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Abstract

Detector readout of an Analog Quantum Simulator

by

Alessandro Luis Monteros

Doctor of Philosophy in Physics

University of California, Merced

Professor Jay Sharping, Chair

An important question in quantum simulation is the certification of the quantum

simulators with proper readout. We examine how a detector’s correlator changes

when coupled to a quantum simulator using a diagrammatic technique. From the

correlation functions calculated from the diagrammatic technique, we can determine

whether or not reliable detection of the simulator’s correlator can be achieved. When

reliable detection is not possible due to detector back-action, we examine the situa-

tions when the back-action can be negligible. In particular, we study a cavity detector

coupled to a Transverse Field Ising Model. We use a similar diagrammatic technique

to study the interaction between a cavity and a qubit in the ultrastrong coupling

regime. This cavity-qubit system is of importance in quantum computing and is a

fundamental model in cavity QED. Ultrastrong coupling strength enables novel ap-

proaches for quantum logic operations. Our approach provides a fresh perspective

on calculating the transmission spectra and the imacpt of the ultrastrongly coupled

cavity on the qubit behavior.
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Chapter 1

Introduction

In the scientist’s quest to understand the world we make use of computer simulations

to gain knowledge and insight into complex physical situations. The advancement

of available processing power and the development numerical techniques to study

physical systems has been integral to the development of modern science. However,

despite the steady advancement of computing power many interesting physical sys-

tems in our world remain out of computational reach. This is in part due to the fact

that in quantum mechanical systems the number of operations needed to character-

ize the system scales exponentially with its size. While classical simulation methods

like Monte Carlo, variational approaches, density-functional theory and more have

been used to study quantum systems they all have limits regarding either the size of

the system, the strength of the correlations, the dimensionality, or the type of system

they apply best to. These limitations put the numerical study of systems like strongly

correlated superconductors, frustrated or disordered systems, and large systems out

of reach.

To get around this we can use a quantum simulator. Lloyd defines a simulation as

follows, ”Simulation is a process by which one system is made to mimic another.” [4].

This was first proposed by Feynman in [5]. Quantum simulators can be broken

down into two types, analog and digital. Quantum computers are a type of digital

quantum simulator, sometimes called universal quantum simulators as they can in

theory efficiently simulate any local quantum system [4]. It is largely impractical to

1
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build a universal analog quantum simulator [6].

A good quantum simulator should fulfill several key ingredients which are spelled

out in [7];

1. Uses a quantum system

2. Can be initialized to some state

3. The Hamiltonian can be engineered

4. Detection, ideally single shot

5. Can be verified in some situations

As a concrete example of this we look at the work done in [8]. Mei et. al.

proposed an analog simulator for studying the properties of Holstein polarons. The

Holstein polaron model is an interesting and relevant model in many-body physics

that cannot be solved analytically, only numerically. Mei studied a chain of unit cells

made up of transmons coupled to a superconducting resonator driven by a microwave

source. They found that under the right conditions the Hamiltonian of this system

approximated the Hamiltonian of the Holstein polaron. Additionally by changing the

driving parameters all the physically relevant regimes could be reached. Detection

was achieved by coupling the system to an ancilla quibt and measuring the stark

shift. Thus this setup meets the criteria listed above.

This has been an active area of experimental research in recent times [9–11].

Trapped ions, which typically have good coherence times, have been used to con-

struct such analog simulators. Trapped ions in 2D arrays as large as 11 by 11 with

high fidelity and low loss have been observed in trapped ion systems [10]. In that

experiment Strontium-88 atoms were arranged in a 2D array using optical trapping

and imaged using a single shot atom resolving detection scheme. Additionally a 51

atom linear chain of Rubidium atoms have been created using optical tweezers [11]. In

this case distances between the atoms and thus the couplings were tunable. Different

symmetry regimes could be reached by pairing atoms together leading to modified

Rabi-oscillations. These were detected using fluorescence imaging.
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Quantum simulation is also useful for strongly correlated systems which can be

resistant to both analytical and numerical methods of evaluation. There are proposals

and experiments for systems like the Fermi-Hubbard model [12], strongly coupled

spin-boson model [13], and superconductors [14] using trapped ions, driven cavities

and qubits, and arrays of quantum dots respectively.

1.1 Detection

Since it is necessary to measure such a quantum simulator it is also necessary to

couple the simulator to a detector. By coupling a detector to the simulator the time

evolution of the simulator follows the total Hamiltonian of the system. Therefore the

presence of the coupling to a detector alters how the simulated system will behave.

Put more simply, the act of measurement changes the system. Sometimes this is in

non-trivial or negligible ways.

A paper by Clerk studied a cavity coupled to a mechanical mode [15]. The anal-

ysis is done with the standard input-output relations [16]. The back-action on the

quadrature of interest is pushed to another quadrature by oscillating the coupling at

the mechanical resonance frequency. This ensures that the time averaged value of one

of the quadratures is zero which limits what can be known about that quadrature and

allows back-action free detection of the other quadrature. However, in the presence of

noise there can be coupling between the quadratures which may then affect detection.

Schwenk et. al. explored the possibility of reconstructing the ideal results of a

detector using time order Green’s functions(correlators). By examining the difference

between the measured quantities and what would be expected given reliable detection

a correction term could be added to the correlator. This difference was tied to the

applicability of the so-called Wick’s theorem to the coupling operators of the simulator

[17].

The effect of the back-action on a simulator was also considered by Du [18], in this

case a transverse field Ising model was coupled to a cavity. Second order perturbation

theory was applied to estimate the effect of the cavity back-action on the system. A

shift in the frequency of the eigenmodes was found to increase linearly with system
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size.

Transmission measurements can be used to detect the spectral function of the

simulator [19] or monitor the dynamics [20]. Blais found that the transmission spectra

of a cavity is split when coupled to a qubit. To a second order approximation in the

coupling the effect is to pull the cavity frequency by ±λ2/κ∆ Where λ, κ,∆ are the

coupling strength, bandwidth, and the detuning.

The research here most closely follows Tian’s previous work in [21] where the

conditions under which the back-action can be circumvented are explored using a

diagrammatic Green’s function (correlator) approach. The setup is the same as ours

where a cavity is coupled to a system that acts as a simulator. The systems examined

in that work were the Quantum Harmonic Oscillator (QHO) and the electron gas.

As in [17] it was found that the validity of Wick’s theorem to the coupling operator

played a role in reliable detection.

1.2 Outline

The rest of the dissertation is as follows. In chapter 2 we discuss the theory underlying

the rest of the dissertation. The entirety of the work is done in the second quantized

formalism. The perturbation theory is developed in enough detail to give the reader

a solid understanding of the rest of the material. Several key points and issues are

pointed out here and will be expanded upon further in subsequent chapters. The

perturbation theory discussed here was developed by Feynman, Dyson, Gell-Mann,

and others. It has been widely used in condensed matter systems as well as in particle

physics. As a way of keeping track of the term in the perturbation series, Feynman

diagrams are developed and discussed. A warning is in order at this point. The

impulse to attach physical meaning to the Feynman diagrams should be resisted.

Rather we should see them as helping to track and give intuition about the many

terms involved in a mathematical theory.

In chapter 3 we examine the reliable detection of a quantum simulator. We review

the general properties and concepts required for quantum simulations and discuss how

the techniques discussed in chapter 2 are applied to our case. The transverse field
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Ising model is discussed and examined under this approach looking for if and when

reliable detection can be achieved using a cavity mode as a detector. We find that the

cavity frequency must be at least four times the maximum frequency of the simulator

for a low-bandwidth cavity to avoid interference with the higher order effects from the

cavity-simulator coupling. As the bandwidth of the cavity increases these effects are

suppressed. Additionally the cavity-simulator coupling leads to an effective magnetic

field which must be considered in examining the reliability of the system. The possible

generality of these effects are discussed briefly.

Finally in chapter 4 we discuss using the diagrammatic techniques to find the

spectrum of a cavity-qubit system. As far as we are aware this is a completely novel

approach to this system. Qubits are the building blocks of digital quantum computing

and have been well studied over the years [1,2,22–27]. There is an interest in reaching

stronger cavity-qubit couplings to examine interesting and novel effects as well to

increase the speed of gate operations in quantum computing [28]. Several approaches

are used which can explain the primary spectral lines seen in experiments. However, to

correctly apply the perturbation theory we must undergo a transformation from spin

operators to Majorana operators. This leads to a more complicated coupling scheme.

This is investigated using different types of infinite order approximations which only

partially explain the spectra. It is likely necessary to use a self-consistent solution to

achieve results that are in line with experiments. We discuss this possibility but a

detailed description is beyond the scope of this work.



Chapter 2

Diagrammatic Perturbation

Theory

2.1 Fundamentals

The fundamental aspects of this work are based on the Feynman diagram technique

and the perturbation series that comes from it. We pick out some important aspects of

the theory which will be relevant in further discussion. Comprehensive explanations

for the theory can be found in [29–31] and many more. Our starting point in describing

the theory is to consider a Hamiltonian which is broken into two parts, an unperturbed

or ”free theory” part and an interaction part Ĥ = Ĥ0 + ĤI . We also consider the

unitary operator Û(t, t0) whose effect on a state is to translate a state vector in time.

We start in the interaction picture as is standard which gives a differential equation

(eqn (2.1)) that describes the evolution operator and whose effect on a state vector is

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I where the states are defined in the interaction picture. This

operator can also be written as Û(t, t0) = eiĤ0t/~e−iĤ(t−t0)/~e−iĤ0t0/~.

i~
δ

δt
Û(t, t0) = ĤI(t)Û(t, t0) (2.1)

This differential equation can be solved by iteration. Unfortunately there is no

guarantee that the solution will converge. Upon iterating several times we are left

6
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with equation (2.2). .

Û(t, t0) = 1 +

(
−i
~

) � t

t0

dt′ĤI(t
′) +

(
−i
~

)2 � t

t0

dt′
� t′

t0

dt′′ĤI(t
′)ĤI(t

′′) + . . . (2.2)

We focus on the third term on the right hand side. We split the integral in to two

parts.

� t

t0

dt′
� t′

t0

dt′′ĤI(t
′)ĤI(t

′′) =
1

2

� t

t0

dt′
� t′

t0

dt′′ĤI(t
′)ĤI(t

′′)+
1

2

� t

t0

dt′
� t′

t0

dt′′ĤI(t
′)ĤI(t

′′)

(2.3)

Then we change the order of integration and rename the dummy variables

� t

t0

dt′
� t′

t0

dt′′ĤI(t
′)ĤI(t

′′) =

� t

t0

dt′′
� t

t′′
dt′ĤI(t

′)ĤI(t
′′) =

� t

t0

dt′
� t

t′
dt′′ĤI(t

′′)ĤI(t
′)

(2.4)

We then put this results into the previous equation which gives us the result we

see in equation (2.5).

1

2

� t

t0

dt′
� t′

t0

dt′′ĤI(t
′)ĤI(t

′′) +
1

2

� t

t0

dt′
� t

t′
dt′′ĤI(t

′′)ĤI(t
′) (2.5)

This result can be simplified using a time ordering operator with the definition of

time order being T [A(tf )B(ti)] = Θ(tf − ti)A(tf )B(ti) + Θ(ti− tf )B(ti)A(tf ). Here A

and B are arbitrary operators. This matches the time ordering that will be defined for

bosonic operators. In most situations where this formalism is applied the interaction

part of the Hamiltonian is boson-like. However, we will encounter a case where the

interaction involves anticommuting variables. This leads to an inconsistency in the

definition of the correlator. This will be addressed in Chapter 4.

1

2

� t

t0

dt′
� t

t0

dt′′T
[
ĤI(t

′)ĤI(t
′′)
]

(2.6)

We can repeat this process to all orders and use the time ordered exponential

notation to simplify the result.
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U(t, t0) = Te
−i

� t
t0
dt′HI(t′)

(2.7)

From this point the theory develops by considering the interaction to adiabatically

”turn on”. This allows us to consider the state of the interacting system as having

evolved slowly from the state of the non-interacting system. The Gell-Mann and Low

theorem shows that such a state will be an eigenstate of the full Hamiltonian as long

as there is some overlap between the interacting and non-interacting systems. This

assumption is violated in certain systems such as when there is a phase change [32].

For our purposes we will consider the theorem to be valid.

We move now to discuss the central mathematical object in this work, the 2-

point Green’s function. This is sometimes referred to as the propagator, the kernel, a

correlator, or the response function depending on the exact context and use. Specif-

ically we are examining the time ordered 2-point Green’s function which, to avoid

confusion, we will refer to as correlators. These correlators contains much of the

interesting information about the system such as the energy spectrum and all the

single particle operator averages [29–31]. Extraction of the many body correlator is

thus desirable. The imaginary part of the retarded correlator can be measured via

the spectral function [19]. From this the real part of the correlator can be calculated

using the Kramers-Kronig relation [29]. The spectral function, which is minus twice

the imaginary part of the correlator, can be thought of as a generalized density of

states. Hence it is useful for examining the system and will be a primary focus of

much of this work.

We turn to the mathematical definition of these correlators. For the photon op-

erators we have the real time correlator:

− i
〈
T
(
Â(tf )Â(ti)

)〉
= −i 1

Z
Tr
(
ρ̂T
(
Â(tf )Â(ti)

))
(2.8)

The operator Â(t) is a(t)+a†(t) where a†(a) are the creation (annihilation) opera-

tors. The density matrix ρ = e−βĤ (β is the inverse of kbT and Ĥ is the Hamiltonian)

and the partition function Z serves to normalize the correlator. T is the time order-

ing operator which places operators with greater time to the left. For fermions each
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exchange introduces a minus sign. The retarded correlator is similar:

− iΘ(tf − ti)
〈[
Â(tf ), Â(ti)

]〉
(2.9)

Where θ(t) is the Heaviside step function which is 1 for positive t and 0 for negative

t. The average is now over the commutator of the operators for bosons. For fermion

operators we would use the anticommutator. It turns out it is much more convenient

to deal with equilibrium finite temperature systems with what’s called a Matsubara

correlator.

D(τf , τi) = −
〈
Tτ

(
Â(τf )Â(τi)

)〉
(2.10)

What this does is it takes time to be imaginary τ = it which allows the same

diagrammatic expansion used in the zero temperature formalism to be used in the

finite temperature formalism. Additionally the Fourier transform of the correlator

maps to an imaginary discrete frequency iωn instead of the normal real continuous

frequencies. The Matsubara correlator connects to the retarded correlator in a rela-

tively simple fashion. It can be shown (see [29]) that the retarded correlator can be

obtained by taking iωn → ω+ iδ where δ is some small positive quantity. Thus if one

obtains the Matsubara correlator then the retarded correlator and the experimentally

accessible spectral function are obtained as well.

Another effect of taking time to be imaginary is that the Fourier Transform needs

to also be defined. Equation 2.11 provides a definition of this. The frequencies

in the Fourier transform are discrete frequencies which are even (odd) for bosons

(fermions).They take the form π2n
~β or π(2n+1)

~β where n is an integer. Other than that,

the mechanics and properties of the Fourier transforms are essentially the same.

G(iωn) =

� ~β

0

G(τ)eiωnτdτ (2.11)

G(τ) =
1

~β
∑
iωn

e−iωnτG(iωn) (2.12)
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As previously done we start with a system with a Hamiltonian that can be written

as H = H0 + HI where H0 is a Hamiltonian with known eigenstates and HI is a

perturbation. If we move into the interaction picture the unitary time evolution

operator becomes:

Û(τ, τ0) =
∞∑
n=0

(
−1

~

)n
1

n!

� τ

τ0

dτ1...dτnT (HI(τ1)...HI(τn)) (2.13)

Where equation 2.13 is the same as equation 2.7 only expanded. Now the reason

why we use an imaginary time can be made clear. In the Matsubara framework the

unitary time evolution operators is Û(τ, τ0) = eĤ0τ/~e−Ĥ(τ−τ0)/~e−Ĥ0τ0/~. This implies

that we can rewrite the density operator so that ρ = e−β(H0+HI) = e−βH0U(~β, 0) =

ρ0U(~β, 0). In this case ~β acts as an imaginary time and can be treated accordingly.

Thus by using the imaginary time formalism the density matrix e−βH can be seen as a

type of unitary time evolution with imaginary time ~β. With the added assumption

that the perturbation was “turned on” adiabatically sometime infinitely far back

and “turned off” infinitely far forward in time then we can rewrite the Matsubara

correlator as:

D(τf , τi) = −
∞∑
n=0

(
−1

~

)n
1

n!

� ~β

0

dτ1...dτn

〈
Tτ

(
HI(τ1)...HI(τn)Â(τf )Â(τi)

)〉
0

(2.14)

To analyze this to some order n we must find the value of an n+2-point correlator.

Wick’s theorem offers an easy way to do so [29, 30, 33, 34]. Wick’s theorem can

be seen as a consequence of the Gaussian nature of Hamiltonian in a path integral

formulation [35] or as a consequence of the algebraic structure of the operators (see

Appendix A). Either way Wick’s theorem states that given a quadratic unperturbed

Hamiltonian, correlators of linear operators can be expanded into all the permutations

of 2-point correlators. For example a 4-point correlator would be reduced to 2-point

correlators as follows:
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〈T
(
Â4Â3Â2Â1

)
〉0 = 〈Tτ

(
Â4Â3

)
〉0〈Tτ

(
Â2Â1

)
〉0 + 〈T

(
Â4Â2

)
〉0〈Tτ

(
Â3Â1

)
〉0

+ 〈Tτ
(
Â4Â1

)
〉0〈Tτ

(
Â3Â2

)
〉0

(2.15)

Each of these terms can be visualized as a Feynman diagram and can be roughly

described as the propagation of some particle between times. For example the first

term on the right describes the propagation of a photon from τ1 to τ2 and τ3 to τ4.

This would be represented by drawing a line between the points 1,2 and 3,4.

2.2 Dyson’s equation

In the process of expanding out different n-point correlators one will find that lower

order diagrams appear in higher orders. For example in electron-electron interactions

the bubble diagram repeats itself. The lowest order and next lowest are seen below.

All diagrams were created with the FeynMP latex extension [36]:

(2.16)

The straight lines represent the free fermion correlator G0 and the squiggle line

represents the electron-electron interaction. The first diagram is considered proper

while the second is improper because it is composed of proper diagrams (at the

dot) [29]. We must remember that the diagrams represent terms in an equation. The

repeating of a diagram is a multiplication so that an expansion of the full fermion

correlator G with those diagrams would be G(ω) = G0(ω)(1+R+R2 + ...)G0(ω) where

R represents the contribution from the bubble part of this particular diagram. This

forms a geometric series which can be summed to infinite order. Thus we are able

to have infinite order perturbation series based on the class or type of diagrams we
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choose to include. By summing the proper diagrams to infinite order we find the

Dyson equation:

G(ω) =
G0(ω)

1− G0(ω)Σ(ω)
(2.17)

Here Σ is the sum of whichever proper diagrams you choose to include. For

example if you only include only the lowest order proper diagrams this gives you the

a forward scattering type approximation [29].

2.3 Cavity-Bath Coupling

To show the technique explicitly we follow the paper from Tian which overviews how

this can be used to look at the coupling between the cavity and a bath [21]. The

Hamiltonian is Ĥ = Ĥc + ĤB + Ĥc−B where Ĥc = ~ωca†a, ĤB = ~
∑

i b
†
ibi are the

unperturbed cavity and bath Hamiltonian, and Ĥc−B = A~
∑

i ci

(
bi + b†i

)
is the

cavity-bath interaction. We consider the coupling between the bath and cavity to be

a perturbation. In the interaction picture the correlator takes the form:

DR(τf , τi) = −
∞∑
n=0

(
−1

~

)n
1

n!

� β~

0

dτ1 · · · dτnTr
[
ρ̂0T̂τ

[
Ĥc−B(τ1) · · · Ĥc−B(τn)Â(τf )Â(τi)

]]
(2.18)

Where ρ0 = e−βĤ0 . Each term in the perturbative expansion can be represented

diagrammatically, keeping only the diagrams that connect to the end points. Once

all the calculations are done then the diagrams can be converted back into equations.

D2
RB(ωn) = DRB0(ωn) |ci|2Di(ωn) DRB0(ωn) (2.19)

The above diagram is the only 2nd order diagram. There are n! ways of drawing

such a diagram which exactly cancels with the 1
n!

term in the expansion. Thus we say

the diagram has a counting factor of 1. We can examine the 4th order process and

find a similar diagram. This also has a counting factor of 1. Higher ordered processes
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are built up the same way.

D4
RB(ωn) = DRB0(ωn) |ci|2Di(ωn) DRB0(ωn) |ci|2Di(ωn) DRB0(ωn)

(2.20)

Note the simple recursive structure inherent in the diagrams. This is due to there

being only a single proper diagram. This gives a simple recursive structure that is

reminiscent of a power series. We can thus sum to infinite order using the Dyson

equation to obtain the full cavity-bath photon correlator.

DRB(ωn) = DRB0(ωn) + DRB0(ωn)|ci|2Di(ωn)DRB(ωn) (2.21)

This new correlator will be used to in examining the cavity-simulator photon corre-

lator. This allows us to include the cavity decay from the bath.

In frequency space the unperturbed photon correlator, DRB0(ωn), has the well

known solution [30]:

DRB0(ωn) =
2ωc

(iωn)2 − ω2
c

(2.22)

Similarly we can define a correlator for the bath similar to the photon correlator.

It has the solution:

Di(ωn) =
2ωi

(iωn)2 − ω2
i

(2.23)

Tian in [21] found that by approximating the noise spectrum as flat (κ) the

detector-bath correlator becomes:

DRB =
2ωc

(iωn)2 − ω2
c + 2iωcκ

(2.24)

It is important to note that this is only valid for the retarded correlator. If one

takes the advanced correlator then the sign in front of kappa must change.
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2.4 Matsubara Summations

For more complicated interactions there can be diagrams with branches. The detailed

theory can be worked out from the above work but a visual demonstration is more

enlightening. In the diagram below we see the correlators split from one line into

two. The frequency flows from the left line into the branch where it is split. Some

of the frequency flows through the top branch and some flows through the bottom.

The way we determine how much flows in each direction is by summing over all the

possible values of iωp and requiring that frequency is conserved.

iωn iωn + iωp

iωp

iωn

(2.25)

The result of these branches is to give equations like equation (2.26) where the

infinite sum needs to be solved. The exact form of the correlators is unimportant at

the moment. We simply need two assumptions. The first is that the correlators G(z)

has poles zi and residues bi. The second assumption is that the poles do not lay on

the imaginary axis.

∑
iωp

G(iωp)G(iωn + iωp) = − ~β
2πi

�
dznF (~z)G(z)G(iωn + z) (2.26)

The trick here is to realize that the fermion (boson) frequencies are the same as

the poles of the Fermi-Dirac (Bose-Einstein) distribution. Thus we can rewrite the

sum as a contour integral where the contour encloses the poles of the distribution.

We can then deform the contour to wrap around the poles of the correlators. We can

then let the contour grow in size so that contribution from the curves on the outside

go to zero (figure 2.1). If the correlator in question has a 1
ω

dependence then care

needs to be taken to ensure proper convergence properties. In our cases all of our

summations have summands with a 1
ω2 dependence or greater.

We can now use residue theory to calculate the value of the integral. If we assume,
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Figure 2.1: Poles at iωn, zi, and iωn − zi

for simplicity, that G has a single pole at z0 with unit residue then we can solve

equation 2.26.

~β (nF (~z0)G(iωn − z0) + nF (~(z0 − iωn))G(z0 − iωn)) (2.27)

The second term can be simplified by realizing that nF (x − iωn) = −nB(x) due

to the discrete nature of the Matsubara frequencies. This gives the theoretical tools

that will be used throughout this work.



Chapter 3

Transverse Field Ising Model

3.1 Introduction

As we build quantum simulators we are confronted with several questions regarding

the construction of such systems. Quantum simulators need to be useful, controlled,

and capable of reliable detection.

Figure 3.1: Quantum system (blue box)
within a cavity. The photon’s spectral
function is measured in the hope of deter-
mining the quantum system’s correlator

The detection aspect as pointed out

in [7] is the subject of our current ex-

ploration. We consider a cavity coupled

to a system of interest which we call the

simulator (Figure 3.1). When a detec-

tor is coupled to the simulator there will

be a finite back-action on the simulator.

This will affect the many-body correlator

and the evolution of the system in a non-

trivial manner. This leads to an impor-

tant question. Can we reliably readout

information from a quantum simulator?

We follow our previous work done in [21]

by examining the many-body correlators. Typically one ignores such a back-action

though there have been attempts to circumvent this either through squeezing [15] or

16
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reconstruction [17].

We examine a system of interest that will be our quantum simulator with a Hamil-

tonian Hs. We are interested in obtaining the many-body correlator associated with

the system. This gives us many of the important properties of the system [29]. In

order to readout the relevant information from the simulator we couple it to a cavity

through which measurements can be made, i.e. the transmission spectra [19].

Figure 3.2: Schematic of the coupling between the cavity, simulator, and the bath

Table 3.1: Correlators paired
with their respective Hamilto-
nians

Hc +Hb +Hs DRB0

Hc +Hb +Hs +Hb−c DRB
Hc +Hb +Hb−c +Hs +HI DR

However, by adding the cavity the quantum simu-

lator’s correlator is perturbed. A naive measurement

will measure this altered correlator. The question we

seek to answer is whether or not the quantum simu-

lator’s unperturbed correlator can be extracted. Ad-

ditionally the cavity is coupled to a bath which has

the effect of broadening the cavity resonance. This

can be seen schematically in figure 3.2.

We define the correlators in table 3.1 for different Hamiltonians. The correlator

D maintains the form −
〈
Tτ

[
Â(τ)Â(τ ′)

]〉
. Hc, Hb, and Hs refer to the cavity, bath,

and simulator’s Hamiltonian, Hb−c and HI refer to the bath-cavity coupling and the

cavity-simulator interaction.
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3.2 Theory of the Transverse Field Ising Model

3.2.1 Model

The Transverse Field Ising Model (TFIM) or Quantum Ising Model is well studied

model in physics that has implications in quantum simulation as well as combinatorics

and machine learning [11,37–41]. In its more general form it is a lattice of spins that

couple to the nearest neighbors via spin-coupling. Additionally a magnetic field is

applied in the transverse direction which differentiates the quantum case from the

classical case. This is shown schematically in figure 3.3.

Figure 3.3: Transverse Field Ising Model.
The blue squares represent a qubit with
each line representing a state. The wavy
line represents the interaction between
qubits and the magnetic field is in the
transverse direction.

In our case we are looking at the one-

dimensional case. This is exactly solv-

able through transformations that will

be discussed in the next section. This al-

lows us to compare the values that would

be calculated in a transmission type ex-

periment with the known values. A dis-

cussion of how our results generalize to

the more complicated cases is discussed

at the end of this chapter.

3.2.2 Transformations

In its current form the TFIM is unwieldy to work with. Therefore we will apply a

number of transformations to bring the Hamiltonian to a more desirable form. At

the moment our focus will be on the unperturbed TFIM (equation 3.1). An outline

of the transformations will be given here, for more details see Appendix B,

− ~J
N∑
n

σznσ
z
n+1 − ~

hx
2

N∑
n

σxn (3.1)

The first difficulty we encounter is in the ambiguous commutation laws for the

raising and lowering spin operators. Spins operators corresponding to a single site
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follow an anti-commutation law {σ−, σ+} = 1 but spin operators on differing sites

follow a commutation law [σ−, σ+] = 0. One way to deal with this is to include

correction to the sign of the correlation function that depends on the structure of

the Green’s function [34]. We take a different approach and apply the well known

Jordan-Wigner transformation.

The Jordan-Wigner transformation provides a way of mapping spins to spinless

fermions by introducing a non-localized phase factor.

σ−n → cne
−iπ

∑n−1
j c†jcj (3.2)

The phase factor in eqn. 3.2 will give either a +1 or a −1 depending on the number

of spin up states preceding the spin. This is what serves to fix the commutation

relations so that {cn, c†m} = δn,m where n and m refer to the sites n and m respectively.

With the proper commutation relations in we can transform our Hamiltonian (eqn

3.3). In doing so we drop the periodic term which is negligible for large N.

H = −~J
N∑
n

(c†ncn+1 + c†nc
†
n+1 + h.c.)− ~

hx
2

N∑
n

(1− 2c†ncn) (3.3)

In it’s current form the Hamiltonian is still unwieldy, additionally there are terms

like c†nc
†
n+1 which do not conserve particle number. To remedy this we apply a Fourier

transform and a Bogolubov transformation [42]. The Fourier transform simplifies the

indices because the wave number is conserved. The Bogolubov transformation is seen

in eqn. 3.4 ensures that particle number is conserved.

ck = ukγk + ivkγ
†
−k (3.4)

The operator γk is the Bogolubov quasi-particle which has frequency :

ωk = 2J

√
1 +

(
hx
2J

)2

− hx
J

cos(k) (3.5)

The coefficients in front of the gamma ensure that the proper commutation relations

are followed uk = cos(θk); vk = sin(θk). After these transformations are complete we
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are left with the Hamiltonian seen in equation 3.6. A more detailed account of all

these transformations is given in Appendix B.

HTFIM,0 =
∑
k

~ωkγ†kγk (3.6)

3.3 Perturbative expansion

With the unperturbed Hamiltonian transformed into a form that is easily worked

with we can examine the effect the detector has. To do this we first transform the

detector-simulator coupling in the same way. The coupling is assumed to be in the

form A
∑

i σ
x
i [18]. The results of these transformations leads to eqn. 3.7. The ck

operators are linear summations of the γ operators as seen in equation (3.4).

HI = λA
∑
k

(1− 2c†kck) (3.7)

H = ωca
†a +

∑
k

ωkγ
†
kγk + λA

∑
k

(1− 2c†kck) (3.8)

There is one more transformation that we want to make. If we proceed from

this we will find ourselves with extra fourth order diagrams that are not useful to

the analysis. In order to simplify this we apply the unitary displacement operator

eαa
†−α∗a to the Hamiltonian. This has the effect of shifting the boson operators as in

equation (3.9).

a→ a− α (3.9)

With the appropriate choice of α we can eliminate the constant term in the simula-

tor’s coupling operator. This reduces the number of diagrams we will have to consider

going forward. An additional effect of this transformation is the modification of the

magnetic field that the spins feel (eqn. 3.10). A detailed explanation of this shifting

operation can be found in Appendix B. The final Hamiltonian is given in equation

(3.11).
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h′x = hx −
4Nλ2

ωc
(3.10)

H = ωca
†a +

∑
k

ωkγ
†
kγk − 2λA

∑
k

c†kck (3.11)

At this point we are almost ready to expand our correlator to find the effect of the

detector. However, instead of the typical correlator −〈Tτ [A(τf )A(τi)]〉 we consider a

correlator where the operators are shifted Â→ Â−〈Â〉. This removes diagrams which

are connected to the initial point and the final point but are not fully connected [29].

The correlators can now be expanded exactly as is described in chapter 2.

We define the unperturbed correlators in equations (3.12) and (3.13) and their

Fourier transform as equations (3.14) and (3.15).

G0
k(τ1 − τ2) = −

〈
T
[
ck(τ1)c†k(τ2)

]〉
0

(3.12)

F †0k (τ1 − τ2) = −
〈
T
[
c†k(τ1)c†k(τ2)

]〉
0

(3.13)

G0
k(ωn) =

(
|uk|2

iωn − ωk
+
|vk|2

iωn + ωk

)
(3.14)

F †0k (ωn) = i

(
u†kv

†
k

iωn − ωk
− u†kv

†
k

iωn + ωk

)
(3.15)

Now we can expand out the correlator and find the different order diagrams. The

lowest non-zero correction is the second order. The diagrams can be seen below. They

are similar in their shape but have different correlators associated with each line.

DRB

λ2G0

λ2G0
DRB DRB

λ2F †0

λ2F †0
DRB

In principle the simulator’s correlators can be separated from the photon correla-

tors. The self-energy part of the diagrams relies solely on the simulator’s correlators.
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If these were they only diagrams then we could retrieve information about the simula-

tor without any back-action from the cavity. If we represent the self-energy part with

Σ∗ then we see that measuring the cavity with and without the simulator coupled is

sufficient to readout information about the simulator (eqn. (3.16)).

Σ∗ =

(
1

D0
− 1

D

)
(3.16)

As we move to higher orders the situation changes. We will look at the fourth

order corrections next which is the next non-zero correction to the photon correlator.

A naive approach to expanding out the correlator to fourth order will yield over 2000

diagrams. However, shifting the photon operators reduces that number to 1575 with

32 unique diagrams. By examining the shifted correlator partially connected diagrams

are removed and the number of unique diagrams drops down to 22. Sorting through

these diagrams in a rigorous and thorough method is time consuming and prone to

error. As a way of finding, sorting, and eventually calculating with the fourth order

diagrams we designed and built a program to assist in carrying out the analysis.

The program consists of three modules, one which draws the Feynman Diagrams,

one which translates the Feynman diagrams into equations and then carry’s out the

Matsubara summations symbolically, and an underlying module which defines the

structures and operations necessary for the program to function. This was written in

Python and a detailed explanation is provided in Appendix C as well as parts of the

code itself. An example of one such diagrams is seen in equation (3.17).

DRB

G0

DRB

G0

G0
DRB

G0

(3.17)

To simplify the visualization we can view the structure of the diagrams. Each

diagram has the interaction lines labeled one through four. The table next to the

diagram shows the possible sets of correlators that the interaction line can be. Ad-

ditionally it shows the counting factor for each diagram. There are only 4 possible
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fully connected structures. The first structure is an improper diagram. It is simply

the second order diagrams repeated. For the rest, the structure of the diagrams is

more complicated. These complications mean that the system’s unperturbed corre-

lator cannot be extracted. Since the structure of the diagrams is determined by the

form of the interaction Hamiltonian we can link this failure to the form of system’s

coupling operator. The quadratic nature of this operator allows the system’s correla-

tors to fold back onto itself to create increasingly more complicated interactions that

don’t permit reliable detection.

Our first class of diagrams is the loop diagrams that are due to the second order

seen below. These diagrams are consider improper because they can be written as the

product of second order diagrams. Thus they are already considered in the infinite

order approximation discussed earlier. Therefore to avoid over counting they are not

added in the proper self energy term.

3

1

4

2

1 2 3 4 CF

F F F F 1

G G G G 1

G F G F 1

F G F G 1

The next two classes of diagrams are considered to be effective interaction dia-

grams or polarization diagrams. These are diagrams where the higher order contri-

bution can be removed by ”cutting” interaction lines and replacing the contribution

with an effective interaction.

2

G

3

1

1 2 3 CF

F G F 2

G F F 2

G G G 2

F F G 2
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1 2 3

4

1 2 3 4 CF

G F G F 2

F F G G 2

G F F G 2

F F F F 2

F G G F 2

G G G G 2

F G F G 2

G G F F 2

In the case of the effective interactions the counting factor of 2 represents the

fact that the effective interaction can be in either the upper branch or the lower

branch of the diagram. Going through this process of ”cutting” out the higher order

contributions and replacing it with an effective interaction gives the diagram seen

below.

The effective interaction is the sum of the effective parts and is defined below.

= +

The last diagram is a vertex correction. This is the part which contributes most

strongly to the cavity-simulator coupling.



CHAPTER 3. TRANSVERSE FIELD ISING MODEL 25

1

3

2

4

1 2 3 4 CF

G F G F 2

G F F G 1

F F G G 2

F F F F 1

F G G F 1

G G G G 1

By defining the vertex correction as:

=

The last diagram can be simplified to the following:

3.4 Approximate detection

We can use this approach to see how much the interaction with the cavity changes

the system’s correlator. Our first approach will be done by calculating the system’s

correlator to infinite order using the second order diagrams and then calculating

the correlator to infinite order using the second and fourth order diagrams. Then

the spectral function ρ = −2Imag(Dret) will be calculated for both and compared.

The spectral function (also known as the spectral density or spectral weight) gives

the transition energies of the system. It can be thought of as a generalized density

of states. The diagrams were drawn and calculated using a home built program to

facilitate analysis. The diagrams were used to ensure conservation of frequency across

the correlators to perform the Fourier transform symbolically. A program was built

on top of the Sympy package to perform the Matsubara sums symbolically and to get

an analytic result for the Dyson equation using second and fourth order diagrams.

The fourth order spectral function ρ drop below 0 around the peaks. This is likely
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due to the process of analytically continuing the Matsubara correlator. However, by

examining the absolute value of the spectral function we can still learn about the

system due to the location of the peaks which give the transition energies.

Unless otherwise stated the parameters are as follows, N = 20, J = 2πGHz, ωc
J

=

12, λ
J

= 0.04, hx
2J

= 0.02, κ
J

= 10−4, T = 0.1K. We first examine

(a) Second order diagrams, the loops (b) Fourth order

Figure 3.4: spectral density for N=20.

While the results are similar there are some noticeable difference. Firstly the

inside peaks in the second order are due to the simulator and occur at ±2ωk. In

the fourth order these peaks are largely present but some undergo a suppression and

more than half undergo a splitting. In additional there are cavity-simulator peaks on

the outside in the fourth order approximation. These are due to the system-cavity

interaction and are found at ±(ωc − 2ωk).

The effect of the spectral function due to the four classes of diagrams is shown in

figure 3.5. The first effective interaction modifies the peak heights but has little effect

other than that. If we examine the diagram we can see why this is the case. Because

the intermediate photon line connects to a simulator line that closes upon itself, the

photon line carries no frequency. Thus the photon line and the closed simulator line

both factor out of the diagram.

The second effective interaction similarly affects the main simulator peaks but it

also causes cavity-simulator peaks to appear. Recall that each line on the diagram is

itself a correlator. The effective interaction therefore is a correlator which will have

poles shifted by an amount ωc due to the Matsubara summation over the internal

photon correlator.
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(a) Spectral function using the lowest order
diagrams

(b) Spectral function with the first effective
interaction

(c) Spectral function with the second effec-
tive interaction

(d) Spectral function with the effective vertex

Figure 3.5: The spectral function is shown for cases with different classes of diagrams
included.

The two effective interactions lead to a suppression of certain peaks due to partial

cancellation. This suggests that examining the spectrum of the cavity directly may be

problematic. The vertex part contributes the most strongly to the cavity-simulator

peaks. This is due to the vertex part affecting both branches of the diagram.

We can examine the effect that a differing number of sites will have. As the number

of sites, N , increases then more and more peaks relating to 2ωk appear. Looking at

two additional cases below where N = 50 and N = 100 we can see the number of

peaks increase. The number of peaks that are suppressed increases as well but not at

the same rate as the total number of peaks.

The splittings for each individual peak undergo stays constant with respect to

the number of sites. The average splitting was around 0.0012J for all values of

N. Pursuing this line of analysis provides insight into the cavity-simulator system
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(a) Fourth order spectral function with N =
50

(b) Fourth order spectral function with N =
100

Figure 3.6: Spectral density for different number of sites. As the number of sites
increases the number of lines in the spectrum also increase. However, the splittings
caused by the interaction with the cavity does not change. Parameters are ωc

J
=

12, λ
J

= 0.04, hx
2J

= 0.02, κ
J

= 10−4, T = 0.1K

but makes analysis of the simulator itself difficult. We can completely ignore the

difficulties associated with the splittings and peak suppression by examining the self

energy as in equation 3.16.

The second order self energy term is not directly affected by the cavity and the

cavity frequency does not directly come into the spectrum. The peaks seen in figure

3.7 (a) can be found at twice the frequency of the simulator. Measuring these peaks

can then give information about the simulator itself.

(a) Second order retarded self energy (b) Fourth order retarded self energy

Figure 3.7: Using equation 3.16 we can calculate the self energy. This eliminates the
splittings in the peaks caused by the cavity allowing for less ambiguous results. The
parameters are the same as in figure 3.6 with N = 20.
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In the fourth order self energy the effects of the cavity can been seen in the cavity-

simulator peaks which occur at ±(ωc− 2ωk). As long as the two sets of peaks remain

far apart then we can unambiguously distinguish the peaks due to the simulator and

those due to the cavity-simulator system. This occurs as long as the cavity frequency

meets the condition in equation 3.18. This condition can be seen by recognizing that

the cavity-simulator peaks need to be outside of the simulator peaks which occur at

2ωk. Since the cavity-simulator peaks occur at ωc − 2ωk the cavity frequency will

need to be more than four times the simulator’s frequency.

ωc > 4ωk (3.18)

To find the effect of the different parameters on detection we must consider two

aspects. The first is the unambiguous distinction between the simulator peaks and

the cavity-simulator peaks as discussed above. The second is in the reliable extraction

of the simulator’s parameters. We can attempt this by fitting the data to the form of

the second order expression which only depends on the simulator. The second order

self energy term is written as:

4λ2

~β
∑
k

∑
iω1

G0
k(iω1)G0

k(iωn + iω1)−F †0k (iω1)F †0k (iωn + iω1) (3.19)

After completing the Matsubara summations using the technique discussed in

chapter 2 we get the solution:

8λ2
∑
k

(1− 2nF (ωk))

(
4ωku

2
kv

2
k

(iωn)2 − (2ωk)2

)
(3.20)

This has two issues, firstly the height of the peak is difficult to properly extract

both numerically and experimentally. Secondly, the effects of the cavity are more

pronounced in the peaks of the self energy. A combination of peak finding and

inspection would work better to extract out the simulator’s frequencies in practice.

Here we simply use the calculated values since the difference between that and a

peak finding algorithm are small and depends solely on the numerical resolution.

We must also consider the effect of the effective magnetic field on the simulator’s
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frequency. Since the magnetic field is shifted by an amount −4Nλ2

ωc
the measured

value of simulator’s frequency will also be altered. To examine the effect of the cavity

on the simulator’s frequency we look at the average of the absolute value of the percent

difference eqn.(3.21)

pd = 100

∣∣∣∣∣ωk − ω′kωk+ω′k
2

∣∣∣∣∣ (3.21)

We start by examining the effect of the cavity frequency. As the frequency in-

creases the cavity-simulator peaks are pulled farther away. For small cavity frequen-

cies the cavity-simulator peaks cannot be easily distinguished from the simulator’s

peaks as shown in figure 3.8.

(a) ωc
J = 8 (b) ωc

J = 10

(c) ωc
J = 12 (d) ωc

J = 14

Figure 3.8: The spectral function for varying values of cavity frequency. As the cavity
frequency increase the cavity-simulator peaks pull away from the simulator peaks.

In the case where ωc
J

= 8 the cavity-simulator peaks are mingled with the sim-

ulator peaks and cannot be distinguished. As the cavity frequency increases the
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percent difference between the unperturbed and perturbed simulator frequency de-

creases roughly as 1
ωc

. Thus having a high cavity frequency is desirable for both

accurate measurement of the peaks and distinguishability between the peaks due to

the simulator and those due to the cavity-simulator interaction.

Figure 3.9: The percent difference in the simulator’s frequency as a function of cavity
frequency

We can see a similar behavior as we increase the magnetic field, hx. As hx increases

the frequency of the simulator also increases, eventually causing the cavity-simulator

peaks to mix with the simulator’s peaks. At hx
2J

= 0.5 The maximum simulator

frequency is just under one fourth of the cavity frequency. The cavity-simulator

peaks are still distinguishable but just barely.

The effect of the accuracy of the location of the peaks is effected in a more pro-

nounced fashion. Since the correction to the magnetic field is fairly small for the

given parameters, less than 3% there is little change to the measured frequencies. As

hx approaches the critical point and the effective critical point the percent difference

between the simulator’s frequency and the measured frequency peaks.

An important aspect to examine in this discussion is the number of sites. The

appeal of quantum simulators is tackle problems a classical simulator simply cannot

handle. Smaller quantum systems can usually be simulated. As the number of sites

increases the number of peaks also increases. For a set effective magnetic field the

peaks stay within the same range getting closer and closer together. However, the

number of sites alters the effective magnetic field causing a change in the measured

simulator frequencies. This effect can be seen in figure 3.12 by examining the space in
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(a) hx
2J = 0.1 (b) hx

2J = 0.2

(c) hx
2J = 0.5 (d) hx

2J = 1.5

Figure 3.10: The spectral function for varying values of magnetic fields. As the
magnetic field increases the frequency of the simulator spreads out, eventually causing
the simulator peaks to overlap with the cavity-simulator peaks.

Figure 3.11: The percent difference in the simulator’s frequency as a function of the
applied magnetic field. Two peaks appears, one due to the magnetic field reaching
the critical point and the other due to the effective magnetic field reaching the critical
point hx

2J
= 1.

which the peaks are residing. For N = 1000 we see that all of the peaks are squished

together. However, as the number of sites continues to increase the spacing opens up.
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(a) N = 20 (b) N = 100

(c) N = 1000 (d) N = 1500

Figure 3.12: The spectral function for varying number of sites. As the number of
sites increases th effective magnetic field decreases eventually turning negative.

Figure 3.13: Percent difference in the simulator’s frequency as a function of the
number of sites. As the sites increase the effective magnetic field decreases, eventually
flipping direct. This causes the measured and actual frequencies to match perfectly
at N = 1500. Beyond that point additional sites causes the difference to increase
monotonically.

The reason for this is that as the correction to the magnetic field grows eventually

the field is canceled. For these parameters this occurs when N = 750. This can be
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used as an advantage. As the correction to the magnetic field continues to increase

eventually the effective magnetic field will change direction. If the parameters are

tuned just right the effective magnetic field can be tuned so that it is the same

magnitude but differing in direction to the decoupled case. In this case there is no

difference in the expected and the measured simulator frequency. This is the cases in

figure 3.12 (d). This effect is encapsulated in figure 3.13 where the percent difference

is seen to increase, then decrease to zero before increasing again. Thus truly reliable

detection can be achieved. This occurs under the following condition:

h′x = −hx = hx −
4Nλ2

ωc
(3.22)

hx =
2Nλ2

ωc
(3.23)

Pushing this further we can examine the effect of a higher coupling λ = 0.5J if

the magnetic field is adjusted so that the effective magnetic field stays the same.

(a) Retarded self energy term, λJ = 0.01 hx
2J =

0.1897
(b) Retarded self energy term, λ

J = 0.5 hx
2J =

1.022

In this case the different sets of peaks can be easily differentiated. While the

height of the peaks are significantly affected the location remains the same. This

shows that the effect of the coupling can be circumvented with respect to detection

so long as the other parameters can be tuned.

In general this shows an interesting case where by fine-tuning the parameters

accurate measurement of the simulator’s peaks can be achieved. From a practical

standpoint this may be problematic as the tuning of these parameters may not be
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easily achieved. The details of this depend on the specific system. For any array

of trapped ions it may be possible to change the number of sites a superconducting

architecture may not have that luxury.

Finally turning to the effect of the bandwidth on the detection of the simulators

peak we find an interesting use. As the bandwidth increases the height of the cavity-

simulator peaks is suppressed and the peaks become more spread out as seen in figure

3.15. This is due to the fact that the effect of the bandwidth is to alter the poles

of the cavity’s correlator giving it a non-zero imaginary part. The imaginary part

gives the full-width-half-max of the peak. Since the poles from the simulator do not

depend on the cavity directly they are not affected by this. Thus the cavity-simulator

peaks can be independently controlled.

(a) κ
J = 10−4 (b) κ

J = 10−3

(c) κ
J = 10−2 (d) κ

J = 10−1

Figure 3.15: The spectral function for varying cavity bandwidth κ. As the bandwidth
increases the cavity-simulator peaks are suppressed.

Using this fact we can examine stronger magnetic fields so long as the band width

is sufficiently high. In the graphs below we look at the case where the magnetic field
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is 3 times J and the band width is 0.5J . This greatly suppresses the cavity-simulator

peaks and allows for the simulator’s peaks to be read out. Even though the energy of

the simulator does not meet the condition in eqn. (3.18) with a max value of 5J , the

cavity-simulator peaks have been suppressed to such a large extent that the simulator

peaks are easily distinguished.

(a) The self energy calculated directly by
only considering the loop diagrams.

(b) The self energy calculated considering all
the diagrams.

Figure 3.16: Despite having a high magnetic field reliable detection can still be
achieved because the large bandwidth suppresses the side band peaks. The sec-
ond order peaks seen in (a) can also be distinguished in the (b). Parameters are
κ
J

= 5× 10−1, hx
2J

= 1.5

As the higher order terms broadened and are suppressed the peaks from the cav-

ity are broadened as well. Therefore care should be taken to keep the broadening

of the cavity peaks from overwhelming the simulator’s peaks. Thus increasing the

bandwidth of the cavity acts to soften the condition that the cavity frequency should

be far from the simulator’s frequency.
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Previous work done by Du and Tian estimated the back action from this set

up [18]. Their estimate used finite second order perturbation theory to estimate

the shift δωk in the eigenmodes to be |δωk| 2λ
2N
ωc

By examining the effect of the

cavity shift on the simulator we can find a similar shift. The value of the simulator’s

frequency ωk = 2J
(

1 +
(
hx
2J

)2 − hx
J

cos(k)
) 1

2
is changed due to the effective magnetic

field giving a frequency ω′k. Defining δωk = ωk − ω′k squaring the results, making a

binomial expansion, simplifying and then examining the leading term gives a result

of |δωk| ≈ 4Nλ
2

ωc
which is in good agreement with Du’s result.

An important question is how our results extend to other systems, in particular

systems with an unknown eigenvalue spectrum. This is the key interest of these types

of adiabatic quantum simulators. While specific conclusions regarding and numerical

answers regarding the reliability of the results are likely not valid this work provides

some insight into approaches and parameter regimes that future work may want to

consider. Our conclusion that the simulator’s coupling operator quadratic nature

leads to issues with detection remains valid for all systems. This is because the cou-

pling determines the structure of the Feynman diagrams and a quadratic simulator

coupling operator will lead to diagrams intertwined with the photon lines. Addi-

tionally no matter the type of simulator or the simulator’s coupling operator as long

as the detector coupling is linear the first non-zero contribution in the perturbation

series will solely depend on the simulator terms. Higher order terms will include

photon lines which carry Matsubara frequencies that must be summed over. It is

because of this feature that the cavity-simulator peaks depend on the bandwidth.

Thus for all foreseeable systems we would expect a higher bandwidth to suppress the

cavity-simulator peaks while leaving the pure simulator peaks untouched.

For a similar reason we also expect that the cavity frequency will need to be

greater than the maximum simulator cavity by 2nMAX(ωs) where n is the number

order of the simulator coupling operator and ωs is the simulator’s frequency. This

is because each additional term in the coupling operator generates a new line and

thus another Matsubara summation is required. One of the effects of summing over

the Matsubara frequencies is to alter the poles of the resulting correlator by adding

(subtracting) the original pole. This is only true in the case where the simulator’s
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correlators have two each and opposite poles.

In a more intuitive fashion, we consider a vertex of the Feynman diagram with two

simulator lines. The simulator’s correlators have poles at ±ωs. A value of iωn = 2ωs

can flow through the diagram with a +ωs flowing out and a −ωs flowing in to th

Vertex. Thus in that diagram 2ωs is a pole.

In the case of vertex with three simulator lines entering or exiting a value of 3ωs

can pass through the diagram in a similar fashion. Thus 3ωs is a pole. Therefore to

avoid overlap between the simulator peaks and the cavity-simulator peaks we would

expect that the cavity frequency would need to be at least 6ωs.

3.5 Conclusions

We analyzed the Transverse Field Ising Model with nearest neighbor interaction cou-

pled to a cavity readout. We found that the form of the coupling prevents reliable

readout due to the quadratic nature of the simulator’s coupling term. We found

that despite being able to achieve exact detection that reliable detection can still

be achieved. This is done by considering two features. Firstly the distinguishability

of the simulator’s peaks and secondly the accuracy of the simulator’s peaks. In the

first case the simulator’s peaks can be mixed with the simulator-cavity peaks due to

higher order corrections. These simulator-cavity peaks are located at ±(ωc − 2ωk)

thus to distinguish the peaks the cavity frequency must be far enough away from the

simulator’s frequency, ωc > 4ωk. This condition can be mitigated in the case of higher

bandwidth since the simulator-cavity peaks are sensitive to the bandwidth and will

be suppressed where the simulator peaks are not.

The accuracy of the peaks is determined by the effective magnetic field which is

due to properties of the simulator, the cavity, and the coupling between them. Instead

of reading out results for an applied magnetic field of hx the actual results are for an

effective magnetic field hx − 4λ
2N
ωc

. For small coupling, small sites, and large cavity

frequency this effect may be negligible; however, as this correction increases the effect

becomes more pronounced until the effective field is flipped, eventually the effective

field is the same as the applied field only in the opposite direction. In a symmetric
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system such as ours this will give the same result. After this point the differences

between the ideal result and the actual result increases roughly linearly. If there is

full experimental control of the system’s parameters then this effect can be mitigated

by changing the parameters. For example in a trapped ion system the number of

captured atoms may be variable. However, in a superconducting system the number

of sites is fixed. Thus the ability to mitigate this particular effect is strongly depend

on the type of system and experimental controls that are possible.

Finally though our results are for specific case of th Transverse Field Ising model

coupled to a cavity several of the most important results generalize to other systems

with a linear detector coupling operator. The effect of bandwidth suppression on

the cavity-simulator peaks will likely hold for most systems because the higher order

terms involve Mastubara summations over the detector’s correlations. Additionally

if the simulator’s correlators have peaks that come in positive-negative pairs then we

can be fairly certain that the detectors frequency will need to be greater than 2nωs to

ensure distinguishability between the simulator and the cavity-simulator peaks. Thus

this works offers insight in to the reliable detection of analog quantum simulators.



Chapter 4

Qubit

4.1 Introduction

Qubits have been proposed for use in universal quantum computers [4] with various

systems used in their experimental realization [43–45]. Cavity-qubit systems in the

strong coupling regime (where cavity-qubit coupling is greater than the decay rates)

have been studied in-depth within the Rotating Wave approximation (RWA) [46,47].

The RWA involves removing terms like aσ− and a†σ+ and is only valid for coupling

strengths significantly less than the cavity frequency [48]. These are often called the

counter rotating terms. The regime is properly understood by the Jaynes-Cumming

model. Because the counter-rotating terms are removed only states which trade

off excitations between the photon mode and the qubit are allowed. This leads to

a subspace in the Hilbert space that is described by the eigenvectors | ↑, n〉 and

| ↓, n+ 1〉. In this regime anti-bunching in the photon statistics is observed which is

indicative of the quantum nature of the photon. The interaction between the qubit

and the cavity also leads to a shift in the cavity spectrum which is dependent on the

state of the qubit [46]. This can be used for readout of the qubit state.

Work has been done to expand results to stronger and stronger couplings [22,23,

26,49,50]. There is an interest in possible new physics and interesting effects including

a break down of the Purcell effect, entangled ground states, non-classical light,ultra

fast quantum gates, and more [28, 51–55]. Kohler used an approach that involved

40
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finding the density matrix without the rotating ave approximation and then used

that in a linear response theory to find the susceptibility and transmission spectra.

Additionally experimental setups have reached into ”Deep-strong-coupling” where the

coupling strength approaches the cavity frequency [1,26]. In our work we do not make

the RWA and thus we are free to explore the physics beyond this approximation.

4.2 First approach

We start with the Hamiltonian for the cavity-qubit system.

H = ~ωca†a + ~
ωz
2
σz + ~λAσx (4.1)

Where A = a + a†. If we wish to expand this using Feynman diagrams we run

into a problem discussed in chapter 2. The interaction term is made up of anti-

commuting operators. During the derivation of the perturbation theory there is an

implicit assumption that interaction Hamiltonian behaves as a boson with respect

to the commutation laws. This leads to a inconsistency between the time ordering

operator in definition used for the correlators and the expansion of the time-order

exponential.

Three approaches were taken to handle this issue. The first treat the spin operators

with a boson like time ordering. The second approach is to ignore the inconsistency

and proceed. This is the most naive approach but there are some interesting insights

that develop from these two approaches. Finally we use a Majorana transformation

to fix the interaction term. In most of these cases we set the bandwidth to be zero

for ease of comparison.

Firstly we consider a slightly more general definition of the time ordering operator

seen in equation (4.2). I have shown that non-relativistic perturbation theory can be

self consistently built for any real value of θ. Here we will just assign it the value of

2π so that the time ordering is similar to that of bosons. I will refer to the value eiθ

as the exchange factor. More generally we can have any value for θ so long as the

total exchange factor for the interaction term is 1. For example using an exchange
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factor of i and −i for the photon and spin exchange factor will work though solving

the Matsubara sums requires a different weighting function.

Tτ [σ
x(τf )σ

x(τi)] = Θ(τf − τi)σxfσxi + eiθΘ(τf − τi)σxfσxi (4.2)

The sign change from the time ordering is what causes discrete frequencies and

determines the type. In this case the spins will have boson like frequencies which

are even. There are two advantages to this. The first is that the diagrams that are

produced are simple. The second is that the main spectral lines are captured by

this theory. However, we will see that transitions from higher energy states are not

captured and the theory can not be altered to address this.

The correlator for the unperturbed qubit is defined by equation (4.3) and its

Fourier transform is seen in equation (4.4). This equation only applies for the current

exchange factor of +1.

S0(τf , τi) = −〈Tτ [σx(τf )σx(τi)]〉0 (4.3)

S0(iωn) =
2ωz

(iωn)2 − ω2
z

(4.4)

We have shown that Wick’s theorem applies to the raising and lowering spin

operators for a single qubit. The derivation is very similar to that of Fetter [29] and

is worked out in Appendix A. Because the spin operator is just a linear combination

of raising and lowering operators each vertex in the diagram has only one photon line

and one spin line connected. This leads to one simple diagram.

DRB λ2S0 DRB (4.5)

Going to higher and higher orders we see this is the only proper diagram. This

can also be seen by recognizing that the only way to add a diagram is to insert two

vertices, a single photon line, and a single spin line. We can place this diagram into

the self energy part of Dyson’s equation to find the full correlator.
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DR = DRB + DRB λ2S0 DR (4.6)

This diagram is then converted into an equation which we can use to calculate results

(eqn(4.7))

DR(ωn) =
DRB(ωn)

1− λ2DRB(ωn)S0(ωn)
(4.7)

To analyze our results we compare our theoretical predictions to numerical diag-

onalization with values based on an experiment by Yoshihara. This paper looks at

the transmission spectra for a superconducting qubit-oscillator system in the deep

coupling regime. In the experimental papers we compare our results to the Hamil-

tonian used to describe the cavity-qubit system has an additional term ε
2
σx due to

an applied external flux. This is external flux is a free parameter by which the sys-

tem can be studied. Additionally we rotate the Hamiltonian so that their coupling

matches ours. This flux term is handled by diagonalizing the qubit part of the free

Hamiltonian and rewriting the coupling. This leads to an extra term in the coupling

which is unimportant to this part of the results as it leads to disconnected diagrams.

The spectra is obtained using a weak probe to scan across the transmission range.

In figure 4.1 (a) we can see the relevant eigenvalue transitions that occur in the exper-

iments and the spectral function calculate from the eigenvalues using the Lehmann

representation of the Green’s function. These graphs are obtained by numerically

solving for the eigenvalues using a 16 photon basis. The results are seen in figure

4.1 which agree well with the experiment. The ratio of the coupling strength to the

cavity frequency is 0.72 which is considered to be in the deep strong coupling regime.
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(a) Relevant Eigenvalue transitions (b) Log of the spectral function calculated by
numerically finding the eigenvalues

Figure 4.1: These figures reproduce the results found in [1]. The values are ωc
2π

=
6.336GHz, λ

2π
= 4.57GHz, and ωz

2π
= 0.505GHz. The temperature is at 20mK.

We can now compare our approach. Using the Green’s function we calculated via

perturbation theory we plot the results for the spectral function in figure 4.2. The

main transmission line is close corresponding to the lowest excited state transitioning

to the ground state. The second excitation to ground state transition is partially cap-

tured but the behavior around ε = 0 is completely incorrect. Additionally none of the

other transitions are seen. Because of the lack of Matsubara summations, there is also

no temperature dependence. Thus while there is some agreement with the primary

transmission peaks this approach lacks the ability to determine higher state transi-

tions.

Figure 4.2: Spectra for the cavity qubit system
calculated with the boson-boson assumption on
a log scale. The parameters are the same as in
figure 4.1.

We can also compare this within the

rotating wave approximation (figure

4.3). In this case the second ex-

cited state transition is even farther

from the experimental spectra but

the two are otherwise fairly close.

This is suggestive that our approach

is missing certain key aspects. How-

ever, there is an advantage to this

approach if you are only concerned

with the primary peaks and are at

lower coupling.
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Figure 4.3: Spectra for the cavity qubit
system calculated in the rotating wave ap-
proximation on a log scale. The parame-
ters are the same as in figure 4.1.

It can be easily extended to include a

multi-mode cavity like was done by Chen

in [2]. This was an experiment involving

a superconducting flux qubit coupled to

a coplanar waveguide resonator. In mod-

eling the system the three lowest modes

of the resonator were considered, each

with a different coupling strength. The

maximum coupling was approximately

10% of the resonance frequency of the

mode. This puts the system in to the

ultra-strong coupling regime and the Jayne’s Cumming model is expected to not be

valid.

The normal photon correlators are upgraded to by an N×N matrix where N is the

number of modes. For the three mode cavity system in [2] these results capture the

Figure 4.4: Log of the spectra for a cavity-
qubit system where the cavity is modeled
with 3-modes. Parameters are found in [2].

main lines. However, the side bands

due to higher energy transitions are not

caught by this method and the avoided

crossing behavior between the is not

quite right. In this case the rotat-

ing wave approximation only makes a

very small difference. This indicates two

things. The first is the our approach

is not properly taking into account the

counter-rotating terms. The second is

this approach as a whole has no chance

of capturing the higher order transitions we expect in systems like these.



CHAPTER 4. QUBIT 46

4.2.1 4-point correlator

A final advantage to this approach is that it allows for an easy extension to higher

point correlators. The 4-point correlator is defined in equation 4.8

D4R(t+ τ, t) = −
〈
Tτ

(
Â(t+ τ)Â(t+ τ)Â(t)Â(t)

)〉
(4.8)

This is related to the variance of the photons. This particular value is useful in

discussing the statistics of light and finding the quantum nature of light [48]. The

same technique as used before can be applied here. For the 0th order term there are

two diagrams. The first is a bubble diagram

DRB0(ω1) DRB0(ω1)

(4.9)

The second is a propagating diagram. This diagram has an extra factor of two which

can be attributed to the number of different ways two lines can be connected between

2 points.

DRB0(ω1)

DRB0(ωn − ω1)
(4.10)

Each higher order diagram adds n
2

interaction lines and photon lines to the 0th order

diagram. All of the propagating diagrams have a factor of 2. After expanding the



CHAPTER 4. QUBIT 47

correlator out it can be shown that the non-interacting lines in the 0-order diagrams

can be replaced by the fully interacting 2-point lines.

This can be represented diagrammatically as follows:

DR(ω1) DR(ω1)

(4.11)

DR(ω1)

DR(ωn − ω1)
(4.12)

Or in equations:

DBubbles4R =

(∑
ω1

D2R(ω1)

)2

(4.13)

DPropagating4R = 2
∑
ω1

D2R(ω1)D2R(ωn − ω1) (4.14)

4.2.2 Higher order correlators

To better characterize the statistics of the system higher-order correlators are required

[48]. The sum of higher-order correlators was examined in [56]. This was done within

the RWA and in the time domain to find the characteristic function. By extending

the arguments of the previous section the diagrams for the N-order photon correlator
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can be determined by examining the unperturbed diagrams. If we consider a diagram

with p propagating lines then there will be p! ways if adding in a single interaction. If

we consider adding two interactions but keeping them on the same line there is again

p! ways of doing this. Thus the arguments used above to show that the zero-order

lines can be replaced with the full 2-point correlator lines will hold.

Drawing the 0th order diagrams for the N-operator correlator proves to be fairly

simple. The topology of the 0th order diagrams follows a simple recursive rule (The

Mastubara sums and frequencies have been suppressed at the moment for ease of

notation):

D(N) ← B2D(N−2) +D(N)
fullypropagating (4.15)

This is not an equality but rather just shows how you can produce the next level

of diagrams. The counting factor for each diagram is not so simple. Equation 4.15

says the the N-order diagrams are drawn by looking at the (N-2)-order diagrams,

multiplying by two bubbles and then adding in a diagram unique to the N-order

diagram, namely the diagram in which all lines are propagating from the initial point

to the final. For the 6-order diagrams you would start with the single propagating

line. After multiplying by the two bubble terms you end up with a diagram that

looks like a dumbbell. Finally the unique term for the 3-photon diagrams is three

propagating lines. .

As mentioned previously the counting factor for each diagram does not have a

neat recursive form. It can be found by considering how the lines can connect for a

given topology. For any given N-order diagram there are n lines, p propagating lines,

and b bubble lines. The number of bubble lines will always be even and n = p + b.

The equation for the counting factor can be seen as follows. There are n operators

for the initial time and n operators for the final time. For p propagating lines there

are n choose p ways of picking the initial operator and n choose p ways of picking

the final time. There are then p! ways of permuting this. For the bubble terms each

operator is paired with one of the same time. Since each paring takes up two possible

operators of the same time there will be (b− 1)!! ways of pairing for each time. Thus

we arrive at the equation for the counting factor for and arbitrary N-order photon
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correlator.

rn,p,b =

(
n

p

)2

((b− 1)!!)2 p! (4.16)

Within that line of thought it would be interesting to see if one could sum types of

diagrams. For example, by grouping all the N-operator diagrams with p propagating

lines you get a sum that looks like:

(
rp,0 + rp,2B

2 + · · ·+ rp,bB
b
)
Dp (4.17)

Unfortunately attempting to sum this is unsuccessful as the sum diverges. This

isn’t necessarily an issue since such a function is not guaranteed to exist.

4.3 Second Approach

Another approach is to ignore the inconsistency in the time-ordering and to treat

give the qubit exchange factor a value of −1 like one would expect of anti-commuting

operators. This creates an interesting situation where the photon correlator carries in

a bosonic frequency which is discrete and even into a vertex and the qubit correlator

carries out a fermionic frequency which is discrete and odd. Therefore there cannot

be conservation of frequency as is typically demanded.

In the diagrammatic approach conservation of frequency is derived from taking

the Fourier transform of the time-space correlators. Each vertex leads to terms like� ~β
0
e(ıωn−iωm+iωr)τdτ where the frequency terms are discrete and equal to either 2πn

~β

or 2πn+1
~β . Since the interaction term in the Hamiltonian is typically bosonic the

frequencies in the exponential will be add in such a way that the overall term is even.

If the overall term in the exponential is even then the integral is proportional to the

Kronecker delta which ensures that the discrete frequency flowing into and out of the

vertex is conserved.

In this case each vertex has a single boson frequency and a single fermion frequency

flowing into or from it. Thus the term in the exponential cannot be even and frequency

is not conserved.The integral is carried out and the Matsubara summation due to the

Fourier transform still remain to be solved. Because of this approach there are two
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changed. The first is that the qubit correlator differs from equation 4.4.

S0(iωn) =
2iωn

(iωn)2 − ω2
z

(4.18)

The second difference is that equation 4.7 does not describe the full photon corre-

lator, we have to include summations over the Matsubara frequencies for each vertex.

Thus each higher order of the diagram has more and more summations. However,

we the diagram solution in equation 4.6 can be used to get an answer which can be

explicitly checked.

D(iωn) = D0(iωn) +
4λ2

~2β2

∑
iω1,iω2

D(iω1)S0(iω2)D(iωn)

(iω1 − iω2)(iω2 − iωn)
(4.19)

In the current form equation 4.19 is not easily solved. Since we do not know the

poles of the full photon correlator a priori the only move forward is to do the second

summation first. Thus we first consider just the terms with the second Matsubara

frequency. It should be noted that the first frequency is a bosonic freqeuncy and the

second is a fermionic frequency.

∑
iω2

S0(iω2)

(iω1 − iω2)(iω2 − iωn)
(4.20)

Immediately we see an issue as the summand in equation 4.20 has poles along

the imaginary axis. There are two ways to deal with this. The first is to add a

small positive real part to the poles which then go to zero. The second is to deform

the contour so that poles due to the bosonic frequency are just avoided. Since the

fermionic frequency that we are summing over is always odd and the bosonic terms

are always even they never overlap. However, this leads to another issues. Since we

will have to carry out one more summation, which is over bosonic frequencies, after

this one we want to ensure that there are no poles which are on the imaginary axis

and are even. The best way to do this is to add a small real part to the frequency

iωn which will go to zero at the end of the calculation.

Carrying out the summation in equation 4.20 and simplifying gives the following
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result.

−~β
(
nF (δ)S0(iωn + δ)− 1

2
S0(iω1)

iωn + δ − iω1

+
S0(iωn + δ)S0(iω1)

4(iωn + δ)iω1(
(iωn + δ)iω1 + ω2

z −
nF (ωz)

nB(ωz)
(iωn + δ + iω1)ωz

)) (4.21)

It turns out that the first term and the second term are identical once δ is taken

to be zero. The effect of δ only changes the first term and only changes the result of

the pole at iωn. Therefore we can partially take care of the iω1 summation and we

can simplify our results.

D(iωn) = D0(iωn) + λ2D(iωn)S0(iωn)D0(iωn)

+
λ2

~β

(∑
iω1

nF (ωz)

nB(ωz)

S0(iωn)S0(iω1)

iωniω1

ωz(iωn + iω1)D(iωn)

)
(4.22)

If we subtract the second term, factor out D on the left hand side and divide by

the factor in front then we end up with a term very similar to equation 4.7. This is

possible to solve but we first make some substitutions, iωn → x,iω1 → y, D → φ.

Additionally the term similar to equation4.7 will be denoted f(x), all the constants

in the summation will be α and finally all the other terms in the sum will be grouped

into a kernel, K(x, y). With these substitutions our equations simplifies to:

φ(x) = f(x) + α
∑
y

φ(y)K(x, y) (4.23)

This is reminiscent of a Fredholm equation of the second kind with a sum instead

of an integral. In this case the kernel is separable so these can be recast as a set of

linear equations with coefficients that are solvable integrals [57]. The solution is rather

lengthy and closely follows the standard approach to solving the problem only with

summations instead of integrals. However, those summations eventually are recast as

integrals when solving them. This can also be extended for the case of a multi-mode

cavity. However, the process is quite lengthy and not particularly enlightening.
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At the end of this lengthy process we find that the results are not significantly

different from our previous results. However, we believe this offers an interesting path

forward. Since this particular approach ignores the consistency issue between the time

evolution expansion and the time ordering definition it is likely insufficient. Another

approach might be to allow the bosonic term to have a time ordering exchange factor

of i and the spin to have one of −i. This requires a similar approach as was done

above since the frequencies associated with these exchange factors are quarters and

third quarters of π/~β and thus frequency will not be conserved in the vertices. That

being stated, the likelihood of such an approach working seems low and will require

quite a bit more work to flesh out.

4.4 Majorana Approach

Our last approach to circumvent the issue of the consistency between the expansion

of the time evolution operator and the time ordering issue is to use a Majorana

representation of spin. Majorana fermions are fermions which are their own anti-

particle. They are expected to useful in building fault-tolerance quantum computing

[58]. Our interest here is to use the Majorana representation of spin operators to

recast the Hamiltonian in a more desirable form. This embeds the spin operators in

a higher dimensional Hilbert space. This approach has been used to find a solution

in the Kitaev honeycomb model, which is a honeycomb lattice of spins and other

condensed matter systems [59–61]. There are three main ways of representing spin

with Majorana fermions, we choose the SO(3) representation which involves casting

the spin operators in terms of three Majorana fermions [59].

σx = −iηyηz (4.24)

σy = −iηzηx (4.25)

σz = −iηxηy (4.26)

Where ηj are the Majorana operators which satisfy the Clifford algebra {ηi, ηj} =
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2δi,j. They are also their own antiparticle ηi† = ηi. Because of this we can represent

the Majorana particles as a sum of regular fermion operators [60].

ηx = f + f † (4.27)

ηy = i(f − f †) (4.28)

ηz = g + g† (4.29)

We can transform the Hamiltonian now:

H = ~ωca†a − ~ωzf †f + ~λA(f † − f )(g† + g) (4.30)

Or

H = ~ωca†a + ~ωff †f + ~ωgg†g + ~λAFG (4.31)

Where ωf = −ωz and G = g† + g, F = f † − f . We let ωg go to zero at the end. Its

existence will allow us to use Wick’s theorem. We now define our Green’s functions

in the typical way, F for the f fermions and G for the g fermions.

D(iωn) =
2ωc

(iωn)2 − ω2
c

(4.32)

F(iωn) =
−2iωn

(iωn)2 − ω2
f

(4.33)

G(iωn) =
2iωn

(iωn)2 − ω2
g

(4.34)

4.4.1 Second Order

At this point normal perturbation theory can be carried out. The lowest order dia-

gram is shown below.
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DRB(iωn)

G0(iωn − iω1)

F0(iω1)

DRB(iωn)

The self energy term is

λ2

~β
∑
p

F0(iωp)G0(iωn − iωp) (4.35)

Which can be evaluated by the typical Matsubara technique of equating the sum to

an integral and solving via the residue theorem. This function has poles at ±ωf and

iωn ± ωg so that the ωg limit must be taken at the end of the calculation. This gives

a self energy of
2ωz

(iωn)2 − ω2
z

nFD(ωz)

nBE(ωz)
(4.36)

For comparison we use a similar approach as before. We numerically diagonalize

the Hamiltonian for the case of 16 photons and then compare. We pick values com-

parable to experiments. The results of this can be seen in figure 4.5. The main lines

we will focus on are the transitions from the two lowest states to the ground state

and the two level transitions from the third and fourth state. The results are given

in terms of the spectral density ρ = | − 2Imag(Dret(ω))|.

(a) Relevant eigenvalue transitions (b) Log of the spectral function calculated by
numerically finding the eigenvalues

Figure 4.5: THe numerical results for deep strong coupling. The values are ωc
2π

=
3.142GHz, λ

2π
= 0.5GHz. The temperature is at 20mK.
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When compared to the exact diagonalization results this provides an excellent

match to the main line (figure 4.6).

Figure 4.6: Log of the spectral function
calculated with the second order diagrams,
parameters are the same as in figure 4.5.

This is the most promising approach

so far as the lack of agreement has a sim-

ple and natural explanation. In this case

we are only dealing with the lowest or-

der diagrams. Including more diagrams

is a natural way to increase the the accu-

racy. Additionally higher order diagrams

have the chance to take into account the

higher excitation transitions that we saw

in the numerical results. Thus a natural

next step is to examine the higher order

diagrams produced by this result.
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4.4.2 Fourth Order

DRB G0

F0

DRB G0

F0

DRB

(a) This is the only non-proper dia-
gram. It is simply a repetition of the
single second order diagram.

F0 G0

G0 F0

DRB
DRB DRB

(b) This is an effective vertex dia-
gram. It can be redrawn as the sec-
ond order diagram with a frequency
dependent vertex.

F0 F0

G0

DRB DRB

D0

G0

(c) This is an interaction diagram.
The top interaction is changed by
the smaller diagram within it.

G0 G0

F0

DRB DRB
D0

F0

(d) This is also an interaction dia-
gram. It is similar to the above one
only effecting the bottom branch in-
stead of the top.

Figure 4.7: The four fourth order diagrams each has a counting factor of 1.
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For fourth order diagrams there are four new diagrams, three of them are proper

diagrams. The three proper diagrams are made up of two that create an effective

interaction and one that makes up a vertex correction. Including these diagrams into

the Dyson equation gives us a higher order approximation. There are two issues that

immediately arise. The first is similar to the issue we saw in the previous section

regarding analytical continuation.

Figure 4.8: Log of the spectral function
with the fourth order diagrams, parame-
ters are the same as in figure 4.5.

Namely the spectral function dips be-

low zero for certain values. We sidestep

this in the same way by looking at the ab-

solute value of the spectral function. The

second issue is that the results seen in fig-

ure 4.8 are less of a match to the numeri-

cal results. This could require a more so-

phisticated approximation scheme. We

first proceed under that assumption and

examine an effective interaction approx-

imation.

4.4.3 Effective Interaction

Another possible approximation is the effective interaction [31]. In the interaction

diagrams seen above there is a loop within the interaction lines. At each higher order

there will be an additional loop. The key to realizing this approximation is to under-

stand that this can be summed in a similar way as the self energy terms. Therefore we

can consider an interaction line which is the sum of all effective interaction diagrams

in the form of figure 4.7:

= + + +...

(4.37)

Equation 4.37 shows how this is done with one interaction line, the same applies to
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the other. This can be summed exactly as in previous sections where the self energy

is summed to infinite order. This gives the following diagram which is the same as

the second order diagram only with effective interactions.

DRB(iωn)

G(iωn − iω1)

F(iω1)

DRB(iωn)

Solving the Matsubara sums for this type of diagram follows the exact same pro-

cess as before. The only difference is that the poles of the interaction lines are not

trivial to calculate. The poles of these functions are the roots of a polynomial func-

tion. The F line has roots which can be solved by hand but the G line must be

solved numerically for each relevant value. Once those values are in hand then the

Matsubara sum can be carried out. The primary concern in this approach is if there

are non-simple poles. A simple check during the numerical calculations shows that

this is not the case.

Figure 4.9: Log of the spectral function
in the effective interaction approximation,
the parameters are the same as in figure
4.9.

After going through this process we

can see the results in figure 4.9. We no-

tice that our results have gotten worse

indicating some fundamental issue with

our approach. A possible approach

would be to continue to search for pos-

sible approximations that give good re-

sults. For example the vertex diagram

could be expanded into a ladder-like ap-

proximation in a similar way as was done

with the effective interaction. However,

in an attempt to shed some insight onto

this matter we examine these different

approximations in a lower coupling. The results of this are seen in figure 4.10. At

lower coupling the second order diagrams still give a good approximation to the main

spectral lines. This time however, the higher order approximations maintain good
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agreement with the main spectral lines and the higher order transitions are closer to

what is seen in the numerical results. This seems to indicate that the problem may

lay with the perturbation approach itself. There is one possible remedy to this which

we will explore in the next section.

(a) Spectral function derived from numerical
diagonalization

(b) Spectral function derived using the sec-
ond order diagrams

(c) Spectral function derived using the fourth
order diagrams

(d) Spectral function derived within the ef-
fective interaction approximation

Figure 4.10: The log of the spectral function is shown using numerical diagonalization
in (a), second order diagrams in (b), fourth order diagrams in (c), and the effective
interaction approximation in (d). The parameters are the same as before with the
exception of the coupling strength. Here the coupling is 10 times smaller λ

2π
=

0.05GHz.

4.4.4 Self Consistent Solution

Finally we examine the possibility of solving the correlators via a self consistent

solution. For a self consistent solution we proceed to find the diagrams as normal.

Once we have choose the set of diagrams we wish to include in the Dyson equation

we replace all of the internal unperturbed correlators with full correlators. This then
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is solved self consistently by guessing a solution, calculating the result, and then

plugging the solution back into the original equation again. This proceeds until the

correlator converges. The reasoning for using a self consistent approach is as follows.

As the coupling increases the counter rotating contributions become more important.

But in any non-self consistent approach the counter rotating terms are not fully

accounted for because we are expanding in terms of the unperturbed correlators. In

the unperturbed correlators terms like a†a† are zero. This is similar to the case found

when a system under goes a phases change [32]. The diagrams and equations for the

lowest order are below.

DRB(iωn)

G(iωn − iω1)

F(iω1)

DRB(iωn)

(4.38)

F0(iωn)

DRB(iωn − iω1)

G(iω1)

F0(iωn)

(4.39)

G(iωn)

DRB(iωn − iω1)

F(iω1)

G(iωn)

(4.40)

D(iωn) =
D0(iωn)

1− λ2

~β
∑

pF(iωp)G(iωn − iωp)
(4.41)

F(iωn) =
F0(iωn)

1− λ2

~β
∑

p G(iωp)D(iωn − iωp)
(4.42)

G(iωn) =
G0(iωn)

1− λ2

~β
∑

pF(iωp)D(iωn − iωp)
(4.43)
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The issue with a self consistent approach is that it must be done numerically. This

poses a problem since the analytical continuation will then have to be done numer-

ically as well. We attempted solving this by assuming correlator can be expanded

by the Mittag-Leffler expansion hoping we could get around the issue of numerical

analytical continuation. The assumptions are that the function is analytic at ω = 0

and that all the poles are discrete and simple.

D(ω) = D(0) +
∑
i

bi

(
1

ω − zi
− 1

zi

)
(4.44)

Where zi, bi are the poles and residues of the function. This allows one to find the

reside and roots of the Matsubara Green’s function and then analytically continue

the function using the Mittag-Leffler expansion and adding a small imaginary part to

the pole. However, this approach did not converge to an appropriate solution. Thus

the next step is to numerically solve the Matsubara correlators directly and then use

a numerical analytical continuation technique. The specifics of this are outside the

scope of this work but we will briefly outline one approach though there are other

methods as well [62–65].

The most promising approach for our situation is discussed in a paper by Han [66].

The idea behind Padé analytic continuation is to fit the numerical data calculated

from the Matsubara correlator in imaginary frequency space to a rational function of

degree r. ∑r−1
n=0 pnz

n∑r
n=0 qnz

n
(4.45)

Once the parameters pn and qn are found the fitted function can be analytically

continued by taking z to ω + iδ. The value of r must be large enough that it covers

all the relevant poles of the function. However, if it is too large the fitting procedure

can introduce errors. Additionally Padé analytic continuation suffers from sensitivity

to numerical noise. Han et. al. examined the influence of decimal precision on

numerically analytically continuing a correlator compared to the known result. They

found that in order to achieve a good quality match with the known value the Padé

approach required 82 decimal places of precision. This is generally impractical to
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achieve. To combat this, they found that by expanding the distribution functions

into a Padé representation and then using those frequencies instead of the Matsubara

frequencies they could get much better results with less computational time. They

called this technique the Padé decomposition [66]. This approach should be able to

be applied to our situation in later work.

4.5 Conclusions

We examined different approaches for calculating the spectrum of a cavity-qubit sys-

tem in the ultra strong and deep strong coupling regime. In doing so we found that

naive approaches to using Feynman diagrams and perturbation theory led to good

agreement with the primary spectral lines found in experiments but lacked the power

to explain the higher excitation transitions. This stems from a failure of the theory

to account for Hamiltonians with fermi-like interactions.

We developed a technique to recast the standard cavity-qubit Hamiltonian in

terms of Majorana fermions by using a Majorana spin representation. This embeds

the system in a higher dimensional Hilbert space giving a more complicated form to

the Hamiltonian. The positive effect of this is to alter the interaction term such that

it is boson-like and thus the standard Feynman perturbation theory can be safely

applied. In doing so the various techniques used in diagrammatic approaches can be

applied and different infinite order approximations can be found.

Using this Majorana representation we found that our results still didn’t match

with numerical calculations. By examining the effect of the coupling on this dif-

ference we concluded that the most reasonable course of action would be to apply

a self-consistent approach to ensure that the counter-rotating terms that increase

in importance with coupling are properly accounted for. This requires numerically

finding the Matsubara correlators and then numerically analytically continuing those

correlators to find the spectral function. We discussed a possible approach to this

method using the Padé decomposition method.

This work provides a new perspective on a fundamental system in quantum in-

formation and cavity QED. The full influence of this perspective is yet to be seen
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but has the potential to provide results to higher coupling regimes. Additionally this

work provides a pathway to other such systems in cavity QED where the coupling

operator does not follow a boson-like commutation rule.



Chapter 5

Conclusion

In this work we examined the reliability of detecting the Transverse Field Ising Model

coupled to a cavity detector. We used a diagrammatic expansion technique to examine

when the simulator’s correlator can be reliable retrieved by the detector. We saw that

because of the simulator’s quadratic coupling operator perfectly reliable detection

could not be achieved. In Tian’s previous work we saw that when the simulator’s

coupling operator is linear then Wick’s theorem applies to the operator itself and

perfectly reliable detection can be achieved. The quadratic coupling creates diagrams

with structures such that only a perturbed correlator can be retrieved.

By examining the self energy of the total system some of the detector’s effects

can be mitigated. Additionally we examined the parameters and conditions under

which approximately reliable detection can be achieved. We found that a large cavity

frequency, low coupling strength, small simulator size, and high detector bandwidth

are beneficial for ensuring good detection. The effect of these is too reduce the shift

on the simulator’s measured eigenvalues as well as preventing overlap between peaks

in the spectra that are due to the simulator and those that are due to the detector-

simulator interaction.

We believe that the concepts elucidated in this work are useful in the design and

analysis of quantum simulators beyond that of our model. Further work can be done

to build on these results by examining additional models as well as exploring poten-

tial experimental mitigation of the eigenvalue shift from the detector. As quantum

64
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simulators grow in size and importance the effects of the detector will become more

prominent and thus must be taken into account.

We also studied the spectra of the well known Rabi model, a cavity coupled to a

qubit. We used a diagrammatic technique to find the spectral function in different

approximations. Because the techniques allows for infinite order perturbation theory

we hoped to accurately calculate the transmission spectra for ultra-strong and deep-

strong coupling. This was done by calculate the Matsubara correlator. While our

results are not in agreement with experiments we found that by recasting the spin

operators in terms of Majorana operators we could apply the typically infinite order

perturbation theory which opens up a plethora of known theoretical techniques.

Further work can be done in examining the various possible approximations as

well as extending our results to allow for self consistent solutions. In cases where

the Matsubara correlator cannot be solved analytically the Padé decomposition may

allow for numerically analytically continuing the correlator to find the spectral func-

tion. This work can be built on further by applying the same transformations to the

situation where there is an additional external magnetic coupling in the qubit.



Appendix A

Wicks Theorem for Spin

To start the proof of Wick’s theorem for spin operators we start off with a Hamiltonian

of the form of eqn (A.1). The unpeturbed part of the Hamiltonian is quadratic in the

raising and lowering operators. The proof follows closely the proof in [29].

H = H0 +HI (A.1)

H0 =
~ωx

2
σz (A.2)

HI = λAσx (A.3)

We first define the contraction to be as follows:

AB = 〈Tτ [AB]〉0 (A.4)

Let A and B be spin operators then the contraction is the Spin Green’s function

S0(τ, τ ′) = 〈T [σx(τ)σx(τ ′)]〉0 Where the 0 subscript just refers to the use of the

unperturbed Hamiltonian. The claim we want to prove is that: 〈Tτ [ABC.....Z]〉0 =

sum of all full contracted permutations:

Since changing the time order on the left brings about a total sign change on the right

as well we can consider just the term: 〈ABC...Z〉0 so long as τA > τB... and drop the

time ordering term.
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Rewriting the field operators in terms of raising and lowering operators

A =
∑
j

χj(τ)σαaj (A.5)

Where σαaj is either a raising or lowering operator depending on αa. The term

〈ABC...Z〉0 can then be rewritten as

〈ABC...Z〉0 =
∑
a

∑
b

...
∑
z

χaχb...χzTr[ρ0σ
αa
a σαbb ...σ

αz
z ] (A.6)

We are assuming that the unperturbed states are such that an equal number of raising

and lower operators are needed to be non-zero. Commuting the first term over to the

right many times:

Tr[ρ0σ
αa
a σαbb ...σ

αz
z ] = Tr[ρ0[σαaa , σαbb ]+σ

αc
c ...σ

αz
z ]−

Tr[ρ0σ
αa
a [σαbb , σ

αc
c ]+...σ

αz
z ]...− Tr[ρ0σ

αb
b σ

αc
c ...σ

αz
z σ

αa
a ]

(A.7)

Tr[ρ0σ
αa
a σαbb ...σ

αz
z ] = [σαaa , σαbb ]+Tr[ρ0σ

αc
c ...σ

αz
z ]−

[σαbb , σ
αc
c ]+Tr[ρ0σ

αa
a ...σαzz ]...− Tr[ρ0σ

αb
b σ

αc
c ...σ

αz
z σ

αa
a ]

(A.8)

The last term can be rewritten using the cyclic properties of the trace:

Tr[ρ0σ
αb
b σ

αc
c ...σ

αz
z σ

αa
a ] = Tr[σaρ0σ

αb
b σ

αc
c ...σ

αz
z ] (A.9)

Finally using the Baker-Hausdorff theorem we can show that:

σαaa ρ0 = ρ0σ
αa
a eαaβωz (A.10)

σαρ0 = σαe−βH0 = e−βH0eβH0σαe−βH0 (A.11)

Defining σα(β) = eβH0σαe−βH0 we can find easily take the derivative of the function

with respect to β.
˙σα(β) = eβH0 [H0, σ

α]e−βH0 = α~ωzσα(β) (A.12)
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Gives

σαρ0 = ρ0σ
α (A.13)

Where αa is equal to 1(-1) for the raising (lowering) operator. Plugging this in,

pulling the last term over to the left and dividing we are left with:

Tr[ρ0σ
αa
a σαbb ...σ

αz
z ] =

1

1 + eαaβωz
[σαaa , σαbb ]+Tr[ρ0σ

αc
c ...σ

αz
z ]+

1

1 + eαaβωz
[σαbb , σ

αc
c ]+Tr[ρ0σ

αa
a ...σαzz ]...

(A.14)

The coefficients of the form
[σαaa σ

αb
b ]+

1+eαaβωz
are equal to 〈Tτ [σαaa σαbb ]〉. So that each term

is a contraction. Combining equations A.6 and A.14, repeating for each term in the

brackets, and then placing the time ordering back in proves Wick’s theorem.



Appendix B

TFIM Transforms

Starting with the Hamiltonian:

− ~J
N∑
n

σznσ
z
n+1 − ~

hx
2

N∑
n

σxn (B.1)

We first recast the spin operators as fermions to correct commutations relations on

differing sites. Currently {σ−i , σ+
i } = 1 and [σ−i , σ

+
j ] = 0 for different i and j. To fix

this we add in a phase to the operators.

σ+
n → c†ne

iπ
∑n−1
j c†jcj (B.2)

σ−n → cne
−iπ

∑n−1
j c†jcj (B.3)

σzn = 2σ+
n σ
−
n − 1→ 2c†ncn − 1 (B.4)

σxn = σ+
n + σ−n → c†ne

iπ
∑n−1
j c†jcj + cne

−iπ
∑n−1
j c†jcj (B.5)

It would be nice if the first term in the Hamiltonian involved the x-components

instead of the z components because then all of the phases might cancel. So we rotate

the entire system π
2

around the y-axis which takes σzn → σxn and σxn → −σzn. Thus our

new Hamiltonian:

69
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−~J
N∑
n

(
c†ne

iπ
∑n−1
j c†jcj + cne

−iπ
∑n−1
j c†jcj

)(
c†n+1e

iπ
∑n
j c
†
jcj + cn+1e

−iπ
∑n
j c
†
jcj
)

−~hx
2

N∑
n

1− 2c†ncn

(B.6)

It is important to notice that the first terms commute with the creation/destruction

operators in the second term because they are necessarily not included within the

summation. However, if periodic boundary conditions are used then there is an extra

term due to the cN+1, c
†
N+1 terms not anticommuting with the c1, c

†
1 terms.

N∑
n

c†ne
iπc†ncnc†n+1 + cne

iπc†ncnc†n+1 + c†ne
−iπc†ncncn+1 + cne

−iπc†ncncn+1 + PT (B.7)

With Periodic Terms (PT):

PT = −2~J(c†Ne
iπc†ncnc†1 + cNe

iπc†ncnc†1 + c†Ne
iπc†ncnc1 + cNe

iπc†ncnc1) (B.8)

Since c†ncn is either 0 or 1 the exponentials are equal to 1− 2c†ncn.

N∑
n

c†n(1−2c†ncn)c†n+1 +cn(1−2c†ncn)c†n+1 +c†n(1−2c†ncn)cn+1 +cn(1−2c†ncn)cn+1 +PT

(B.9)

Realizing that c†nc
†
n and cncn are zero the first and third terms can be reduced to

c†nc
†
n+1 and c†ncn+1. The second and forth term reduce to c†n+1cn and cn+1cn which can

be seen by using the anti-commutation rules {cn, c†n} = 1. We neglect the periodic

terms so the Hamiltonian is:

H = −~J
N∑
n

(c†ncn+1 + c†nc
†
n+1 + c†n+1cn + cn+1cn)− ~

hx
2

N∑
n

(1− 2c†ncn) (B.10)
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H = −~J
N∑
n

(c†ncn+1 + c†nc
†
n+1 + h.c.− ~

hx
2

N∑
n

(1− 2c†ncn) (B.11)

The periodic term similarly reduces.

PT = −2~J(c†Nc
†
1 + c†Nc1 + h.c.) (B.12)

In order to simplify the subscripts it is useful move into k-space using the transform

cn = 1√
N

∑
k cke

ikn where k = 2πmk/N , mk = −N/2 + 1....N/2. Writing out the

important terms:

∑
n

c†ncn =
1

N

∑
nkk′

c†kck′e
−i(k−k′)n =

∑
k

c†kck (B.13)

∑
n

c†ncn+1 =
1

N

∑
nkk′

c†kck′e
−i(k−k′)neik

′
=
∑
k

c†kcke
ik (B.14)

∑
n

c†nc
†
n+1 =

1

N

∑
nkk′

c†kc
†
k′e
−i(k+k′)ne−ik

′
=
∑
k

c†kc
†
−ke

ik (B.15)

∑
n

c†n+1cn =
∑
k

c†kcke
−ik (B.16)

∑
n

cn+1cn =
∑
k

c−kcke
−ik (B.17)

Putting all of this into the Hamiltonian:

H = −~J
∑
k

(c†kcke
ik+c†kc

†
−ke

ik+c†kcke
−ik+c−kcke

−ik)+~hx
∑
k

c†kck−
~hx
2
N (B.18)

H =
∑
k

~(hx − 2J cos(k))c†kck − ~Jc†kc
†
−ke

ik − ~Jc−kcke−ik (B.19)

Where the constant term was dropped. Now one more transformation is required to

complete this analysis. Currently the Hamiltonian does not conserve particle number.

To remedy this we make a Bogoliubov transformation ck = ukγk + ivkγ
†
−k. Working
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out each term:

c†kck = |uk|2γ†kγk + |vk|2γ−kγ†−k + i(u†kvkγ
†
kγ
†
−k − v

†
kukγ−kγk) (B.20)

c†kc
†
−k = u†ku

†
−kγ

†
kγ
†
−k − v

†
kv
†
−kγ−kγk − i(u

†
kv
†
−kγ

†
kγk + v†ku

†
−kγ−kγ

†
−k) (B.21)

c−kck = u−kukγ−kγk − v−kvkγ†kγ
†
−k + i(u−kvkγ−kγ

†
−k + v−kukγ

†
kγk) (B.22)

Therefore the Hamiltonian is:

H =
∑
k

~(hx−2J cos(k))(|u2
k|γ
†
kγk + |v2

k|γ−kγ
†
−k + i(u†kvkγ

†
kγ
†
−k−v

†
kukγ−kγk)) (B.23)

− ~J(u†ku
†
−kγ

†
kγ
†
−k − v

†
kv
†
−kγ−kγk − i(u

†
kv
†
−kγ

†
kγk + v†ku

†
−kγ−kγ

†
−k))e

ik (B.24)

− ~J(u−kukγ−kγk − v−kvkγ†kγ
†
−k + i(u−kvkγ−kγ

†
−k + v−kukγ

†
kγk))e

−ik (B.25)

Rewriting the above by grouping the γ terms:

H =
∑
k

γ†kγk

(
~(hx − 2J cos(k))|uk|2 + i~J

(
u†kv

†
−ke

ik − v−kuke−ik
))

+

γ−kγ
†
−k

(
~(hx − 2J cos(k))|vk|2 + i~J

(
v†ku

†
−ke

ik − u−kvke−ik
))

+

γ†kγ
†
−k

(
i~(hx − 2J cos(k))u†kvk + ~J

(
v−kvke

−ik − u†ku
†
−ke

ik
))

+

γ−kγk

(
−i~(hx − 2J cos(k))v†kuk + ~J

(
v†kv
†
−ke

−ik − u−kuke−ik
))

(B.26)

To determine the values of the coefficients first we examine the commutations

relations and require the new operators to obey the same anticommutation relations.

Additionally to preserve particle number we require the γ†γ† and γγ terms to disap-

pear.From the commutations relations:

{ck, c†k} = 1 = {ukγk + ivkγ−k
†, u†kγ

†
k + iv†kγ−k} (B.27)
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= {ukγk, u†kγ
†
k + iv†kγ−k}+ {ivkγ†−k, u

†
kγ
†
k + iv†kγ−k} (B.28)

= {ukγk, u†kγ
†
k}+ {ukγk, iv†kγ−k}+ {ivkγ†−k, u

†
kγ
†
k}+ {ivkγ†−k, iv

†
kγ−k} (B.29)

= |uk|2 + |vk|2 = 1 (B.30)

We can parameterize the coefficients as uk = cos(θk); vk = sin(θk). Examining the

γ†γ† terms and requiring that it equals zero:

i~(hx − 2J cos(k)) cos(θk) sin(θk) + ~J
(
sin(θ−k) sin(θk)e

−ik − cos(θk) cos(θ−k)e
ik
)

= 0

(B.31)
i(hx − 2J cos(k))

J
=

cos(θk) cos(θ−k)e
ik − sin(θ−k) sin(θk)e

−ik

cos(θk) sin(θk)
(B.32)

Taking just the imaginary parts:

(hx − 2J cos(k))

J sin(k)
=

cos(θk) cos(θ−k) + sin(θ−k) sin(θk)

cos(θk) sin(θk)
(B.33)

Examining the case where k goes to minus k we see the left hand side becomes

negative. In order for the right hand side to match the bottom term must become

negative. This occurs when θk = −θ−k Thus:

(hx − 2J cos(k))

J sin(k)
=

cos2(θk)− sin2(θk)

cos(θk) sin(θk)
(B.34)

Using the basic trig identities:

(hx − 2J cos(k))

J sin(k)
=

2 cos(2θk)

sin(2θk)
(B.35)

tan(2θk) =
2J sin(k)

(hx − 2J cos(k))
(B.36)
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Moving back to the Hamiltonian:

H = ~
∑
k

γ†kγk
(
(hx − 2J cos(k)) cos2(θk) + iJ sin(θk) cos(θk)

(
e−ik − eik

))
+

γ−kγ
†
−k
(
(hx − 2J cos(k)) sin2(θk) + iJ sin(θk) cos(θk)

(
eik − e−ik

)) (B.37)

For the second term we can replace the dummy variable k with -k

H = ~
∑
k

γ†kγk
(
(hx − 2J cos(k)) cos2(θk) + iJ cos(θk) sin(θk)

(
−eik + e−ik

))
+

γkγ
†
k

(
(hx − 2J cos(k)) sin2(θk) + iJ cos(θk) sin(θk)

(
−e−ik + eik

))
(B.38)

H = ~
∑
k

γ†kγk
(
(hx − 2J cos(k)) cos2(θk) + 2J sin(k) cos(θk) sin(θk)

)
+

γkγ
†
k

(
(hx − 2J cos(k)) sin2(θk)− 2J sin(k) cos(θk) sin(θk)

) (B.39)

H = ~
∑
k

γ†kγk
(
(hx − 2J cos(k))(cos2(θk)− sin2(θk)) + 2J sin(k) cos(θk) sin(θk)

)
−

(hx − 2J cos(k)) sin2(θk)− 2J sin(k) cos(θk) sin(θk)

(B.40)

H = ~
∑
k

γ†kγk ((hx − 2J cos(k)) cos(2θk) + 2J sin(k) sin(2θk)) + Eg (B.41)

Using the trig identity A cos(θ) + B sin(θ) = C sin(θ + φ) where C2 = A2 + B2 and

tan(ψ) = A
B

we can rewrite the Hamiltonian. Also because in our case tan(θ) = B
A

the sum of the two angles is 90o.

H = ~
∑
k

γ†kγk

√
(hx − 2J cos(k))2 + 4J2 sin2(k) + Eg (B.42)
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H = ~
∑
k

γ†kγk2J

√
1 +

(
hx
2J

)2

− hx
J

cos(k) + Eg (B.43)

H =
∑
k

~ωkγ†kγk + Eg (B.44)

where ωk = 2J
√

1 +
(
hx
2J

)2 − hx
J

cos(k).

The ground state energy is (with the previously dropped constant term included):

Eg = −
N∑
n

~
hx
2

+
∑
k

(hx − 2J cos(k)) sin2(θk)− 2J sin(k) cos(θk) sin(θk) (B.45)

B.1 Shifting Transformation

We can further simplify the cavity-TFIM Hamiltonian. Doing so also has an effect

on the bath which can be neglected. This is explored in more detail in the section

following this one. We start with a reminder of the Hamiltonian:

~ωcaa†a+ ~λ(a† + a)
∑
k

(1− 2c†kck) (B.46)

Shifting the operators a→ a−α (this can be done more explicitly with a unitary

transformation [48])preserves the commutation relations so long as α is a c-number.

It leads to the Hamiltonian

~ωca†a− ~ωcα(a† + a) + |α|2 + ~λ(a† + a− 2α)
∑
k

(1− 2c†c) (B.47)

Expanding out the terms and ignoring constants:

~ωca†a− ~ωcα(a† + a) +N~λ(a† + a)− 2~λ(a† + a)
∑
k

c†c+ 4~λα
∑
k

c†c (B.48)

The middle two terms can be removed by a suitable choice of α (α = Nλ
ωc

) but
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that leaves us with

~ωca†a− 2~λ(a† + a)
∑
k

c†c+ 4~
Nλ2

ωc

∑
k

c†c (B.49)

Now examine the full Hamiltonian:

HTFIM0 + ~
hx
2

∑
k

(1− 2c†kck) + ~ωca†a− 2~λ(a†+ a)
∑
k

c†c+ 4~
Nλ2

ωc

∑
k

c†c (B.50)

HTFIM0 + ~
hx
2

∑
k

(1− (2− 8Nλ2

ωchx
)c†kck) + ~ωca†a− 2~λ(a† + a)

∑
k

c†c (B.51)

Constants:
N2λ2

ω2
c

− 2~
N2λ2

ωc
=
N2λ2

ω2
c

(1− 2~ωc) (B.52)

Adding in constants

HTFIM0 +~
hx
2

∑
k

(1+
2Nλ2

~hxω2
c

(1−2~ωc)−2(1− 4Nλ2

ωchx
)c†kck)+~ωca†a−2~λ(a†+a)c†kck

(B.53)

Simplify:

HTFIM0 +~
hx
2

∑
k

(1−2c†kck− (
4Nλ2

ωchx
(1−2c†kck))+

2Nλ2

~hxω2
c

)+~ωca†a−2~λ(a†+a)c†kck

(B.54)

or

HTFIM0 + ~
hx
2

∑
k

(A1 − 2A2c
†
kck) + ~ωca†a− 2~λ(a† + a)

∑
k

c†c (B.55)

A1 = 1 +
2Nλ2

~hxω2
c

(1− 2~ωc) = A2 +
2Nλ2

~hxω2
c

(B.56)

A2 = 1− 4Nλ2

ωchx
(B.57)
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Dropping just the |α|2 term:

HTFIM0 + ~
h′x
2

∑
k

(1− 2c†kck) + ~ωca†a− 2~λ(a† + a)
∑
k

c†c (B.58)

with:

h′x = hx −
4Nλ2

ωc
(B.59)

B.2 Effect of the shift on the bath

The effect of shifting the cavity operators by α was neglected in the previous section.

Here we fill in a few details. In shifting the cavity operator the term in the Hamiltonian

responsible for the cavity-bath coupling also shifts. This requires a different value for

the cavity shift α. This will also alter the effective magnetic field. The Hamiltonian

takes the form:

H = HTFIM0 +Hcavity0 +Hbath0 + λA
∑
k

1− 2c†kck + A
∑
i

ci(b
†
i + bi) (B.60)

By shifting the cavity operators there will be an extra term created due to the

cavity-bath coupling. This can rectified by also shifting the bath operators. The

process is very similar to what was done in the previous section. We shift the operators

a→ a− α and bi → bi − βi, then we drop the constant terms, and finally we require

that the extraneous terms cancel. This leads to a set of two equations to be solved

simultaneously.

(a+ a†)(−αωc + λN − 2
∑
i

ciβi) = 0 (B.61)

∑
i

(bi + bi†)(−2αci − ωiβi) = 0 (B.62)

The first two term in equation B.61 are due to the cavity-TFIM part of the

Hamiltonian as before. Solving these equations with the realization that equation
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B.62 must be zero for each mode individually gives:

α =
λN

ωc

 1

1− 4
ωc

∑
i
c2i
ωi

 (B.63)

The last term in the denominator is small as can be seen by the following argument.

We consider the bandwidth to be κ = J(ω) = π
∑

i
c2i
ωi
δ(ω − ωi) [67, 68]. The term in

the denominator will be significantly smaller than this as the coupling term is reduced

by a factor of the frequency of the bath modes. κ
π
�
∑

i
c2i
ωi

This is further reduced

by the cavity frequency. Thus the effect on α is small and the effect on the effective

magnetic field is also small. Thus we neglect this correction for all parts of this work.



Appendix C

Code

I have include a description of the main program I designed and built to assist in this

work. Code snippets are included for clarity. Work was done in Python 3 using the

NumPy [69] and SymPy [70] libraries. Code is altered for length.

C.1 Operator

The Operator program defines the objects used in the preceding code. It is necessary

because SymPy’s symbolic programming does not always write out the equations in

a way that is easy or efficient to parse. By building my own symbolic programming

machinery I am able to simplify equations in a way which makes the most sense for

representing diagrams and for carrying out the Matsubara summation.

The Operator module defines operators as an python object and allows for conve-

nient definitions for addition, multiplication, and more. In particular it allows me to

easily manipulate objects to develop the 4th order expansion of the Green’s function

and evaluate it analytically. The bare-bones layout of the Operator module is given

below.

79
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Operator

abList

multListaddList

SingleOperator

GreenFunction

dGreenfGreenDaggGreen

QuantOp

Ac

Operator Lays the foundation for the objects used. Used for type checking

SingleOperator A single operator. The basic algebraic rules are established

here.

QuantOp Quantum Operator. Time is set as the argument, the contrac-

tion function is added, and QuantOp has a list of Green’s functions to

aid in the contraction.

c The operator as defined above. Its symbols, latex code, contractions,

and more are further defined.

A The photon operator. Its symbols, latex code, contractions, and

more are further defined.

GreenFunction Describes the Green’s function. Carries all the informa-

tion needed to draw the associated line.

gGreen G

fGreenDag F †

dGreen D

abList Abstract list.

addList A list whose elements are considered to be summed.

multList A list whose elements are considered to be multiplied.
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class Operator:

def __init__(self):

"""Largely for checking instances"""

self.inverse = False #To deal with inverses and divisions

self.sign=1 # Sign is a property

def new(self): #Operations return new objects

newOp= self.__class__()

newOp.sign=self.sign

return newOp

@staticmethod

def getSign(thing):

if isinstance(thing,Operator):

return thing.sign

num=float(thing)

if num<0:

return -1

if num==0:

return 0

return 1

class SingleOperator(Operator):

def __init__(self,char,sym,arg,subscripts,dagger,fermion):

Operator.__init__(self)

"""Creates an operator. dagger and fermion are booleans.

Currently arg cannot be complex"""

self.arg=arg #arguments of the operator (time, momentum, etc)

self.dagger=dagger #is it daggered?

self.fermion=fermion #is it a fermion?

self.char=char #for presentation and latex code

self.sym=sym #subscripts should be added manually

self.subscripts=[str(subs) for subs in subscripts] #list of subscripts

def dag(self):
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"""Returns a daggered version of the old operator"""

dagger=self.dagger!=True

newOp=self.__class__(self.subscripts,self.time,dagger,self.char)

newOp.sign=self.sign

return newOp

def __add__(self,other):

"""Creates an addList with the operator in it or appends it to

an addList"""

if isinstance(other,Operator):

other=other.new()

newSelf=self.new()

if isinstance(other,addList):

if len(other)==0:

return newSelf #empty addList acts as identity.

else:

other.append(newSelf)

return other

if other==0:

return self #identity

if other==-self: #If they are the same thing but opposite sign

return 0

return addList(self,other)

def __mul__(self,other):

"""Creates a multList with the operator in it or appends it to

a multList"""

if isinstance(other,Operator):

other=other.new()

newSelf=self.new()

if isinstance(other,abList): #can be an addList or a multList

#multiplication is defined by the particular abstract list

return other.__rmul__(newSelf)

else:

#mult list of single operator and single operator/numeric
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return multList(newSelf,other)

def __eq__(self,other): #Defines equality for single operators

if isinstance(other,self.__class__):

otherSign=Operator.getSign(other)

if self.sign==otherSign: #check signs

return self.latex==other.latex #check latex code

elif isinstance(other, str):

return self.sym==other #probably not necessary

return False #else return false

def new(self): #define a new function for ease

if isinstance(self.arg,Operator):

newArg=self.arg.new() #get a new argument

else:

newArg=self.arg

newSubs=[]

for item in self.subscripts: #Why?

newSubs.append(item)

newOp=self.__class__(

self.char,self.sym,newArg,newSubs,self.dagger,self.fermion)

newOp.sign=self.sign

return newOp

#abList is a virtual class

class addList(abList): #contains elements that are being added

def __init__(self,*args):

abList.__init__(self,*args)

def __add__(self,other):

if isinstance(other,addList):

newList=addList()

for item in self: #get back the addList type

newList.append(item)

for item in other:
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negItem=-item #check to see if there are cancellations

negFound=False

i=0

while i<len(newList) and not negFound:

if negItem==newList[i]: #they cancel

newList.pop(i)

negFound=True

i=i-1

i+=1

if not negFound:

newList.append(item)

return newList

else:

if len(self)==0:

return other

other=addList(other)

return self+other

def __mul__(self,other): #automatically distributes

newList=addList()

if isinstance(other,Operator):

newOther=other.new()

else:

newOther=other

for item in self:

if isinstance(item,Operator):

newItem=item.new()

else:

newItem=item

newList=newList+newItem*newOther

return newList

class multList(abList): #contains elements thar are bein multiplied

def __init__(self,*args): #What if it’s called with only one argument?
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abList.__init__(self,*args)

sign=1

for i in range(0,len(self)): #Getting all the signs into the list

item=self[i]

sign=sign*Operator.getSign(item)

if isinstance(item, Operator):

item.sign=1

else:

if isinstance(item,complex):

raise Exception("Complex not not implimented")

self[i]=abs(float(item))

self.sign=sign

def __add__(self,other):

if isinstance(other,Operator):

other=other.new()

newList=addList(self,other)

return newList

def __mul__(self,other):

if isinstance(other,Operator):

other=other.new()

if len(self)==0:

return other

if other==1: #identity

temp=self.new()

return temp #No more strings!

if other==-1:

temp=self.new()

temp.sign=temp.sign*-1

return temp

if isinstance(other,multList):

newList=multList()

for item in self:
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newList=newList*item #build up the list from self

for item in other:

newList=newList*item #include items from the other list

newList.sign=self.sign*other.sign

return newList

if isinstance(other,addList): #defined in addList

return other.__rmul__(self)

else: #Single Operator or a/n float/int

if len(self)==0:#Empty list is identity

return other

newList=multList()

for item in self:

newList.append(item)

s=Operator.getSign(other)

if isinstance(other,complex):

raise Exception("Complex not implimented yet")

newList.append(abs(other))

newList.sign=s*self.sign

#Should I keep track if it’s a Fermion?

return newList

def pullOut(self):#pulls out any constants

newList=multList()

constant=1

for item in self:

if isinstance(item,int) or isinstance(item,float):

constant*=item

elif isinstance(item,complex):

raise Exception("Complex not implimented yet")

else:

newList*=item

newList.sign=self.sign

return constant,newList
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C.2 Diagrams

The code to produce diagrams is shown below. An interaction Hamiltonian is de-

fined. The code assumes that the regular perturbation theory holds. The correlator

associated with the nth order is produced. This correlator is then broken down with

Wick’s theorem. The equation that results can be interpreted as a sum of diagrams.

Each term in the sum is converted to a diagram via an adjacency list. A depth first

transversal is carried out to see if the diagram is connected. Finally equality between

diagrams is defined. The diagrams are displayed with equal diagrams on the same

page and differing diagrams on subsequent pages.

An AdjList is an object I created that stores the needed information about the ad-

jacency list related to the graph (Diagram). A simple example is shown in figure C.1.

In this case the adjacency list is slightly more complicated to take into account the

different types of edges (Green’s functions). The AdjList object stores this adjacency

list as well as the functions to check for connectedness. Connectedness is determined

using a depth first transversal, shown schematically in figure C.2.

The Diagram class has a list of Green’s functions. From those Green’s functions it

makes and stores an AdjList. It then makes and stores every AdjList corresponding

to a permutation of the internal vertices. This is done to define equality in an easy

to use way. D1 equals D2 if the first AdjList in D1 equals an AdjList in D2.

Figure C.1: Descriptions of an adjacency
list, adapted from Introduction to Algo-
rithms [3]. (a) An example of a undirected
graph (b) The adjacency list for the graph
in (a)

The Diagram object also allows

transformation of the Green’s function

into frequency space. Each vertex has

3 lines coming in or out. Each of

these lines is given a frequency (bose or

fermion) ω. Incoming lines are positive,

outgoing are negative. The sum of these

frequencies are zero. Using the Sympy

Solver method I can rewrite the frequen-

cies in terms of the incoming frequency

(ωn) and N
2

free frequencies (N is the or-

der).
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Figure C.2: Depth first transversal example. Taken from Introduction to Algorithms
[3].

#Defines the Green’s functions

class GreensFunction(SingleOperator):

def __init__(

self,final,initial,fermion,eqn,drawParameters,char,subs=[],upOrDown=0):

"""Super class for Green’s functions.Fermion is a boolean,

eqn is the string representing the Green’s function

and drawParameters is a list of parameters"""

self.final=final

self.initial=initial

SingleOperator.__init__(

self,char,"",subscripts=subs,dagger=False,fermion=fermion)

self.arg = "t"+str(final)+"-t"+str(initial)
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self.w= NULLOP()

self.feynman=""

self.eqn=eqn

self.k=0

drawConditions=["lineType","start","extent",\

"style","dash","tags","UpOrDown"]

self.drawDict={}

for i in range(0,len(drawConditions)):

self.drawDict[drawConditions[i]]=drawParameters[i]

def draw(self,vi,vf,blackboard,l2h=0.2,scale=1):

"""Draws a line based on the parameters and the vertices.

Draws to a tkinter canvas"""

class dGreen(GreensFunction):

def __init__(self,final,initial,subs=[],upOrDown=1):

self.upOrDown=upOrDown

#lineType,start,extent,style,dash,tags,UpOrDown

drawParameters=["LINE",0,0,tk.NONE,False,\

"D"+str(final)+str(initial),-1]

char=\

"\\mathcal{D}^0(\\tau_{"+str(final)+"}-\\tau_{"+str(initial)+"})"

GreensFunction.__init__(

self,final,initial,False,"D",drawParameters,char)

self.sym="D0"

self.feynman="\\fmf{fermion,label=$\\mathcal{D}^0$}{"+str(initial)+\

","+str(final)+"}" #defines the LaTeX code for FeynmanMP/MF

def new(self):

newGreen= self.__class__(

self.final,self.initial,self.subscripts,self.upOrDown)

newGreen.sign=self.sign

return newGreen

class Vertex:

"""Has a label, and input, and an output. Has a draw method.
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Operators are overloaded"""

class VertexEdge: #Green’s function is the edge.

"""Contains a start point, end point, and Green’s function.

Addition and multiplication are overloaded"""

class singleAdjList():

def __init__(self,order):

self.adjList=np.empty(order+2,list)

for i in range(0,order+2):

self.adjList[i]=[]

self.length=order+2

def __getitem__(self,key):

return self.adjList[key]

def __eq__(self,other):

if not isinstance(other,singleAdjList):return False

equals=True

i=0

while i in range(0,self.length) and equals:

selfVertex=self.adjList[i]

otherVertex=other[i]

if len(selfVertex)==len(otherVertex):

inIt=True

for edge in selfVertex:

inIt=inIt and edge in otherVertex

equals=inIt

else:

equals=False

i+=1

return equals

def __len__(self):

return self.length

class AdjList:
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def __init__(self,order,greenFuns,makeAll=True):

self.order=order

self.greenFuns=greenFuns

self.adjLists=[self.MakeAdjList()]

self.directedList=self.MakeAdjList()

self.unDirected=self.CreateUndirected()

self.disconnected=self.isDisconnected()

if not self.disconnected:

self.createAllAdj()

def MakeAdjList(self):

"""Takes a list of lists of green’s functions and returns an

adjacency list"""

tempArr=singleAdjList(self.order)

vEList=[]

for prodTerm in self.greenFuns:

#for n order diagram it should have n + 2 times and (n+1)!!

#times(2n-1)!! total terms

#(3/2n+1 per term)

final=prodTerm.final #to

initial=prodTerm.initial #from

vertexEdge=VertexEdge(final,initial,prodTerm)

vEList.append(vertexEdge.length)

if not vertexEdge in tempArr[initial]:

tempArr[initial].append(vertexEdge)

return tempArr

def createAllAdj(self,undirected=True):

"""Produces all the adjLists which are permutations of the

internal vertices"""

def __eq__(self,other):

if not isinstance(other,AdjList):return False

equals=False

tester=self[0]

if len(self)!= len(other):return False
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i=0

while not equals and i< len(self):

item=other[i]

equals=equals or tester==item# all(tester==item)

i+=1

return equals

class Diagram:

def __init__(self,order,greenFuns,constant=1,makeAll=True):

self.order=order

self.constants=constant

self.greenFuns=greenFuns

self.commonFactor=1

self.adjLists=AdjList(order,greenFuns,makeAll)

self.adjList=self.adjLists[0]

self.disconnected=self.adjLists.disconnected

#self.greenFunsFreq=self.transform(greenFuns)

self.vertices=self.MakeVertices()

self.uVertices=self.MakeVertices(False)

def MakeVertices(self,directed=True):#Check for accuracy

"""Makes the vertices for the diagram"""

return vertexList

def __eq__(self,other):

if not isinstance(other,Diagram): return False

areEqual=self.adjLists==other.adjLists

return areEqual

def __getitem__(self,key):

return self.vertices[key]

def draw(self,x,y,xLength,blackboard,l2h=0.2,scale=1):

"""draw method"""

return maxHeight

def toFrequency(self):

tList=[] #represents each vertex, contains the frequencies in/out

for i in range(0,self.order+2):
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tList.append([])

greenWList=[]

wn=boseFrequency("w_n",real=True)#Symbol("w_n",real=True)

i=0

for green in self.greenFuns:

to=green.final

fro=green.initial

if fro ==0: #inital line

tempW=wn

else:

char=str(i)

if isinstance(green,dGreen):

tempW=boseFrequency("w_"+char,real=True) #boson

else:

tempW=fermiFrequency("w_"+char,real=True) #Fermion

i+=1

greenWList.append([green,tempW])

tList[to].append(tempW)

tList[fro].append(-tempW)

startEnd=tList.pop(0)[0]+tList.pop()[0] #wn + w_final=0

solveList=[startEnd]

for item in tList:#Creating list of equations to solve

s=0

for wTerm in item:

s+=wTerm

solveList.append(s) #w_1+w_2-w_3+.....=0

#Sympy solver, don’t solve for wn in solution.keys()])

solution=solve(solveList,exclude=[wn])

if solution==[]:

solution=solve(solveList)

finalGreenWList=[]

for greenW in greenWList:

green=greenW[0]
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w=greenW[1]

if w in solution:

newW = solution[w] #gets the solution for that frequency

else:

newW=w #not solved for, i.e. free frequency

finalGreenWList.append((green,newW))

return finalGreenWList

def WickIt(order,N=20): #make it for a more general interaction term

"""Creates operators and all the wick permutations to the order given,

order should be an even number"""

if order==0:

return ([],[])

gProd=multList()

aProd=multList()

i=1

if regularHam:

while i<= order: #Building interaction Hamiltonian terms

gProd=gProd*(-2*c(i,True)*c(i,False))#Lambda and hbar removed

aProd=aProd*A(i)

i=i+1

aProd=aProd*A(order+1)*A(0)#*A(order+1)*A(0)

contractedA=Pairings(aProd)

contractedG=addList()

if isinstance(gProd,addList):

for item in gProd:

#Either constants or products

if isinstance(item,multList):

#pull out constants to do the pairings

constTerm,prodTerm=item.pullOut()

#add List times constant

contractedGTerms=constTerm*Pairings(prodTerm)

#add all the contracted terms together
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contractedG=contractedG+contractedGTerms

else:

contractedG=contractedG+item

return contractedA*contractedG

else:

while i<= order: #Building interaction Hamiltonian terms

gProd=gProd*(c(i,True)*c(i,False))

aProd=aProd*A(i)

i=i+1

aProd=aProd*A(order+1)*A(0)

contractedA=Pairings(aProd)

contractedG=Pairings(gProd) #Lambda and hbar removed

return contractedA*contractedG

def Pairings(toPair):

"""Takes in a multList to pair (really any iterable),

creates an addList of all the different fully paired permutations.

Returns a addList of products of contractions."""

return pairList

C.3 Matsubara Summations

A skeleton version of the code used to analyze the fourth order TFIM diagrams. This

program takes in the diagrams produced by the Diagram.py code and turns them into

an equation format. It multiplies the values out so that each term in the equation is a

product of simple or second order poles. The code solves the Matsubara summation

symbolically and returns a string which is the Green’s function. Typically this is a

very large string. A description of the code is below

1. This program first defines the interaction Hamiltonian (HI) in terms of Quan-

tOps and then multiplies A(τf )A(τi) by HI N times.
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2. Each term in the list is paired up (contracted) in every possible permutation

(Wick’s theorem). An addList of multLists of Green’s functions is returned.

3. Each Green’s function is turned into a ”Diagram” object.

4. These diagrams have an adjacency list to represent the diagram (see Introduc-

tion to Algorithms by Cormen [3])

5. The adjacency list creates every possible permutation of the internal indexes to

get every possible adjacency list representation of the diagram

6. An undirected adjacency list is created and a depth first transversal from start

to end is done to see if it is connected. Disconnected diagrams will be ignored.

To keep partially connected diagrams another transversal from end to start is

also done.

7. The diagrams are converted to frequency space by giving each green’s function

in the diagram a unique ω symbol and sign, adding all the frequencies together

for each vertex (requiring it equals zero), and then solving using the Sympy

solver. The type of frequency is kept track of (boson or fermion)

8. The adjacency lists are taken and used to draw the diagrams. Each Green’s

function object has in it the information to draw the correct line.

9. Diagrams which are equal (have an adjacency list in common) are placed on

the same page, each unique diagram gets its own page.

10. Improper diagrams are checked by hand and then discarded.

11. The counting factor for each unique diagram can then be recorded.

#Build the green"s function

def buildGreen(highestOrder,N=20):

global maxUKList
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sumTerm=""

#Find all the proper diagrams and their counting factors

listOfImproperDiagrams_2=[]

if keepPartiallyConnectedTerms:

listOfImproperDiagrams_4=\

[0,3,6,7,22,23,28,29,32,33,37,38,42,45,48,49,50,51,52,53]

listOfImproperDiagrams_4=[i+6 for i in listOfImproperDiagrams_4]

else:

listOfImproperDiagrams_4=[12,13,18,19]

listOfImproperDiagrams_4=[i+2 for i in listOfImproperDiagrams_4]

order=2

diagramList=[]

while order<=highestOrder:

wickList=WickIt(order,N)

#WickIt returns an addList of multLists of green’s functions.

#AKA the summation of the diagrams

for prod in wickList: #each prod is a diagram

constant,greens=prod.pullOut()

diagram=Diagram(order,greens,constant)

if not diagram.disconnected:

i=0

alreadyIn=False

while i <len(diagramList) and not alreadyIn:

diagram_in_list=diagramList[i]

alreadyIn= (diagram == diagram_in_list)

i+=1

if not alreadyIn:

diagramList.append(diagram)

order+=2

listOfImproperDiagrams=listOfImproperDiagrams_2+\

listOfImproperDiagrams_4

for dCount,diagram in enumerate(diagramList):
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#get rid of the improper diagrams

if not dCount in listOfImproperDiagrams:

if dCount<2:

order=2

if dCount>=2:

order=4

constant=diagram.constants*diagram.countingFactor

greensInFreq=diagram.toFrequency()

uWList=[]

product=multList()

uKList=[]

sign=diagram.greenFuns.sign

bubbleCount=0

#print(greensInFreq)

for greenW in greensInFreq:

green=greenW[0]

w=greenW[1]

tFrom=green.initial

tTo=green.final

args=w.args

isBubble=False

if tFrom==tTo:#bubble term

bubbleCount+=1

isBubble=True

else:

green.k=0

if green!="D0" and not 0 in uKList:

uKList.append(0)

if not isBubble:# Finding all unique omegas to sum over

if len(args)==0:#single arugmement

shouldAppend=not w in uWList and w!=wn and w!=0\

and w!=-wn and not -w in uWList and not isBubble
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if shouldAppend:

uWList.append(w)

else:

#Term may be an addition of two terms

for arr in args:

args2=arr.args

if len(args2)==0:

shouldAppend=not arr in uWList and arr!=wn\

and arr!=0 and arr!=-wn \

and not -arr in uWList \

and not isBubble\

and not isinstance(arr,int)\

and not arr==-1

if shouldAppend:

uWList.append(arr)

else:

for arr2 in args2:

shouldAppend2=not arr2 in uWList and \

arr2!=wn and arr2!=0 and arr2!=-wn \

and not -arr2 in uWList \

and not isBubble and not\

isinstance(arr2,int) and not arr2==-1

if shouldAppend2:

uWList.append(arr2)

if tFrom==0:

if w==0:

onlyIfZero=True

else:

onlyIfZero=False

if not(tFrom==0 or tTo==order+1) and not isBubble:

if constant<0:

sign=-sign

constant=-constant
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if w!= wn:

product = product*gFun(green,w,green.k)

if isinstance(product,Expr):

product=multList(product)

numHbarBeta=(order+1+len(uWList)) - len(diagram.greenFuns)+\

bubbleCount

hbarBetaString="*(hbar*beta)**("+str(numHbarBeta)+")"

#number of (hbar*beta)^-1 is equal to the number of

#green’s functions

#number of hbar*beta is the order, plus 1 (from integrals)+

#the number of mat sums

if len(product)!=0:

#carries out the summation

integratedProduct=matSum(product,uWList)

fullSum=0

for gSumTerm in integratedProduct:

fullProd=gSumTerm.sign

for gProd in gSumTerm:

fullProd*=gProd

fullSum+=fullProd

for item in uKList:

if not item in maxUKList:

#Gets all the ks we are going to need

maxUKList.append(item)

fullSum=fullSum.expand()

#for easier debugging

comments="\n#Diagram Number: "+str(dCount)

sumTerm+=comments

#k summation

tabs="\t"

kSumString=""

if len(uKList)==1:
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sumTerm=sumTerm.replace("*replaceMe*", "\n"+tabs+\

"wk_0=wkArray_0"+"\n"+tabs\

+"thetaK_0= thetaArray_0")

if sign>0:

kSumString+="\n"+tabs+"sumTerm+=(2*l)**"+\

str(order)+"*(np.sum("+str(fullSum)+")"

else:

kSumString+="\n"+tabs+"sumTerm-=(2*l)**"+\

str(order)+"*(np.sum("+str(fullSum)+")"

sumTerm+=kSumString+")*bubbleTerm("+str(N)+","+\

str(bubbleCount)+","+str(onlyIfZero)+")*("+\

str(constant)+")"+hbarBetaString

#Bubble terms factor out, will be raised to the power

#bubbleCount in def. Multipliy by constants and hbars and

#betas (not the most effcient)

else:

#for easier debugging

comments="\n#Diagram Number: "+str(dCount)

sumTerm+=comments

if sign>0:

sumTerm+="\n\tsumTerm+=(2*l)**"+str(order)+\

"*bubbleTerm("+str(N)+","+str(bubbleCount)+","+\

str(onlyIfZero)+")*("+str(constant)+")"+hbarBetaString

else:

sumTerm+="\n\tsumTerm-=(2*l)**"+str(order)+\

"*bubbleTerm("+str(N)+","+str(bubbleCount)+","+\

str(onlyIfZero)+")*("+str(constant)+")"+hbarBetaString

sumTerm+="\n\td=D0(I*w_n)"

#Lambda has hbar ^2 as well, cancels the sumTerm 1/hbar^2

sumTerm+="\n\tret=d/(1-d*sumTerm)"

sumTerm+="\n\treturn ret"

sumTerm+="\ngreenVec=np.vectorize(greenFunction)"
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return preTerm+sumTerm

def getUKList(kList,product):

"""Takes a kList(indices are one and finds the unique ks"""

uKs=[]

visited=[]

kVertex=0

while kVertex < len(kList):

if kVertex in visited:

kVertex+=1

else:

notVisited=[kVertex]

if not kVertex in uKs:

uKs.append(kVertex)

#while there are more vertices that can be visited

while notVisited !=[]:

didVisit=notVisited.pop()

visited.append(didVisit)

if kVertex!=didVisit:

temp=[]

for prod in product:

temp2=[]

for sumTerm in prod:

temp2.append(replaceProd(

sumTerm,didVisit,kVertex))

temp.append(temp2)

product=temp

#visit the ks linked to this one

for verticies in kList[didVisit]:

if verticies not in visited:notVisited.append(verticies)

kVertex+=1

return uKs,product
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def replaceProd(product,toRep,repW):

toReplaceString="wk_"+str(toRep)

toReplace=Symbol(toReplaceString,real=True)

replaceWithString="wk_"+str(repW)

replaceWith=Symbol(replaceWithString,real=True)

product=product.subs(toReplace,replaceWith)

toReplaceString="uk_"+str(toRep)

toReplace=Symbol(toReplaceString,real=True)

replaceWithString="uk_"+str(repW)

replaceWith=Symbol(replaceWithString,real=True)

product=product.subs(toReplace,replaceWith)

toReplaceString="vk_"+str(toRep)

toReplace=Symbol(toReplaceString,real=True)

replaceWithString="vk_"+str(repW)

replaceWith=Symbol(replaceWithString,real=True)

product=product.subs(toReplace,replaceWith)

toReplaceString="thetaK_"+str(toRep)

toReplace=Symbol(toReplaceString,real=True)

replaceWithString="thetaK_"+str(repW)

replaceWith=Symbol(replaceWithString,real=True)

product=product.subs(toReplace,replaceWith)

return product

def matSum(product,uWList):

#Takes in product and a list of omegas to sum over

"""gFun is a list (representing multiplication) of

lists(representing addition)"""

z=Symbol(’z’)

if not isinstance(uWList,list):raise TypeError("uWList must be a list")
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#Break green’s functions up

#Gives list (representing addition) of

#lists(representing multiplication)

toIntegrate=product

#flips it so the second order poles are summed last

uWList=flip(product,uWList)

for uW in uWList:

integratedSum=addList()

#Check if it’s a boson or a fermion and add the correcting

#weighting factor

if isinstance(uW,boseFrequency):

toIntegrate=--1*toIntegrate*nBE(I*uW)

elif isinstance(uW,fermiFrequency):

toIntegrate=toIntegrate*nFD(I*uW)

else:

raise ValueError(

"Matsubara frequency is neither a bose nor a fermi frequency")

if not isinstance(toIntegrate,addList):

toIntegrate=addList(toIntegrate)

for summand in toIntegrate:#integrate each term in the addList

toIntegrate_term=[term.subs(I*uW,z) for term in summand]

#Do the contour Integral, returns a sum (list)

integrated=contourIntegral(toIntegrate_term,z)

integratedSum=integratedSum+integrated #puts the sums together

toIntegrate=integratedSum #Get ready to integrate again

return integratedSum#integratedSum

def contourIntegral(integrand,z):

#integrand is a multList of terms, returns a product of sums

wk=Symbol(’wk_’+str(kVal), real=True)

residues=addList()

second_order_terms=[]

constant=multList()
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integrand_2=multList()

pole_sign=1

for term in integrand:

if len(term.args)==0:

constant=constant*term

else:

arg=str(term)

if not ’z’ in arg:

if "z" in str(term):

print(

term,z,term.args,term.args[0],term.args[0].atoms())

if len(constant)==0:

constant=multList(term)

else:

constant=constant*term

else:

if len(integrand_2)==0:

integrand_2=multList(term)

else:

integrand_2=integrand_2*term

integrand=integrand_2

#find first and second order terms:

for term_index,term in enumerate(integrand):

w_term=term.args[0]

term_2_index=term_index

second_order=False

while term_2_index<len(integrand) and not second_order:

if term_index!=term_2_index:

term_2=integrand[term_2_index]

if not isinstance(term_2,nFD) and not isinstance(term_2,nBE):

w_term_2=term_2.args[0]

if (w_term==w_term_2):

second_order=True
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if (w_term==-w_term_2):

second_order=True

if second_order:

second_order_terms.append(integrand.pop(term_index))

#-1 to adjust for the first pop, term_2_index is

#always>=term_index

second_order_terms.append(integrand.pop(term_2_index-1))

term_2_index+=1

#now integrand just contains first order poles

#Find the residue of the first order terms

for term in integrand:

#get the poles and residue from the term

if isinstance(term,mul_type):

args=term.args

assert(args[0]==-1)

term=args[1]

constant=-1*constant

p_rs=term.pole_and_residue(z)

#iterate through the poles/residues

for p_r in p_rs:

pole=p_r[0]

residue=multList(p_r[1])

for term_2 in integrand:

if term!=term_2:

new_term=term_2.subs(z,pole).expand()

new_term=convert_distribution(new_term)

residue= residue*new_term

for term_2 in second_order_terms:

#No distributions in second order terms

residue=residue*term_2.subs(z,pole).expand()

if len(residues)==0:

#otherwise it returns a sympy object

residues=addList(residue)
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else:

residues=residues+residue

assert(len(second_order_terms)==2 or len(second_order_terms)==0)

#lim z-> z0 d/dz ((z-z0)^2 integrand)

#the second order terms when differentiated reduce to

#(r1*r4+r2*r3)/(2*pole)

#and r1r3(r2r4) when not differentiated for the positive

#(negative) pole r1,r2 are the residues of the first term, r3,r4

#are the residues of the second

if second_order_terms:

g1=second_order_terms[0]

g2=second_order_terms[1]

p_rs_1=g1.pole_and_residue(z)

p_rs_2=g2.pole_and_residue(z)

#The assumption here is that the poles are ordered and equal

pole_1=pole_sign*p_rs_1[0][0]

pole_2=pole_sign*p_rs_1[1][0]

r_1=pole_sign*p_rs_1[0][1]

r_2=pole_sign*p_rs_1[1][1]

r_3=pole_sign*p_rs_2[0][1]

r_4=pole_sign*p_rs_2[1][1]

#first pole

#The wk term in the denominator only works for the F and G functions

res=multList((r_1*r_4+r_2*r_3)/(2*wk))

for term in integrand:

new_term=term.subs(z,pole_1).expand()

new_term=convert_distribution(new_term)

res=res*new_term

residues=residues+res

for term in integrand:

new_term=term.diff(z).subs(z,pole_1).expand()

new_term=convert_distribution(new_term)

diff_term=multList(new_term)
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for term_2 in integrand:

if term_2!=term:

new_term=term_2.subs(z,pole_1).expand()

new_term=convert_distribution(new_term)

diff_term=diff_term*new_term

diff_term=diff_term*r_1*r_3

residues=residues+diff_term

#second pole

res=multList((r_1*r_4+r_2*r_3)/(-2*wk))

for term in integrand:

new_term=term.subs(z,pole_2).expand()

new_term=convert_distribution(new_term)

res=res*new_term

residues=residues+res

for term in integrand:

new_term=term.diff(z).subs(z,pole_2).expand()

new_term=convert_distribution(new_term)

diff_term=multList(new_term)

for term_2 in integrand:

if term_2!=term:

new_term=term_2.subs(z,pole_2).expand()

new_term=convert_distribution(new_term)

diff_term=diff_term*new_term

diff_term=diff_term*r_2*r_4

residues=residues+diff_term

return constant*residues

def convert_distribution(term):

"""Takes care of the matsubara frequencies in the distributions"""

if not (isinstance(term,nFD) or isinstance(term,nBE) or \

isinstance(term,dnBE) or isinstance(term,dnFD)): return term

mat_freq=[]
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num_fermi=0

arg=term.args[0]

atoms=arg.atoms()

for atom in atoms:

if isinstance(atom, boseFrequency):

mat_freq.append(atom)

if isinstance(atom, fermiFrequency):

mat_freq.append(atom)

num_fermi+=1

for freq in mat_freq:

arg=arg.subs(freq,0)

if num_fermi%2==0: #no change

if isinstance(term, nFD):

return nFD(arg)

if isinstance(term,nBE):

return nBE(arg)

if isinstance(term,dnFD):

return dnFD(arg)

if isinstance(term,dnBE):

return dnBE(arg)

else:

if isinstance(term, nFD):

return -nBE(arg)

if isinstance(term,nBE):

return -nFD(arg)

if isinstance(term,dnFD):

return -dnBE(arg)

if isinstance(term,dnBE):

return -dnFD(arg)

def replace(term, toRep,rep):

if str(toRep) in str(rep) or str(toRep**2) in str(rep):

raise ValueError(
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"the term being replaced is in the replacing term. toRep: ",

toRep, " rep: ",rep)

newTerm=term.subs(toRep,rep)

if newTerm==term:

newTerm=term.subs(-toRep,-rep)

if newTerm==term:

newTerm=term.subs(-I*toRep, -I*rep)

if newTerm==term:

newTerm=term

#squared terms , assumes there is no "toRep" in rep

newTerm=newTerm.subs(toRep**2,rep**2)

return newTerm

def flip(product,uWList):

length=len(uWList)

assert(length<=2)

if length==1:

return uWList

if length == 2:

w1=uWList[0]

w2=uWList[1]

for term1 in product:

arg1=term1.args[0]

for term2 in product:

if term1!=term2:

arg2=term2.args[0]

if arg1==arg2 or arg1==-arg2:

if str(w1) in str(term1):

return [w2,w1]

if str(w2) in str(term1):

return [w1,w2]

return [w1,w2]
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neville, Luca Planat, Farshad Foroughi, Yuriy Krupko, Olivier Buisson, Cécile

Naud, Wiebke Hasch-Guichard, Serge Florens, Izak Snyman, and Nicolas Roch.

A tunable josephson platform to explore many-body quantum optics in circuit-

qed. npj Quantum Information, 5(1):19, 2019.

[50] J. Casanova, G. Romero, I. Lizuain, J. J. Garćıa-Ripoll, and E. Solano.
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