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Irvine, CA, 92697, USA

Michael D. Lee (mdlee@uci.edu)
Department of Cognitive Sciences, 3151 SSPA UCI
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Abstract

Alzheimer’s disease leads to a decline in both episodic and se-
mantic memory. Free recall tasks are commonly used in as-
sessments designed to diagnose and monitor cognitive impair-
ment, but tend to focus only on episodic memory. Our goal
is to understand the influence of semantic memory on the se-
quence of free recall in a clinical data set. We develop a cogni-
tive process model that incorporates the influence of semantic
similarity and other stimulus properties on the order of free
recall. The model also incorporates a decision process based
on the Luce choice rule, allowing for different levels of re-
sponse determinism. We apply the model to a real-world data
set including free recall data from 2392 Alzheimer’s patients
and their caregivers. We find that semantic similarity between
items strongly influences the order of free recall, regardless of
impairment. We also observe a trend for response determinism
to decrease as impairment increases.
Keywords: semantic memory; episodic memory; free recall;
odd-one-out task; Alzheimer’s disease

Introduction
Alzheimer’s disease causes changes in memory that are dis-
tinct from normal aging. In cognitively healthy adults, mem-
ory for past events (episodic memory) tends to decline over
time, but memory for facts (semantic memory) typically re-
mains intact (see Balota et al., 2000, for a review). Mem-
ory deficits over and above those seen in healthy aging can
be a sign of cognitive impairment (Nebes & Brady, 1990).
Patients with Alzheimer’s disease display deficits in both
episodic and semantic memory early in the disease, with
deficits in memory increasing with the severity of cognitive
impairment (Mortamais et al., 2017).

A commonly used task in memory assessment is the free
recall task, which is widely used to study memory and deci-
sion processes. In this task, a participant is presented with
a list of items and then – immediately or after some delay
– must recall those items, in any order. There are several
common ways to analyze free recall data. Techniques such
as serial position analysis, in which effects of primacy and
recency are typically observed (Murdock, 1962), rely on the
order of items presented at study. Conditional response prob-
abilities and lag-recency effects (Howard & Kahana, 1999)
are concerned with the temporal relationship of successively
recalled items at test. Simple recall accuracy is a quick and
easy way of analyzing memory performance, but it is not sen-
sitive to any information about the presentation order of items
or the order of recall output.

Often, in a recall task, stimuli are controlled on various
dimensions, such as word frequency, word length, age of ac-
quisition, emotional valence, or semantic similarity. These
kinds of controls are implemented because semantic memory
can influence episodic memory. For example, people tend
to recall words in semantically-related clusters, both between
categories (Bousfield, 1953) and within categories (Romney
et al., 1993). Because of this, stimuli in free recall tasks tend
to be controlled for their semantic relationships, to prevent
semantic associations being used in recall. These controls,
however, limit the ability of free recall behavior to inform our
understanding of a basic feature of human memory, which
is to organize stimuli and represent meaning. Understand-
ing the semantic relationships between successively recalled
items can provide valuable insight into memory and decision
processes, including how semantic memory is affected by im-
pairment in Alzheimer’s patients (Ribeiro et al., 2007).

The goal of this paper is to model the sequence of free re-
call in a clinical data set in an effort to understand how seman-
tic similarity and other features of stimuli guide the recall pro-
cess. In the next section, we describe the clinical data set and
an initial analysis of first-order transition probabilities. We
then describe a cognitive model of free recall output based on
the similarity to other recalled words, as well as several other
properties of the words themselves. We find that people do
not tend to use different cues as they become more impaired.
Instead, free recall output tends to become more random as
impairment increases, as measured by a cognitive parameter
corresponding to response determinism. Finally we discuss
the implications and limitations of our findings.

Data
The data were collected as part of a routine assessment of
Alzheimer’s patients and their caregivers at a clinic spe-
cializing in neurodegenerative disorders. All participants
completed the Mild Cognitive Impairment Screen (MCIS:
Shankle et al., 2009), which is used to help diagnose and
monitor cognitive impairment. This screen includes an odd-
one-out comparison of animal names task and an unexpected
free recall task of those animal names. The odd-one-out com-
parison task draws stimuli from a pool of 21 animal names:
antelope, beaver, camel, cat, chimpanzee, chipmunk, cow,
deer, dog, elephant, giraffe, goat, gorilla, horse, lion, mon-
key, rabbit, rat, sheep, tiger, and zebra. For each triad of

1243



Table 1: Identifying characteristics for each FAST stage, the
number of participants in each stage, and descriptive statistics
for the number of words correctly recalled.

Stage Description n M SD
1 & 2 no deficit or subjective deficit 518 6.8 1.6

3 objective deficit in complex tasks 782 5.6 1.9
4 mild dementia evident in IADLs 770 4.1 2.0
5 moderate dementia 152 3.5 2.0
6 moderately severe dementia 170 3.0 1.8

animal names, the participant must choose which animal is
least like the other two. For example, if presented with
the words “cow”, “elephant”, and “giraffe”, a person might
choose “cow” as the odd one out. The clinician does not offer
any feedback after each choice, as there is no correct answer
for this task. In accordance with a λ-2 balanced, incomplete
block design (Burton & Nerlove, 1976), nine animal names
are drawn from the pool for each participant, and each of the
selected animals is presented verbally in a triad with every
other animal over the course of 12 trials. After a delay, in
which participants complete other unrelated tasks, there is an
unexpected free recall task of these animal names. The in-
structions are to try to recall as many of the animal names as
possible, in any order.

The data set includes assessments from 2392 participants
(52% female, age range 16–101 years, mean age 74 years).
At the time of assessment, all participants were also classified
using the Functional Assessment Staging Test (FAST: Reis-
berg, 1988). The FAST assessment is an evaluation of a per-
son’s ability to perform Instrumental Activities of Daily Liv-
ing (IADLs: Lawton & Brody, 1969), such as cooking, clean-
ing, and managing finances, as well as Activities of Daily
living (ADLs: Katz et al., 1963), such as dressing, bathing,
and grooming. Participants in FAST stages 1 and 2 have ei-
ther no functional deficit or only a subjective deficit and are
considered to be cognitively healthy for the purposes of this
analysis. Those in stage 3 have mild cognitive impairment
and are beginning to show an objective deficit in accomplish-
ing more complex tasks. Participants in stages 4, 5, and 6,
have been diagnosed with mild, moderate, and moderately
severe dementia, respectively. The FAST assessment is made
independently of the MCIS, and so it provides a way to group
participants by impairment, in order to study changes in free
recall. A summary of the number of participants grouped into
each FAST stage is presented in Table 1.

In an initial analysis of the data, we wanted to determine
whether the semantic similarity of the animal names influ-
enced the order of free recall output, and if so, whether this
influence varied with cognitive impairment. First we in-
ferred animal similarity data from the odd-one-out compar-

ison task.1 For each pair of animal names, we counted the
number of times neither animal was chosen as the odd one
out in a triad and divided that by the total number of times
that pair was presented in a triad. In effect, this means that
the similarities of pairs of animals increase to the extent nei-
ther is chosen as the odd one out when they are both present in
a triad. Then we calculated first-order transition probabilities
to measure the probability of the next recalled word given the
most recently recalled word, similar to semantic conditional
response probabilities (Howard & Kahana, 2002).

In Figure 1, for each stage, all 21 animals are presented
on the circumference of a circle that arranges them by sim-
ilarity. Transition probabilities are represented by arrows of
varying width. Higher transition probabilities are represented
by thicker arrows and lower transition probabilities are rep-
resented by thinner arrows. Transitions occurring around the
edge of the circle are indicative of similarity-based search,
while transitions through the middle of the circle indicate
some other process, inconsistent with similarity. In stages
1 & 2, most of the transitions occur around the edge of the
circle, between animals that are semantically similar to each
other. Transitions between similar animals such as “gorilla”,
“chimpanzee”, and “monkey” are common, while transitions
between dissimilar animals, such as “camel” and “dog”, are
much less common. In stages 3 and 4, many of the transi-
tions occur around the edge of the circle, between semanti-
cally similar animals, but there is a relatively greater number
of transitions that cross through the center of the circle be-
tween dissimilar animals. In stages 5 and 6, there appear to
be as many transitions between similar animals as dissimilar
animals, with a great many transitions crossing through the
center of the circle. From these plots, it is clear that as FAST
stage increases, transitions are more and more likely to cross
through the middle of the circles. In other words, as cognitive
impairment increases, transitions become less consistent with
similarity of the animal names.

Model
A description of the model follows and is broken into two
parts: a regression function, allowing for the influence of
between- and within- stimuli factors on memory, and a
decision-making process that produces choice probabilities.
We applied the model to each FAST stage separately, rather
than attempting to estimate a linear or otherwise monotonic
progression across FAST stages. While our purpose was to
measure change across FAST stage, we did not want to incor-
porate such a strong assumption into the model itself.

The model was written in R (R Core Team, 2018) and im-
plemented in JAGS (Plummer, 2003) via the rjags package

1There are many ways to calculate similarity, including free asso-
ciation measures (De Deyne et al., 2019; Nelson et al., 2004), latent
semantic analysis (LSA: Landauer & Dumais, 1997), and vector co-
sine similarity via an algorithm such as word2vec (Mikolov et al.,
2013). We measure animal similarity from the odd-one-out compar-
ison task following Romney et al. (1993) because the odd-one-out
data and the free recall data were collected from the same people.
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Figure 1: First-order transition probabilities for the animal free recall task. Animals are arranged around the circumference of
each circle in terms of similarity. Transitions are represented as red arrows, where higher transition probabilities are represented
by thicker arrows and lower transition probabilities are represented by thinner arrows. As impairment increases, transitions
become less consistent with animal similarity.

(Plummer, 2016). JAGS provides a high-level scripting lan-
guage for implementing probabilistic cognitive models that
allows for computational Bayesian analysis using Markov-
chain Monte Carlo sampling methods (Lee & Wagenmak-
ers, 2014). The results are based on three chains of 10,000
posterior samples collected after 1000 discarded burn-in sam-
ples, with a thinning factor of 10. We assessed convergence
of chains by visual inspection and through the R̂ statistic
(Brooks & Gelman, 1998).

Regression function
The regression function contains weights of theoretical inter-
est α, which express the influence of various psychological
features on recall probabilities. Specifically, we assume that
the memory strength Q allowing for the recall of animal j on
trial k given that animal i has just been recalled on trial k−1
(i.e., yk−1 = i) is a function of both the similarity of animal j
to animal i, and specific features of word j:

Qk( j|yk−1 = i) = α1× similarityi j +α2×oddness j

+α3×frequency j−α4×length j−α5×aoa j−α6×valence j.

(1)

For each animal name, we obtained the word frequency, word
length, age of acquisition, and emotional valence from The
English Lexicon Project (Balota et al., 2007). Word fre-
quency corresponds to the log-transformed Hyperspace Ana-
logue to Language (HAL: Lund & Burgess, 1996) frequency
norms. Word length is defined as the number of syllables. We
also include oddness, which is the number of times a partic-
ipant chose an animal name in the odd-one-out comparison
task, as a word-level feature. All of the predictors were re-
scaled to be in the range of 0 to 1.

We assume each FAST stage has its own regression
weights, and they are given a Dirichlet prior. This choice
of prior ensures that the weights sum to one and allows us to
interpret the weights as the relative importance of each pre-
dictor on memory:

ααα∼ Dirichlet(1,1,1,1,1,1). (2)

Luce Choice Rule
Since there is a discrete number of possible animal names,
the free recall task can be thought of as a multinomial choice
task. We use the Luce choice rule (Luce, 1959) extended to
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incorporate response determinism, which allows us to assign
a probability to each of these response options. According to
the Luce choice rule, choice probabilities S are defined as:

S ( j) =
exp(γQ( j))

∑m exp(γQ(m))
, (3)

where j refers to one of the recalled animal names, the sum-
mation in the denominator is over all recalled animal names,
and the function Q is defined in Equation 1 (and the con-
ditioning on the previous observation yk−1 is now implicit).
Finally, the response determinism parameter γ determines the
degree to which a participant chooses a response consistent
with the regression function Q. If γ = 0, Q is ignored, and
the probability of choosing option j becomes 1

m . If γ = 1,
decisions become consistent with probability matching. As
γ increases, the decision becomes more deterministic based
on Q, and a participant will eventually always pick the option
with the highest Q. In this way, the determinism parameter
can be interpreted as the consistency of decisions. Following
Lee et al. (2016), we assume each FAST stage has its own
response determinism, and assume a gamma prior:

γ∼ gamma
(
2,1
)
, (4)

which has a mode corresponding to probability matching, but
allows for higher and lower values.

Censoring repeated recall. For the purposes of this analy-
sis, we removed extra-list intrusions, but it is still possible for
the participant to recall the same word repeatedly. Because
this type of task error could be related to cognitive impair-
ment, we extend our model to include a censoring component
that captures the ability to inhibit repeated recalls.

The probability of choosing a response option on a particu-
lar trial is determined by the Luce choice rule and a censoring
index δ, which is a binary indicator that takes the value 1 for
words that have not been previously recalled. This index can
be pre-calculated and treated as observed data.

Whether a participant is in a state of censoring on a trial is
determined by parameter z. If z = 0, the participant is not in a
censoring state, and the probability of recalling alternative j
is determined by the Luce choice rule. If z = 1, then the par-
ticipant is in a censoring state, and the probability of recalling
alternative j is equal to δ times the Luce choice rule:

Pk(yk = j) =

{
S ( j) , if zk = 0
δ jS( j), if zk = 1.

(5)

The parameter z has a Bernoulli prior with hyperparameter φ:

zk ∼ Bernoulli(φ). (6)

In our application of the model φ is a person-specific param-
eter that captures the individual’s ability to censor previously
recalled words. φ can range from 0 (no censoring) to 1 (per-
fect censoring), and is given a standard uniform prior:

φ∼ uniform
(
0,1
)
. (7)

First word recall
For first word recall our regression equation changes slightly,
because recall of the first word depends only on the prop-
erties of the individual word, and not on the similarity to a
previously recalled item. Additionally, there is no need for
a censoring component for first word recall. To distinguish
first word recall from subsequent word recall, we denote the
regression weights with β (instead of α) and the response de-
terminism parameter with κ (instead of γ). The regression
function governing first word recall is now:

Qk=1( j) = β1×oddness j +β2× frequency j

−β3× length j−β4× aoa j−β5×valence j. (8)

As before, the regression weights are given a Dirichlet prior:

βββ∼ Dirichlet(1,1,1,1). (9)

The probability of choice in Equation 3 becomes:

S ( j) =
exp(κQ( j))

∑m exp(κQ(m))
, (10)

where κ has the gamma prior:

κ∼ gamma
(
2,1
)
. (11)

Results
We have a clear expectation for response determinism. As
impairment increases, free recall output should become less
consistent with the memory of the items. In other words, re-
sponse determinism should decrease as FAST stage increases.
However, we are also interested in the relative influence of
each of the regression predictors on the structure of free re-
call, and whether they change across impairment.

Model descriptive adequacy
We quantified model fit by creating a confusion matrix for
each FAST stage that compares the true word recall of the
participants to the model-described word recall. From these
matrices we were able to calculate the overall descriptive ac-
curacy of the model, which was between 40% and 57% for
each stage. A model that predicted outcomes completely ran-
domly would have an accuracy of only 1

21 , or 5%. While far
from perfect, this suggests that the model provides a reason-
ably accurate description of the data, and performs an order
of magnitude better than a random chance model.

Regression weights
The posterior distributions for the regression weights α of
each of the predictors are presented in Figure 2. The re-
gression weights for similarity are very high overall, meaning
that the similarity between items is particularly important in
the sequence of free recall. Oddness and emotional valence
have relatively less influence on recall order compared to sim-
ilarity. The weights for the other item-dependent properties,
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Figure 2: Posterior distributions of regression weights α for each FAST stage. The panels represent (A) similarity between
items, (B) probability of odd-one-out selection, (C) word frequency, (D) word length, (E) age of acquisition, and (F) emotional
valence.

word frequency, word length, and age of acquisition, are all
very close to zero.

It appears that the regression weights are fairly stable
across stages. To quantify the stability of the weights across
FAST stage, we calculated Bayes factors between adjacent
stages for each of the regression weights. Our results are pre-
sented in Table 2 as Bayes factors in favor of the null. Overall,
the regression weights do not tend to shift across FAST stage.
In other words, people do not tend to use different cues in the
free recall task as they become more impaired.

Response determinism
The posterior distributions for response determinism γ are
presented in Figure 3. There seems to be a visual trend
wherein determinism tends to decrease as FAST stage in-
creases. Again, we computed Bayes factors to quantify any
differences between adjacent FAST stages. In this case, the
Bayes factors in favor of the null were 2.8, 4.5, 1.5, and 1.5
for comparisons between stages 1 & 2 vs. stage 3, stage 3
vs. stage 4, stage 4 vs. stage 5, and stage 5 vs. stage 6, re-
spectively. Response determinism is trending in a way that
would suggest free recall output becomes less consistent with

the model and more random as impairment increases. How-
ever, the Bayes factor magnitudes represent suggestive rather
than clear evidence of differences between adjacent stages.

First-word recall
While subsequent word recall was well-described by the re-
gression model and Luce choice rule, first-word recall was
not. The posterior mean regression weights for oddness
ranged between 0.41 and 0.80 across impairment, while the
mean regression weights for emotional valence ranged be-
tween 0.09 and 0.26. The other predictors – word frequency,
word length, and age of acquisition – had mean regression
weights all very close to zero for all FAST stages. However,
interpretation of these regression weights is complicated by
the fact that the mean posterior response determinism is ei-
ther very close to one, in the case of stages 1, 2, and 3, or
less than one, for FAST stages greater than 3. This obser-
vation means that many participants are responding in a way
that is more random than probability matching. It is possible
that we failed to incorporate relevant predictors for first-word
recall into the model, or that our modeling assumptions are
otherwise inappropriate for first-word recall. Accounting for
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Figure 3: Posterior distributions of response determinism γ

for each FAST stage. Response determinism tends to de-
crease as impairment increases.

first-word recall requires more attention in further model de-
velopment.

Discussion
We created a cognitive process model to try to understand
the sequence of free recall output in a clinical data set. The
model has two main components: a regression-type equation
that describes the influence of within- and between-item fac-
tors, and a decision process based on the Luce choice rule.
We found that the similarity between words has a very high
influence on word choice for all stages, while oddness and
emotional valence have a smaller influence. Word frequency,
word length, and age of acquisition seem to matter very lit-
tle in terms of word choice for this particular set of stimuli.
The fact that these word-specific characteristics had little in-
fluence on the order of recall is not surprising in this partic-
ular context. These animal names were chosen for this task
to be similar on several dimensions. However, in all cases,
the weights of each of these between- and within-item factors
was consistent across all FAST stages. In other words, par-
ticipants did not appear to use different cues for word choice,
regardless of impairment.

Response determinism has a trend such that determinism
decreases as FAST stage increases. A decrease in response
determinism means that decisions become less consistent
with the regression model and more random. However, Bayes
factor comparisons between successive stages revealed that
any differences were not large enough to make strong claims.
Our use of a response determinism parameter is similar to the
model described in Lee et al. (2016). We assume that all par-
ticipants have the same underlying semantic representation,
but the ability to access that information decreases as impair-
ment increases (Nebes & Brady, 1990). In other words, cog-
nitive impairment limits the ability to access stored semantic
information in memory. This is essentially the same conclu-
sion about the impacts of impairment reached by Westfall &
Lee (in press) in their model-based analysis of the odd-one-

Table 2: Bayes factors for the comparison of each regression
weight across adjacent FAST stages. All Bayes factors are
presented in favor of the null.

1&2 vs. 3 3 vs. 4 4 vs. 5 5 vs. 6
Similarity 2.4 1.5 0.3 0.9
Oddness 3.0 0.2 2.1 1.6
Frequency 12.6 8.4 4.0 2.4
Length 25.9 13.8 3.8 2.7
AOA 8.0 4.3 2.6 2.0
Valence 3.6 3.3 1.5 1.5

choice behavior that we used to determine semantic similar-
ity.

A major assumption of this model is that we know what
items will be recalled. The model is only concerned with the
order of free recall output given the words that were recalled
successfully. A complete account of the sequence of free re-
call should be able to predict the words that will be recalled,
given the memory stimuli, as well as providing a better ac-
count of first-word recall.

Nevertheless, the modeling results advance our under-
standing of the factors that influence the free recall of within-
category items. In particular, the use of a cognitive model
allows us to identify patterns and relationships not observ-
able in standard data analysis. Measuring latent psychologi-
cal parameters potentially provides a more precise measure-
ment of semantic clustering than other more common behav-
ioral methods, such as the California Verbal Learning Test
(CVLT-II: Delis et al., 2000). The model allows us access to
information that would otherwise be lost in a typical account
of free recall accuracy, and helps us understand recall order
when information on study order is unavailable or ambiguous.
Most importantly, our modeling provides an insight into how
semantic memory drives free recall, and how this interaction
changes with memory impairment.
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