Ê are shown, with the positive choice of r.

3.4.7 Strain Energy
The total strain energy in the wire can be calculated by integrating over the nondimen-

sionalized length of the wire,

W =
ˆ

�

Á : ‡d� =
ˆ

1

≠1

EAU

2

ds. (3.4.48)

Since the strain is a constant, the total strain energy is

W = 2A¸˚˙˝
=V ol

E

Ê

2

(Ê ≠ k)2

. (3.4.49)

3.5 Solution Characterization
3.5.1 Number of roots

The constraint for Ê in Equation 3.4.47 has multiple roots. Ordering the roots starting at
one, the number of the root corresponds to the circularity of the wire. Only a finite number
of roots exists, as after a certain amount of turns the wire is not long enough to reach the
clamps. The exception is the case when � = 0 and the two pins are coincident, allowing the
wire to turn infinitely many times.

3.5.2 Negative roots
Negative roots for Ê in the constraint equation exist. These are valid solutions to the

problem, but recalling the form for the tension in the rigid case, T = IB
Ê

, these roots
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Figure 3.5.2: Deformation for both signs of r using parameters � = 0.075, „ = fi
4

, and k = 0.
First two roots of Ê are shown.

correspond to compressive modes. That is, the negative roots correspond to the flexible rod
in compression, where the applied force wants the helix to collapse on itself since it is “inside
out” from the charge carriers’ perspective. Considering the elastic rod, the tension

T = EA

3
Ê

Ê ≠ k

≠ 1
4

will be compressive, T < 0, when Ê < k. This agrees with the rigid case which corresponds
to the limit k æ 0.

3.5.3 Sign of r

Because r is calculated by a square root, both positive and negative values are possible for
each root. These two cases are plotted in Figure 3.5.2. Both cases have the same handedness
and correspond to tension, but are on opposite sides of the plane. Considering a situation
under which the wire is undergoing dynamic relaxation initially running straight between
the two pins, the forces will be pointing in the positive y direction initially, leading it to a
solution that exists in the positive y plane.

3.5.4 Variation of parameters.
The e�ects of varying the angle between the magnetic field and the pins are shown in

3.5.3. The e�ect of decreasing the sti�ness of the wire is shown in Figure 3.5.4.

3.6 Conclusion
The solution derived in this chapter can be summarized as follows:
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Figure 3.5.3: Deformations for varying the angle of the magnetic field, „, using � = 0.5 and
k = 0. Only one root of Ê and r are shown for each case.

Figure 3.5.4: Deformations for decreasing the sti�ness of the wire, k, using � = 0.5 and
„ = fi

4

. Only one root of Ê and r are shown for each case.
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1. Define the nondimensional parameters:

�Õ = �
L

, xÕ = x
L

k = IB

EA

2. Solve the following equation for Ê:

� sin „ = sin Ê

ı̂ıÙ 1
(Ê ≠ k)2

≠ (� cos „)2

Ê

2

3. Compute

– = � cos „

r =
ı̂ıÙ 1

(Ê ≠ k)2

≠ (� cos „)2

Ê

2

d = ≠r cos Ê

4. The solution with p œ [≠1, 1] is

x (p) = –pa + r cos Êser + r sin Êsa ◊ er + der

Multiple values of Ê and both signs of r can be valid for a given set of parameters. The suc-
cessive roots of Ê correspond to increasing circularities, with a maximum value constrained
by the length of the string. The two signs of r correspond to tension or compression. The
existence of multiple solutions causes instabilities that will be a challenge in static analysis
of the numerical method.
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Chapter 4

A Fibril Assembly Model of Textile
Microstructure

4.1 Introduction
Each fibril is described using a director-based beam model with an assumed kinematic

displacement field. The solutions are constructed with a one dimensional finite element basis
along the axis of the fibrils and an ansatz along the cross section. This type of beam theory is
explained in Rubin [103]. Additionally, thermal and electromagnetic fields are incorporated
into the beam formulation. Using a beam formulation has the following advantages:

1. arbitrary cross sections can be exactly represented geometrically,
2. the discretization cost is greatly reduced, and
3. the electromagnetic problem can be simplified.

The cross section integration is performed using Gaussian quadrature, which eases the im-
plementation of complex multiphysics couplings. Contact between beams is also considered,
with jump conditions on the thermal and electromagnetic problems treated.

4.2 Formulation
4.2.1 Finite Deformation Kinematic beam model

Let ›

3

denote the parameter of the axis running along the fibril in a reference configu-
ration. To simplify the solution, the fibrils are assumed to have linear displacement fields
along their cross section, directions ›

1

and ›

2

. Let r (›
3

) denote the position of the centroid
of a given cross section of the fiber, and g

1

(›
3

) and g
2

(›
3

) denote directors of the cross
section in the directions ›

1

and ›

2

. These fields are assembled into an assumed solution for
the position field

x (›
1

, ›

2

, ›

3

, t) = r (›
3

, t) + ›

1

g
1

(›
3

, t) + ›

2

g
2

(›
3

, t) .

The director fields are illustrated in Figure 4.2.1. The coordinate system › was defined
for convenient description of the geometry of the long and thin fiber to allow this simplified
deformation description. The natural (or initial, or unstrained) configuration, X

0

, may di�er
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Deformed Cross Sections

r(!3)

g1(!3)g2(!3)
Directors

Centroid
position

!3!2

!1

x

Figure 4.2.1: Director based beam formulation

from this reference configuration; i.e., a fiber may be naturally bent, but it is still easier to
described its deformation using the curvilinear system ›. The configurations were illustrated
in Figure 2.3.1.

The ansatz can also be formulated in terms of the displacement, introducing new fields
q, h

1

, and h
2

satisfying

r (›
3

, t) = r
0

(›
3

) + q (›
3

, t)
g

1

(›
3

, t) = g
01

(›
3

) + h
1

(›
3

, t)
g

2

(›
3

, t) = g
02

(›
3

) + h
2

(›
3

, t)

that form the displacement field

u (›
1

, ›

2

, ›

3

, t) = q (›
3

, t) + ›

1

h
1

(›
3

, t) + ›

2

h
2

(›
3

, t) .

The subscript 0 is used to denote fields evaluated in their reference state. Since the curvilinear
coordinate system of the reference configuration is fixed, the velocity is related to the director
and displacement fields by

v = d

dt

x (›
1

, ›

2

, ›

3

, t)

= dr
dt

(›
3

, t) + ›

1

dg
1

dt

(›
3

, t) + ›

2

dg
2

dt

(›
3

, t)

= dq
dt

(›
3

, t) + ›

1

dh
1

dt

(›
3

, t) + ›

2

dh
2

dt

(›
3

, t) .

When discussing the discretization and implementation later, the rates of the deformation
descriptors will be prefixed with a v instead of d

dt
, and the velocity will be written as

v (›
1

, ›

2

, ›

3

, t) = vr (›
3

, t) + ›

1

vg
1

(›
3

, t) + ›

2

vg
2

(›
3

, t)
= vq (›

3

, t) + ›

1

vh
1

(›
3

, t) + ›

2

vh
2

(›
3

, t) .
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In this representation, the deformation at any given time is fully described by six vector fields
that vary along ›

3

, namely by the positions r, g
1

, g
2

, vr, vg
1

, and vg
2

or by the displacements
q, h

1

, h
2

, vq, vh
1

and vh
2

.
The deformation gradient for this field can be calculated by using the chain rule,

F = ˆx
ˆX = ˆx

ˆ›

ˆ›

ˆX
0

= ˆx
ˆ›

A
ˆX

0

ˆ›

B≠1

where X
0

is the mapping from the ideal configuration › to the reference configuration X.
The gradient with respect to the ideal configuration is

ˆx
ˆ›

=
A

ˆr
ˆ›

3

+ ›

1

ˆg
1

ˆ›

3

+ ›

2

ˆg
2

ˆ›

3

B

¢ E
3

+ g
1

¢ E
1

+ g
2

¢ E
2

.

If the unstrained configuration is assumed to be identical to the reference configuration,
X

0

= › as is the case for an initially straight fiber, then ˆX0
ˆ›

= 1, and the deformation
gradient is F = ˆx

ˆ›
. The spatial velocity gradient is required for some rate dependent

models. Evaluating this quantity similarly to the deformation gradient,

L = ˆv
ˆx = ˆv

ˆX

A
ˆx
ˆX

B≠1

= ˆv
ˆ›

A
ˆx
ˆ›

B≠1

.

Knowledge the reference configuration is not necessarily required for the calculation, but the
current configuration x is required. The gradient of the velocity with respect to the reference
configuration is

ˆv
ˆ›

=
A

ˆvr
ˆ›

3

+ ›

1

ˆvg
1

ˆ›

3

+ ›

2

ˆvg
2

ˆ›

3

B

¢ E
3

+ vg
1

¢ E
1

+ vg
2

¢ E
2

.

Computing the spatial velocity gradient L at a particular time requires inversion of ˆx

ˆ›
.

An important note is that when the the ideal coordinates and reference coordinates
coincide (or are at least scaled the same), the directors are of unit length in the reference
configuration, e.g. |g

01

| = |g
02

| = 1. If in the present configuration, the cross section is
simply rotated, the deformed directors will also be of unit length.

The unit normal to the cross section can be obtained by

nC (›
3

, ) = g
1

◊ g
2

||g
1

◊ g
2

||
2

.

The cross section and centroid are not required to be perpendicular in the director-based
theory. The unit vector along the centroid will be useful later—the electric current will be
assumed to run along the centroid, not normal the cross section—so it is defined here in
terms of the centroid position

ey (›
3

) =
dr

/d›3

||dr

/d›3||
2

= E
3

+ dq

/d›3

||E
3

+ dq

/d›3||
2

where E
3

= dr0
d›3

is the unit vector along the centroid in the ideal configuration.
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The assumed displacement field can be plugged directly into the constitutive relations
from balance of linear momentum,

flv̇ = Òx · T (u, ...) + flf

to create a vector equation with three unknown time-varying vector fields instead of only
one,

fl

d

dt

(vq + ›

1

vh
1

+ ›

2

vh
2

) = Òx · T (q, h
1

, h
2

, ...) + flf

not counting the additional unknown fields, T and V .

Remark: Locking

The director formulation as described exhibits bending-mode locking whenever the Pois-
son ratio is not zero. This locking mode is observed in standard linear nodal-elements [2].
Increasing the order of the interpolation does not alleviate the problem, as the displace-
ment field remains linear with respect to the cross section by the ansatz inherent to the
formulation. Various techniques for correcting this problem can be employed. This behavior
with respect to this beam formulation is discussed in [104]. In [38], the strain components
yielding the locking are treated as constants along the cross section. Since this aspect of the
beam formulation itself is not the main topic of this work, the problem is side-stepped by
only considering the case ‹ = 0 in all of the results presented. Both the formulation and
implementation are flexible enough to accommodate a correction to the locking issue.

4.2.2 The Restriction of Electromagnetic Problem to the Beam
Without further assumptions, it would be necessary to mesh the space around the textile,

even if it were a vacuum, and calculate the electromagnetic fields there as well. For this
problem, it is assumed that the magnetic field is dominated by an externally applied source,
such that the contributions by currents in the fabric are negligible. Only the electric field
and current inside of the textile will be calculated during the simulation. The electric field
outside of the material varies as a consequence but is not considered. The only appreciable
boundary conditions on the electric field will be connections between the fibrils and some
external electric circuit. The contributions of external electric fields and of polarization on
the cross sections of the fibrils are neglected, allowing the interstitial and far-field space to
not be discretized.

Continuing with the beam-like fibrils assumptions, the base assumption to the electro-
magnetic discretization will be that the conduction current density will be uniform across
the cross section and oriented along the axis of the beam,

J = J (›
3

) ey (›
3

) .

(Additional currents will appear at contacts, but those will be restricted to exist only at the
surfaces and their contribution to the current density field inside of the fibril is neglected.)
The notations used will now collide slightly with respect to the electric field and the reference
coordinate basis: FE

3

Î ey, FE
1

, and FE
2

are the basis vectors of the reference coordinate
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system pushed into the current configuration. They will be used now as vectors in the spatial
coordinate frame, i.e. with their components expressed with respect to x. Using Ohm’s law,
J = ‡E , the electromotive intensity must also be oriented along the axis of the fibril, i.e.
E · FE

1

= E · FE
2

= 0.
The electric (voltage) potential will be used as the discretized field to be solved. The

electric potential is not invariant, but the invariant quantity V

Õ = V ≠ v · A is unwieldy
for this situation due to its dependence of the magnetic vector potential. Let V be the Lab
Frame electric potential, which satisfies

E = ≠ÒxV

in the absence of a time varying vector potential, i.e. ˆA

ˆt
. The gradient of the potential can

be broken up into components by

Ò›V = ˆV

ˆ›

3

E
3

+ ˆV

ˆ›

1

E
1

+ ˆV

ˆ›

2

E
2

.

Using the above assumption, the lab frame electric field can be broken up into the curvilinear
coordinates of the beam as (E + v ◊ B) · FE

1

= (E + v ◊ B) · FE
2

= 0. This yields the
following restriction for the electric potential:

FT ÒxV · E
1

= FT (v ◊ B) · E
1

FT ÒxV · E
2

= FT (v ◊ B) · E
2

.

Even though the potential is being constructed in the lab frame, the condition that current
must flow along the axis of the beam yields a trivial condition on the gradient of the voltage
across the cross section. These components could be solved for by plugging the the ansatz
for v, but they do not have any e�ect on the current, so they are uninteresting. Returning
to the potential equation and breaking the divergence in the components along the ideal
coordinates,

0 = Ò› · ‘r›Ò›V ≠ Ò› · ‘r›J

A
ˆx
ˆ⇠

B≠1

v ◊ B.

Only the ›

3

direction is not trivially satisfied, so

ˆ

ˆX

3

‘r0

ˆV

ˆX

3

= ˆ

ˆX

3

‘r0

(v ◊ B · FE
3

) . (4.2.1)

Thus, the beams can be assumed to have a constant voltage along their cross section, so
that it is only a function of the axis coordinate,

V = V (›
3

) .

Since the only non-zero component of E is along the axis coordinate, the conduction current
density in the laboratory frame can be determined to depend on the laboratory frame voltage,
the deformation gradient, and the material velocity by

J = 1
J

F‡

0

A

≠ˆV

ˆ›

3

+ FT v ◊ B · E
3

B

E
3

.
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The electric charge density is calculated as a side e�ect to solving Equation 4.2.1 by
way of the the quasistatic solution of Equation 2.8.1. It can be post-processed using
this equation, and would be required to calculate the force density to obtain the equa-
tion qE = ≠ (Òx · ‘

0

v ◊ B) E . However, even though the charge density is implied by the
formulation, the post-processing step is extra computational work. The magnitude of the
force density qE = qE+qv◊B is much smaller than the magnitude of the term J ◊B and is
neglected. Consider a 1mm long yarn segment with a 0.1mm cross sectional radius moving
perpendicular to a magnetic field of 1T with a velocity of 100m

/s and 0m
/s at either end.

A back-of-the-envelop calculation shows that the force density magnitude
1
‘

0

�v
L

B

2
(vB) =

8.85 ◊ 10≠12F
/m ◊ 100m

/s ◊ 1T/10≠3

m is approximately 8.85 ◊ 10≠5N
/m3 . For comparison,

the force density if the yarn was carrying 1A of current IB/A = 1A ◊ 1T/

1
fi (0.1mm)2

2
is

approximately 3.1 ◊ 107N
/m3. Thus, the force density for the beam is only calculated by

f = J ◊ B.

4.2.3 Balance of Energy
The beams are assumed to have a constant temperature across their cross section, so

that the temperature is only a function of the axis coordinate,

T = T (›
3

) .

This representation can be plugged into the balance of energy laws directly. Using the above
relations for the electromagnetic formulation, the Joule heating term can be calculated by

J · E = 1
J

‡

0

A

≠ˆV

ˆ›

3

+ FT v ◊ B · E
3

B
2

.

4.3 Contact Treatment
4.3.1 Surface Mapping

To integrate the contact problem into a general finite element framework, contacts can be
viewed a surface of discontinuity. The treatment of the constitutive responses of the surfaces
can be described using jump conditions on the change in fields across the two material bodies.
One body can be referred to as the + surface and the other as the ≠ surface, where the
normal vector n will be defined to point towards the + surface, as illustrated in Figure 4.3.1.
Each body has two separate problems and two separate reference configurations,

x+ = ‰

+

1
X+

2

x≠ = ‰

≠
1
X≠

2

The surface can be parametrized by two coordinates, u, v, with its own position function

xC = xC (u, v) .
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Figure 4.3.1: Contact constraint

Ideally, on a contact, the two surfaces will be coincident and have the same spatial coordi-
nates, i.e.

xC (u, v) = x+ (u, v) = x≠ (u, v) on �C .

The mapping from the contact surface to each of the reference configurations can be con-
structed from the inverse of the two deformation mappings,

X+ (u, v) = ‰

+

≠1 (xC (u, v))
X≠ (u, v) = ‰

≠1

≠ (xC (u, v)) .

(The body specifiers + and ≠ will move to the subscript when there is an exponent present.)
The condition that the surfaces are coincident will be weakened to enable finding finite

element solutions to satisfy it. As illustrated in Figure 4.3.1, the approximate solutions to
each body will be allowed to overlap slightly. The contact region �C is the portion on each
surface where the two bodies overlap. The mapping between the two surfaces is needed, as
they are no longer coincident, and the contact region is now considered to be two connected
surfaces. No intermediate geometry is defined in this formulation. The region is defined as
pairs of points on each surface that are inside of the other body that are the closest to one
another. That is, for each point on the boundary of one body and inside the other body,
its connected point is the closest point on the other body’s surface. The geometry can be
defined by and constructed by

�C =
I1

x+

, x≠
2

|’x+ œ
1
ˆ�+ fl �≠

2
, x≠ = arg min

x

≠œ(�

+flˆ�

≠
)

---x+ ≠ x≠
---

J

.

This object directly translates into a table of quadrature points pairs in the finite element
implementation; the procedure for its construction is described in Section 4.3.4. The region
can still be parametrized by two coordinates u, v, but all that matters is that some labeling
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scheme for the connected pairs exists. The jump in the spatial coordinate on the contact
region is equal to

[[x]] = x+ ≠ x≠
.

Since the surfaces are not exactly in a conforming contact, the surface normals along the
contact for each body may not be in agreement, i.e.n+ ”= n≠. Therefore, some approximation
must be used, such as the average normal, ÈnÍ = 1

2

(n+ + n≠) . The beam geometry utilized
will yield an applicable equation for the normal vector.

4.3.2 Constitutive laws
The contact region represents a surface of discontinuity for all of the fields that exist on

the two bodies. Thus, it is needed to specify constitutive responses for the tractions, heat
fluxes, and surface currents that are functions of the jumps in the fields,

{t, qn, kn} = f ([[x]] , [[T ]] , [[V ]]) .

They may all be dependent on one another; particularly the contact pressure has significant
e�ects on both thermal and electric contact resistances[62]. For simplicity, only linear and
independent contact laws are used in this work. For the tractions, only a simple penalty
term with a su�ciently large parameter P

ú is used to penalized the overlap,

t = P

ú ([[x]] · n) n.

The two bodies are also placed in thermal contact, so a jump condition is needed to relate the
heat flux across the bodies that is dependent on the jump in temperature. Linear thermal
contact resistances have the form

q = hc [[T ]] n

where hc is the contact heat transfer coe�cient. Similarly, for the electromagnetic problem,
a contact resistance appears with a surface conductivity ‡c that relates the current across
the surface to the potential drop along the surface,

k = ‡c [[V ]] n.

4.3.3 Beam Geometry
The beam-based theory has a particular geometry representation that needs to be taken

into account to handle the contacts. The geometry is illustrated in Figure 4.3.2. Since the
finite element meshes are one dimensional along the axis, instead of preventing an overlap of
two solid finite element meshes, the penalty must be designed to keep two one dimensional
meshes a minimum distance apart from one another. The distance between centroid axes,
which are represented by the finite element meshes, always remains positive and an overlap
between beams corresponds to the distance dropping below a threshold value, e.g. R

+ +R

≠.
Three simplifications are currently used when performing the geometric calculations:
1. The centroid interpolation is linear even if higher order elements are being used. (The

elements of the mesh are always line segments.)
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Figure 4.3.2: Contact geometry for beams

2. The cross sections do not deform and remain circular.
3. The contact area can be approximated with a cylinder-cylinder Hertzian response.

These simplifications were only made to reduce the computational cost and reduce the im-
plementation complexity and are not a limitation of the beam formulation; it is possible to
construct more detailed calculations for deformed higher-order beam surfaces. The first two
simplifications enable an analytical solution to be found for one unknown, instead of a new-
ton iteration being required to simultaneously solve for 5 unknowns (the three coordinates
on the ≠ beam and the cross section coordinates on the surface of the + beam.)

The closest-point mapping reduces to the equation

›

I≠ = arg min
›≠

r

---r+

1
›

I+

3

2
≠ r≠

1
›

≠
3

2--- . (4.3.1)

When constructing the contact mapping, equally spaced points are placed along one element
on + beam, and the closest point on the ≠ beam is found.

The normal component at the surface of the two beams is calculated using only the
centroid positions,

n = [[r]]
||[[r]]||

2

.

Using that assumption, the overlap in the kinematic displacement fields is defined just by
the centroid positions:

[[x]] =
1
R

+ + R

≠ ≠
1
r+

1
›

+

I

2
≠ r≠

1
›

≠
I

22
· n

2
n

= (2 ÈRÍ ≠ ||[[r]]||
2

) n.

The beam meshes are only one dimensional, so the the integrals that will be evaluated
will be one dimensional along the centroid of the beam. The integral of the jump condition
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over the entire contact area is required, so a di�erential line thickness a at a contact point
›

+

3

, ›

≠
3

is required to transform the area integral into a one-dimensional integral:ˆ
�

C

f · ndA =
ˆ

›3œ�

C

f · nad›

3

The mechanical analysis will be acceptable without considering the contact area because
the penalty parameter is chosen to be arbitrary. Thus, the penalty condition can stated asˆ

�

C

f · ndA =
ˆ

›3œ�

C

P

ú [[x]] · nd›

3

.

However, the thermal and electrical contacts do use jump conditions with physical origins, so
the contact area is required for consistency. The dependence on contact area gives an implicit
coupling between the mechanical fields and the thermal and electric contacts: increasing the
contact pressure increases the contact area, which in turn decreases the contact resistances,
even when not considering tribological e�ects. (Indeed, at the textile macroscale, this is a
tribological e�ect.) Due to the arbitrary nature of the penalty, the overlap is nonphysical.
The contact pressure, which is a physical quantity, can be used to calculate an appropriate
contact area. Hertzian contact theory can be used as an adequate approximation using the
case of two parallel cylinders [65]:

a =
Û

4PR

ú

fiE

ú .

where R

ú and E

ú are the e�ective radius and e�ective Young’s modulus, respectively, between
the two cylinders. These quantities are calculated by E

ú =
3

E+

1≠‹2
+

+ E≠

1≠‹2
≠

4≠1

and R

ú =
1
R

≠1

+

+ R

≠1

≠

2≠1

. The total di�erential load is denoted by P , i.e. the integral of the traction
along a di�erential line element of the contact surface, P (›

3

) =
´

d�

C

(›3)

t (›
3

) · nds. This is
recognized as the penalty jump condition, P (›

3

) = P

ú [[x]] · n, This enables the di�erential
thickness to be written as

a =
Û

4R

ú

fiE

ú (P ú [[x]] · n).

Then, the di�erential contributions of the thermal and electrical jump conditions can be
expressed along the di�erential line element d›

3

,

hC [[T ]] dA = hC [[T ]]
Û

4R

ú

fiE

ú (P ú [[x]] · n)d›

3

‡C [[V ]] dA = ‡C [[V ]]
Û

4R

ú

fiE

ú (P ú [[x]] · n)d›

3

,

coupling them nonlinearly to the mechanical field.

4.3.4 Contact Mapping Generation
For each pair of contacting meshes, a discrete contact mapping needs to be constructed.

The continuous contact zones are discretized as tables of quadrature points for nearby el-
ements, illustrated in Figure 4.3.3. The discrete mapping is represented as a list of active
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Figure 4.3.3: Discretized contact mapping

interacting element pairs and a corresponding quadrature point table. The quadrature point
table for each active pair has 2NGP entries: one list of points on the + element, and a cor-
responding list of points on the ≠ element. The data structure of Nactive element pairs with
indices e

+

I and e

≠
I matching to a quadrature point table can be illustrated as:

e

+

1

e

≠
1

Ó1
s

+

1

, s

≠
1

2
,

1
s

+

2

, s

≠
2

2
, ...

1
s

+

N
GP

, s

≠
N

GP

2Ô

1

e

+

2

e

≠
2

Ó1
s

+

1

, s

≠
1

2
,

1
s

+

2

, s

≠
2

2
, ...

1
s

+

N
GP

, s

≠
N

GP

2Ô

2...
e

+

N
active

e

≠
N

active

Ó1
s

+

1

, s

≠
1

2
,

1
s

+

2

, s

≠
2

2
, ...

1
s

+

N
GP

, s

≠
N

GP

2Ô

N
active

The quadrature point table is determined by picking equally-spaced points along the +
element and finding the closest point on the ≠ element. The points need not be equally spaced
and are only chosen to be so for simplicity; it is possible that there exists some scheme to
more accurately and e�ciently integrate this type of contact integral with unequally spaced
points. Using linear shape functions, the displacement field along the element on the ≠ beam
can be described

r≠ (s) = „

1 (s) r1

≠ + „

2 (s) r2

≠ = sr1

≠ + (1 ≠ s) r2

≠

with s œ [0, 1]. From Equation 4.3.1, the arg min problem with this discretization is

s

≠
I = arg min

s≠

---r+

I ≠ sr1

≠ ≠ (1 ≠ s) r2

≠

---

= arg min
s≠

1
r+

I ≠ r2

≠ + s

1
r2

≠ ≠ r1

≠

22
·

1
r+

I ≠ r2

≠ + s

1
r2

≠ ≠ r1

≠

22

= arg min
s≠

11
r+

I ≠ r2

≠

2
·

1
r+

I ≠ r2

≠

2
+ 2s

1
r2

≠ ≠ r1

≠

2
·

1
r+

I ≠ r2

≠

2

+s

2

1
r2

≠ ≠ r1

≠

2
·

1
r2

≠ ≠ r1

≠

22
.
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This equation can be solved analytically by taking the derivative of the of the minimization
problem, 1

r2

≠ ≠ r1

≠

2
·

1
r+

I ≠ r2

≠

2
= s

1
r2

≠ ≠ r1

≠

2
·

1
r2

≠ ≠ r1

≠

2

to solve for the corresponding point

s

≠
I =

1
r2

≠ ≠ r1

≠

2
·

1
r+

I ≠ r2

≠

2

(r2

≠ ≠ r1

≠) · (r2

≠ ≠ r1

≠) . (4.3.2)

A fibril assembly consists of many independent meshes which can all be contacting inde-
pendently. One such list of element pairs exists for every interacting pair of meshes as well.
The implementation and procedure details are explained in Section 5.5.

4.4 Variational Form
4.4.1 Function spaces

The continuum problem has four unknown fields: x, v, T, V . In the kinematic beam
model, the fields x and v have assumed forms are not directly the functions being sought.
The solutions that are sought are thus constructed from component functions of r, q

1

and
q

2

. There are eight unknown fields

r, q
1

, q
2

, vr, vq
1

, vq
2

, T, V

with a total of twenty components. The test displacement and velocity fields constructed
from test functions from the space of solutions of r, q

1

, and q
2

, relating them to the test
functions in the space of w by the relations

”x = ”r + ›

1

”q
1

+ ›

2

”q
2

,

”v = ”vr + ›

1

”vq
1

+ ›

2

”vq
2

.

For the sake of clarity at the expense of compactness, the following naming convention for
fields is adopted: prefix of ” denotes a test function, prefix of v denotes an element of the
velocity field, and an overdot ȧ denotes the time derivative, with an overline ˙

abc used to
prevent ambiguity with multi-character symbols.

When solving the problems individually, three separate functions are considered, w, T

and V . The field w contains the three velocity fields. An additional antiderivative for the
second-order mechanical fields is required, so let x =

´
wdt . The three fields can be grouped

together with their test functions:

x =

Y
_]

_[

r
g

1

g
2

Z
_̂

_\
, w =

Y
_]

_[

vr
vg

1

vg
2

Z
_̂

_\
, ”w =

Y
_]

_[

”vr
”vg

1

”vg
2

Z
_̂

_\

T, ”T

V, ”V
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The position and velocity fields share the same test function since they are defined by the
same function space.

For the monolithic scheme, single mixed function space w is constructed that contains
all of the fields as

w =

Y
______]

______[

Q

ca
vr
vg

1

vg
2

R

db

T

V

Z
______̂

______\

, ”w =

Y
______]

______[

Q

ca
”vr
”vg

1

”vg
2

R

db

”T

”V

Z
______̂

______\

with corresponding test functions on each of those fields. The mechanical fields are grouped
together with the parentheses. The position fields were left out because those will be handled
specially. Consider now the derivative and antiderivative of the field w. Let x =

´
wdt and

ẇ = d
dt

w. These are represented in the function space by

x =

Y
______]

______[

Q

ca
r
g

1

g
2

R

db

Ø
Ø

Z
______̂

______\

, ẇ =

Y
______]

______[

Q

ca
v̇r
˙vg

1

˙vg
2

R

db

Ṫ

Ø

Z
______̂

______\

.

The velocity fields are considered the primary fields so that the mechanical and thermal
mass matrices are in the same form, M (”w, ẇ) . The nulls, Ø, are place holders in the
finite element function space that are not included in variational form. These are here for
convenience in the implementation and will leave behind zero rows in matrices. There is
only a storage cost in the x vector associated with the null fields in the final program.

4.4.2 Equation
Without considering the fields from the beam formulations, the variational form of all of

the equations considered is

0 =
ˆ

�0

”v · flv̇ + ”T

A

flcp + ˆÂ

ˆT

B

Ṫ d�

+
ˆ

�0

ÒX”v : P (x) + ”v · bd� +
˛

ˆ�0

”v · td�

+
ˆ

�0

ÒX”T · k
0

ÒXT + ”Trd� +
˛

ˆ�0

”Tqnd�

+
ˆ

�0

ÒX”V · ‘r0

ÒXV ≠ ÒX”V · ‘r0

Fv ◊ Bd� +
˛

ˆ�0

‘

0r‡
≠1

0

FT J · Nd�
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Figure 4.4.1: Decomposition of the beam domain

4.4.3 Incorporation of Contacts into Variational Form
Forces and fluxes are equal and opposite, so each of the variational forms on the two

meshes have equal and opposite terms,

F+ =
ˆ

�
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The two forms can be added together, revealing the jump in the test function across the
contact,
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For heat conduction, the contact resistance has the integral:
ˆ
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C
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�
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4.4.4 Integral Decomposition
Consider the variational form over a single fibril
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The finite element discretization will only be applied to the centroid axis, ›

3

. Since assumed
forms are used for the fields along the cross sections, the integrals will be split between the
›

1

, ›

2

plane and the ›

3

axis, as in Figure 4.4.1. Let C (›
3

) denote the cross section of the
body in the reference configuration at position ›

3

along the axis—a two dimensional open
surface—and ˆC (›

3

) denote its boundary—a one dimensional closed loop. The volume can
be obtained by sweeping the cross section along the centroid,
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) .

The volume integrals can be separated into integrals along the length and integrals along
the cross section: ˆ
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The boundary of the domain can be separated into end caps at ›

3

= 0 and ›

3

= L and the
boundaries of the cross sections along the axis, such that
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The boundary integrals can then be broken up as˛
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where s is the parametrization of the one dimensional contour such that the surface area
element along the lengthwise surface of the beam is dA = dsd›

3

. The unit normal of the end
caps is equal to N› = ±E

3

. Using these relations, the variational form can be written with
a one-dimensional primary integral along the centroid direction,
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where the forms depend on integrals across the other directions.

4.4.5 Integral Discretization
The finite element approximation discretizes the solution along ›

3

, and the integral along´ L

0

d›

3

is handled by the finite element program. The ansatz aspect of the solution is in-
tegrated separately. Often times these integrals are handled analytically using common



53

!3

!1

!2 +

Deformed Mesh

Gauss points on 1D domain
and shape functions

Evaluate cross section integrals at each !3

x

Figure 4.4.2: Splitting of integration between one dimensional finite elements along ›
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as-
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and ›
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constitutive responses [103]. In this work, potentially complicated forms will be consid-
ered, so a more general scheme will be used. The cross section integrals are evaluated by
Gaussian quadrature, so that each Gauss point on the finite element discretization maps to
multiple Gauss points on the cross section and its boundary, illustrated in Figure 4.4.2. Let
w

A
, ›̂

A œ P (�) denote the set of Gauss points and weights over the geometric quantity �.
The cross section integrals can be computed by the discrete summation
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These forms can then be one-dimensional variational form can then be constructed
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that can be inputed into the finite element package as a one-dimensional integral.
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4.4.6 Summed Variational Forms and Linearization
The variational form used to assemble the mass matrix for all the fibrils is

M =
ÿ

fœfib

ˆ L

0

ÿ

I

w

I
1
”vq + ›

I
1

”vh
1

+ ›

I
2

”vh
2

2
· fl

1
v̇q + ›

I
1

˙vh
1

+ ›

I
2

˙vh
2

2
d›

3

+
ÿ

fœfib

ˆ L

0

ÿ

I

w

I
”T Ṫd›
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and the loading vector as a sum of all the fibril domains and contact surfaces is
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With these two equations, the time dependent problem can be written compactly as

Mẇ + F (x, w) = 0

where M is the mass matrix and F is the force vector. To solve the problem with an implicit
scheme, the linearizations of F with respect to x and w will be needed to product a system
of the form

Mẇ + F (x
0

, w

0

) + ”F
”x

-----
x0,w0

�x + ”F
”w

-----
x0,w0

�w = 0

is required. A time stepping scheme will be needed to discretize and relate w, ẇ, and x. The
same linearizations can be used to solve static problems by setting w to 0,

F (x
0

, 0) + ”F
”x

-----
x0

�x = 0.
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Chapter 5

Implementation Details

This section describes the details to the code used to implement the model and produce
all of the results in this work. The incorporation of contacts in the finite element framework
is described.

The code is dependent upon the finite element package FEniCS [85]. Its code gener-
ation features—especially automatic di�erentiation—make it an appealing choice. These
features greatly facilitated the development of multiphysics beam formulations with implicit
time stepping. The majority of the codebase used in this dissertation is a Python library
for generating woven beam geometries and assembling their finite element forms. The li-
brary routines are designed to be used by short “main.py” script files to perform a specific
calculation. The Python code uses a number of C++ extensions which are referenced as
submodules.

The source code can be obtained from the git repositories hosted on the author’s bitbucket
account, located at https://bitbucket.org/afqueiruga/. The supporting libraries and
patches to FEniCS are available publicly. Access to the main library for the textile simulation
can be granted by contacting the author. If the repositories are no longer accessible for
whatever reason the future holds, contact the author to obtain a copy.

Additionally, a number of patches were made to the FEniCS code base to support contact
mechanics, specifically Dolfin [87] and FFC [86]. These patches are necessary to run the
program, and therefore the binary distributions will not be compatible. The patches can
also be found alongside the other repositories at the bitbucket page. As it stands at the time
of this writing, compilation of a custom build of FEniCS is required to run the program,
which, in the author’s experiences, can be a daunting process. Upstreaming the features into
the main FEniCS codebase is a future goal.

The code also makes use of Numpy [113] and Scipy [66] for the de facto standard Python
numerical array data type and numerical algorithms; Mathematica [121] for code generation
and symbolic integration and di�erentiation; Matplotlib [60] for plotting; and Paraview [56]
for visualization. All graphs and images in this work were created using either Matplotlib
or Paraview, with the exception of Figure 5.4.1, which was generated in Mathematica.

https://bitbucket.org/afqueiruga/
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5.1 Finite Elements
A brief overview of the finite element method is described here in a non-pedagogical

manner to provide context for the incorporation of contacts into the standard procedure and
the place of code generation. The reader is directed to the following books on the finite
element method: Hughes [58] for an introduction to the linear theory and Bonet [14] for a
nonlinear treatment.

Functions are discretized to be linear combinations of a finite set of shape functions, with
coe�cients aA weighting the corresponding shape function „A,

u (x) ¥ ÿ
aA„A (x) .

Test functions and trial functions in the variational calculus are also expressed as linear
combinations of shape functions, such that ”u (x) = q

bA„A (x) and �u (x) = q
cA„A (x).

The shape functions are picked from the same space as u, with the caveat that variations on
Dirichlet boundaries must be zero, so the coe�cients corresponding to those modes must be
zero. The linear system to be solved is extracted from these coe�cients. The arbitrariness
of test functions translates into extracting rows of a matrix or vector from corresponding
coe�cients, i.e. ˆ

”ufd� ’”u æ bA

ˆ
„Afd� ’bA æ RA =

ˆ
„Afd�.
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that can be solved for the coe�cients cB. The coe�cients to the unknown function u are
then updated iteratively by a

I
B+ = cB until the process converges.

In the finite element method, the domain is discretized into a mesh where the cells are
referred to as elements, � = t

e �e. Let e be used to denote individual elements, M to denote
the mesh as a set of elements, and �e to denote the domain on an individual element. Let
N be the total amount of unknown degrees of freedom, and n be the degrees of freedom
supported by a single element. This allows the integrals over domains to be broken up asˆ

�

fd� =
ÿ

eœM

ˆ
�

e

fd�.

The shape functions in the finite element method are constructed by piecewise additions of
compactly supported functions on an element domain. The assembly of the linear system
involves local contributions that only couple the coe�cients associated with one element, i.e.
only n ◊ n or n sized matrices and vectors. The finite element procedure of placing smaller
local element into a global matrix can be summarized

K¸˚˙˝
N◊N

= A
e

[ke]
¸˚˙˝
n◊n

where A is an operator that represents the assembly program. The entries in the local
matrix are placed in the global matrix based on the connectivity table entry of the element,
dofs [e]. The table provides a mapping from local index a to global index A by A =
dofs [e] [a]. Each step in the assembly involves the summation operation

K

(dofs[e][a])(dofs[e][b])

+ = k

e
ab ’a, b œ [1, n] .

For the contact handling, the assembly operation happens multiple times on di�erent
meshes and di�erent contacts. Let {M} denote the set of meshes and contacts, and + and
≠ denote the mesh indices for the two contacting meshes. The contact integrals represent
couplings between the degrees of freedom associated with two di�erent meshes, so the local
contributions are of size 2n ◊ 2n or 2n. There are two domains and two sets of shape
functions in the local calculation, „

+

A and „

≠
A. The contact mapping is also discretized by the

two meshes as lists of interacting element pairs and corresponding mappings. Denoting the
individual pair-wise mappings as “c, the total contact surface is broken up as �C = t

c “c,
allowing the integral to also be calculated in components byˆ

�

C
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The local matrix contribution for a single contact can be constructed from blocks,
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where each block represents the coupling from one element to either itself or the other. The
total assembly process is now

K¸˚˙˝
N◊N

=
ÿ

Mœ{M}
A
eœM
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¸˚˙˝
n◊n

+
ÿ

�
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cœ�

C

[kc]
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2n◊2n

.

Each mesh has its own connectivity table, dofs

I for mesh I, and the connectivity entries
from both elements, dofs

+ [e+] and dofs

≠ [e≠], are needed to place the blocks into the global
matrix. The assembly operation for each contact requires placing the four blocks,

K

(dofs

+
[e+

][a])(dofs

+
[e≠

][b])

+ = k

c++

ab ’a, b œ [1, n]
K

(dofs

+
[e+

][a])(dofs

≠
[e≠

][b])

+ = k

c+≠
ab ’a, b œ [1, n]

K

(dofs

+
[e+

][a])(dofs

≠
[e≠

][b])

+ = k

c≠+

ab ’a, b œ [1, n]
K

(dofs

+
[e+

][a])(dofs

≠
[e≠

][b])

+ = k

c≠≠
ab ’a, b œ [1, n] .

The code for this procedure is described in Algorithm 5.1.

5.2 Modifications to FEniCS
There are two facets to a finite element code: (1) the calculation of the local finite

element matrices and vectors and (2) the assembly of these local matrices and vectors into
the global matrix or vector. The purpose of using a domain specific language is to assist
with formulating and transcribing the equations for the calculation of the local matrices for
the problem into computer code.

In its current state, circa 2014, FEniCS was only able to perform calculations on a
single mesh. The contact formulation requires calculations across multiple di�erent meshes.
Prototype code for cut-and-composite meshes, now the MultiMesh set of objects that made it
into version 1.5, existed in the development version and was extremely useful in developing
the contact code. The patches made to dolfin and �c, as well as extension modules for
assembling, will be described in this section.

5.2.1 Form Language and Compiler
Using the UFL representation, FFC automatically generates a C++ object that contains,

in addition to a lot of boiler-plate code for data management, shape function and quadrature
point calculation, a tabulate_tensor routine that performs the local element matrix calcu-
lation. The form language has a few integral types that it can express: dx for domains,

´
d�;

ds for exterior surfaces,
¸

ˆ�

d�; and dS for interior element boundaries, q
i

´
S

i

dS. There is
also a custom integral, dc, which serves exactly the purpose of implementing nonstandard
features. FEniCS contained syntax existed for expressing jump conditions for discontinuous
fields in the form language, and supported local element matrices computed over two sur-
faces. These are used in the interior surface integrals (dS) for the discontinuous Galerkin
method.

Taking advantage of the existing syntax, the only modification needed to the form lan-
guage is an identifier to the custom integral identifier. This was accomplished by adding a
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“special” tag to the integral metadata. FFC was modified to look for this tag and trigger spe-
cial compilation code based on the value of the tag. The only value with an assigned meaning
is “contact”, but having this tag may facilitate the future implementation of experimental
features. A snippet of the beam implementation illustrates the contact integral:

1 xr = X0 + q
2 d i s t = sq r t ( dot ( jump( xr ) , jump( xr ) ) )
3 over lap = (2 . 0� avg ( rad iu s )≠ d i s t )
4 cont_pres = contact_penalty � over lap
5 ContactForm = ≠dot ( jump( tvq ) ,
6 c o n d i t i o n a l ( ge ( over lap , 0 . 0 ) , ≠cont_pres , 0 . 0 ) � jump( xr )/ d i s t ) \
7 �dc (0 , metadata={" num_cells " : 2 , " s p e c i a l " : " contact " })

From the end user perspective, specifying the custom integral tag and the right metadata is
the only thing required to generate the local element assembly code.

From the developer’s perspective (i.e., the author), the existing analysis and di�erenti-
ation algorithms in FFC perform all of the expression manipulations required. Most of the
new capabilities and modifications were centered in the code generation components. The
assembler is required to feed custom integrals (those specified by dc) the list of quadra-
ture points and weights, as opposed to the other integral types which will generate their
own quadrature points inside of the tabulation routine. Even on two-cell calculations, the
quadrature points would be shared between the two sets of shape functions because the
original intentions were for elements sharing a facets or overlapping elements in cut-and-
composite meshes. When the “special” : “contact” tag is encountered in code generation
routine, it is now expected that the quadrature point list will be twice long, with the same
number of quadrature weights, to accommodate the quadrature point-pairs described in the
previous chapter. The basis functions and their derivatives for both cells receive di�erent
quadrature points by adding an o�set to the index to the point table. In rough pseudocode,
the evaluation for the two sets of shape functions at quadrature point I is

Ó
„

+

AI

Ô
= eval_basis (points + NDimI, vertices)

Ó
„

≠
AI

Ô
= eval_basis (points + NDimI + NDimNGP , vertices + NDimNV ertex)

where A is the node number index and the routine calculates all of the shape functions
simultaneously. Pointer arithmetic was used in the above equation, so that the addition of
lengths to an array denotes passing the evaluation routine the latter part of the arrays.

Most of the modifications take place in the file ffc/quadrature/quadraturegenerator.py,
which handles the final generation step for custom integrals. Additional code snippets
were added to handle the quadrature table o�sets. Some modifications were made to
ffc/quadrature/quadraturetransformerbase.py as well. Namely, the evaluation of fi-
nite element functions needed to use the correct coe�cients when they were evaluated on
two di�erent cells. The coe�cient table, w, is twice as long for a macro element, where the
coe�cient array for the ≠ element is simply concatenated to the end of those form the +
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element. The formulae to calculate the discrete function on both elements are

f

+ (x) =
ÿ

A

w [A] „

+

A (x)

f

≠ (x) =
ÿ

A

w [dim + A] „

≠
A (x)

where dim is the number of coe�cients, i.e. the number of shape functions, on the element
in the discrete function space. These equations was added to the QuadratureTransformer
class to trigger when the contact identification was seen in the integral metadata.

5.2.2 Assembly Code
The assembly code was written in external modules to minimize changes to the main

code base during development. Only one new method was required to enable the assembly
of two-mesh forms. The “UFC” object in dolfin is responsible for copying data from function
spaces defined on the mesh over to local arrays to be ordered for the tabulation routine on
the master element, e.g. copying coe�cients and vertices. The “UFC.update()” routine has
a call signature for copying the data from two elements into the local arrays, but because
the “Form” objects are closely tied to a mesh and thus particular a degree-of-freedom con-
nectivity, the “UFC” object is also closely tied to a mesh. An extra call signature for the
“UFC.update()” routine was added that takes a second “UFC” object and uses it’s data to
copy into the first objects data arrays. When assembling over a contact pair, two “UFC”
objects are initialized for the two “Form” objects on each mesh. The update routine is called
on the first object, with the second “UFC” object as an argument. The first half of the data
arrays on the first object are filled with the data from the first mesh, and the second half
are filled by taking data from the second mesh. The first “UFC” object is then used for the
local matrix tabulation.

5.3 File Hierarchy
The main library is organized into directories as follows:
• src Top level library source

– Forms Modules containing UFL descriptions
– unit_tests Script files for testing library functionality
– ContactMultiMesh Contact mesh container class
– BroadcastAssembler Contact group assembler class
– ProximityTree Spatial tree class for finding nearby elements
– multiwriter vtk file output class

• programs Collection of script files
– engineering_tests Programs for verifying accuracy of the library

• notes Mathematica files used for code generation
• post Location for writing output files
• data Saved simulation state data

The user may need to make the post and data directories by executing “mkdir” before
running a program as they are not included in the repository.
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Figure 5.4.1: An example initial curve for a single yarn in a knit, designed with y (X
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where C is a uniformed “squishing”,
B is the forward-backward amplitude, A

1

and A

2

are the side-ways amplitudes, and p is the
period of the looping. This curved is used for knitted textiles. An example RVE is shown
on the right, made from three yarns each made from three fibrils.

5.4 Generation of initial configurations
The fabric and yarn structures studied have complicated intertwined geometries that that

di�cult to construct. For single strand structures, the mechanical process of spinning can be
simulated during the relaxation procedure to arrive at the desired structure, as was done in
[118], for example. This process could also be used for woven structures, but for complicated
knits setting up the simulation would be too complicated. Instead, individual fibrils are
directly initialized to some designed curve as an initial guess. The curves are designed to be
simple sinusoidal function that exhibit the correct interlocking and knotting of the textile
structure. The dynamic relaxation procedure is then applied to reach the static equilibrium,
as the beams are placed in stressed configurations. An example of one of these curves for a
knitted mesh is shown in Figure 5.4.1.

Where X

3

is the reference coordinate along the axis of the beam, the centroid displace-
ment field is initially interpolated to a given parameterized curve y,

q (X
3

, 0) = y (X
3

) ≠ r
0

(X
3

) .

Without adjusting the directors, this process can create a self intersecting beam (det F Æ 0)
if the curve y turns to sharply or back on itself. This is particularly an issue when generating
knitted fabrics. The directors are set using the Frenet-Serret frame of the curve [51], using
yÕÕ and yÕ ◊ yÕÕ, to create two mutually orthogonal directions to the curve, whose direction
yÕ. The designed curves are not necessarily of unit arclength, so the curvature vector (the
second derivative of the curve) may not be perpendicular to the curve. This is corrected by
creating a third orthogonal vector with yÕ ◊ (yÕ ◊ yÕÕ). The director displacements are thus
set using the formulae
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ProblemDescription

MultiphysicsBaseP

DecoupledPMonolithicP

Warp

[Fibril]CurrentBeamP ContactGroup

ProblemDescription

Figure 5.5.1: Inheritance diagram of Form objects (left) and data structure for mesh collec-
tions (right).
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The field produced by this process has torsion, depending on the curve, as the directors
rotate to follow the curvature. However, it is not severe enough to cause any issues, and the
beam will untwist as necessary during the dynamic relaxation procedure—yarns and fibrils
are even expected to have a certain amount of twist. This method fails when yÕÕ is zero, but
in this case the initial curve is straight and the directors can be set manually.

The curve y is designed in Mathematica and symbolic di�erentiation is used to create
the forms for h

1

and h
2

. The equations are then transformed into the C/Python code using
Mathematica’s CForm routine and some additional string manipulations to be copy-and-
pasted into the script file.

5.5 Data structures and Algorithms
The variational forms described in the previous chapter are directly transcribed into UFL

expressions with little hand-made optimization or simplification. The linearizations are di-
rectly made with the derivative() command. The “ProblemDescription” object contains
dictionaries for sorting the material properties, function spaces, functions, and finite ele-
ment form objects. This object is not specific to the textile simulation and was made for
convenience. The object “CurrentBeamObject” extends the “ProblemDescription” object
and contains the UFL code for only the mechanical beam formulation with a constant I ◊ B
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body force. The object “MultiphysicsBaseProblem” implements the fully coupled thermal
and electromagnetic problem. It also extends the “ProblemDescription” object, but is left a
prototype by not implementing the function space definitions and form finalization. This is
to maximize code reuse between the two di�erent monolithic and decoupled function space
formulations described in Section 4.4.1. The “MultiphysicsBaseProblem” object is extended
twice by the “MonolithicProblem” and “DecoupledProblem” objects. Each object declares
its function spaces, fields, and test and trial functions di�erently, which are then used by
the parent class to create the same expressions. The expressions are returned to the child
class to make di�erent loading and linearization terms. The hierarchy is illustrated in Figure
5.5.1.

The primary object in the simulation is the Warp object, which represents a collection of
Fibrils. Each Fibril object contains a corresponding problem description object, storing all
of the function spaces, fields and Form objects defined on its mesh using dictionaries to store
labels. The keys of the dictionaries on the individual meshes used to create corresponding
MultiMesh objects in the Warp object. The Warp object also contains a ContactGroup
object which calculates and stores the contact mapping data structures. Upon initialization,
the Warp object creates a degree-of-freedom mapping to map all of the single-mesh function
spaces into a larger function space to perform assemblies with multiple meshes. The Warp
object performs the assembly of the each fibril and all of the contact pairs using the method
described in Algorithm 5.1.

The contact data structure for the collection of meshes is a list is stored of the formÓ
A, B,

Ó
e

+

I , e

≠
I ,

Ó
s

+

J , s

≠
J

ÔÔÔ
, where A and B are mesh indices with a corresponding list of

active element pairs, which in turn has nested quadrature point tables. Automatically al-
located Python lists are used for the topmost level of the nested lists since they can be
of widely di�erent sizes. The tables of quadrature points are stored more compactly using
numpy arrays due to the larger amount of data stored. The list of meshes on which to
perform the contact determination is specified at the beginning of the simulation based on
the geometry of the textile weave pattern: e.g., possible pairs for an individual fibril are
only fibrils in the same yarn and intersecting yarns. Due to the long, non-compact nature
of the fibrils, this does not help significantly and reduces the number of mesh pairs by less
than half for plain woven fabrics! When no such possible pair determination is possible or
useful, an O (N2

mesh) search is used. Though this type of search is less than ideal, Nmesh

is small and on the order of 50 for most simulations. Spatial binary search trees are used
to accelerate the identification of element pairs, so that the total search is on the order of
O (N2

meshNelem log Nelem). Future development will include implementing optimized contact
search algorithms. The process is outlined in Algorithm 5.2.

5.6 Testing and Validation
Though the benchmarks are in Chapter 6 are the most interesting, additional tests are

used to validate the program. The tests are split into two groups: unit tests and engineering
tests. The purpose of the unit tests are to check program routines and algorithms for
correctness. The submodules have unit tests located in their respective “__init__.py” files.
The unit tests of the main library are located in “src/unit_tests/”.
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Algorithm 5.1 Contact Form Assembly across multiple meshes
1. Let gN = q

Iœmeshes NI denote the total number of degrees of freedom.
2. Create an empty Matrix or Vector object of dimensions gN ◊ gN or gN .
3. For each mesh MI : (I is a mesh index)

(a) Loop over all elements e œ MI : (e is element index)
i. Insert the sparsity pattern for the form using the Ith dof-map:

dofsI (e) ¢ dofsI (e)
4. For each active pair A, B in the contact group: (A and B are mesh indices)

(a) Loop over active element pairs {e

+

, e

≠}:
i. Insert sparsity pattern for the form using Ath and Bth dof-map:

(dofsA (e) fi dofsB (e)) ¢ (dofsA (e) fi dofsB (e))

5. Allocate memory for sparsity pattern
6. For each mesh M

+:
(a) Loop over all elements e œ MI :

i. Collect field coe�cients into local element array
ii. Tabulate local element matrix
iii. Add to global matrix

7. For each active pair A, B in the contact group:
(a) Loop over active element pairs {e

+

, e

≠}:
i. Collect field coe�cients from both meshes into macro element array
ii. Collect gauss points into local table; compute weights as 1

/N
GP

(will be scaled
by Jacobian in step iii)

iii. Tabulate macro element matrix
iv. Add to global matrix

8. Add all element contributions to finalize matrix
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Algorithm 5.2 Contact Mapping Generation
1. Deform the reference meshes by the centroid displacement fields q
2. Create binary search trees for the elements of each mesh
3. Create an empty list of active mesh pairs and respective contact mappings
4. For each pair of meshes M

+

, M

≠ with indices A, B in the specified search table:
(a) Create an empty contact mapping
(b) For each element e

+ œ M

+:
i. Use the binary search tree for M

≠ to find all elements e

≠ within the cuto�
radius of e

+

ii. For all of the found elements e

≠:
A. Create Ntable equally spaced points s

+

I œ [0, 1] and calculate r+

I =
r+

1

„

1

1
s

+

I

2
+ r+

2

„

2

1
s

+

I

2

B. Use equation 4.3.2 for all s

+

I to find corresponding s

≠
I

C. Compute the distances
---r+

I ≠ r≠
I

---
D. If any of the quadrature point pairs are within 1.2 ◊ (R+ + R

≠): add e

+,
e

≠
Ó
s

+

I , s

≠
I

Ô
to the contact mapping; otherwise, discard element pair and

gauss points.
(c) If the contact mapping is not empty, add A, B,

Ó
e

+

, e

≠
Ó
s

+

I , s

≠
I

ÔÔ
to the list of

active mesh pairs

The engineering tests verify the numerical accuracy of the program through convergence
analysis and comparison to analytical solutions. The problems in Chapter 6 are two of these
routines. Euler-Bernoulli beam problems are used using solutions from [45]. The source
code for these tests can be found in “programs/engineering_tests.py”. The electrical partial
di�erential equation is verified by solving the potential drop for an undeformed fibril with
a constant velocity and comparing against an analytical solution. The code is located in
“programs/resistor_test.py”.

5.7 Running a program
That standard procedure for a script file using the textile library is shown in Algorithm

5.3. The python source code for an example script file is included in Appendix A.
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Algorithm 5.3 Procedure for a dynamic simulation
1. Create Geometry object and get end points
2. Define property dictionaries
3. Define element number array
4. Initialize Warp object on a ProblemDescription class
5. Apply Geometry initialize routine to Warp object, or load state data from file
6. Get Geometry objects mesh-pair list for contact search
7. Define boundary conditions and application routine
8. Define assembly function
9. Create DIRK object

10. Loop for t œ 1, Nt

(a) Recalculate contact mappings
(b) Perform RK timestep
(c) Output data files
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Chapter 6

Analysis of Numerical Solution
Techniques

6.1 Introduction
The problem solved in Chapter 3 is used as a benchmark to verify and analyze the

current-carrying beam formulation. The di�erential algebraic equation of the coupled sec-
ond order, first order, and implicit PDEs is solved using a Diagonally Implicit Runge-Kutta
method. The problem is solved both dynamically and statically using dynamic relaxation.
The theoretical and numerical framework developed is verified by checking the order of con-
vergence for di�erent automatically generated finite element shape functions and compared
to the analytical solution from Chapter 3.

6.2 Time stepping
With the implicit electromagnetic problem, it is not possible to use a purely explicit time

marching scheme. This leaves three options for solving the state of the system at the next
time step:

1. Explicit/Implicit splitting: march the dynamics explicitly, solving the implicit prob-
lems at each time step;

2. Implicit time stepping with iterative solution: solve each field implicitly, and iterate
through the fields one by one until the solution converges;

3. Implicit time stepping with monolithic solution: solve all of the fields simultaneously
with a single nonlinear newton iteration.

The first of these methods was used in previous work for a network model in [101]. The
methodology is similar to solving the pressure-velocity di�erential algebraic equation for
explicit solutions to the incompressible Navier-Stokes [48]. The second is employed in a
similar network model in [130, 131]. The quasistatic analyses in Chapter 7 will be formulated
using separated problems in this fashion. The third method will be used for the dynamic
analysis in this chapter and Chapter 8.
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6.2.1 Full linearization of a Diagonally Implicity Runge-Kutta (DIRK)
method for a system with first order, second order and qua-
sistatic components

Consider the following general system of di�erential equations that contains fully coupled
second order (x (t) and v (t)), first order (T (t)), and quasistatic (V (t)) components:

d

dt

x = v
d

dt

v = f (x, v, T, V )
d

dt

T = g (x, v, T, V )

0 = e (x, v, T, V )

Initial conditions of x (t = 0), v (t = 0), and T (t = 0) are required to fully define the problem.
The initial quasistatic field V (t = 0) is not required because it must satisfy the equation
0 = e (x (0) , v (0) , T (0) , V (0)). The explicit time dependence is omitted in the following
discussion for brevity, but let it be noted that f , g, and e may all be functions of time.
Consider the case where the second order problem is a structural problem, where x and v
are each vector fields, and the first order and quasistatic component are both scalar fields.
The fields to have been discretized already so that x, v, T and V are treated arrays of
discrete values. In this discussion, it does not matter what method was used to discretize
the PDEs; the arrays are coe�cients to finite element function spaces in this work. The total
amount of degrees of freedom to be marched in time is 3N + 3N + 1N + 1N = 8N . The
majority of the degrees of freedom are associated with the discretization of x and v, so is
therefore desirable to treat the second order component specially to decrease the size of the
matrix system to be solved (from 8N to 5N in the given example).

Diagonally implicit Runge-Kutta schemes are used, allowing the nonlinear problem of
each stage to solved independently with only N -unknowns. The Butcher Tableaus of the
methods are listed in Appendix C. The schemes used are all L-stable, meaning that cer-
tain modes in the system are damped to zero as their eigenvalue magnitude tends towards
infinity[80]. The extra dampening of these methods is a desirable trait when performing
dynamic relaxation for ill-behaved problems. Additionally, the final stage in these methods
is at t+�t (i.e., cs = 1) and the final row in Aij is equal to bj

1, and so the nonlinear solution
step gives x (t + �t), T (t + �t), and V (t + �t) without any extra work. Normally when
cs ”= 1, the mass matrix can be back-solved with the linear combination to determine the
values at t + �t, but the quasi-static field would require performing an extra solution step.
Because there is no time derivative—i.e. V (t + �t) is not actually required to calculate the
next step—the quasi-static field could simply be left “dirty” and only solved when probing
it is desired. For this work, only the L-stable methods will be used for the practical reasons
described.

To illustrate the structure of the method, the Butcher Tableau of a general three stage
DIRK is as follows:

1
This property actually implies L-stability; see [1] for a proof. (The stability type was referred to as

S-stability in that work; the nomenclature used by Leveque [80] is used here.)
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c

1

a

11

0 0
c
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21

a
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0
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a

31

a

32

a

33

b

1

b

2

b
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For the rest of this section, h will be used to represent the time step size in place of �t.
For general Runge-Kutta methods marching a first-order ODE du

dt
= f (u), the intermediate

stage derivatives, ki and the updated value uN+1 at t + h at the are calculated by

ki = f

Q

a
u

0

+ h

sÿ

j=1

aijkj

R

b

and
uN+1 = u

0

+ h

sÿ

i=1

biki.

The intermediate stage values are related to one another by

ui = u
0

+ h

iÿ

j=1

aijkj = u
0

+ h

iÿ

j=1

aijf (uj) .

Now the multi-ordered system will be considered. For convenience, let the following
symbols represent the current stage value minus the diagonal component (i.e., the unknown
term): v̂i = v

0

+h

q
j<i aijfj, x̂i = x

0

+h

q
j<i aijvj, and T̂j = T

0

+h

q
j<i aijTj. The second

order system has a trivial equation dx

dt
= v. Marching the trivial component first, each stage

of the position is related to the previous stage values and current stage value of the velocity
by

xi = x
0

+ h

ÿ

j<i

aijvj + haiivi = x̂i + haiivi.

This solution will be plugged in directly into the other equations to eliminate the need to
solve for xi independently. For the other equations in the system to be satisfied for the
current stage, vi, Ti and Vi must satisfy

vi = v
0

+ h

iÿ

j=1

aijf

Q

ax
0

+ h

jÿ

k=1

ajkvk, vj, Tj, Vj

R

b

Ti = T

0

+ h

iÿ

j=1

aijg

A

x
0

+ h

iÿ

k=1

aikvk, vj, Tj, Vj

B

0 = e

A

x
0

+ h

iÿ

k=1

aikvk, vj, Tj, Vj

B

Breaking the stage summations into the diagonal and lower triangular components to group
together terms that depend on the current stage, the nonlinear system of equations

vi ≠ haiif (x̂i + haiivi, vi, Ti, Vi) = v
0

+ h

ÿ

j<i

aijf (xj, vj, Tj, Vj)

ui ≠ haiig (x̂i + haiivi, vi, Ti, Vi) = u
0

+ h

ÿ

j<i

aijg (xj, vj, Tj, Vj)

e (x̂i + haiivi, vi, Ti, Vi) = 0
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is obtained. Using the chain rule, the linearization of one the functions on the left hand side
with respect to vi is

ˆ

ˆvi

= haii
ˆ

ˆx + ˆ

ˆv .

The stage variables are linearized simultaneously around an iteration value indexed by m

by
1
v[m]

i , T

[m]

i , V

[m]

i

2
+

1
�v[m]

i , �T

[m]

i , �V

[m]

i

2
. The three systems are solved simultaneously

using the incremental updates

C

I ≠ haii

A

haii
ˆf

ˆx

[m]

+ ˆf

ˆv

[m]

BD

�v ≠ haii
ˆf

ˆT

[m]

�T ≠ haii
ˆf

ˆV

[m]

�V

= v
0

+ h

ÿ

j<i

aijfj ≠ v[m]

i + haiif
[m]

i

≠haii

A

haii
ˆg

ˆx

[m]

+ ˆg

ˆv

[m]

B

�v +
A

I ≠ haii
ˆg

ˆT

[m]

B

�T ≠ haii
ˆg

ˆV

[m]

�V

= T

0

+ h

ÿ

j<i

aijgj ≠ T

[m]

i + haiig
[m]

i

A

haii
ˆe

ˆx

[m]

+ ˆe

ˆv

[m]

B

�v + ˆe

ˆT

[m]

�T + ˆe

ˆV

[m]

�V = ≠e

[m]

i ,

where v[m]

i , f

[m]

i , ˆf
ˆv

[m], etc. are the values and function evaluations at the current Newton
step. Rewriting this as a block-matrix system, each step m of the Newton iteration requires
solving the problem

S

WWWWWWU

5
I ≠ haii

3
haii

ˆf
ˆx

[m] + ˆf
ˆv

[m]

46 5
≠haii

ˆf
ˆT

[m]

6 5
≠haii

ˆf
ˆV

[m]

6

5
≠haii

3
haii

ˆg
ˆx

[m] + ˆg
ˆv

[m]

46 5
I ≠ haii

ˆg
ˆT

[m]

6 5
≠haii

ˆg
ˆV

[m]

6

5
haii

ˆe
ˆx

[m] + ˆe
ˆv

[m]

6 5
ˆe
ˆT

[m]

6 5
ˆe
ˆV

[m]

6

T

XXXXXXV

Y
_]

_[

�v
�T

�V

Z
_̂

_\

=

Y
__]

__[

v̂i ≠ v[m]

i + haiif
[m]

i

T̂i ≠ T

[m]

i + haiig
[m]

i

≠e

[m]

i

Z
__̂

__\

REMARK: Mass Matrices
Typically a mass matrix is present in the system of ordinary di�erential equations as a

result of the spatial discretization, leading to equations of the form

ẋ = v
Mv̇ = f (x, v, T, V )
NṪ = g (x, v, T, V )

0 = e (x, v, T, V ) .
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From a finite element representation, the matrices M and N result from an assembly of the
form

M

(Ai)(Bj)

=
ˆ

�

„

A
fl„

B
”ijd�

and
NAB =

ˆ
�

„

A
flcp„

B
d�,

in the case where v is a vector field and T is a scalar field. The subscript notation (Ai)
refers to the index mapping calculation 3A + i for the degree of freedom index A and spatial
coordinate index i. The system can be modified to incorporate the mass matrices as so:

S

WWWWWU

5
M ≠ haii

3
haii

ˆf
ˆx

[m]

+

ˆf
ˆv

[m]

46 5
≠haii

ˆf
ˆT

[m]

6 5
≠haii

ˆf
ˆV

[m]

6

5
≠haii

3
haii

ˆg
ˆx

[m]

+

ˆg
ˆv

[m]

46 5
N ≠ haii

ˆg
ˆT

[m]

6 5
≠haii

ˆg
ˆV

[m]

6

Ë
haii

ˆe
ˆx

[m]

+

ˆe
ˆv

[m]

È Ë
ˆe
ˆT

[m]

È Ë
ˆe
ˆV

[m]

È

T

XXXXXV

Y
_]
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�v
�T

�V

Z
_̂
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=

Y
__]

__[

ˆvi ≠ v[m]

i + haiif
[m]

i
ˆ

Ti ≠ T

[m]

i + haiig
[m]

i

≠e

[m]

i

Z
__̂

__\

6.2.2 Assembly via Monolithic Finite Element Forms
For the monolithic scheme, single mixed function space w is constructed that contains

all of the fields:

w =

Y
______]

______[

Q

ca
vr
vg

1

vg
2

R

db

T

V

Z
______̂

______\

, ”w =

Y
______]

______[

Q

ca
”vr
”vg

1

”vg
2

R

db

”T

”V

Z
______̂

______\

with corresponding test functions on each of those fields. The position fields were left out
because those will be handled specially. Consider now the derivative and antiderivative of
the field w. Let x =

´
wdt and ẇ = d

dt
w. These are represented in the function space by

x =

Y
______]

______[

Q

ca
r
g

1

g
2

R

db

Ø
Ø

Z
______̂

______\

, ẇ =

Y
______]

______[

Q

ca
v̇r
˙vg

1

˙vg
2

R

db

Ṫ

Ø

Z
______̂

______\

.

The nulls, Ø, are place holders in the finite element function space that are not included in
variational form. These are here for convenience in the implementation and will leave behind
zero rows in matrices. There is only a storage cost in the x vector associated with the null
fields in the final program.
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In this mixed-function space form, the system is compactly written as

Mẇ = f (x, w) .

Following the same methodology as in the written-out case above, applying the scheme to x

and plugging xi = x

0

+ h

q
j<i aijwj + haiiwi into equation for wi yields a similar form of

Mwi ≠ haiif

A

wi, x

0

+ h

iÿ

k=1

aikwk + haiiwi

B

= Mw

0

+ h

i≠1ÿ

j=1

aijf (wj , xj) .

The entire system can be linearized at once about w

[m]

i in the direction �w to make the
Newton iteration:

3
M ≠ haii

ˆf

ˆw

≠ h

2

a

2

ii

ˆf

ˆx

4
�w = Mw

0

+ h

i≠1ÿ

j=1

aijf (wj , xj)

≠Mw

[m]

i + aiif

1
w

[m]

i , x

[m]

i

2
.

The rows of M and ˆf
ˆx

corresponding to Ø field placeholders are zero after the calculations
are carried out. The linearized parts of the quasistatic equations appear in ˆf

ˆw
. The system

that is produced by this formulation of the linearizations is equivalent to the above system.
The only di�erent is the ordering of the unknowns: the finite element implementation is now
free to automatically order the unknown fields. This results in a {x, y, z, T, V, x, y, z, T, V, ...}
ordering instead of a {x, x, ..., y, y, ..., z, z, ..., T, T, ..., V, V, ...} ordering, greatly reducing the
bandwidth of the linear systems.

6.3 Problem 1: Convergence of Static Analysis
In Chapter 3 it was observed that the wire has multiple static solutions corresponding

to the circularity of the beam. The initial straight configuration is a bifurcation point, from
which point multiple solution points are possible. Static analysis fails at this point. Dynamic
relaxation is used as a starting point to guide the solution towards a valid solution, followed
by a static analysis to finalize the solution. The velocity dependence prevents—or at least
mediates—convergence issues caused by the onset of contacts and the lack of sti�ness normal
to the plane of the fabric and axis of the beams. Dynamic relaxation has been used in to
study membranes [55]. Further, because of the very large deformations and steep contact
penalties, the problem is not smooth enough to solve with standard nonlinear static analysis.
An external dissipation force density is applied to the beam to bring it towards a steady
state, equal to

f = ≠“v

where “ is positive and large enough to make the motion critically damped.
The straight line will yield the solution in tension of the lowest circularity. To prevent

bifurcation to other circularities due to buckling as the endpoints are brought inwards, a
slight cosine shape is given to the z-direction displacement, as illustrated in the first frame
in Figure 6.3.1. The initial velocity of the beam is chosen to bring the endpoints from their



73

Table 6.1: Static problem parameters
J 1A � L

2

B 1T r 0.02
„

fi
4

k 10
E 10 U 1.047

original points at ±Le
1

to ±�e
1

after Tmax time has passed to produce a gradual buckling
process. This is satisfied by the initial condition

vq (X) = ≠L ≠ �
Tmax

X

1

e
1

.

The boundary condition �vq = 0 is applied at both ends to specify that the Newton update
is zero at each stage iteration on the velocities at the boundaries. It is possible to seek the
other solutions by using initial conditions that di�er from the straight line, such as helices
of a higher desired circularity. Compressive solutions could also be sought with some more
e�ort to set up initial conditions.

The time series of the solution process is shown in Figure 6.3.1. Most of the computational
e�ort is spent during the dynamic relaxation phase, in fact, as about fifty time steps are
needed before the static solution can begin. The penultimate frame is the final step of the
dynamic relaxation phase, and the ultimate is the final step of the static solution. Using
exactly the same finite element routines used to develop the finite element problem, the
Newton iteration for the static analysis is

F
1
x

I
, 0

2
+

”F
1
x

I
, 0

2

”x

�x = 0

using the position at the final time x (T ) as the initial value x

0 where x

I+1 = x

I + �x is the
update for iteration step I. The velocities must be explicitly set to zero at the end of the
dynamic relaxation phase due to the force law being dependent on the velocity (failing to
do so changes the loading.)

To compare with the analytical solution, it is necessary to take the limit as the beam
becomes more stringlike, or as the second moment of area approaches zero. For beam of
circular section, this quantity is

IMOA = fi

4 r

4

.

This requires taking the limit as the radius decreases, r æ 0. To prevent the problem from
scaling di�erently or even becoming unsolvable, the non-dimensional parameter k = IB

/EA is
kept fixed. Picking a constant current density J (such that I = JA) instead of picking a total
current satisfies this requirement. Thus, the analytical solution remains fixed as the radius
is decreased. Additionally, the analytical solution was based on a linear elastic constitutive
law. To keep the large-deformation constitutive law used in the numerical model in line with
this assumption, k has to be kept small enough for the solution to be in the small-strain
regime.

The parameters chosen are stated in Table 6.1. The y = x
2

position of the center point
of the beam, l = 0, X = 0, 0, 0, is chosen to compare solutions. The process of decreasing
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Figure 6.3.1: Snapshots of beam state during solution process. The top left frame is the
initial condition, and bottom right frame is the solved state. The black line is the reference
configuration of the beam centerline. The arrows represent the directors with an exaggerated
magnitude, but the mesh is properly scaled to represent the material surface.
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Figure 6.3.2: Decreasing the beam radius to approach thin-string limit with a numerical
solution p = 2 and N = 40. The analytical solution is shown by the horizontal dashed line.

the radius is shown in Figure 6.3.2. Forty quadratic elements were used in each simulation,
which, from the study below, was su�ciently accurate. A radius any smaller than r = 0.02
became too di�cult to solve, requiring more time steps and computational e�ort than would
be desired with which to perform a convergence study. The numerical and analytical solution
are in agreement within the limits of their di�ering assumptions. The analytical solution itself
requires a numerical solution step to solve the implicit equation to determine Ê, providing a
source of numerical error of the “true” solution.

To verify the model, a convergence study for this problem is performed, varying the
polynomial order and discretization size. Linear, quadratic, cubic, and quartic elements
were used. The same polynomial order for the centroid position and directors is used. Note
that the finite element basis only e�ects the order of the solution along the axis of the beam;
the cross sections remain linear. The results are shown in Figure 6.3.3. Since the problem
solved analytically and the problem solved by the finite element model are not exactly the
same, a “best” solution must be used instead of the analytical solution to estimate converge
orders. The most refined and highest order numerical solution is taken to be the “best”
solution; in this case it was a quartic, p = 4, polynomial order with N = 35 elements. The
error is measured by comparing the center point displacements,

e =
---yN (0) ≠ y

Best (0)
--- .

Since the solutions are being probed in the interpolation space, a convergence order of p + 1
is expected: i.e., e = O (hp+1). The convergence orders were estimated using the linear
regression module in SciPy[66] using the data in Figure 6.3.3. The obtain orders are shown
in Table 6.2. The obtained orders are in line with expectations.

6.4 Problem 2: Convergence of Dynamic Analysis
The thermal and electrical problems are now considered as well in a dynamic analysis.

In a similar set up to before, the beam is pinned at both ends and an applied voltage
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Figure 6.3.3: Convergence of the beam solution with decreasing element size, h = 2L/N ,
and increasing polynomial order p. Left, displacement of center point against number of
elements, with analytical solution represented by the horizontal dashed line. Right, log-log
plot error as element size decreases, with error measured with respect to the solution at
p = 4 N = 35.

Table 6.2: Convergence orders
Polynomial Basis Convergence Order

1 1.99387087127
2 3.65015679928
3 3.99825393249
4 5.75578992219

x,v

VT

v×B

S∇T

JƸE

∂ψ

ƫ(T),ƪ(T)
J×B

∂T

Figure 6.4.1: Coupling diagram of fields.
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Figure 6.4.2: Time series of the model problem with frames spaced equally apart. The mesh
is colored by the current magnitude, measured in amps, with the same ranging in each frame.
(The current magnitude is not exactly uniform along the beam at each point in time, though
it may not be discernible from the color range.)
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Table 6.3: Dynamic problem parameters
�V

2
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V � 0mm

B 1T r 0.02mm

„

fi
4

“ 0.01Ns
m

E 10MPa ‡ 10 S
mm

–µ -0.1MP a
K

S 0.1 V
K

and external magnetic field will cause it to deform. The three fields are fully coupled; the
e�ects by which they e�ect one another is illustrated in Figure 6.4.1. The temperature-to-
mechanical coupling is added using a temperature dependent constitutive law for the first
Lamé parameter,

µ (T ) = µ

0

+ –µT

which is used in the Neohookean strain energy law. The Seebeck e�ect is used to add
a temperature-to-voltage coupling, as described in Section 2.6. The e�ect modifies the
equation for the electric potential to

Òx · ‘rÒxV = Òx · ‘rv ◊ B ≠ Òx · ‘rSÒxT,

adding another source term based on the gradient of the temperature. Without these two
constitutive responses, the temperature field would not be required to solve the system and
could be post-processed. The clamps remain fixed, and the electric current varies due to
the motion of the beam inducing a back electromotive force. The parameters used for this
simulation are shown in Table 6.3. In addition to the pinned boundary conditions on the
centroids, at both of the end points the temperature change is held fixed at 0K and the
voltage is held fixed at ±1

5

V . (This is not absolute zero, of course; the temperature is
normalized so that the initial temperature of the material is 0.)

The beam is discretized in space using forty elements and all of fields have linear basis
functions. Since there is no even approximate analytical solution for comparison, the spatial
discretization is not important and is kept low to decrease the computational cost of each
time step. Four locations are probed in the solution:

1. Vertical displacement at the center, y (l = 0)
2. Lateral displacement a quarter of the way through the beam, z (l = 1

/2)
3. Temperature a quarter of the way through the beam, T (l = 1

/2)
4. Voltage a quarter of the way through the beam, V (l = 1

/2)
Only the first probe is placed at the center because the (anti-)symmetry of solution causes
uninteresting behavior in the other fields at that point. The values of these fields at the final
time tmax are used to determine the accuracy of these schemes. Since there is no available
analytical solution for this problem, even an approximate one as was the case previously,
the solutions are compared to an over-refined case of three stages and one thousand time
steps, s = 3, NT = 1, 500. The deformation and current field of the beam is rendered in
Figure 6.4.2 and the fields probed are plotted in time in Figure 6.4.3. It should be noted
that the current used to color Figure 6.4.3 is not a discretized field: it is post-processed from
the other fields. The primary field that is actually solved for the electrical problem is the
voltage.
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Figure 6.4.3: Time plots of the four probes from the most refined case, s = 3, NT = 1, 000.

Since the beam is initially at rest, the initial voltage at l = 1

2

(recall that the beam is of
length 2) can be verified with a quick back-of-the-envelop voltage-divider calculation to be
equal to �V ◊ R1

R
T otal

≠ VGND = 2

5

◊ 3R
4R

≠ 1

5

= 0.1V . As the beam slows down, it approaches
this value again, though the simulation is specifically stopped before steady state is reached.
The voltage along the beam varies as the beam moves through the magnetic field. The
temperature field increases unsteadily from the Joule heating term. The strain-energy term
and heat flow through the boundary conditions allow the temperature to drop at certain
points in time. The large variations in the temperature are due to the change in current as
the beam’s velocity changes. The beam heats up initially when the current is high. As it
deforms, the current drops from the back electromotive force, and the cooling rate overpowers
the joule heating rate. The beam heats up again when the beam slows down and the current
increases again, and then cools o� when the current drops again during the second large
oscillation.

The three L-stable DIRK schemes used are described in detail in Appendix C. The one-
stage scheme of the family is Backward Euler. The expected convergence rates for a standard
ordinary di�erential equation for these schemes are O (hs), where s is the number of stages
(s = 1, 2, 3). The errors for each of the fields as each of the DIRK methods are refined
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Figure 6.4.4: Error analysis for the three DIRK methods. Each time step size executed is
shown; the final “converged” points used for the order analysis are marked with crosses.

in time are shown in Figure 6.4.4. The convergence orders were computed with the points
marked by crosses, and the results are tabulated in Table 6.4. The error in the Voltage field
for the second order scheme is not monotonic at the end of the simulations sampled, but
is decreasing at about the expected rate. The monotonic decrease of the other fields for
this scheme does provide confidence that the method is working. The fact that the scheme
behaves di�erently for only this field compared to the first and third order method merits
further investigation. The error tolerance for the Newton’s method iterations is set to 10≠12,
and soS absolute errors near 10≠8 after 1,000 time steps are not very reliable for convergence
analysis due to the accumulation of truncation errors in the solution of each time step. This
limits the ability to continue to refine the time step size.

6.5 Conclusion
When using a time stepping scheme, in either a time-dependent problem or a dynamic-

relaxation context, each Newton iteration has quadratic convergence as long as the step size
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Table 6.4: Computed convergence orders for three considered DIRK time stepping schemes.
The expected convergence order is equal to the total number of stages for each scheme.

Field 1-stage 2-stage 3-stage
y (0) 0.85632857532 2.12478679641 3.04844968836
z

1
1

2

2
0.954843792689 1.89428967169 3.43166533069

T

1
1

2

2
1.1294729926 1.96219295075 3.06047011038

V

1
1

2

2
1.08130305608 1.78783635127 3.61152272495

is su�ciently small. The DIRK methods with a monolithic solution are able to solve the
coupled di�erential algebraic equations. The methods converge as expected for standard
ordinary di�erential equations in all of the fields, including the implicit voltage field. Future
work on this topic should compare the performance of decoupled iterative solution and
explicit/implicit splitting time stepping methods to the monolithic methodology. Other
families of Runge-Kutta methods that do not have the L-stable property should also be
tried.

The spatial discretization was unchanged when analyzing the dynamic coupled problem.
Further study is merited towards analyzing the e�ect of using mixed-order basis functions
for each of the fields, e.g. using quadratic elements for the mechanical fields and linear
elements for the temperature and voltage fields. However, it was observed that there was no
restriction in using the same basis functions for each of the fields.
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Chapter 7

Material Prediction through Static
Analysis

7.1 Introduction
Even with the simplified beam-based model developed, the number of degrees of freedom

required to simulate a large-scale textile with the complete discretization is intractable. Rep-
resentative volume elements can be used to predict material properties quickly and e�ciently
to inform the design of new fabrics.

Simple fabrics without a matrix material are considered. Individual fibrils are free to slide
past one another, producing a plastic-type behavior at the macro-scale. The contact laws
can take into account interstitial media that e�ect surface resistances and friction. Plastic
deformation and failure of the individual fibrils is not considered, but it is noted that the
constitutive responses could easily be extended. Since a static analysis is being considered,
sliding-friction models have no bearing. Static-frictional contacts are not considered (and
would require more e�ort to implement.) The framework developed can handle arbitrary
microstructures.

A simple four-yarn-by-four-yarn woven fabric unit cell is considered in this chapter as an
example. Four yarns are used in each direction to negate the e�ects of boundary conditions.
The yarns are laid out in two directions, called the warp and weft direction. Due to the man-
ufacture process, wherein the warp yarns are held taught and the weft yarns are interwoven
through them, the weft yarns are typically thinner and lighter than the warp yarns.

7.2 Homogenization
The microstructure creates an inherently anisotropic unit cell for a continuum model. The

deformation of the fibrils at the microscale creates cross-couplings between the mechanical
fields and the thermal and electrical fields, so that the bulk conductivities and permittivities
will be strain dependent. A continuum model could also be developed for the electric re-
sponses, but this would be too broad to model patterns of insulating fibrils and conducting
fibrils required for some applications, such as complex electronic circuits. Another strategy
is to model each unit cell as an electrical network with property-dependent resistors, with
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Figure 7.2.1: Homogenization of a microstructure into an anisotropic solid and an electrical
network

a one-to-one mapping between unit cells and network cells. A network model can be more
readily incorporated into standard electric circuit analysis methods. For example, see [111]
for development of resistor network model from experimental data. The homogenization
process is illustrated in Figure 7.2.1.

At the microscale level, the stress, displacement, heat flux, and thermal fields are locally
variable. To create a macroscale model, it is desired to average out the microscale fields to
create constitutive responses for the average stress ÈPÍ based on the average strain, ÈEÍ,

ÈPÍ = P̂ (ÈEÍ)

where the average of a tensor is defined as ÈAÍ = 1

|�|
´

�

Ad�. Producing an expression for
P̂—e.g. an empirical response of the form ÈPÍ = a

1

ÈEÍ + a

2

ÈEÍ2 + ...—can be challenge.
The simulation will be used to tabulate responses instead that can be used in a look-up-
and-interpolate material model. Such tables can be implemented in a finite element model
of a macroscale textile easily. The desired quantity at the macroscale is the divergence of
the stress, ÒX · P, which yields an averaged traction,

ÈÒX · PÍ =
ˆ

�0

ÒX · Pd�
0

=
˛

ˆ�0

PNd�
0

can be determined by integrating along the boundary of the unit cell. Because the textile
unit cell is made up of discrete bodies, the average traction on a boundary is calculated by
a summation,

ÈtÍ = 1
|�

0

|
ÿ ˆ

�0

PNd�

which is related to the total force on the boundary by f = |�
0

| ÈtÍ. This will be used to
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Figure 7.2.2: Probe locations

produce an e�ective constitutive response for the unit cell by by producing two sets of data

fwarp = f̂warp (ÈEÍ) =
ÿ

Mfl�

warp

ˆ
�

warp

P · E
1

d�

fweft = f̂weft (ÈEÍ) =
ÿ

Mfl�

warp

ˆ
�

weft

P · E
2

d�

for each side of the unit cell. The same process can be performed on the heat flux to produce
a constitutive response for the heat flux ÈqÍ = q̂ (ÈÒT Í) .

Creating an electrical network model does not require any averaging operations. It is
required to obtain the total current that passes through the unit cell in response to an
applied voltage di�erence. The applied voltage is the same on the macroscale and microscale.
The total current is obtained by integrating the current density along the boundaries of the
domain corresponding to the probe locations,

I =
ˆ

�1

J · nd� = ≠
ˆ

�2

J · nd�

which should be equal-and opposite if a simple current path is considered. The e�ective
resistance is V

I
= R. For the textile unit cell, the e�ective resistance will depend on the

strain as well, so the model will be used to produce response data of the form

I = Î (V, ÈEÍ) .

The resistances of three electrical paths are determined: (1) straight through the same yarn,
(2) between two parallel yarns, and (3) two perpendicular yarns. The probe locations are
illustrated in Figure 7.2.2.
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Algorithm 7.1 Sampling procedure using dynamic relaxation
1. Find the next equilibrium position for sampling:

(a) Set the velocity field to a given strain rate.
(b) Solve the dynamic problem—only solving for the mechanical fields—for tstep time.
(c) Set the velocity field to zero.
(d) Solve the dynamic problem with a large dampening parameter for trelax time.

2. Record reaction forces and electric currents:
(a) Set the velocity field to zero.
(b) Integrate f = q

I

´
�

I

P · E
3

d� to determine the total reaction force on desired
boundaries.

(c) For each set of probe locations:
i. Set the voltage field to match the desired probe values
ii. Solve the electric potential problem with the relaxed mechanical fields with

applied potential boundary conditions
iii. Integrate I = q

I

´
�

I

J ·eyd� to determine the total current on desired bound-
aries.

iv. Solve the thermal problem
v. Save fields to a file

3. Repeat until all desired samples have been taken.

7.3 Methodology
States of the material after heavily dampened relaxation times are taken to be the equi-

librium states of the material. The sampling procedure is detailed in Algorithm 7.1. This
system only works assuming a one-way coupling between the mechanical state of the material
and the thermal and electric fields. If more complicated constitutive laws are considered,
the thermal and electric problems need to be varied independently, so that many more sam-
ples of the material state would be needed. E.g. the total number of samples would be
Nmech ◊ Nther ◊ Nelec for the number of states for each field. The state of the fabric is
saved after every stretching iteration as a precaution against computer crashes and power-
outages and to enable further analysis after program termination by loading each of the
configurations and calculating new resistances and heat transfer coe�cients.

In the mechanical analysis, the centroids are pinned at their initial condition. The cross
sections are free to pivot to allow the yarns to reorient so that there is a no-applied-torque
boundary condition on the directors. The boundary conditions can be written for the strong-
form problem as

�vr = 0 on ˆ�ˆ
A

›

1

t̄d� = 0 on ˆ�
ˆ

A

›

2

t̄d� = 0 on ˆ�

where �vr is the Newton update on the velocity. In the matrix system, it is Newton updates
that are solved, so specifying that the velocity at the boundaries should not change enforces
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Table 7.1: Simulation Parameters for plain woven fabric
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that the velocity remain at the prescribed value. Because the boundary conditions are on
the Newton update and the velocity is imposed directly, the same boundary conditions can
be used in both the stretching phase and the relaxing phase.

The voltage field has Dirichlet boundary conditions only on the probe locations, �B and
�P , where �P matches only one of the three locations illustrated in Figure 7.2.2. Even
through the problem for the potential happens to be linear in this case, the same Newton’s
method solver is used. The desired values for the Dirichlet boundary conditions are set via
an initial condition, and the boundary conditions applied to the matrix system are on the
Newton update, which must be set to zero. The remaining boundaries are insulating so that
J̄ · n = 0. The boundary conditions on the PDE are

�V = 0 on �Band�P

≠�≠1J · n = ✏rÒxV · n = 0 on ˆ�\ (�B fi �P )

where �V is the Newton update on the voltage. The e�ect of Joule heating in the fabric is to
be observed. The temperature is pinned to zero (di�erence from the reference temperature)
on the boundaries. Similarly to the electric potential, the boundary conditions are set with
initial conditions and the matrix system boundary condition is a zero update, or

�T = 0 on ˆ�.

7.4 Results
In this example, all of the fibrils are the same. The properties are listed in Figure 7.1.

The initial configuration and the relaxed state are shown in Figure 7.4.1. The reference
configurations of each of the fibrils is straight, and the fibrils would intersect with crossing
fibrils if started from the reference configuration. Each yarn is initially in a three-level stack
of with a 3-4-3 fibril count pattern (see the bottom left of Figure 7.4.1.) After the relaxation
process, it is observed in in the cross section through one of the center yarns shown in Figure
7.4.2 that the yarns flatten out into a two-level stacking.

Two deformations are considered: uniaxial extension and simple shearing. The velocity
field used to drive uniaxial extension/compression (Step 1a in Algorithm 7.1) is

v = �step

tstep

X

1

L

0

e
1

.
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Figure 7.4.1: Initial condition geometry (top) and dynamically relaxed geometry (bottom).
The mesh is colored by total reaction force across the cross section,

´
C

PE
3

dA, measured in
newtons.

Figure 7.4.2: Cross section of relaxed plain weave. The internal reaction force is measured
in newtons.
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The velocity field used to drive the simple shearing is

v = �step

tstep

X

1

L

0

e
2

.

In these equations, �step is the desired strain to be applied during the step over the course
of tstep time. The unit cell is brought to 25% strain over the course of ten steps for both
cases. The final strained states are rendered in Figure 7.4.5. The calculated force and current
responses are plotted in Figure 7.4.3 for the uniaxial extension case and in Figure 7.4.4 for
the for the shearing case. The z direction corresponds to out-of-plane reactions. Because
only in plane motion is considered, the reaction forces stay new zero in this component.

The endpoints of each of the fibrils is held fixed at the reference length. Because of the
interweaving, this places each fibril in tension, though the stress fields are not uniform as
seen in Figures 7.4.1 and 7.4.2. Some fibrils in the corners have particularly high stresses,
such as the one visible at the top of the figure, where they are unable to move due to the
pinned boundary conditions. The unit cell is thus originally in tension, with approximately
two newtons of force acting on the clamps in both directions. A relaxation process could
be applied in which the yarns at the boundary were allowed to move inwards to bring the
initial tractions to zero.

The variation in the resulting currents for this static analysis is due to the strain is depen-
dent entirely upon conduction through contacts. Using the constant isotropic conductivity
constitutive law, the electrical resistances do not change due to the deformation because of
the transformation of the conductivity tensor. The fibrils can be analyzed separately if they
are insulated, allowing the electrical problem to always be pushed back into the reference
configuration

I =
ˆ

�

�ÒxV · nd�

=
ˆ

�0

3 1
J

F�
0

FT
4 1

F≠T ÒXV

2
· JF≠T Nd�

0

=
ˆ

�0

�
0

ÒXV · Nd�
0

so that the current passing through the boundary of each fibril would always be same. It is
possible to consider constitutive laws for the conductivity tensor that is dependent on the
state of the material beyond the transformation from the reference configuration to current
configuration. This would allow the resistance to change without contact resistances present.

The current distributions through the fabric in these deformed states are shown in Fig-
ure 7.4.6. As can be seen in Figure 7.4.6, an appreciable amount current passes through
neighboring yarns in all cases. With the network model illustrated in Figure 7.2.1, the unit
cell is contains 16 ◊ 2 yarn resistors and 16 ◊ 4 contact resistors. Assuming that there are
only two types of resistors that see the same input stress state, Ry (ÈEÍ) and Rc (ÈEÍ), the
three probes could be used to calculate the resistances for the unit cell. The temperature
distributions in the unit cell due to the Joule heating e�ect are shown in Figure 7.4.7.

A larger current corresponds to a lower resistance. As could be expected, the resistance
measured along a single yarn, Probe 1, is always the lowest. However, the additional con-
ducting paths present due to the electrical contacts allow the resistance to vary significantly
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Figure 7.4.3: Reaction forces and currents for the uniaxial stretching case. A test voltage of
1V is applied, so the e�ective electrical resistance is the reciprocal of the measured currents.

as the textile deforms. The contact resistance can change drastically as fibrils slide by each
other. This causes the response current to change non-monotonically, and even reverse trend
at some points. The resistance can be decreasing due to an increase in contact pressure be-
tween two fibrils, but at critical point as the deformation continues the fibrils can rearrange
to a state with lower contact pressures resulting in a higher resistance. The increase in
contact pressures and rearrangement of contacts cause the resistances for Probes 2 and 3 to
overall drop significantly as the textile is stretched in both cases.

7.5 Conclusion
The fibril configurations studied are not necessarily unique. Due to the discrete nature

of the structures, other packings are possible that will result in di�erent local stresses that
may a�ect the macroscopic response. A more detailed study would repeat the analyses on
perturbed initial states to quantify the range of responses.
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Figure 7.4.4: Reaction forces and currents for the uniaxial shear case.
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Figure 7.4.5: Final stress distributions at 25% strain for stretching (top) and shearing (bot-
tom). The reaction force is measured in newtons.
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Figure 7.4.6: Current distributions for the three probe locations for the largest calculated
strains for the stretching (left) and shearing (right). The current is the total through the
cross section, measured in amps.
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Figure 7.4.7: Temperature distributions due to Joule heating for the three probe locations for
the largest calculated strains for the stretching (left) and shearing (right). The temperature
is measured in degrees Celsius in relation to the boundary.
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Chapter 8

Electromagnetic Armor Simulation
through Dynamic Analysis

8.1 Introduction
Many novel armors seek to incorporate electromagnetic elements to enhance their perfor-

mance. The strategy illustrated in Figure 1.1.2 in Chapter 1 is simulated. It is possible to
control the fabric to deflect the direction of the projectile, tipping the projectile in addition
to purely stopping the projectile head-on. Turning the projectile to its broad side is desir-
able because this will increase the contact area, distributing its energy across a large portion
and reducing the damage to the remaining armor. An important note is the “one-time-use”
design criterion of armors: a successful strategy for negating a threat can be self-destructive.
This allows for the exploration of very extreme ranges of electromagnetic fields that would
not be normally accessible in standard industrial settings. This allows the capabilities of
the computational model to be tested in an extreme scenario where various e�ects, such as
the back-electromotive-force, become significant. Capacitors designed for these applications
were demonstrated in [5].

Firstly, the boundary conditions are discussed to address issues in dynamic analyses
that do not appear when performing material property prediction. Then, the fully-coupled
dynamic problem is employed to observe to observe the resulting deformation of a small
textile with di�erent magnetic field orientations. Finally, the electromagnetically enhanced
armor is simulated.

8.2 Weakened Voltage Boundary Conditions
It is desired to consider the case where only certain fibrils are connected to an electrical

circuit, and the others are insulated. For example, consider the case of a plain-woven fabric
where it desired to run current along one direction: both ends of the warp yarns are connected
to applied voltages, and the weft yarns are insulted. Trouble arrises in the quasi-static voltage
problem when some of the weft yarns are isolated from the warp yarns. If an insulated
conductor is not in contact with any body connected to the circuit, the solution to the
voltage has an undetermined constant mode on that body. That is, if V (x) is a solution,
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No Dirichlet BCs on 
bottom mesh

Contacts produce 
well-posed problem

V(0)

V(L)
V(L)

V(0)

V(0)

V(L)

Mixed BC defines voltage
gauge on bottom mesh

Figure 8.2.1: Mixed boundary condition, with a su�ciently large external resistor R, keep the
electric potential well defined when insulated conductors are disconnected from the Dirichlet
boundary conditions.

then so is V

Õ (x) = V (x) + C for all constants C. For certain configurations of contacts,
the problem may be split up into separate groups of fibrils are in contact. If no Dirichlet
boundary condition is present in a collection, the sub-problem is ill-posed. There is no
unique solution and the final matrix system for the entire set of fibrils will be rank deficient.
Depending on the solver type being used, this can be unsolvable. The uBLAS library for
sparse linear algebra used would sometimes fail to solve the resulting matrix and other times
produce a constant field on unpinned fibrils with a seemingly random value. Both results
are undesirable.

To prevent this ill-posed problem from arising, the condition of insulation is weakened
on non-connected fibrils. On one end, a mixed boundary condition is substituted of the
form given in Equation 2.8.2. As the resistance increases, R æ Œ, the boundary condition
approaches an insulated one, but when the fibril is isolated, the voltage will be well defined
and equal to the external voltage of the boundary condition, �VE. This is analogous to
applying pull-down resistors in electronic circuits to keep signals well defined.

If a di�erent electrical discretization was being used in which the interstitial air or vacuum
were also discretized in addition to the conducting media, this would not be a concern. The
electric potential in the vacuum would couple all of the bodies, even if there were no electrical
contacts between the conductors. Of course, there would still need to be a Dirichlet boundary
condition somewhere in the system.

8.3 Induced Deformation
The current-carrying yarns on the warp yarns are oriented along x. The angle of the

magnetic field is varied to produce three fields: B
1

= B cos fi
4

ex + B sin fi
4

ey, to produce a
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Table 8.1: Simulation Parameters
L

0

12.5mm ‡ 10 S
mm

Bmag 0.005kT

L 10.0mm k 1.0 W
mmK

T̄ 0K

fl 0.00144 g
mm3 hC 0.1 W

mm2K
r̄warp 100 A

V

E 1.26MPa ‡C 1.0 A
mm2V

J̄warp 1000 A
mm2

‹ 0 P

ú 500 N
mm

r̄weft 0.001 A
V mm2

Rwarp 0.4mm “ 0.1Ns
m

J̄weft 0 A
mm2

Rweft 0.6mm S 0 V
K

–µ 0MP a
K

cork-screwing e�ect; B
2

= Bey, to produce an upwards force; and B
3

= B cos fi
4

ey +B sin fi
4

ez

to produce an up-and-sideways force. The weft yarns are slightly thicker than the warp
yarns, but all other material properties are the same. The simulation parameters are shown
in Figure 8.1. Each fibril is meshed with thirty elements using linear basis functions.

The time series of the fabric deformation for the three magnetic fields are shown in Figure
8.3.1. The temperature fields for the final time are shown in Figure 8.3.2. In the first frame,
the weft yarns are not in contact with the warp yarns, so their voltage is held near ground by
the weakened boundary condition. When the fabric deforms and the yarns come in contact,
the voltages of the weft yarns are defined by the contacts.

Because of the initial configuration of the weave, the yarns in the cork-screwing e�ect,
B

1

, originally seek a high-circularity configurations. As the fabric tightens, the yarns are
relaxed into a lower-circularity configuration, but are still less straight than the resulting
deformation for the perpendicular magnetic field. The yarn on the side starts to unravel
from the weft yarns by sliding o� in a few locations in the B

3

case.

8.4 Electromagnetically Enhanced Armor
Only beam-beam contact methods were implemented, so the projectile is represented as a

single director-based element. The elliptical cross section representation has the unintended
result that the end points of beams will be hemispherical. That is, if the closest point on one
beam is on the end point of the mesh, the equation R =

Ô
�x

2 + �y

2 + �z

2 representing the
surface will reduce to round o� the endpoints. This e�ect is exploited to handle projectile–
fibril contact.

A 32 yarn by 32 yarn plain woven fabric is modeled. Each yarn is discretized with 80
elements, and the projectile is one element. A mixed boundary condition is applied on one
side and a Dirichlet boundary condition on the other so that current only runs through
the warp yarns. The weft yarns are insulated from the warp yarns, ‡C = 0, and are only
connected to a weak insulating boundary condition. However, because the voltage PDE
is also solved on the weft yarns, there can be local current and charge build up due to
nonuniform motion through the magnetic field. The third magnetic field orientation from
the previous section is used, B = B cos fi

4

ey +B sin fi
4

ez, so that the projectile is pushed at an
angle by the electromagnetic force, both opposing its motion and tipping it. The parameters
used in the simulation are shown in Figure 8.2. A relaxation calculation is run first to obtain
the resting state of the textile. The projectile is present in this simulation but stationary so
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Figure 8.3.1: Time frames of the deformation of three orientations of the magnetic fields,
from left to right: B

1

in the xy plane, B
2

along the y axis, and B
3

in the yz plane. The
orientation is rendered as an arrow above each. The coloring is by current, measured in
amperes.
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Figure 8.3.2: Final state of the fabrics colored by temperature (degrees Celsius).

Table 8.2: Impact Simulation Parameters
L 50.8mm ‡ 105

S
mm

Bmag 0.001kT

fl 0.00144 g
mm3 k 1.0 W

mmK
T̄ 0K

E 1.26MPa hC 0.1 W
mm2K

r̄warp 100 A
V

‹ 0 ‡C 0.0 A
mm2V

J̄warp ≠100 A
mm2

Rwarp 0.4mm P

ú 20 N
mm

r̄weft 0.001 A
V

Rweft 0.4mm “ 0.1Ns
m

J̄weft 0 A
mm2

Rprojectile 18mm ‡projectile 1 S
mm

r̄projectile 0.001 A
V

Lprojectile 5.5mm + 2R “projectile 0 Ns
mm

J̄projectile 0 A
mm2

flprojectile 0.01 g
mm3 S 0 V

K
–µ 0MP a

K

that the data arrays will have the same size. The file is saved and then loaded as the initial
condition for each the impact simulation. After loading the relaxed state, the velocity of the
projectile is set to the desired value.

The two-stage second-order DIRK is used. Although an L-stable integration scheme is
used, the time step size is strongly limited by the ability to solve the nonlinear system of
equations for each stage. The major limiting factor in the regularity of the system is the
non-smooth contact laws. The time step must thus be kept small enough to catch new
contacts within an update. A useful heuristic for the maximum allowable time step is

�tmax ¥ 1
20

Rmin

vmax

where 20 is an arbitrary “magic” number, dictating that the fasting moving object in the
system should take twenty time steps to cross the smallest fibril radius. The maximum
velocity can be approximated by the initial speed of the projectile for impact simulations,
though it is possible for small pieces of the armor to be moving faster from momentum-
transfer at some time. The simulation is performed for 0.5ms using 1,000 time steps so that
�t = 0.0005ms. The resulting deformation is shown in Figure 8.4.1.

The projectile is not rigid, so although it does not have many degrees of freedom, it is
able to deform. The end points of the element oscillate, producing an interesting e�ect. In
Figure 8.4.2, the velocity of both ends of the projectile is plotted. This is not necessarily
a numerical artifact. If the material properties of the projectile are representative of the
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Figure 8.4.1: Equally spaced snapshots of the impact simulation. The coloring is by current,
measured in amperes.
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Figure 8.4.2: Projectile velocity in z direction, with the initial velocity being ≠30m
s

. The
velocity of the center of mass as well as the two end points is plotted. The projectile initially
compresses, and at the end begins to expand.

threat of interest, the oscillatory behavior is a very low-fidelity calculation of the stress waves
propagating through the projectile. The velocity of the center of mass of the projectile shows
a steady decrease as it is slowed down by the fabric. The projectile initially compresses on
impact. The angular velocity of the projectile can estimated using the formula for a rigid
body, ! = r

CM

◊v

rel

r

CM

·r
CM

. Using the velocities and positions of the top node and bottom node of
the projectile, the angular velocity is calculated as

! =

1
1

2

qtop ≠ 1

2

qbot + L
2

ez

2
◊

1
1

2

vtop ≠ 1

2

vbot

2

1
1

2

qtop ≠ 1

2

qbot + L
2

ez

2
·

1
1

2

qtop ≠ 1

2

qbot + L
2

ez

2
.

The angular velocity of the projectile around the x axis is plotted in Figure 8.4.3.
Increasing the current through the textile will increase the amount of force that can be

applied. However, the device is limited by its ability to destroy itself through melting. A
linear increase in current results in a linear increase in the force, but results in a quadratic
increase in the the Joule heating term, since r = ‡J 2. The temperature of the fabric during
the impact is shown in Figure 8.4.5. Interestingly, the fabric is hottest in a ring around
around the projectile. Because of the heat flux through contacts, the massive projectile acts
as a thermal reservoir and cools the pats of the fabric it is in contact with. On the other
hand, projectiles are usually a high temperature, which would increase the rate of heating
at the impact site at first.

A close up of the impact site is shown in Figure 8.4.6. The deformation of the yarns due
to the magnetic force is visible, where the current carrying warp yarns are being lifted o� of
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Figure 8.4.3: Angular velocity of the projectile about the x axis. The angular velocity is
negative due to the orientation.

the weave. The increase in current in the yarns near the projectile is visible. The motion of
the projectile pushes the yarns through the magnetic field in a way that causes a beneficial
back electromotive force. This increases the current running through the yarns in contact
with the projectile. The back EMF e�ect is not symmetrical. The yarns on the ≠y side of
the projectile are able slip in the direction they are forced in, decreasing the back EMF. The
current running through three di�erent yarns at di�erent positions in the fabric is show in
Figure 8.4.4 illustrating this e�ect. The asymmetric current distribution causes the +y side
of the fabric to be hotter than the ≠y, as seen in Figure 8.4.5.
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Figure 8.4.4: Electric current sampled in three di�erent yarns, one on the ≠y side of the
projectile, one on the +y side of the projectile, and one on the edge not in contact with the
projectile.

Figure 8.4.5: Temperature distribution at t = 0.5ms
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Figure 8.4.6: Close up near impact site at t = 0.5ms. The yarns are colored by current using
the same scaling as Figure 8.4.1. The view is looking in the ≠y direction.
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Chapter 9

Outlook

9.1 Conclusion
A mixed finite element formulation for nonlinear beams incorporating thermal and elec-

tromagnetic fields was developed. The formulation was observed to solve static problems
with the expected order of convergence using standard nodal basis functions of up to fourth
order. The fully-coupled time dependent di�erential algebraic equation was solved using
diagonally implicit Runge-Kutta methods with a monolithic Newton iteration to solve the
stages. The convergence rates expected for standard ordinary di�erential equations for the
three methods used were observed in all fields, including the implicit electrical potential,
validating the solution scheme. The tangents of the multi-field mixed formulation required
for the implicit scheme were generated automatically by employing a Domain Specific Lan-
guage. Quadratic converge was observed in the applications of Newton’s method using the
code generated for the contact integrals. The framework was used to predict the mechanical,
electrical, and thermal properties of a representative volume element of a plain woven fabric
of conductive elements.

The usage of a high level domain specific language for di�erentiation code generation
was crucial to this work. For some of the more complicated weak forms used, the generated
C++ files could be over 10,000 lines long, with some individual lines exceeding 2,000 charac-
ters! Developing the local matrix tabulation routines for both the load vectors and tangent
sti�nesses using only linear shape functions would have taken many more months of pro-
gramming time. Linearizing the complex multiphysics contacts with higher order elements
would have been intractable. Tweaks to the theoretical formulation were made constantly
throughout the course of this work and could be tested immediately by only waited for the
DSL specification to be recompiled. The expressions and their linearizations could take up
to half an hour to compute and compile from scratch, but this is much faster development
cycle than modifying and debugging low-level program by hand. The cost to this increased
productivity is paid in learning curve to developing new features into an existing code. A
few months were devoted to learning the structure of FFC and doflin.
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9.2 Future Work
9.2.1 Parallelization

In addition to utilizing advanced mathematical code generation technologies, maximizing
the usage of high performance computing resources requires parallelization. Developing using
an existing, parallelized code—as opposed to writing a new scientific code from scratch—
was a conscious design decision to take advantage of existing libraries. Most of the FEniCS
package and the libraries it uses are parallelized, so that only the newly written code related
to the contact handling needs to be altered. As with most prototype codes, the current
implementation is not yet parallelized. Specifically, the following three procedures related
to need to be updated:

1. Searching for potentially contacting element pairs
2. Partitioning of the domain of contacting meshes
3. Assembling the global matrix and vector

The main challenge to parallelization of the fibril problem is partitioning the domain while
preserving the ability to compute new contacts. Unlike a standard finite element problem, the
connectivity for the fibril microstructure is made of the individual meshes and the contacts
between them. The contact connectivity cannot be represented as a non-overlapping mesh.
The contact pattern is able to change drastically during the course of a calculation and needs
to be recalculated frequently.

A good parallelization scheme needs to both (1) minimize the total communication be-
tween connected processors while also (2) minimizing number of communicating processor
pairs. Because of the long and thin nature of the fibrils, one fibril spans across most of the
physical domain. This makes distributing intact fibrils across meshes a very bad choice, and
it almost maximizes the communication required between processors. For a plain weave, one
processor would be communicating with half of the processors! The contacting element pairs
need to be considered in the connectivity graph, illustrated in Figure 9.2.1.

Because of the changing nature of the connectivity graph, a processor must store a larger
portion of the graph than the standard overlapping degrees of freedom. The connectivity
graph needs to contain element pairs that are not yet in contact but may be so in the future so
that a processor contains the required portion of the mesh to perform the geometric search
at the next point. That is, in addition to the overlapping nodes, data that is shared by
adjacent processors, a “contact candidate” region must also be stored to perform the contact
searches along the borders. The regions are illustrated in Figure 9.2.2. A bootstrapping issue
exists where the processors need to perform the initial contact search before the first valid
partition can be made. The initial guess partition needs to create a large overlap region to
solve this.

The FEniCS package has mesh partitioning built-in using the libraries SCOTCH or
ParMETIS. The matrix and vector wrappers provided by FEniCS were used for all of the
calculations in this work. In the spirit of maximizing code reuse, no attempt was made to
configure “what works” and the default backend uBLAS was used. Parallelized linear algebra
backends are available once they are installed. The current prototype implementation of the
contact assembly uses a partition in which the one processor owns the entire problem when
initializing the matrix objects. The existing parallel matrix libraries can be used after the
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Figure 9.2.1: Connectivity graph of beam meshes and contacts. Entries due to contacts are
highlighted.

Overlapping
 nodes

Elements and contacts in 
processor domain

Non-overlapping nodes
needed for contact checks

Second processor
domain

Figure 9.2.2: Data management for partitioning scheme for contacts. The processor is
responsible for calculations on elements drawn in solid lines and nodes it stores are filled.
In addition to the nodes shared by elements in neighboring processors, a processor needs to
store elements and nodes it needs to perform the geometric calculations to search for new
contacts (shaded nodes.) Nodes that do not need to be stored are unfilled.



107

Nonconforming Background
Mesh for EM fields

Beam Meshes

Long Range
Interaction

Figure 9.2.3: Potential non-contact applications of the added capacities to FEniCS. Left:
coupling electromagnetic fields defined on a background mesh to the

contact search and partitioning is completed.

9.2.2 Physical Models
The two-element mapping integral framework that was developed can be applied to other

problems besides contacts with some generalizations. The contact implementation is only
able to handle coupling two of the same element. For example, there is no way to compute
the contact between beams and the surface of a solid mesh. In addition to the geometric
routines, this requires adding more syntax to the Unified Form Language and the FEniCS
Form Compiler to express this type of two-element integral. The same contact framework
can be used in other instances where coupling between finite element meshes is desired. For
example, the formulation of beam problem can be extended to solve for the magnetic vector
potential on a separate background mesh. The variational equation can be expressed as
integrals over two di�erent domains, with the domain of the material �M a subset of that of
space �M µ �S, ˆ

�

S

Ò ◊ ”A · µ

≠1Ò ◊ Ad� =
ˆ

�

M

”A · jd�
¸ ˚˙ ˝

Both shape functions

with the fields constructed from di�erent shape functions defined on the two meshes, e.g. A =q
A ÂA„

S
A (x) , x œ �S and j = q

A ≠V̂A‡Ò„

M
A (x) x œ �M . The framework can also be used

to incorporate long-range interactions, such as molecular potentials, electromagnetic forces,
and gravitational attractions. A pair-wise force interaction from electrical charges f (x) =
q1q2
r2 n can be expressed as an integral across the two bodies by

´ ´
[[”x]]· q+q≠

[[x]]·[[x]]

[[x]] d�+

d�≠.
The framework developed is general enough to incorporate a wide variety of constitu-

tive responses. A number of improvements can be made to the constitutive laws for the
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applications shown. Failure and plasticity models are needed to perform in-depth analyses
of ballistic armor. Pressure dependence conductivities can be used to improve the analysis
of thermal and electrical resistances in the textile. Static friction has a significant e�ect
on the energy dampening in the dynamic analysis as well as the e�ective shear strength of
a textile in static analysis [17, 71, 70]. Many of the standard frictional analysis methods
employ history data that lives on the contact mappings, however, which requires more code
development in FEniCS to represent such a function. Non-constant contact laws can be
implemented, such as short-range van-der Wals attractions.

Piezoelectric and other electromagnetically coupled constitutive laws can be used to an-
alyze textile-based electromechanical devices. The thermomechanical coupling of the model
can also be used to study thermally actuated textiles, such as the actuator illustrated in [52].
Heterogenous textiles employing fabrics with di�erent coe�cients of thermal expansion can
be used to design “smart” clothing that reshapes in response to the wearer’s and environ-
ment’s temperature to adjust its insulating properties. Many biological tissues have fibrous
microstructures and respond to electromagnetic fields, such as muscle tissue, for which this
model is also applicable.
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Appendix A

Example Python Script

A.1 Setup
This file solves for the deformation of a textile in a B field.
It must be run from the root directory,

python programs/em_deformation.py

You will have to make sure the output directory exists,

mkdir post/em_deformation

Firstly, you need to import the library:

17 from src import *

18 from IPython import embed

Now, set up the geometry object:

23 sheets = [

24 Geometries.PlainWeaveFibrils(8,12.5,10.0, 8,12.5,10.0,

25 0.0,0.81, [ 1 ],0.81)

26 ]

27

28 endpts = []

29 for s in sheets:

30 endpts.extend( s.endpts() )

And define all fo the properties:

35 E = 1.26 #MPa
36 nu = 0.0

37 phi = 0.0 #np.pi/4.0
38 defaults = { �mu�:E/(2*(1 + nu)),
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39 �lambda� : E*nu/((1 + nu)*(1 - 2*nu)),

40 �rho� :0.00144,

41 �radius� :0.4,

42 �em_B� :Constant( (0.005*np.sin(phi),0.005*np.cos(phi),0.0)),

43 �contact_penalty� : 500.0,

44 �dissipation� :0.01,

45 �contact_em� : 1.0,

46 �em_bc_r_0� : 100.0,

47 �em_bc_J_0� : -1000.0

48 }

49 props = [ {} for i in endpts ]

50 for i in xrange(sheets[0].NX,sheets[0].NX+sheets[0].NY):

51 props[i][�radius�] = 0.6

52 props[i][�em_bc_r_0�] = 0.001

53 props[i][�em_bc_J_0�] = 0.0

54 Nelems = [ 30 for i in endpts ]

A.2 Data structure allocations
Initialzie the warp object on the MonolothicProblem object

61

62 warp = Warp(endpts,props,defaults, Nelems, MonolithicProblem, order = (1,1))

Utility function for output:

67 outputcnt = 0

68 def output():

69 global outputcnt

70 warp.output_states("post/em_deformation/yarn_{0}_"+str(outputcnt)+".pvd",1)

71 warp.output_solids("post/em_deformation/mesh_{0}_"+str(outputcnt)+".pvd",1)

72 outputcnt+=1

73 output()

Loop through all of the geometry objects and apply their initial geometries. Initialize
the Voltage and Temperature fields as well.

79 istart=0

80 for s in sheets:

81 s.initialize(warp,istart)

82 istart += s.nfibril

83 warp.pull_fibril_fields()

84 for fib in warp.fibrils:

85 temp_field = Function(fib.problem.spaces[�S�])

86 temp_field.interpolate(Expression("A*x[0]+B",A=0.0/sheets[0].restX,B=0.0))
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87 assign(fib.problem.fields[�wv�].sub(4), temp_field)

88 temp_field.interpolate(Expression("1.0"))

89 assign(fib.problem.fields[�wv�].sub(3), temp_field)

90 warp.pull_fibril_fields()

91 warp.update()

Create the contact pairs for all of the geometry objects and initialize the contact group
data structure.

97 cpairs = []

98 for s in sheets:

99 cpairs.extend(s.contact_pairs())

100 cpairs.extend((i,len(endpts)-1) for i in xrange(len(endpts)-1))

101 warp.create_contacts(pairs=cpairs,cutoff=1.5)

102

103 output()

A.3 Time stepper setup
Set up all of the boundary conditions.

111 bound_all = CompiledSubDomain("on_boundary")

112 bound_sides = CompiledSubDomain(

113 "( near(x[0],y) || near(x[0],-y) ) && on_boundary" ,

114 y=sheets[0].restX)

115 bound_one_side = CompiledSubDomain("( near(x[0],y) ) && on_boundary",

116 y=sheets[0].restX)

117

118 subq = MultiMeshSubSpace(warp.spaces[�W�],0)

119 subT = MultiMeshSubSpace(warp.spaces[�W�],3)

120 subVol = MultiMeshSubSpace(warp.spaces[�W�],4)

121 zeroV = Constant((0.0,0.0,0.0))

122 zeroS = Constant(0.0)

123 bcq = MultiMeshDirichletBC(subq,zeroV, bound_all)

124 bcT = MultiMeshDirichletBC(subT,zeroS, bound_all)

125 bcVol = MultiMeshDirichletBC(subVol,zeroS, bound_one_side)

Set up the time stepper object and the functions to pass it.

131 def apply_BCs(K,R,t,hold=False):

132 bcq.apply(K,R)

133 bcT.apply(K,R)

134 bcVol.apply(K,R)

135 def sys(time):

136 return warp.assemble_forms([�F�,�AX�,�AV�],�W�)
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137 Tmax=15.0

138 NT = 3000

139 h = Tmax/NT

140 dirk = DIRK_Monolithic(h,LDIRK[1], sys,warp.update,apply_BCs,

141 warp.fields[�wx�].vector(),warp.fields[�wv�].vector(),

142 warp.assemble_form(�M�,�W�))

143 # warp.CG.OutputFile("post/impact/gammaC.pvd" )

A.4 Do it:
And, finally, march forward in time:

149 for t in xrange(NT):

150 if t%5==0:

151 warp.create_contacts(pairs=cpairs,cutoff=1.5)

152 dirk.march()

153 if t%10==0:

154 output()

155

156 embed()
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Appendix B

Gaussian Quadrature on the Unit
Disk

Since the fibrils analyzed were primarily circular in the cross section, integration across
the unit disk was required. The integral over a section with radius R is of the form
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It can be calculated by performing a quadrature summation,
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are the weights and points. The rules used were obtained from [57] and
are tabulated in Table B.1 alongside plots of their locations with respect to the unit disk.
In the main library, the files “src/Forms/QuadraturePoints.py” and “src/Forms/Quadra-
tureUnitTests.nb” perform tests on the quadrature rules to verify the accuracy of the rules
compared to analytical integrals.
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Table B.1: Table of quadrature points in polar coordinates and locations with respect to the
unit disk.
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Appendix C

Butcher Tableaus

The Butcher Tableaus of the Runge-Kutta methods used in this work are listed in this
section, written in the notation

ci Aij

bj

The derivations of these methods can be found in [1], from where they were obtained. These
are singly-diagonal methods: all of diagonal entries of the A table are equal, and all entries
above the diagonal are zero.

The one-stage method, with O (h) convergence, where h is the time step size, is commonly
known as Backward Euler and has the tableau:

1 1
1

The two stage method of this family has O (h2) convergence and is:
1 ≠

Ô
2

2

1 ≠
Ô

2

2

0
1

Ô
2

2

1 ≠
Ô

2

2Ô
2

2

1 ≠
Ô

2

2

The three stage method has O (h3) convergence and has the form
– – 0 0
· · ≠ – – 0
1 b

2

b

2

–

b

1

b

2

–

where the diagonal satisfies 0 = –

3≠3–

2+ 3

2

–≠ 1

6

and 1

2

< – <

1

6

. The numerical value of this
root was calculated to be – = 0.43586652150845899942 using high-precision arithmetic in
Mathematica of twenty decimal digits (i.e., this value has su�cient accuracy to be copy-and-
pasted into an implementation.) The other constants are determined from – by · = 1+–

2

,

and b

1

= ≠1

4

(6–

2 ≠ 16– + 1) , b

2

= 1

4

(6–

2 ≠ 20– + 5) . There is no fourth order accurate
method in this family that has only four stages, so only the first three are used.
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Appendix D

Beam Visualization

The finite element meshes used in the beam discretization are one dimensional, but repre-
sent three dimensional objects with an appreciable thickness. One dimensional meshes with
director information are useful, but become far too cluttered for visualization interwoven
microstructures, e.g. Figure D.0.1. For visualization purposes, a three dimensional volumet-
ric mesh of tetrahedra is created. In addition to creating a solid mesh, the fields defined
on the finite element mesh need to be projected to the new 3D mesh. This is accomplished
by manually editing the coe�cients to a new function space. The construction of discrete
points around the surface is illustrated in Figure D.0.2. The pseudocode for creating the
mesh is listed in Algorithm D.1.

Figure D.0.1: Microstructure rendered with directors (left) and solid meshes (right)
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Ƨ
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g2
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x=R cos(Ƨ)g1 + R sin(Ƨ)g2

Mesh connecting
two cross sections

Tetrahedra for
each slice

Nodes around deformed
circumference

Figure D.0.2: Calculation of deformed surface geometry.

Algorithm D.1 Routine for generating 3D mesh. (Zero-based indices used)
Input the number of vertices to place around the surface, n◊, and a 1D mesh

1. Project centroid deformation q, and directors g
1

, and g
2

to the vertices of the 1D mesh.
2. Create an empty 3D mesh.
3. Loop over the vertex indices i œ 0, nV of the 1D mesh:

(a) Add X0 [i] + q [i] to the 3D mesh vertices
(b) For n◊ equally spaced angles ◊ œ [0, 2fi]:

i. Add X0 [i] + q [i] + R cos (◊) g
1

+ R sin (◊) g
2

to the 3D mesh vertices
4. Loop over the vertices:

(a) For i œ 0, n◊:
i. Push three tetrahedra into the 3D mesh for the slice joining the two cross

sections
5. Finalize the 3D mesh
6. Define a linear function space on the new 3D mesh
7. Loop over all all fields in the output dictionary:

(a) Create a new function on the mesh
(b) Project the original function to the vertices of the 1D mesh
(c) Manually set the degrees of freedom associated with all n◊ + 1 vertices on the

cross section
8. Output the new fields to the file.
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