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Abstract

Constraining Reionization with the High-z Lyman-α Forest

by

Molly Wolfson

Understanding the reionization of the intergalactic medium (IGM) by the first lu-

minous sources remains an important open problem in cosmology. During Reionization

ionization fronts propagate through the IGM, heating the reionized gas. This heat in-

jection can be observed over a redshift interval of ∆z ∼ 1 due to the long cooling times

in the low-density IGM. Simultaneously, the mean free path of ionizing photons (λmfp)

describing the ultraviolet background (UVB) rapidly evolves as bubbles of reionized gas,

where the UVB is stronger, merge. Thus, constraining the thermal state of the IGM and

the evolution of λmfp can, in turn, be used to constrain reionization. Transmission in the

Lyman-α (Lyα) forest, the ubiquitous Lyα absorption lines produced by residual neutral

hydrogen in the IGM along quasar sightlines, offers a powerful tool to investigate these

phenomena.

Here I present studies that look into utilizing the z > 5 Lyα forest to constrain

Reionization via the thermal state of the IGM and λmfp. First, I use wavelet analysis as an

initial clustering statistic and shows improvement on simulated temperature constraints

when compared to measurements from the 1D Lyα forest power spectrum. This work

also notes the importance of careful accounting of the correlations between datasets to

ensure observational constraints are not over-confident. The next two studies use the

Lyα forest auto-correlation function at z ≥ 5.4 as the clustering statistic. The second

study demonstrates the potential in constraining λmfp from simulated data while the third

does the same for the temperature. Both of these do careful statistical inference tests to
ix



ensure the results are not over-confident and describe a method to guarantee statistical

robustness of measurements. The final study makes measurements of the Lyα forest

auto-correlation functions at z > 5 from the XQR-30 data set. Preliminary comparisons

of these measurements to the models from the second study are done, showing agreement

with previous measurements of λmfp. Each of these contribute to our understanding of

the high-z Lyα forest and how it can be used to constrain Reionization.
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Chapter 1

Introduction

1.1 A Brief History of the Universe

The Universe began 13.7 billion years ago with the Big Bang, which spawned ev-

erything in a hot, dense plasma where light couldn’t escape. Since then the Universe

has been expanding and cooling. Around 370 000 years later, the primordial plasma

condensed into the first neutral atoms allowing light to escape for the first time. This

light can be observed today as the cosmic microwave background (CMB). From then on

the lack of sources of light caused the Universe to be totally dark. This cosmic ‘dark

age’ lasted until the formation of the first galaxies, stars, and black holes which began

to emit their own light. This light then reheated and reionized the neutral hydrogen in

the intergalactic medium (IGM), meaning that the neutral hydrogen will lose its electron

to become a negative ion. The time period where the neutral hydrogen is reionized is

known as Reionization (or the epoch of hydrogen reionization). From here the Universe

continued to evolve under the influence of gravity leading to the formation of modern

galaxies like the one we live in at present day. An illustration of this timeline of the

Universe and the evolution of the IGM can be found in Figure 1.1.

1



Introduction Chapter 1

Figure 1.1: Diagram of the timeline of the Universe. This highlights the transition from a
neutral IGM on the left to the ionized IGM of today on the right. This highlights several
notable events including the Big Bang, Recombination, and Reionization. Reproduced from
Robertson et al. (2010) with permission.

Understanding Reionization has been the main objective of my PhD over the past six

years and this dissertation is dedicated to describing my efforts. To begin, in Chapter

1.2 I go over some of the definitions and physics used in my field of research. Then in

Chapter 1.3 I describe some modern methods of studying reionization and in Chapter

1.4 I outline the topics in the rest of this dissertation.

1.2 Relevant (Astro)physics

1.2.1 Some Cosmology

As stated above, the Universe is expanding, which means that the distances between

all galaxies, for example, is getting bigger solely from this expansion. Cosmologists have

introduced the scale factor, a(t), to describe this growth. The scale factor is a function

of time because the Universe is not expanding at a constant rate, and in fact this rate of

expansion depends on the energy density of the Universe, ρ(t). To consider how rapidly

the scale factor changes with time, we consider the Hubble rate, H(t), where:

H(t) ≡ da/dt

a
. (1.1)

2



Introduction Chapter 1

Note that generally cosmologists refer to the Hubble rate today as H0. To look at the

Hubble rate in terms of the energy density, we consider the Friedmann equation:

H2(t) = 8πG

3

[
ρ(t) + ρcr − ρ0

a2(t)

]
(1.2)

where the critical energy density, ρcr, is:

ρcr ≡ 3H2
0

8πG
. (1.3)

In terms of astronomical observations, since galaxies are getting physically farther

apart with the expansion of the Universe they will appear like they are moving away

from us here on Earth. This will cause the observed light to shift when compared to the

light that was initially emitted. This can also be thought of as the light losing energy

against the expansion of the Universe. We define this shift as cosmological redshift, z:

1 + z ≡ λobs

λemit
= 1

a
. (1.4)

The further away some object is, the greater the speed at which it moves away, which

means the redshift will be greater. Thus, this redshift corresponds to the distance between

us and a galaxy. And since light travels at a finite speed, c, the further away light is

the older it is. If fact, cosmologists will refer to the time of events by its redshift, as

can be seen in Figure 1.1. The higher redshift, z, the further back in time. Note that

Reionization in Figure 1.1 is labeled as “z = 6 − 15?”.

1.2.2 The Intergalactic Medium

The IGM is the diffuse gas between galaxies. The fraction of baryons in the IGM at

z ∼ 6 is thought to be ∼ 95% (McQuinn, 2016) where the estimate today is closer to ∼

50%. The IGM is of interest to both cosmologists and astronomers because it can be used

to test structure formation and dark matter models, it impacts measurements of the CMB
3



Introduction Chapter 1

(as this light passes through the IGM before we observe it), it is the environment in which

galaxies form and feed from, and more. It also is a unique location to study cosmology

because the state of the IGM is largely determined by the cosmological initial conditions

and evolution processes which we largely understand. The uncertain astrophysics such

as feedback come into play mostly at later redshifts (closer to today) and low densities.

Thus the IGM is a relatively clean theoretical location to study cosmological questions.

The main physical properties of the IGM that I will discuss are the ionization state and

the thermal state.

For the ionization state there are a few processes to consider. Electrons are ionized

from the neutral hydrogen in the IGM by photons with energies greater than its ionization

potential at the rate, ΓHI:

ΓHI = c
∫ ∞

νT
dν

uν

hPν
aHI

ν (1.5)

where aHI
ν is the hydrogen photoelectric cross section, νT is the threshold (or Lyman

limit) frequency required to ionize hydrogen, and uν is the specific energy density of the

radiation field. These free electrons are then captured by other protons in the IGM with

a rate neαHII(T ) where αHII is the total rate coefficient for radiative capture summed

over recombinations to all energy levels (or Case A radiative recombination coefficient).

The total hydrogen number density, nH, can be written in terms of the neutral hydrogen

number density, nHI, and the ionized hydrogen number density, nHII, as nH = nHI + nHII.

The fraction of neutral hydrogen is xHI = nHI/nH and the fraction of ionized hydrogen

in xHII = nHII/nH. Then I can write down the rate of change in the fraction of neutral

hydrogen in terms with a loss from photons and an increase from recombinations as
dxHI

dt
= −xHIΓHI + xHIIneαHII(T ). (1.6)

From here it is straightforward to derive the equilibrium fraction of

xeq
HI = neαHII(T )

ΓHI + neαHII(T ) . (1.7)

4
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For the thermal state, there are several processes to consider that contribute to heating

and cooling. First is heating due to excess energy when photoionizing electrons from

neutral hydrogen. For cooling the main processes relevant to consider in the high-z

IGM are the adiabatic expansion of the Universe (as previously mentioned) and inverse

Compton scattering off CMB photons. The equations for the rates here are not as relevant

for the thesis so I will omit them here but see Meiksin (2009) for details.

1.2.3 The Lyman-α Forest

To begin, the Lyman series are the transitions as an electron goes from any excited

state (n ≥ 2) to the ground state in hydrogen. The Lyman-α (Lyα) transition is specifi-

cally the transition between the first excited state (n = 2) and the ground state (n = 1).

This will happen both in emission (the n = 2 electron releases 1216Å light to become

n = 1) and absorption (the n = 1 electron will absorb 1216Å light to become n = 2).

Thus if 1216Å light encounters neutral hydrogen (such as neutral hydrogen in the IGM)

it will be absorbed. Another transition to note is the Lyman-β (Lyβ), which happens be-

tween the second excited state (n = 3) to the ground state (n = 1) and has characteristic

wavelength of 1026Å.

For this dissertation, I will be using this Lyα absorption in quasar spectra, in a region

known as the Lyα forest. Quasars are supermassive black holes at the centers of galaxies,

surrounded by gas. As this gas spirals into the black hole, it releases an extraordinary

amount of energy in the form of light. To note later, this process makes quasars some of

the brightest objects in the Universe which we can see very far away. Quasars emit light

in a characteristic spectra (which includes Lyα emission). Now as this light travels from

a quasar through the IGM to us on Earth, the light will redshift due to the expansion of

the Universe, as was described in equation (1.4). If at a given location in the IGM there

5



Introduction Chapter 1

is neutral hydrogen, then the light that has redshifted to 1216Å could be absorbed.

I want to consider the specific region in quasars where we only see Lyα absorption so

where the emitted light has 1026Å < λemit < 1216Å (between the rest frame Lyα and Lyβ

emission lines). This region will have a collection of Lyα absorption lines due to neutral

hydrogen in the IGM. The same logic for Lyα absorption applies to Lyβ absorption as

well at higher energies which correspond to shorter wavelengths (and in fact this is true

for all Lyman series lines). So emitted light with λemit < 1026Å will contain absorption

for both Lyα and Lyβ where the Lyβ absorption will be closer to the quasar than the

Lyα absorption in this region. These regions are illustrated in three quasar sightlines

shown in Figure 1.2.

The three panels go from lowest z at the top to the highest z in the bottom panel.

The top and middle panels roughly look like the quasar continuum emission with varying

amounts of Lyα absorption lines. By the bottom panel the Lyα absorption is great

enough that the resulting spectra instead looks like transmission spikes.

Through this cosmological redshift, the Lyα forest gives us spatial information about

the neutral hydrogen in the IGM in front of quasars. The transmitted flux, F , (that we

observe) is defined in terms of the the Lyα optical depth, τLyα, where F = e−τ , so the

greater the optical depth the less light that makes it through. The optical depth itself is

defined as:

τLyα(z) = 1.3∆b

(
xHI

10−5

)(1 + z

4

)3/2 ( dv/dx

H(z)/(1 + z)

)−1

, (1.8)

where ∆b = ρ/⟨ρ⟩ is the baryon density in units of the cosmic mean, xHI is the fraction

of hydrogen that is neutral, and dv/dx is the line-of-sight velocity gradient. With this

definition (from McQuinn, 2016) it is easy to note that the Lyα forest is sensitive to

low neutral fractions of xHI ∼ 10−5 at z = 3, which corresponds to a very small number

density of nHI ∼ 10−10 cm−3.
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Figure 1.2: Lyα forest spectral region for three quasars chosen to span a large range in redshift.
Image credit to McQuinn (2016).

Looking closer at some of the relevant physical parameters that affect the optical

depth, we see:

τLyα(z) ∝ xHInH ∝ n2
HT −0.7

ΓHI
, (1.9)

where T is the temperature of the gas and ΓHI is the photoionization rate (see Rauch,

1998, for more information). From this, the Lyα forest contains additional information on

the temperature of the IGM and the photoionization rate of the ultraviolet background

(UVB). These parameters can be crucial to constraining Reionization.

1.3 Constraining Reionzation

Understanding the process of Reionization is one of the most important open questions

in cosmology. CMB measurements thus far have only been able to constrain the midpoint

of Reionization, placing it at zreion = 7.7±0.7 (Planck Collaboration et al., 2020). On the

7
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other hand, measurements of the Lyα optical depth and its scatter can only constrain the

end of Reionization, since at earlier times the Lyα transition saturates to total absorption,

as can be seen through equation (1.8). These measurements give qualitative evidence that

Reionization is not complete until z ∼ 5 − 6 (Yang et al., 2020; Bosman et al., 2022).

However, a detailed timeline of Reionization and its completion is not yet known.

Alternative approaches to understanding Reionization arise from studying the thermal

state of the IGM and the evolution of the UVB near the end of Reionization. During

Reionization ionization fronts traverse the IGM, heating the reionized gas. This heat

injection can be observed over a redshift interval of ∆z ∼ 1 due to the long cooling times

in the low-density IGM (Boera et al., 2019). Simultaneously, near the end of Reionization

the mean and topology of the UVB rapidly evolve as bubbles of reionized gas, where the

UVB is stronger, merge (Zhu et al., 2023). Thus constraints on the evolution of the

thermal state of the IGM and the UVB near the end of Reionization (5 ≲ z ≲ 6) can

allow for constraints on and a better understanding of Reionization overall. Note that

Lyα forest is sensitive to both the thermal state of the IGM and the UVB (through ΓHI)

through equation 1.9.

To date, a lack of high-z, high-resolution measurements of the IGM and shortfalls in

current modeling have not allowed statistical measurements of the Lyα forest at z > 5

to provide quantitative constraints on Reionization. This leads nicely into my disserta-

tion, where I have worked on advancing the statistical methods and measurements for

clustering of the high-z Lyα forest to allow for precise constraints on Reionization.

1.4 Overview of Dissertation

My thesis focuses on constraining Reionization via two separate measurements at

high-z: the thermal state of the IGM and the mean free path of ionizing photons, λmfp,

8



Introduction Chapter 1

which describes fluctuations in the UVB. Chapters 2 and 4 focus on applying statistical

methods (wavelet analysis and the auto-correlation function of the Lyα forest, respec-

tively) to the Lyα forest from cosmological simulating with the goal of improving the

measurements of the thermal state of the IGM at z ≥ 5. Chapter 3 uses the auto-

correlation function from simulated data to investigate constraining λmfp. These three

chapters focus on correct statistical analysis of simulation data such that we could be

confident of our results when we apply them to observational data. Finally, Chapter

5 measures the auto-correlation function from observational quasar spectra, using the

same statistical methods as in the previous chapters. These are the first measurements

of the auto-correlation at z > 5. Moreover, they are pioneering measurements of Lyα

forest clustering during the epoch of reionization, reaching z = 6 and surpassing the

previous redshift limit of z = 5.4. Each of these chapters combine to push forward our

understanding of the z > 5 IGM and the information it contains on Reionization.

9



Chapter 2

Improving IGM temperature

constraints using wavelet analysis on

high-redshift quasars

This chapter was reproduced from Wolfson et al. (2021) with only minor changes to

fit the formatting of this dissertation. I’d like to thank my coauthors, without whom

this work would not have been possible: Joseph F. Hennawi, Frederick B. Davies, Jose

Oñorbe, Hector Hiss, and Zarija Lukić.

2.1 Introduction

The epoch of reionization, when the first luminous sources reionized the neutral hydro-

gen in the intergalactic medium (IGM), is one of the most dramatic periods of evolution

in the young universe. During this time, ionization fronts impulsively heated reionized

gas in the IGM to ∼ 104 K. The exact amount of heat injected into the IGM depends on

the proprieties of the luminous sources as well as the timing and duration of reionization

10
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(McQuinn, 2012; Davies et al., 2016; D’Aloisio et al., 2019). After reionization, the IGM

expands and cools through the adiabatic expansion of the universe and inverse Comp-

ton scattering off CMB photons. The combination of photoionization heating, Compton

cooling, and cooling due to the expansion of the universe result in a tight power-law

temperature-density relation for most of the IGM gas:

T = T0∆γ−1 (2.1)

for overdensity ∆ = ρ/ρ̄, the mean density of the Universe ρ̄, temperature at mean density

T0, and an expected slope γ (Hui & Gnedin, 1997; Puchwein et al., 2015; McQuinn &

Upton Sanderbeck, 2016). However, the low-density IGM has long cooling times, so the

thermal memory of reionization can persist for hundreds of Myr such that the thermal

state of the IGM just after reionization ends contains important information on the state

of the universe during reionization (Miralda-Escudé & Rees, 1994; Hui & Gnedin, 1997;

Haehnelt & Steinmetz, 1998; Theuns et al., 2002a; Hui & Haiman, 2003; Lidz & Malloy,

2014; Oñorbe et al., 2017a,b). Describing the thermal state of the IGM (T0 and γ) just

after reionization, z ∼ 5 − 6, is key to understand the evolution of the universe during

reionization.

The premier probe of the IGM is Lyα absorption along sightlines to bright quasars at

high redshift, known as the Lyα forest (Gunn & Peterson, 1965; Lynds, 1971). The prop-

erties of these absorption features are sensitive to the thermal state of the IGM from two

effects: Doppler broadening due to thermal motions and Jeans (pressure) smoothing of

the underlying baryon distribution. The rate at which pressure forces erase gravitational

fluctuations is set by the local sound speed, and at IGM densities the pressure scale sound

crossing time is approximately the Hubble time. Therefore, the pressure smoothing scale

provides an integrated record of the thermal history of the IGM (Gnedin & Hui, 1998;

Kulkarni et al., 2015; Nasir et al., 2016; Oñorbe et al., 2017a,b; Rorai et al., 2017). Both
11
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of these effects reduce the small-scale structure of the Lyα forest.

Several statistics have been used to measure the thermal state of the IGM, including

the flux probability density (Becker et al., 2007; Bolton et al., 2008; Viel et al., 2009;

Calura et al., 2012; Lee et al., 2015), the curvature (Becker et al., 2011; Boera et al.,

2014; Gaikwad et al., 2021), the Doppler parameter distribution (Schaye et al., 1999,

2000; Ricotti et al., 2000; Bryan & Machacek, 2000; McDonald et al., 2001; Rudie et al.,

2012; Bolton et al., 2010, 2012, 2014; Rorai et al., 2018; Gaikwad et al., 2021), and the

joint distribution of the Doppler parameters with the Hydrogen Column Density (Hiss

et al., 2018). One of the most commonly used statistics used to measure the structure of

the Lyα forest is the 1D flux power spectrum (PF(k)) (Theuns et al., 2000; Zaldarriaga

et al., 2001; Yèche et al., 2017; Walther et al., 2018; Boera et al., 2019; Gaikwad et al.,

2021). The reduction in small-scale structure in the Lyα forest leads to a cut-off in the

power at high k values. However, with measurements of higher-redshift quasars, closer

to reionization, the optical depth and its scatter for Lyα photons increase (Fan et al.,

2006; Becker et al., 2015), leading to more absorption and Gunn-Peterson troughs in the

Lyα forest. Calculating the 1D flux power spectrum at these high redshifts thus mixes

high signal-to-noise ratio transmission spikes with noisy absorption troughs, potentially

leading to a loss of information.

Wavelet analysis provides an alternative statistical method to measure the structure

of the Lyα forest over a range of characteristic scales (Lidz et al., 2010; Garzilli et al.,

2012; Gaikwad et al., 2021) (though see also Theuns & Zaroubi (2000); Theuns et al.

(2002a); Zaldarriaga (2002); Meiksin (2000)). Wavelets are localized in both frequency

and real space, which allows them to encode Fourier information while remaining in

configuration space. Therefore, wavelet analysis has the benefit of keeping the absorption

troughs distinct from the transmission spikes because it produces a full decomposition of

wavelet amplitudes along the spectrum. The ultimate statistic used in wavelet analysis
12



Improving IGM temperature constraints using wavelet analysis on high-redshift quasars Chapter 2

is the full wavelet amplitude probability density function (PDF). The PDF potentially

contains more information than the average, which is effectively encoded in the power

spectrum. However, these wavelet amplitude PDFs are complicated owing to the large

correlations between bins in one wavelet amplitude PDF as well as between different

wavelet amplitude PDFs.

Our work builds off and improves upon the previous implementation of wavelet anal-

ysis done by Lidz et al. (2010) and Gaikwad et al. (2021). The work done in Lidz et al.

(2010) used one of the two characteristic wavelet scales explored to constrain the thermal

state of the IGM. Each wavelet scale picks out a frequency in the flux so, to compare to

the constraints on the thermal state of the IGM from PF(k), the number of smoothing

scales used in wavelet analysis should be comparable to the number of band powers in

PF(k). Only using one scale will reduce the constraining power of the wavelet ampli-

tude PDFs because it is missing information in other Fourier modes. Lidz et al. (2010)

also ignored correlations between the bins in the wavelet amplitude PDFs, potentially

significantly affecting the resulting error bars. Gaikwad et al. (2021) used eight wavelet

scales in their analysis and included the correlations between the bins within each wavelet

amplitude PDF. Their method still ignored the correlations between the bins for wavelet

amplitude PDFs of different scales, again potentially effecting the resulting error bars.

They also combined their PF(k) measurements with their wavelet PDF measurements

that were calculated from the same data set (along with the Doppler parameter distri-

bution and the curvature statistic), ignoring correlations between all these statistics, to

get a more precise measurement.

Our work quantifies the precision of parameter inference using wavelet amplitude

PDFs and PF(k). We show that measuring T0 from our simple thermal model from the

wavelet amplitude PDFs results in a 7% reduction of the 1σ errors when compared to

the measurement from PF(k) on the same mock data set. This confirms the potential
13



Improving IGM temperature constraints using wavelet analysis on high-redshift quasars Chapter 2

that wavelet amplitude PDFs have to improve upon existing constraints on the thermal

state of the IGM. Our wavelet analysis method uses more scales than previous works

and spans the full range of scales probed by PF(k). For the first time, we calculate and

present the full correlation matrices between the bins of the wavelet amplitude PDFs as

well as the cross-correlations between PF(k) and the wavelet amplitude PDFs. We also

combined the wavelet amplitude PDFs with PF(k) while taking the cross-correlations

into account and found that this did not further improve the measurement. Finally, we

characterized the effects of ignoring cross-correlations for the wavelet amplitude PDFs

and the combination of the two statistics.

In addition to the thermal state of the IGM, the small-scale structure of the Lyα

forest is also sensitive to departures from cold dark matter (CDM), including models

of warm dark matter (WDM). For WDM, the linear power spectrum is exponentially

suppressed when compared to CDM on scales smaller than the free-streaming length of

the WDM particle (Narayanan et al., 2000). The mass of the WDM particle, mWDM,

can then be constrained by requiring the initial conditions to have sufficient small-scale

power to reproduce the properties of the Lyα forest (Viel et al., 2013; Iršič et al., 2017;

Garzilli et al., 2017). Wavelet analysis thus also has the potential to improve constraints

on the mass of a WDM particle from the small-scale structure in the Lyα forest.

The structure of this paper is as follows. We describe our procedure for generating

simulated Lyα forest sightlines in Section 2.2. We then introduce and explore the prop-

erties of our wavelet analysis in Section 2.3. Our method for statistical inference is laid

out in Section 2.4. Our results comparing the measurements from the wavelet analysis

and power spectrum is in Section 2.5. We summarize in Section 2.6.
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2.2 Simulating Lyman-alpha Forest Spectra

2.2.1 Hydro Simulations

For this work we use one simulation run that uses the Nyx code. Nyx is a cosmological

hydrodynamical simulation code designed for simulating the Lyα forest. For more details

on the numerical methods, scaling, and the heating and cooling rates see Almgren et al.

(2013) and Lukić et al. (2015). We use a standard ΛCDM cosmological model consistent

with the constraints from Planck Collaboration et al. (2020): Ωb = 0.04964, Ωm = 0.3192,

ΩΛ = 0.6808, h = 0.67038, σ8 = 0.826, and ns = 0.9655. The simulation we used has

a box size of length, Lbox = 20 Mpc h−1 and 10243 resolution elements. To simulate

reionization, we use the flash model from Oñorbe et al. (2019) which reionizes at zreion =

7.75, and uses ∆T = 2 × 104 to parameterize the instantaneous heat injection from

reionization. In this framework every cell in the simulation will be ionized at z = 7.75

and heated to ∆T , unless the cell was previously ionized by a different process (i.e.

collisional ionization). We consider two snapshots from this simulation at z = 5 and

z = 6. We output 10,000 skewers of the Lyα forest from each snapshot to use in our

analysis, which is equivalent of a total pathlength of 200 Gpc h−1. The pixel scale of the

simulation snapshot is ∆v = 2.7 km s−1 at z = 5 and is ∆v = 2.9 km s−1 at z = 6. Since

there is a larger dataset available at z = 5, we focus our work at this redshift. Figures

shown in the main text will be at z = 5 unless otherwise specified while figures for z = 6

are available in Appendix 2.9.

2.2.2 Thermal Models

In the flash reionization model, the majority of the IGM follows the tight temperature-

density relation of equation (2.1) after reionization, see Oñorbe et al. (2019) for more
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details. In order to create simulation Lyα absorption sightlines with different values

of T0, we adopt a semi-numerical approach to ‘paint’ on the temperature. We do this

to each simulation cell using the density output from the simulation and setting the

temperature according to equation (2.1) with our desired T0. This is done for all densities

with no cutoff. This is a simplistic model that does not take into account the full

evolution of the thermal state of the IGM. However, the purpose of this paper is to

present our statistical method and demonstrate its accuracy and precision on simulated

data so a simple temperature model for the IGM thermal state is sufficient to achieve

these aims. We use γ = 1.35, which was calculated by fitting the initial simulation

snapshot to a power law. Our thermal grid consists of 81 values of T0 from log(T0) = 3.4

to log(T0) = 4.4 with ∆ log(T0) = 0.0125. The Lyα opacity, τLyα is related to the

temperature via τLyα = nHIσLyα ∝ T −0.7/ΓHI, see Rauch (1998). Because UV background

photoionization, ΓHI, is sourced by complex galaxy physics, it is not uniquely determined

by the simulation. We therefore follow standard practice and adjust each model to have

the same mean flux by rescaling τ such that ⟨e−τ ⟩ = ⟨F ⟩ = 0.16 at z = 5, which is within

1σ of the measurement presented in Boera et al. (2019). At z = 6 we use ⟨F ⟩ = 0.011

which is also consistent with recent measurements (Becker et al., 2015; D’Aloisio et al.,

2018).

2.2.3 Forward Modeling Real Observations

To mimic realistic observational data from echelle spectrographs, (e.g. from Keck/HIRES,

VLT/UVES, and Magellan/MIKE) we forward model a resolution of R = 30, 000 and a

signal to noise ratio per pixel (SNR) of the unabsorbed continuum of 10 (35) at z = 5

(z = 6). The resolution smooths the flux by a Gaussian filter with FWHM = 10 km s−1

which means our simulations have ∼ 4 pixels per FWHM of this resolution filter. For sim-
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Figure 2.1: A complex Morlet Wavelet filter in real space with sn = 51.09 km s−1. The solid
line shows the real part of the wavelet while the dashed line shows the imaginary part. The
width of the oscillations are set by the smoothing scale.

plicity, we add flux-independent noise in the following way. We generate one 10,000 skewer

x 1024 length realization of random noise all drawn from a Gaussian with σN = 1/SNR

and add this noise realization to every temperature model. An example skewer of our

initial and forward-modeled data is shown in the top panels of Figures 2.2 and 2.4 respec-

tively. Using the same noise realizations over the different models ensures that different

noise realizations will not adversely affect the inference on the T0 for mock data.

We assume a fiducial data set size of 8 quasar spectra at both z = 5 and z = 6

that probe a redshift interval of ∆z = 0.2 per quasar for a total pathlength of ∆z = 1.6

(equivalent to 29 skewers). In the discussion going forward, each mock data set consists

of a random selection of 29 skewers without replacement.

2.3 Wavelet Analysis

2.3.1 Formalism

Wavelets are localized in frequency and configuration space which allows wavelet

amplitudes provide a breakdown of Fourier information at all locations along a quasar

sightline. Following Lidz et al. (2010), we calculate wavelet amplitudes from a “complex
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Morlet wavelet”, which is shown in Figure 2.1 and has the functional form:

Ψn(x) = A exp(ik0x) exp
[
− x2

2s2
n

]
. (2.2)

The normalization, A, is set by requiring that |Ψn(k)| = 1. With this normalization, the

Fourier transform of a complex Morlet wavelet is

Ψn(k) = π−1/4
√

sn

∆u
exp

[
−(k − k0)2s2

n

2

]
. (2.3)

This is a Gaussian in configuration space centered on k0 with width σk =
√

2/sn. We

also require that k0sn = 6 to ensure these filters have a close to zero mean.

To begin the analysis on our simulated spectra, we first compute the flux contrast of

the Lyα forest, δF :

δF = F − F̄

F̄
. (2.4)

Then we convolve this flux contrast field with a wavelet filter of smoothing scale sn

resulting in a filtered spectrum, an:

an(x) =
∫

dx′Ψn(x − x′)δF (x′) (2.5)

The filtered spectrum is a complex number, the modulus of which is called the “wavelet

amplitude” An(x) = |an(x)|2. We define the power spectrum as

⟨δF (k)δF (k′)⟩ = 2πPF (k)δD(k − k′) (2.6)

where δD is the Dirac Delta function. With this definition of the power, the average

wavelet amplitude is

⟨An(x)⟩ =
∫ ∞

−∞
dk′2π[Ψn(k′)]2PF (k′). (2.7)

In words, this means that the average wavelet amplitude is the power spectrum averaged

over a Gaussian centered on wave-number k0 = 6/sn with standard deviation
√

2/sn.

Therefore, this average wavelet amplitude is effectively a band-power.
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Figure 2.2: The top panel shows the flux from one simulation skewer at z = 5 for the three
different values of T0: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4
(green). The middle panel shows the wavelet amplitude spectra for sn = 77.44 km s−1 and the
bottom show the wavelet amplitude spectra for sn = 51.09 km s−1, both with the same T0 values
as the top panel. This shows that the largest values of wavelet amplitudes correspond to peaks
in the flux that are roughly the same width as the oscillations set by the wavelet smoothing sn

scale.

Two wavelet amplitude spectra for an ideal simulated skewer at z = 5 are shown

in the bottom two panels of Figure 2.2. For illustrative purposes in this section, we

will mainly show wavelet amplitudes for sn = 51.09 km s−1 though Figure 2.2 also shows

sn = 77.44 km s−1 for a comparison. Ultimately in our analysis at z = 5, we will use

fifteen logarithmically spaced values of 2200 km s−1 > sn > 5 km s−1 as described in

Section 2.4.2. For z = 6 we still use fifteen logarithmically spaced values of sn with

slightly shifted values due to the redshift dependence of the simulation resolution and

box size.
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The purpose of Figure 2.2 is to show the relationship between the flux and wavelet

amplitudes for different smoothing scales. The top panel shows the flux for the three

different values of T0: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4

(green). The middle panel shows the wavelet amplitude spectra for sn = 77.44 km s−1

and the bottom show the wavelet amplitude spectra for sn = 51.09 km s−1, both with the

same values of T0 as the top panel. The smoothing scale sets the size of the features in the

flux that are picked out, when the smoothing scale and the feature size in the flux align

the resulting wavelet amplitude is greater. The middle panel has a greater value of sn

than the bottom panel, so it is going to pick out wider features in the flux. Consider the

peak in the flux at ∼ 550 km s−1, which is smoother (and smaller) for log(T0) = 4.1625

(orange) flux than for log(T0) = 3.4 (blue). The corresponding wavelet amplitudes in the

middle panel are greatest for log(T0) = 3.4 (blue) while the bottom panel are greatest

for log(T0) = 4.1625 (orange), showing that the smaller feature in the flux agreed better

with the smaller smoothing scale, as expected. The flux at log(T0) = 4.4 (green) is even

smoother than the flux at log(T0) = 4.1625 (orange) but it does not have greater wavelet

amplitude values in the bottom panel, this is because this peak corresponds to an ever

smaller smoothing scale.

Figure 2.2 shows that the largest values of wavelet amplitudes correspond to peaks in

the flux that are roughly the same width as the oscillations set by the wavelet smoothing

sn scale (an example of these oscillations can be seen in Figure 2.1). There can be

offsets between features in flux and the corresponding features in the wavelet amplitude

spectra, since the wavelets pick out features with the specific width set by sn and, at

larger scales, the wavelet will combine multiple features in the flux spectrum. This figure

also demonstrates how wavelet analysis presents Fourier information in configuration

space since the different wavelet amplitudes values convey frequency information along

the quasar sightline.
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In order to compare the spatial correlations between different values of sn, consider

Figure 2.3. The top panel of this figure shows a color plot of the wavelet amplitudes

for different values of sn along one line of sight; this is known as a “periodogram”. The

bottom panel of the plot is the flux used the calculate the wavelet amplitudes, which is the

same as in Figure 2.2 for log(T0) = 4.1625. The large trough in the flux at −500 km s−1

is seen in the wavelet amplitudes for scales up to sn ∼ 40 km s−1. The other troughs in

the flux, such as the one near 750 km s−1, are also seen in the wavelet amplitudes across

multiple smoothing scales, most prominently at the smaller values of sn. The overall

decline in the average wavelet amplitude value for smaller values of sn follows from the

cutoff in the power spectrum, as is expected from equation (2.7).

As discussed in Section 2.2.3, we forward modeled our simulation skewers to mimic

real data by including the effects of the resolution and noise. We illustrate the change in

the flux as well as the wavelet amplitudes for one example skewer with log(T0) = 4.1625

in Figure 2.4. Note that the “clean” flux and wavelet amplitudes in this figure matches

the model in Figure 2.2 from the same temperature model. From the Figure, we see that

adding noise to the flux is able to shift features, add additional features, and change

the amplitude of features in the wavelet amplitude spectrum. These effects are more

prominent on smaller scales, as seen in the large differences between the models in the

bottom panel of Figure 2.4, since the noise power becomes comparable or greater than the

flux power at these scales. Overall, this panel has greater values and more high-valued

wavelet amplitudes for the forward modeled skewers than those without noise.

2.3.2 Wavelet Probability Density Function

As illustrated by Figures 2.2, 2.3, and 2.4 wavelet analysis converts the flux of the

Lyα forest into wavelet amplitude spectra parameterized by sn. The average value of
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Figure 2.3: The bottom panel shows the flux from one simulation skewer with log(T0) = 4.1625.
The top panel shows a periodogram of the wavelet amplitudes along the skewer for different
smoothing scales. The different values of sn will set different widths of oscillations that they
pick out from the spectrum. This plot compares the location of the peaks and troughs in the
wavelet amplitudes for different smoothing scales. It shows correlations between troughs at
different values of sn, for example the trough in the flux at −500 km s−1 can clearly be seen
in the wavelet amplitudes for scales up to sn ∼ 40 km s−1. Note that the minimum wavelet
amplitude shown on the plot is fixed at 10−8 for visual purposes.
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Figure 2.4: The top panel shows the flux for the log(T0) = 4.1625 model from the simulation
(orange line) as well as forward modeled with resolution and noise (black histogram). The
middle panel shows the wavelet amplitude spectra for sn = 77.44 km s−1 and the bottom show
the wavelet amplitude spectra for sn = 51.09 km s−1, both with the same T0 value as the top
panel. The simulation skewer is the same as that shown in Figure 2.2. This shows the effect
noise has on the flux and the resulting wavelet amplitudes for one skewer.

23



Improving IGM temperature constraints using wavelet analysis on high-redshift quasars Chapter 2

the wavelet amplitude spectra corresponds to PF(k) via equation (2.7). The statistic we

measure in our analysis is the wavelet amplitude probability density function (PDF),

since this contains information on the full distribution of the wavelet amplitude values,

rather than only the average.

PDFs for sn = 51.09 km s−1 are shown in Figure 2.5 for three different values of T0:

log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4 (green). The top panel

shows the PDFs calculated from the ideal simulation with clean flux. The bottom panel

shows the PDFs after forward-modeling the simulation output with resolution and noise

to mimic real data, as discussed in Section 2.2.3. In both the top and the bottom panel,

the black dotted line shows the same PDF for pure noise draws with SNR= 10 and our

pixel resolution.

In the top panel, the ideal PDFs are skewed to the left, with lower IGM temperatures

corresponding to a higher mean value, as is expected from PF(k) and equation (2.7).

The main effect of forward-modeling is the shift of the PDF from small values to larger

values as was also seen in the bottom panel of Figure 2.4. This causes the suppression of

wavelet amplitude values below ∼ 10−3. Initially the log(T0) = 4.4 (green) PDF had the

largest tail below 10−3, so the shift from small values to large values causes this model

to change most dramatically from the top to the bottom panel. The PDF both shifts

to the right and greatly increases the value of the PDF at the peak. The PDFs on the

bottom panel are much more similar to the PDF for pure noise than in the top panel,

which shows how the noise PDF is able to dominate over the signal. As the smoothing

scale decreases and the overall PDF values decrease with it, as is inferred from Figure

2.3 and equation (2.7), the PDFs will become more dominated by the noise contribution.

Figure 2.5 demonstrates the ability of the wavelet amplitude PDF to differentiate

T0 models both with and without forward modeling. This confirms that the wavelet

amplitude PDFs are promising statistics to measure the thermal state of the IGM. In
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Figure 2.5: This figure shows the PDFs for sn = 51.09 km s−1 for three different values of T0:
log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4 (green). The top panel
shows the PDFs calculated from 10,000 ideal simulation skewers (equivalent to a pathlength of
200 Gpc h−1). The bottom panel shows the PDFs after forward-modeling with resolution and
noise to mimic real data. In both the top and the bottom panel, the black dotted line shows
the same PDF for pure noise draws with SNR= 10 and our pixel resolution. The difference
in the mean values of these PDFs in each panel is expected from PF(k) and equation (2.7).
The main effect of forward-modeling is the suppression of all wavelet amplitude values below
∼ 10−3, where the data is beginning to be dominated by the noise.

addition, it illustrates how the PDF quantifies the full distribution of wavelet amplitudes

for multiple sightlines, rather than the values along one sightline or the average value

which is encoded in the the power spectrum.

2.4 Statistical Methods

The goal of this paper is to calculate the statistical precision with which a realistic

quasar data set can constrain the parameters governing the small-scale structure of the

IGM, here limited to T0, using wavelet analysis, specifically wavelet amplitude PDFs.

The precision from this method can then be directly compared to the canonical approach

using PF(k). We will also consider the precision achieved when combining the wavelet
25
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amplitude PDFs and power spectrum as has recently been attempted in the literature

(Gaikwad et al., 2021).

To calculate the statistical precision, we will use Bayes’ Theorem:

P (T0|data) = P (data|T0)P (T0)
P (data) . (2.8)

Here the “data” vector depends on the statistical method for which we are calculating the

precision. For the power spectrum, the “data” are the band-powers comprising PF(k).

For the wavelet analysis, we will use multiple values of sn and thus have multiple wavelet

amplitude PDFs we must consider. In this case, the “data” will be the wavelet amplitude

PDFs concatenated one after the other from largest to smallest sn (which corresponds to

smallest to largest k). Finally, when combining the wavelet and power spectrum analysis,

the “data” vector will be the concatenated PDFs vector from the wavelet case with PF(k)

added onto the end of it.

We assume a flat prior, P (T0), over the range of T0 values we have simulation data

for and will normalize the posterior, P (T0|data), to unity so we don’t need to explicitly

calculate P (data). In order to calculate the likelihood, P (data|T0) = L, we assume a

multivariate Gaussian distribution. This likelihood has the form:

L = 1√
det(Σ)(2π)n

exp
(

−1
2(data − model)TΣ−1(data − model)

)
(2.9)

where Σ = Σ(T0) is the model dependent covariance matrix, n is the number of points in

the data vector. Both the data and model vectors depend on the statistic we are using

and will be discussed in their respective sections. The choice of a multivariate Gaussian

distribution for the likelihood has been used in previous wavelet studies (Lidz et al., 2010;

Gaikwad et al., 2021) as well as for studies using the Lyα forest flux PDF (Lidz et al.,

2006; Eilers et al., 2017). The base assumption is that each band power for PF (k) or

each bin of the wavelet amplitude PDFs are Gaussian distributed. We show that this

assumption is valid for our data in Appendix 2.7.
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In our analysis, we estimate the covariance matrix from mock draws of the data by

Σ(T0) = 1
Nmocks

Nmocks∑
i=1

(mocki − model)(mocki − model)T (2.10)

where Nmocks is the number of forward-modeled mock draws used. This method estimates

a model dependent covariance, not the covariance of the data itself, since we are using

many draws in our calculation. For the power spectrum calculation we use Nmocks =

5, 000. We increase the number of mocks to Nmocks = 1, 000, 000 for the wavelet amplitude

PDFs and the combination of the power spectrum and the wavelet amplitude PDFs,

since these matrices are much larger with more values close to zero. Note that mocks

are a random combination of 29 skewers without replacement. In theory, there are

(10, 000!)/(29! × 9, 971!) ≈ 1085 unique sets of 29 skewers from 10,000 skewers. This

means that mock data sets will be correlated since they will contain skewers that are also

in other mock data sets. However, we do not approach the the total possible number of

combinations for these calculations and expect this effect to be negligible.

To visualize the covariance matrix for each method, we define the correlation matrix,

C. The correlation matrix is the covariance matrix with the diagonal normalized to 1.

This is done to the ith, jth element by

Cij = Σij√
ΣiiΣjj

. (2.11)

2.4.1 Power Spectrum Likelihood

The resolution modifies PF(k) in a known way that can be corrected via the Fourier

transform of the Gaussian resolution filter. There is also a white noise contribution to

PF(k) due to the spectral noise which can be subtracted off. Therefore, the well known

estimator for the true power is:

Ptrue(k) =
〈

Praw(k) − Pnoise(k)
W 2

R(k, σR, ∆v)

〉
(2.12)
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Figure 2.6: The power spectrum measurement, PF(k), for one mock data set with log(T0) =
4.1625 (black points). The 1σ error bars are calculated from the square root of the diagonal
of the covariance matrix. Also shown are model values of the power spectra for three different
values of T0: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4 (green).

where WR(k, σR, ∆v) is the Window function

WR(k, σR, ∆v) = exp
(

−1
2(kσR)2

) sin(k∆v/2)
(k∆v/2) . (2.13)

We have Gaussian white noise with SNR = 10 added to the flux contrast, adding an

extra factor of F̄ . The noise power is flat and has a value of

Pnoise(k) = ∆v
( 1

SNR · F̄

)2
(2.14)

where the factor of ∆v is our velocity pixel grid spacing which is ∆v = 2.7 km s−1 at

z = 5.

For R = 30, 000, exp
(
−1

2(kσR)2
)

< 0.24 when k ≥ 0.4. This implies that W 2
R(k, σR, ∆v) <

.06 when k ≥ 0.4, so correcting these band-powers by this window function means divid-

ing a noisy quantity, PF (k), by a very small number. When correcting by the window

function, these band-powers blow up and the model covariance matrices we calculate

via equation (2.10) are singular and ill-posed for inversion. We therefore choose to not

correct by WR(k) in the “model” and “mock” data to ensure well-behaved covariance

matrices. However, for visualization purposes we always show the resolution corrected

power of equation (2.12) in the figures. The “model” is the power calculated from 10,000
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flux skewers forward modeled with the resolution but not the noise, since there is no

need to add additional noise when computing the mean. 10,000 skewers is equivalent to

a total pathlength of 200 Gpc h−1. We calculate the “mock” data by computing the aver-

age PF(k) for 29 fully forward modeled skewers and then subtracting off the noise power,

equation (2.14). This data set size is equivalent to an 8 quasar data set as discussed in

Section 2.2.3.

To choose the k values for our mock, we used 15 logarithmic band-powers spanning

from 2π/lskewer = 0.0023 s km−1 to π/∆v = 1.2 s km−1 at z = 5. The centers of the band-

powers are listed in the first column of Table 2.1. We chose 15 band-powers in order to

fully sample the shape of the power spectra while ensuring the low k (large scales) band-

powers were populated by the discrete Fourier transform of the data. Figure 2.6 shows

the power spectrum measurement, PF(k), for one mock data set with log(T0) = 4.1625

(black points) at z = 6. An equivalent figure for z = 6 can be found in Appendix 2.20.

The 1σ error bars are calculated from the square root of the diagonal of the covariance

matrix. Also shown are three models of the power spectra for three different values of T0:

log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4 (green). This mock

data set visually seems to best agree with the model for log(T0) = 4.1625 (orange) for

k > 0.5, which is the true T0 of the model.

The model correlation matrix (see equation (2.11)) for the power spectrum at log(T0) =

4.1625 is shown in Figure 2.7. There are positive correlations (red) between the band-

powers where 4 × 10−2s km−1 ≲ k ≲ 0.2 s km−1. The correlations between band-powers

with 4 × 10−2s km−1 ≲ k ≲ 0.2 s km−1 and k < 4 × 10−2s km−1 the correlations are

negative (blue). This behavior arises from the underlying spatial correlations of the Lyα

forest and is consistent with what has been seen for real data (Walther et al., 2018; Boera

et al., 2019). At values of k > 0.2s km−1 (the smallest scales) noise dominates over the

power spectrum, since the Lyα forest power spectrum exhibits a thermal cut-off at high-
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Figure 2.7: The correlation matrix for the power spectrum at log(T0) = 4.1625. The positive
(red) and negative (blue) correlations on scales k < 0.2 s km−1 arise from underlying spatial
correlations of the Lyα forest. The very weak correlations seen in the regions where k >
0.2 s km−1 are due to uncorrelated random Gaussian noise which dominates the signal on small-
scales (high k).

k, whereas the noise power spectrum is flat. Random Gaussian noise is uncorrelated,

making it hard to recover the signal from the Lyα forest and results in the very weak

correlations shown in the correlation matrix in the regions where k > 0.2 s km−1. We

looked into the correlation matrix for SNR = 50 and SNR = 100 and found the values of

the correlation matrix in the column above k = 0.178 s km−1 were stronger. This agrees

with our interpretation of the the weak correlations in Figure 2.7 since with higher SNR

the noise power is smaller and will not dominate until higher k.

2.4.2 Wavelet Amplitude PDF Likelihood

In previous work, Lidz et al. (2010) measured the thermal state of the IGM with

wavelets by assuming a Gaussian likelihood and ignoring correlations between PDF bins

as well as between PDFs from different smoothing scales. Gaikwad et al. (2021) measured

the thermal state with wavelets assuming a Gaussian likelihood including correlations

between bins of the same PDF but not between the PDFs for different smoothing scales.
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Table 2.1: The first column contains the band-powers for the power spectrum. Next are the
corresponding smoothing scales (sn) used to calculate the wavelet amplitudes. The last two
columns contain the minimum and maximum values used for the PDF estimation for each
smoothing scale. These were chosen as the 1.5th and 98.5th percentiles of the data for the
whole thermal grid at these smoothing scales.

k (s km−1) sn = 6/k (km s−1) min log(An) max log(An)

0.00278 2157.35 -0.671 1.683

0.00422 1423.32 -0.499 1.826

0.00639 939.04 -0.789 1.643

0.00968 619.54 -0.876 1.574

0.0147 408.74 -1.026 1.474

0.0222 269.67 -1.241 1.344

0.0337 177.91 -1.508 1.173

0.0511 117.38 -1.863 0.931

0.0775 77.44 -2.256 0.564

0.117 51.09 -2.651 0.039

0.178 33.71 -2.943 -0.430

0.270 22.24 -3.032 -0.585

0.409 14.67 -3.073 -0.627

0.620 9.68 -3.129 -0.688

0.939 6.39 -3.280 -0.830
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Here, we improve upon these previous work and present the likelihood calculation taking

into consideration all correlations, both between PDF bins and between PDFs of different

smoothing scales.

For wavelet amplitude PDFs, there is no analytic way to correct for the window

function and subtract off the full noise PDF. Instead, we choose to use 10,000 forward-

modeled skewers (with resolution and noise) to calculate the “model” wavelet amplitude

PDFs, which is equivalent to calculating the wavelet amplitude PDFs for a total path-

length of 200 Gpc h−1. The “mock” data is calculated from the same forward-modeled

skewers as the “model”, though “mock” data is the average of 29 skewers (equivalent to

an 8 quasar data set, see Section 2.2.3).

As was mentioned in Section 2.3.1, we use fifteen values of sn to get fifteen wavelet

amplitude PDFs. These fifteen sn correspond to the centers of the power spectrum band-

powers, k, that were discussed in Section 2.4.1 and are listed in the second column of

Table 2.1. Qualitatively, this should ensure that the wavelet amplitude PDFs contain at

least as much information as the power spectrum due to equation (2.7), allowing us to

compare the resulting precision on an equal footing. To estimate the wavelet amplitude

PDFs for each smoothing scale, we calculate histograms. This introduces three histogram

parameters into our analysis: the maximum wavelet amplitude considered, the minimum

wavelet amplitude considered, and the number of bins in the histogram.

When selecting the minimum and maximum wavelet amplitude considered for our

PDF estimation, we want to ensure that all bins will be populated for the whole thermal

grid so that the covariance matrix is well posed for inverting. We also want to make

sure the maximum and minimum values span a large enough range to capture the most

significant differences in the shape of the PDF. For these reasons, we chose the maximum

and minimum values for the PDFs by calculating the 1.5th and 98.5th percentile of

the “model” wavelet amplitudes calculated for every thermal model in our grid. The
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maximum and minimum values of the wavelet amplitudes considered for each smoothing

scale sn are listed in Table 2.1. We also need to select a number of bins that will

sufficiently sample the shape of the PDF without making the data vector too long and

the covariance matrix ill-suited for inversion. We found that 10 bins was a reasonable

choice to achieve these aims.

Figure 2.8 shows the PDFs from one mock data set for each sn with log(T0) = 4.1265

(black points) and z = 5. An equivalent figure for z = 6 can be found in Appendix 2.20.

The 1σ error bars are calculated from the square root of the diagonal of the covariance

matrix. Each panel also shows the “model” values of the PDFs for three different values

of T0: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4 (green). This

figure qualitatively illustrates the ability of the wavelet PDF to differentiate between

different T0 values, which we formally quantify with Bayesian inference as discussed in

Section 2.4. The “model” PDFs for sn < 22.24 km s−1 all overlap because the noise

dominates the signal on these scales and all three PDFs are equivalent to the pure noise

PDF.

In order to understand the correlations present between the bins of a single wavelet

PDF, we first calculate the model covariance matrix for sn = 51.09 km s−1 and log(T0) =

4.1265 and then plot the correlation matrix in Figure 2.9. There are positive correlations

(red) between the bins at small wavelet amplitudes An < 5 × 10−2 with the other small

values. For larger values, there are negative correlations (blue) between the larger wavelet

amplitudes An > 0.1 and all other wavelet amplitude values. These effects are due to the

shape of the PDF as well as the constraint that the PDF must integrate to 1. Increasing

the counts for any wavelet amplitude value will cause the counts in the peak of the PDF

(around An ∼ 0.1 as seen in Figure 2.8 for sn = 51.09 km s−1) to decrease due to the

integral constraint on the PDF. Meanwhile, the shape of the PDF means that when one

bin along the tail (An < 4 × 10−2 as seen in Figure 2.8 sn = 51.09 km s−1) increases in
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Figure 2.8: The black points show the PDFs from one mock data set for each sn with log(T0) =
4.1265. The 1σ error bars are calculated from the square root of the diagonal of the covariance
matrix. Each panel also shows the “model” values of the PDFs from the stated smoothing
scale for three different values of T0: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and
log(T0) = 4.4 (green). This figure qualitatively illustrates the ability of the wavelet PDF to
differentiate between different T0 values, which we formally quantify with Bayesian inference as
discussed in Section 2.4.

34



Improving IGM temperature constraints using wavelet analysis on high-redshift quasars Chapter 2

10 2 10 1 100

Wavelet Amplitude, An

10 2

10 1

100

W
av

el
et

 A
m

pl
itu

de
, A

n

sn = 51.09 km/s

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

Figure 2.9: The correlation for the wavelet amplitude PDF for log(T0) = 4.1625 for sn =
51.09 km s−1. There are positive correlations (red) between the bins at small wavelet amplitudes
An < 5 × 10−2 with the other small values. For larger values, there are negative correlations
(blue) between the wavelet amplitudes An > 0.1 and all other wavelet amplitude values. These
effects are due to the shape of the PDF as well as the constraint that the PDF must integrate
to 1.

counts, the other tail bins will increase as well.

Ultimately, we will combine fifteen wavelet amplitude PDFs, each with a different

value of sn, in our measurement. Our measurement will include the correlations between

the different PDFs, unlike the measurements from both Lidz et al. (2010) and Gaikwad

et al. (2021) which ignore these correlations. We include these correlations by using

non-zero off diagonal terms in each covariance matrix, Σ(T0), when computing the likeli-

hood in equation (2.9). The correlations between different wavelet amplitude PDFs have

never been considered in the previous literature on the Lyα forest. Our data vector is a

concatenation of each wavelet amplitude PDF starting with the largest value of sn going

down to the smallest value, making it nbins × nsn = 10 × 15 = 150 points long. We

expect that these correlations between different sn values will be non-negligible due to

the spatial correlations shown in the periodogram (Figure 2.3) as well as in the power

spectrum (Figure 2.7).

In this case, the correlation matrix has dimension 150 × 150 and is shown in Figure
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Figure 2.10: The correlation matrix for fifteen wavelet amplitude PDFs at log(T0) = 4.1625.
The wavelet amplitude PDFs for large smoothing scales, 2157 km s−1 ≥ sn ≥ 33.7 km s−1, have
significant correlations off the diagonal. The correlations between the PDFs with 177.9 km s−1 >
sn > 33.71 km s−1 have the same pattern as the diagonal blocks modified by a small positive
number (appearing mostly red). The correlations between the PDFs for sn > 408.7 km s−1 and
177.9 km s−1 > sn > 33.71 km s−1 have the same pattern as the diagonal blocks modified by a
small negative number (appearing mostly blue). For sn ≤ 22.2 km s−1, the wavelet amplitudes
begin to be dominated by noise, so the correlations between the PDFs for different values of sn

become very small. This pattern mimics that seen in the power spectrum correlation shown in
Figure 2.7.
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2.10. For visual purposes, the axes are labeled by the smoothing scale used to calculate

the wavelet amplitude PDFs, but the correlations shown are between the wavelet ampli-

tude bins (such as the labels in Figure 2.9). Each 10 × 10 block along the diagonal is the

correlation matrix for a single sn value. These diagonal blocks all appear very similar

to the example shown for sn = 51.09 km s−1 in Figure 2.9, as expected from the similar

shaped PDFs.

The wavelet amplitude PDFs for large smoothing scales, 2157 km s−1 ≥ sn ≥ 33.7 km s−1,

have significant correlations off the diagonal. The correlations between the PDFs with

177.9 km s−1 > sn > 33.71 km s−1 have the same pattern as the diagonal blocks modified

by a small positive number (appearing mostly red). The correlations between the PDFs

for sn > 408.7 km s−1 and 177.9 km s−1 > sn > 33.71 km s−1 have the same pattern as the

diagonal blocks modified by a small negative number (appearing mostly blue). These

modifications follow the same pattern as that in the correlation from the power spectrum

shown in Figure 2.7 where there are positive correlations (red) between 4×10−2s km−1 ≲

k ≲ 0.2 s km−1 and negative correlations between 4 × 10−2s km−1 ≲ k ≲ 0.2 s km−1 and

k < 4 × 10−2s km−1. This pattern arises from the underlying spatial correlations of the

Lyα forest as was discussed for the power spectrum. For sn ≤ 22.2 km s−1, the wavelet

amplitudes begin to be dominated by noise, so the correlations between the PDFs of

different smoothing scales become very small. This again mimics the behavior seen for

k > 0.2s km−1 in the power spectrum correlation matrix shown in Figure 2.7.

Many of these off diagonal covariance elements are very small, and it is challenging to

measure small correlations from finite noisy data sets. For the full set of fifteen wavelet

amplitude PDFs, the covariance matrix is 100 times larger than the power spectrum

covariance matrix, making the calculation even more time consuming and difficult. This

noise in the wavelet amplitude PDFs covariance matrix becomes quite noticeable in the

posterior measurement on T0. We reduce this noise by smoothing the covariance matrices
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over multiple thermal grid with one spline per matrix element. A detailed discussion of

this smoothing can be found in Appendix 2.8.

2.4.3 Joint Wavelet-Power Likelihood

Gaikwad et al. (2021) combined the wavelet amplitude PDFs with the power spectrum

as well as the Doppler parameter distribution and curvature statistics to improve upon

each of the individual measurements of the thermal state of the IGM. They did this by

ignoring the correlations between PDFs for different smoothing scales as well as between

the PDFs and the power spectrum despite the fact that these statistics were all measured

from the same data set, and are thus surely correlated. This application has motivated

us to combine the power spectrum and wavelet amplitude PDFs while paying careful

attention to correlations to see if this improves the precision of our mock measurement.

We expect there to be non-negligible correlations between the wavelet amplitude PDFs

and the power spectrum from equation (2.7), since this says the mean wavelet amplitude,

i.e. the first moment of the wavelet PDF, contains the same information as a band power.

When combining the wavelet amplitude PDFs and the power spectrum, the data

vector is the 150 element wavelet amplitude PDFs, i.e. 10 PDF bins × 15 smoothing scales

discussed in Section 2.4.2, with the addition of the 15 band-powers of PF(k) added to the

end. This makes the full data vector 165 points long and the correlation a complicated

165 × 165 matrix. To build intuition, we will first consider a subset of the full correlation

matrix that consists of a single wavelet amplitude PDF with the power spectrum. The

correlation matrix in this situation will be only 25 × 25, i.e. 10 wavelet PDFs values and

15 band-powers.

The correlation matrix for the wavelet amplitude PDF from sn = 51.09 km s−1 and

the power spectrum is shown in Figure 2.11. The top panel has the full correlation
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matrix with the axes labeled by either the smoothing scale, sn = 51.09 km s−1, which was

used to calculate the An or “Power” representing the different values of k. The top right

15×15 diagonal block is identical to the correlation matrix for the power spectrum shown

in Figure 2.7 and the bottom left 10 × 10 diagonal block is identical to the correlation

matrix for one sn = 51.09 km s−1 shown in Figure 2.9.

The off diagonal blocks show the correlations between the wavelet amplitude PDFs

and the power spectrum. The bottom right rectangle of the correlation matrix is blown

up in the bottom panel of the figure with the axes appropriately labeled by the wavelet

amplitude An from the PDF and the k from the power spectrum. The strongest corre-

lations (both positive and negative) between the power and wavelet amplitude PDF are

found in the column at k = 6/sn = 0.12 s km−1. This k value corresponds to the same

scales probed by sn = 51.09 km s−1. As the value of this k bin increases, we expect the

wavelet amplitude PDF to shift to higher values so that the average wavelet amplitude

in the PDF increases, as required by equation (2.7). This shift causes the larger values

of An (An > 0.2 km s−1) to be more common, resulting in a positive correlation (red)

with larger PDF bins, while the smaller values of An (An < 0.1 km s−1) are less common,

resulting in a negative correlation (blue).

The behavior seen in the k = 0.12 s km−1 column of the bottom panel is replicated

for the columns above 3 × 10−2s km−1 ≲ k ≲ 0.2s km−1 modified by a small positive

number. The columns where k < 4 × 10−2s km−1 show the same behavior modified by a

small negative number. These modifications mimic the pattern in the correlations for the

power spectrum, as shown in the upper right quadrant of the top panel and Figure 2.7. In

particular, it replicates the positive (red) correlations for 3×10−2s km−1 ≲ k ≲ 0.2s km−1

with k = 0.12 s km−1 and the negative (blue) correlations for k < 4 × 10−2s km−1 with

k = 0.12 s km−1.

As discussed in the beginning of this section, the total data vector for the combination
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Figure 2.11: The top panel shows the correlation matrix for wavelet amplitude PDF with sn =
51.09 km s−1 and the power spectrum for log(T0) = 4.1625. The dotted lines separate the part
of the matrix that corresponds to the wavelet amplitude PDF (labeled by sn = 51.09 km s−1)
and the power spectrum (labeled “Power”). The bottom left diagonal block is identical to
the correlation matrix shown in Figure 2.9 while the top right diagonal is identical to the
correlation matrix shown in Figure 2.7. The bottom right rectangle of the correlation matrix is
blown up in the bottom panel, which shows the correlations between the power spectrum and
the wavelet amplitude PDFs with the appropriate labels of An and k. The strongest correlations
(both positive and negative) between the power and wavelet amplitude PDF are found in the
column at k = 6/sn = 0.12 s km−1. This k value corresponds to the same scales probed by
sn = 51.09 km s−1. The behavior seen in the k = 0.12 s km−1 column of the bottom panel is
replicated for the columns above 3 × 10−2s km−1 ≲ k ≲ 0.2s km−1 modified by a small positive
number. The columns where k < 4 × 10−2s km−1 show the same behavior modified by a small
negative number. These modifications mimic the pattern in the correlations for the power
spectrum, in particular the positive (red) correlations for 3 × 10−2s km−1 ≲ k ≲ 0.2s km−1

with k = 0.12 s km−1 and the negative (blue) correlations for k < 4 × 10−2s km−1 with k =
0.12 s km−1.
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of the wavelet amplitude PDFs and the power spectrum is 165 points long. The full

165 × 165 correlation matrix is shown in Figure 2.12. The axes are labeled by either

the smoothing scale used to calculate An or “Power” representing the k bands. The

bottom left 150×150 diagonal block is identical to the correlation matrix for the wavelet

amplitude PDFs shown in Figure 2.10 while the top right 15×15 diagonal block is identical

to the correlation matrix for the power spectrum shown in Figure 2.7. The right most

column above “Power” shows similar behavior for each smoothing scale as was discussed

for the bottom panel of Figure 2.11. The column with the strongest correlations for each

smoothing scale always corresponds to k = 6/sn and the behavior in other columns above

“Power” follow the strongest bin modified by the correlations between the power bins.

This data vector is larger than the data vector of the wavelet amplitude PDFs, which

was discussed in Section 2.4.2. Similarly, the noise in this covariance matrix is non-

negligible and so we smooth the covariance matrix over the thermal grid with a spline in

order to calculate the posteriors. This is discussed in more detail in Appendix 2.8.

2.5 Results

2.5.1 T0 Measurements

We can calculate the posterior probability of T0 given a mock data set, P (T0|data),

from equation (2.8). In Figure 2.13 we compare the posterior distribution of T0 from

one mock data set at z = 5 from three different methods: the power spectrum (blue

triangles), the wavelet amplitude PDFs (orange circles), and both the power spectrum

and wavelet amplitude PDFs (green triangles). This mock data set is the same one

shown in Figures 2.6 and 2.8. Visually, the wavelet amplitude PDFs provide a more

precise posterior for T0 than the power spectrum does while. The measurement of T0 for
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Figure 2.12: The correlation for all fifteen wavelet amplitude PDFs and the power spectrum
combined for log(T0) = 4.1625. The axes are labeled by either the smoothing scale used to
calculate An or “Power” representing the k bands. The bottom left 150 × 150 diagonal block
is identical to the correlation matrix for the wavelet amplitude PDFs shown in Figure 2.10
while the top right 15 × 15 diagonal block is identical to the correlation matrix for the power
spectrum shown in Figure 2.7. The right most column above “Power” shows similar behavior
for each smoothing scale as was discussed for the bottom panel of Figure 2.11. The column
with the strongest correlations for each smoothing scale always corresponds to k = 6/sn and the
behavior in other columns above “Power” follow the strongest bin modified by the correlations
between the power bins.
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Figure 2.13: The posterior on T0 for one mock data at z = 5 set from three different methods:
the power spectrum (blue triangles), the wavelet amplitude PDFs (orange circles), and the
combination of the power spectrum and the wavelet amplitude PDFs (green triangles). The
mock data set used to calculate these posteriors is shown for the power in Figure 2.6 and for the
wavelet amplitude PDFs in Figure 2.8. The vertical dotted red line shows the true value of T0
for the mock data set. Qualitatively, the posterior from the power spectrum is less precise than
the posterior from the wavelet amplitude PDFs and the combination of the power spectrum
and wavelet amplitude PDFs do not improve the precision of the posterior over the wavelet
amplitude PDFs alone. The text in the corner is a quantitative measurement of T0, giving the
median value with the equivalent 1σ errors for each method according to their colors in the
same order as the legend.

these two methods are T0 = 14, 900+1500
−1500 K (power spectrum) and T0 = 14, 100+1400

−1400 K

(wavelet amplitude PDFs). These errors are calculated by interpolating the cumulative

distribution function (CDF) of the posterior onto the 15.9th and 84.1th percentiles, which

correspond to the 1σ percentiles for a normal distribution. This region between these

percentiles will be referred to as the 1σ region and the errors calculated from it as the

equivalent 1σ errors throughout the end of this paper. The 1σ region is 7% smaller for

the wavelet amplitude PDFs posterior than the power spectrum posterior, showing that

the wavelet amplitude PDF is more sensitive to T0 than the power for this mock data

set. Combining the power spectrum and the wavelet PDFs has a negligible effect on

the posterior distribution resulting in T0 = 14, 100+1500
−1300 K. This 1σ region has the same

width as the one for the wavelet amplitude PDFs alone and so the combination does not

improve the measurement’s precision.

In Figure 2.14 we compare the posterior distribution of T0 from one mock data set at
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Figure 2.14: The posterior on T0 for one mock data set at z = 6 from two different methods:
the power spectrum (blue triangles) and the wavelet amplitude PDFs (orange circles). The
mock data set used to calculate these posteriors is shown for the power in Figure 2.20 and for
the wavelet amplitude PDFs in Figure 2.22. The vertical dotted red line shows the true value
of T0 for the mock data set. Qualitatively, the posterior from the power spectrum is less precise
than the posterior from the wavelet amplitude PDFs. The text in the corner is a quantitative
measurement of T0, giving the median value with the equivalent 1σ errors for each method
according to their colors in the same order as the legend.

z = 6 from two different methods: the power spectrum (blue triangles) and the wavelet

amplitude PDFs (orange circles). This mock data set is the same one shown in Figures

2.20 and 2.22. The measurement of T0 for these two methods are T0 = 11, 000+3000
−3000 K

(power spectrum) and T0 = 13, 000+2000
−3000 K (wavelet amplitude PDFs) where the errors

are calculated in the same way as they were for z = 5. At this redshift, the wavelet

amplitude PDF measurements resulted in a 20% improvement of the 1σ errors when

compared to the results from power spectrum measurement from the same mock data,

almost three times the improvement seen at z = 5, though here the errors only have one

significant figure so improvement is a coarser measurement.

To further quantify the difference in the precision of these posteriors, we calculated

the equivalent 1σ errors for 1, 000 mock data sets at log(T0) = 4.1265 for both z = 5

and z = 6. These resulting mean and variance of these values are listed in Table 2.2.

On average, the posteriors for the wavelet amplitude PDFs at z = 5 are 7% smaller

than those from the power spectrum, again showing that the wavelet amplitude PDFs
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Table 2.2: This table shows the mean and variance of the 1σ values from 1,000 mock data
sets at log(T0) = 4.1265 at both z = 5 and z = 6. The 1σ errors for the wavelet amplitudes
PDFs are on average 7% smaller at z = 5 and 12% smaller at z = 6 than those for the power
spectrum, though they do have a higher variance. The error calculated from combining the
power spectrum and the wavelet analysis PDFs at z = 5 does not improve the errors on average
over the wavelet amplitude PDFs alone.

z Method σ+ σ−

5

Power Spectrum 1490 ± 50 −1520 ± 50

Wavelet Amplitude PDFs 1400 ± 200 −1400 ± 200

Both 1400 ± 200 −1400 ± 200

6
Power Spectrum 3030 ± 190 −3140 ± 200

Wavelet Amplitude PDFs 2700 ± 600 −2700 ± 600

are more sensitive on average than the power spectrum. However, the variance on these

power spectrum errors are 75% smaller, meaning the power spectrum posteriors are more

consistently large while the wavelet amplitude PDFs vary more in size. The average

errors on the posteriors from combining both the wavelet amplitude PDFs and the power

spectrum show no improvement over the errors from the wavelet amplitude PDFs alone

again showing this combination does not improve the measurement.

For z = 6, the posteriors for the wavelet amplitude PDFs are 12% smaller than

those from the power spectrum while the variance on the power spectrum errors are

67% smaller. This means that the wavelet amplitude PDFs are again more sensitive on

average but the errors vary more than the power spectrum. This agrees with the results

at z = 5, though again we find that the wavelets lead to an even greater improvement on

the average sensitivity by a factor of two. Physically, at this higher redshift, more of the

spectra consists of absorption troughs, giving the wavelet amplitude PDFs even greater

potential to improve on the power spectrum measurements since they maintain spatial

information.
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2.5.2 Inference Testing

In order to test the fidelity of our statistical inference procedure and results, we

perform an inference test. The goal of this test is to check that this calculated posterior

behaves as a posterior probability should: if the true value of T0 for the mock data falls

into the equivalent of the 1σ region of the posterior ∼ 68% of the time (and the 2σ

region 95% of the time). We again calculate these equivalent 1σ and 2σ regions for our

posteriors in the same way as discussed in Section 2.5.1. We integrate the posterior to

get the CDF onto the 15.9th and 84.1th percentiles for 1σ and onto the 2.3rd and 97.7th

percentile for 2σ. These percentiles correspond to the 1σ and 2σ percentiles for a normal

distribution. From here, we count the number of times the true value of T0 fell into these

regions region. Ideally, the true value of T0 should fall into the 1σ region 68.3% of the

time and it should fall into the 2σ region 95.4% of the time.

We did this for 1,000 mock data sets at three different values of T0 for z = 5 and one

value of T0 at z = 6. We chose to only look at one value of T0 at the higher redshift

because the posteriors are broader and we are more likely to run into edge effects at the

other T0 values. The errors are calculated by
√

N/10000 where N is the number of times

the true value fell into the desired region and 1,000 is the total number of mocks used.

The results, shown in Table 2.3, are consistent with the expected values of 68.3% and

95.4% within the calculated errors and we pass this inference test.

2.5.3 Ignoring Correlations

We further investigated the posterior distributions from the wavelet amplitude PDFs

and the combined wavelet amplitude PDFs and power spectrum measurements at z = 5

while ignoring certain correlations. To begin, we considered the posterior from the wavelet

amplitude PDFs alone. We constructed three distinct covariance matrices from our initial
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Table 2.3: This table shows the results of our inference test for three values of T0 and three
statistical methods (power spectrum, wavelet amplitude PDFs, and the combination of the two)
at z = 5. We have also included our results for one value of T0 and two statistical methods
(power spectrum and wavelet amplitude PDFs at z = 6. We calculated the equivalent 1σ and
2σ regions from the CDF and then determined the frequency with which the true T0 values fell
into these regions. These results are presented for 1,000 mock data sets and are consistent with
a true distribution function with our expected errors.

z Method log(T0) % in 1σ % in 2σ

5

Power Spectrum

3.9 70.0 ± 2.6 94.6 ± 3.1

4.1265 68.9 ± 2.6 96.0 ± 3.1

4.2875 68.7 ± 2.6 96.2 ± 3.1

Wavelet Amplitude PDFs

3.9 63.5 ± 2.5 94.0 ± 3.1

4.1265 67.6 ± 2.6 95.0 ± 3.1

4.2875 69.3 ± 2.6 95.9 ± 3.1

Both

3.9 63.7 ± 2.5 93.1 ± 3.1

4.1265 67.1 ± 2.6 94.1 ± 3.1

4.2875 68.5 ± 2.6 95.3 ± 3.1

6
Power Spectrum 4.1265 68.1 ± 2.6 95.6 ± 3.1

Wavelet Amplitude PDFs 4.1265 65.7 ± 2.6 93.6 ± 3.1
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full calculation, which is shown in Figure 2.10. The first covariance matrix considered is

made up of the same values along the diagonal and zeros for all off-diagonal elements.

This is similar to the covariance considered in Lidz et al. (2010) and is referred to as the

“no correlations” model in Figure 2.15 and Table 2.4. Next we construct a covariance

matrix that includes the correlations between bins of the individual wavelet amplitude

PDFs but ignores the correlations between different values of sn. The resulting correlation

matrix would have the same values for the fifteen 10 × 10 diagonal blocks in Figure 2.10

and zeros at all other locations. This is the similar to the covariance model considered in

Gaikwad et al. (2021) and is referred to as the “PDF bin correlations” model in Figure

2.15 and Table 2.4. Finally we considered the full covariance matrix presented in this

work in Figure 2.10, which we have labeled as “all correlations” in Figure 2.15 and Table

2.4. The resulting posteriors from these three models is shown in Figure 2.15. For the

mock dataset shown in this figure (which is the same one shown throughout the rest

of the paper) the “no correlations” model reduces the width of the posterior while the

“PDF bin correlations” remains a similar width when compared to “all correlations”. The

median value does not agree for any of these posteriors though the whole distribution of

the posteriors have significant overlap. We also performed the same inference test on the

posteriors for these models which will be discussed at the end of this section with results

in Table 2.4.

Next, we again constructed three different covariance matrices for the combination of

the wavelet amplitude PDFs and the power spectrum where the initial covariance matrix

is shown in Figure 2.12. First we considered only the correlations between PDF bins for

the wavelet amplitude and the full correlations for the power spectrum. The resulting

covariance matrix has fifteen 10 × 10 diagonal blocks followed by one 15 × 15 diagonal

block and zeros at all other locations. This is similar to how the combination of different

wavelet scales and different statistics were done in Gaikwad et al. (2021). We refer to this
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Figure 2.15: The posterior on T0 for one mock data set for the wavelet amplitude PDFs using
three different covariance matrices. The three matrices are described in more details in Sec-
tion 2.5.3. They are: a diagonal-only covariance matrix which includes no correlations (blue
triangles), a diagonal-block matrix that only contains correlations between PDF bins for the
same wavelet scale (orange circles), and the full covariance matrix with all correlations (green
triangles). The posterior from the diagonal matrix which has no correlations is much more
narrow than the other two posteriors which are roughly the same width and height as each
other.

model as the “PDF bin correlations” model in Figure 2.16 and Table 2.4. The subset

of this matrix for the wavelet PDFs matches that used in Figure 2.15 with the same

name. Next we consider the full wavelet correlations for the PDF bins as well as the

different wavelet scales combined with the full power correlations but ignoring all cross

correlations. The resulting matrix would have two diagonal blocks: one for the wavelet

amplitude PDFs that has dimensions 150 × 150 and is shown in Figure 2.10, and one

for the power spectrum that has dimensions 15 × 15 and is shown in Figure 2.7. We

refer to this model as the “wavelet correlations” model in Figure 2.16 and Table 2.4. We

also again considered the full covariance matrix presented in this work in Figure 2.12,

which we have labeled as “All correlations” in Figure 2.16 and Table 2.4. The resulting

posteriors from these three models is shown in Figure 2.16. For the mock dataset shown

in this figure (which is the same one shown throughout the rest of the paper) the “PDF

bin correlations” has the most narrow posterior while the “wavelet correlations” is more

narrow than “all correlations” but broader than “PDF bin correlations”. Again, each
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Figure 2.16: The posterior on T0 for one mock data set for the combination of wavelet amplitude
PDFs and the power spectrum using three different covariance matrices. The three matrices are
described in more details in Section 2.5.3. They are: a diagonal-block matrix with 16 distinct
blocks for the wavelet PDF bin correlations and power correlations separately (blue triangles), a
diagonal-block matrix with 2 distinct diagonal blocks that contains the full wavelet correlations
and the power correlations separately (orange circles), and the full covariance matrix with
all correlations including the cross-correlations between the wavelet and the power spectrum
(green triangles). Adding additional correlations caused the posterior distribution to broaden
each time.

posterior has a shifted median value compared to the others, though all the posteriors

have significant overlap with each other.

We repeat the inference test described in section 2.5.2 for these models and have

presented the results in Table 2.4. For the wavelet amplitude PDF models, only the “all

correltions” model passed our inference test with the true value of T0 falling in our 1σ

region for 67.6% of mock posteriors and the true value of T0 falling in our 2σ region

for 95.0% of mock posteriors. In comparison, the “no correlations” model only had the

true value of T0 falling in our 1σ region for 35.8% of mock posteriors and the true value

of T0 falling in our 2σ region for 62.7% of mock posteriors. We can roughly estimate

that, since 68/36 ∼ 1.9, we would need to widen the posterior for the “no correlations”

model by a factor of 1.9 to pass the inference test. If we take the “all correlations”

model as the true information contained the in wavelet amplitude PDFs then the “no

correlations” posterior needs to be both shifted and broadened to a lesser extent to match

this posterior. A similar calculation can be done for the “PDF bin correlations” model
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which is more similar to the “all correlations” model initially.

The results for the inference test on the different models of the combined wavelet

amplitude PDF and power spectrum correlations are also shown in Table 2.4. Here,

again, only the “all correlations” model passed our inference test with the true value

of T0 falling in our 1σ region for 67.1% of mock posteriors and the true value of T0

falling in our 2σ region for 94.1% of mock posteriors. In comparison, the “PDF bin

correlations” model only had the true value of T0 falling in our 1σ region for 47.7% of

mock posteriors and the true value of T0 falling in our 2σ region for 79.4% of mock

posteriors. We can roughly estimate that, since 68/48 ∼ 1.4, we would need to widen the

posterior for the “PDF bin correlations” model by a factor of 1.4 to pass the inference

test. If we take the “all correlations” model as the true information contained the in

combination of the wavelet amplitude PDFs and the power spectrum then the “PDF bin

correlations” posterior needs to be both shifted and broadened to a lesser extent to match

this posterior. A similar calculation can be done for the “wavelet correlations” model

which is more similar to the “all correlations” model to start.

2.5.4 Comparison to Previous Work

Lidz et al. (2010) made a measurement of the thermal state of the IGM with one

wavelet amplitude PDF while ignoring the correlations between bins of the PDF. This

measurement of T0 is higher than those from most other statistics and also has larger

error bars. This is shown in Walther et al. (2019), which used the same quasar data set

as Lidz et al. (2010) when measuring the power spectrum but added additional data to

roughly double the data set size. Figure 15 of Walther et al. (2019) shows the resulting

thermal state constraints compared to Lidz et al. (2010) as well as other measurements.

We investigated the effect of ignoring the correlations between PDF bins in Section 2.5.3
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Table 2.4: This table shows the results of our inference test when ignoring correlations for either
the wavelet amplitude PDFs or the combination of the wavelet amplitude PDFs and the power
spectrum. The three models of correlations for each statistic is described in Section 2.5.3. The
inference test was done for only one true value of T0, log(T0) = 4.1265. We calculated the
equivalent 1σ and 2σ regions from the CDF and then determined the frequency with which the
true T0 values fell into these regions for 1,000 mock data sets. Only the models that considered
all the correlations as presented in this paper labeled as “all correlations” for each statistic
passed the inference test. The other two models for both statistics did not recover the true
value of T0 the expected number of times.

Method Correlations % in 1σ % in 2σ

Wavelet Amplitude PDFs

No correlations 35.8 ± 1.9 62.7 ± 2.5

PDF bin correlations 55.2 ± 2.3 87.0 ± 2.9

All Correlations 67.6 ± 2.6 95.0 ± 3.1

Both PDFs and Power

PDF bin correlations 47.7 ± 2.2 79.4 ± 2.8

Wavelet correlations 55.3 ± 2.4 86.5 ± 2.9

All Correlations 67.1 ± 2.6 94.1 ± 3.1

and found that this would result in underestimated errors. This would imply that the

error bars from Lidz et al. (2010) would not reflect the true precision of the measurement.

Additionally, Figure 2.15 shows that ignoring these correlations also shifts the peak of the

posterior. However, we did not consider only using one smoothing scale as was done in

Lidz et al. (2010), which we would expect to broaden the posterior of the measurement.

Thus we can not precisely estimate how shifted or underestimated the measurement and

errors from Lidz et al. (2010) would have been.

Gaikwad et al. (2021) made a measurement of the thermal state of the IGM using

eight wavelet amplitude PDFs with 30 km s−1 ≤ sn ≤ 100 km s−1, the power spectrum,

and by combining these statistics along with the Doppler parameter distribution and

curvature statistics. All of these statistics were calculated from the same data set and the

correlations between PDF bins of different smoothing scale and the individual statistics

were ignored. The main results are shown in Figure 14 of Gaikwad et al. (2021), where
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the different statistics have measurements that agree with each other but differ in error

bar size and the joint constraints visually appear to have the smallest error bars most

frequently. Our analysis has shown that combining the wavelet amplitude PDFs and

the power spectrum from the same data set does not improve the measurement of T0 on

average. However, we did not further investigate the additional statistics that Gaikwad

et al. (2021) considered nor did we consider the situation where the smoothing scales

used to calculate the wavelet amplitudes did not span the range of k values considered in

the power measurement. For these reasons, our work here varies considerably from the

work done by Gaikwad et al. (2021). It is likely that combining the power spectrum and

wavelet amplitude PDFs when there isn’t a full correspondence between sn and k would

lead to an improvement of the measurement from either statistic alone. However, as long

as some k and sn values overlap we expect there to be non-negligible correlations that

were been ignored in Gaikwad et al. (2021). The two additional statistics are also likely

to improve the combined measurement beyond the combination of only power spectrum

and wavelet amplitude PDFs. Adding these statistics to the work presented here would

require calculating the correlations between the different statistics as we did between the

power spectrum and wavelet amplitude PDFs. Calculating these statistics and exploring

the relevant correlations is beyond the scope of this work. For these reasons we can not

precisely estimate the correct size of the error bars from their combined measurement.

We did consider the effect of ignoring the correlations between PDFS from different

smoothing scales on the posterior for the wavelet amplitude PDFs alone in Section 2.5.3

and Figure 2.15. We found that ignoring these correlations caused the posterior to shift

and underestimate the errors (the orange and green lines in Figure 2.15). Using our

inference test in Table 2.4, for the wavelet amplitude PDFs with “PDF bin correlations”

only the true value of T0 fell in the 1σ region 55%. This would imply the need to grow

the 1σ region by a factor of 68/55 ∼ 1.24 or a 24% increase. It is therefore likely that the
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errors on the measurement from only the wavelet amplitudes in Gaikwad et al. (2021)

are underestimated.

Overall, Figures 2.9, 2.10, 2.11, and 2.12 show that the off-diagonal terms in the co-

variance matrix are non-negligible and should be included in future analysis using wavelet

amplitudes in order to achieve accurate error estimates. Figures 2.15 and 2.16 and Sec-

tion 2.5.3 additionally demonstrate and discuss the effects of ignoring these correlations

on the posteriors.

2.6 Conclusion

We have expanded upon the wavelet analysis methods used by Lidz et al. (2010) and

Gaikwad et al. (2021) to study the thermal state of the IGM. Our method combines fifteen

wavelet amplitude PDFs with smoothing scales that span the full range of scales probed

by PF(k) and, for the first time, provides a full accounting of the correlations between

these PDFs. We also calculated PF(k) from the same simulated data in order to compare

the precision of measurements on T0 from these statistics. In order to rigorously combine

the wavelet amplitude PDFs and power spectrum, we calculated the cross-correlations

between PF(k) and the wavelet amplitude PDFs. We presented examples of each of these

correlation matrices in Figures 2.9, 2.10, 2.11, and 2.12. Figures 2.10 and 2.12 showed

the non-negligible off-diagonal correlations between the different smoothing scales and

the different statistics. With our method at z = 5, the posterior of T0 using the wavelet

amplitude PDFs is on average 7% more precise than the power spectrum measurement on

the same data. This means getting the same precision measurement with the power spec-

trum requires ∼ 15% more data. Combining the power spectrum and wavelet amplitude

PDFs did not significantly improve in precision of the posterior on T0 over that from the

wavelet amplitude PDFs alone, indicating that they contain the same information. At
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z = 6 we found that the posterior of T0 using the wavelet amplitude PDFs is on average

12% more precise which would require ∼ 15% more data to achieve the same accuracy

with the power spectrum. Additionally, we calculated posteriors on T0 at z = 5 with co-

variance matrices that ignored the off-diagonal correlations between PDF bins, between

smoothing scales, and between the different statistics in Figures 2.15 and 2.16. We were

unable to pass an inference test with these posteriors (as reported in Table 2.4) which

implies that the errors are underestimated in these cases. This further demonstrated the

significance of the off-diagonal terms in the covariance matrices and that they must be

computed for a robust statistical analysis.

Here we adopted a simple model of the thermal state of the IGM which depended

on a single parameter T0. For the more common and general case of multiple model

parameters, the wavelet amplitude PDFs have even greater potential to better constrain

model parameters when compared to the 1D flux power spectrum. To reiterate, the

wavelet amplitude PDF characterizes the full wavelet distribution while the 1D flux

power spectrum contains information on the mean of the wavelet amplitude PDF, see

Equation (2.7). If we are only varying one model parameter and this parameter shifts

the wavelet amplitude PDFs, the mean of the wavelet PDF may effectively contain all

the information on the differences of the model. This is true in our thermal model with

T0, as can be seen in Figures 2.5 and 2.8. In more sophisticated models, like those of

reionization (Oñorbe et al., 2019; Boera et al., 2019) and WDM (Viel et al., 2013; Iršič

et al., 2017), we would want to vary multiple model parameters (such as γ, ⟨F ⟩, and

mWDM). Multiple model parameters are likely to cause changes in the full distribution of

wavelet amplitudes beyond shifts in the mean. Wavelet amplitude PDF are sensitive to

these additional changes while the power spectrum is not, meaning the wavelet amplitude

PDFs could better discriminate between models to an even greater extent than they do

for only one model parameter when compared to the power spectrum. Investigation of
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models with multiple thermal parameters is beyond the scope of this paper but is a more

realistic and promising area to explore wavelet analysis.

Wavelets are an independent statistic that can be used to probe the small-scale struc-

ture of the IGM through the Lyα forest. They can be used as a check on alternative

statistics such as the power spectrum, Doppler parameter distribution, and curvature

statistics since, in principle, each statistic may be sensitive to different systematics. In

addition, the wavelet amplitude PDFs are higher precision than the power spectrum.

Wavelets have an added benefit of providing Fourier information in configuration space

which may be useful in other areas, such as in quasar proximity zones (Khrykin et al.,

2016) or when looking for temperature fluctuations in the IGM (Theuns & Zaroubi, 2000;

Theuns et al., 2002b; Zaldarriaga, 2002; Fang & White, 2004; Lai et al., 2006; McQuinn

et al., 2011). We have not studied the effects of a late ending reionization with remain-

ing temperature fluctuations or a varying UVB background on the shape of the wavelet

PDFs but this an interesting area to explore in the future (Davies & Furlanetto, 2016a;

Becker et al., 2018; Kulkarni et al., 2019; Keating et al., 2020b; Nasir & D’Aloisio, 2020;

Gaikwad et al., 2020).

Implementing wavelet analysis can be challenging due to the large size of data vectors

and covariance matrices involved. Often the cross correlations are ignored (Lidz et al.,

2010; Gaikwad et al., 2021) which can lead to inaccurate parameter constraints. It is

also impossible to remove the effect of both the resolution and the noise on the full

wavelet amplitude PDFs, meaning you have to forward-model these effects, unlike in

power spectrum analysis where the noise can be subtracted and the resolution effects

removed by a window function correction. When studying data, we would calculate the

covariance matrix from bootstrapping the data itself as has been done when using other

statistics of the Lyα forest (see Boera et al. (2019) for example). This would reduce

the computational time required since we would not be need to compute the covariance
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matrix for each model.

An interesting subject for future work will be to build an emulator using wavelet PDFs

analogous to Lyα forest power spectrum emulators (see, e.g. Walther et al. (2019)). One

issue of concern for wavelets is the large number of functions that need to be emulated

(15 wavelets versus 1 power spectrum), although it could be possible to simply emulate

the wavelet likelihood which is a single function. The emulation field has shifted towards

iterative sampling, informed by the posterior probability distribution for a given obser-

vational dataset (Rogers et al., 2019; Takhtaganov et al., 2021), making emulating the

likelihood consistent with current methods.

In the future, our method of wavelet analysis can be applied to quasar data and

more sophisticated simulations to obtain precision constraints on the thermal state of

the IGM. One can expand our analysis to constrain the timing of reionization as well

as models of dark matter. As mentioned above, our approach can also be adapted to

analyses in proximity zones or searches for IGM temperature fluctuations exploiting the

space-preserving properties of wavelets.

2.7 Appendix A: Likelihood Choice

We chose to use a multivariate Gaussian distribution for the likelihood of our data.

This assumption explicitly means that if we take multiple mock data sets and look at

the distribution of a single point in our data vector (either a single bin from the wavelet

amplitude histogram or a single k band from power spectra) it will be Gaussian. It

also assumes that when looking at any two points from the data vector, we expect the

resulting distribution to be a two-dimensional Gaussian (thus looking at many points

will be a multi-dimensional Gaussian).

We can visually check the assumption that any two points from the data vector will
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Figure 2.17: The distribution of mock draws for the power spectrum at k = 0.12 s km−1 and the
wavelet amplitude PDF at An = 0.32. The bottom left panel shows the 2D distribution of these
bins where the red ellipse shows the 3σ region calculated from the covariance matrix for these
two bins. The bottom right panel shows the distribution of values only for the power spectrum.
The top left panel shows the distribution of values only for the wavelet amplitude PDF. All
panels show good agreement with the assumption of a multi-variate Gaussian distribution.

result in a two-dimensional Gaussian distribution over many mocks. We will show this

for one point in the power spectrum (k = 0.12 s km−1) and one point in the wavelet

amplitude PDF for sn = 51.09 km s−1 (An = 0.32). The distribution of these values for

1,000 mock draws is shown in Figure 2.17 along with the distributions of the individual

Histogram and PF(k) values. The red ellipse represents the 3σ contour from the 2 × 2

covariance matrix calculated for these two bins. The two dimensional distribution agrees

very well with the ellipse by eye and the two histograms also visually appear Gaussian

within the errors expected from counting statistics.

2.8 Appendix B: Covariance Matrix Calculation

As defined by equation (2.10), each model covariance matrix is calculated from mock

draws of the data. This will inherently be a noisy calculation that will converge as

1/
√

N where N is the number of draws in the covariance matrix. As stated in the text,

we used 1,000,000 mock draws when calculating the covariance matrix for the wavelet

amplitude PDFs as well as the combination of the wavelet amplitude PDFs and the power
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Figure 2.18: This figure shows the values of four distinct elements in the covariance matrix
for the wavelet amplitude PDFs as we increased the number of mock draws used to calculate
the covariance matrix. For simplicity, these distinct values are labeled by their index, rather
than the smoothing scale and wavelet amplitude values associated for each bin in the PDFs.
These points were chosen such that we had one on the diagonal, one off the diagonal where
there are strong correlations, and two off the diagonal where there are weak correlations. As
we approach 106 draws the values converge, showing that 106 is sufficient for our covariance
matrix calculation.

spectrum. To check that 1,000,000 mock draws are sufficient to minimize the error from

this calculation, we looked at the behavior of elements of the wavelet amplitude PDF

covariance matrix in Figure 2.18. The values in the plot have been normalized such that

at 106 draws they are 1. The four elements have been chosen such that there is one

on the diagonal, one off the diagonal where there are strong correlations, and two off

the diagonal where there are weak correlations. This plot shows that as we approach

106 draws the values vary significantly less than they do at lower values and thus the

covariance elements are converging.

For both the wavelet amplitude PDFs and the combined power spectrum and wavelet

amplitude PDFs covariance matrix, the data vector is long enough that there are many

elements with very small cross correlations. These small values vary more (as seen in

the (134, 23) and (134, 121) elements in Figure 2.18) such that they can still have non-

negligible noise. This noise in the covariance leads to noise in the posterior measurement

on T0 (as discussed in Sections 2.4.2 and 2.4.3). At this point, for computational reasons,

we decided not to increase the number of mock draws of data. Instead, we chose to
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Figure 2.19: The covariance value for the same bin of the covariance matrix at different T0.
The bin chosen here corresponds to the histogram bin of An = 0.027 for sn = 51.09 km s−1 and
the power spectrum band k = 0.41 s km−1) and An = 0.027. The solid line shows the spline fit
to these points with 20 equally spaced breakpoints.

smooth the covariance matrix across our thermal grid with a spline. We did this by

fitting each individual element of the covariance matrix to spline with 20 equally spaced

breakpoints. This results in 150×150 (165×165) splines for the wavelet amplitude PDFs

(combined) covariance matrix. We chose 20 breakpoints to allow the spline to be flexible

enough to find real patterns in the data while smoothing out noise.

We show one example of this spline in Figure 2.19. This is the spline for one of the

elements of the covariance matrix shown in Figures 2.11 and 2.12. Specifically, this is for

k = 0.41 s km−1) and An = 0.027. This figure shows how the spline can replicate patterns

in the calculated covariance matrix values while still reducing noise. For example, with

the noisy values near log(T0) = 4.2.

The covariance matrices used in equation (2.9) for both the wavelet analysis and the

combined wavelet and power spectrum analysis use the values of the spline at every T0.

2.9 Appendix C: Redshift 6

Here we have included the figures for a mock data set at z = 6. As a reminder, at

z = 6 we considered ⟨F ⟩ = 0.011, R = 30, 000, and SNR = 35. We restricted our study
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Figure 2.20: The power spectrum measurement, PF(k), for one mock data set with log(T0) =
4.1625 (black points) at z = 6. The 1σ error bars are calculated from the square root of the
diagonal of the covariance matrix. Also shown are model values of the power spectra for three
different values of T0: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4
(green).

to a higher SNR because the lower observed flux makes the noise power more dominant,

see equation (2.14) for details. The mock data set still considers 8 quasars (equivalent to

29 simulation skewers).

First, in Figure 2.20 we show a mock power spectrum at log(T0) = 4.1625 with three

models analogous to Figure 2.6 at z = 5. The error bars blow up at the largest values

of k due to removing the noise power which is dominant at these small scales as well

as correcting the window function. This Figure also shows three model power spectra

at z = 6: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange), and log(T0) = 4.4 (green).

The corresponding correlation plot for log(T0) = 4.1625 is shown in Figure 2.21. The

structure here looks quite different than the one at z = 5 shown in Figure 2.7. The

correlations come from underlying correlations in the high-z Lyα forest with the overall

low mean flux. Again, the off-diagonal elements for high-k (small scales) are very small

due to the dominance of the noise power over the signal at these scales.

Next, we look at the figures relevant for the wavelet amplitude PDFs at z = 6. The

mock wavelet amplitude PDFs at all scales considered are shown in Figure 2.22. Note

that the scales considered here are slightly different than those at z = 5 (as listed in

61



Improving IGM temperature constraints using wavelet analysis on high-redshift quasars Chapter 2

10 2 10 1 100

k (s/km)

10 2

10 1

100

k 
(s

/k
m

)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

Figure 2.21: The correlation matrix for the power spectrum at log(T0) = 4.1625 and z = 6.
The very weak correlations seen in the regions where k > 0.2 s km−1 are due to uncorrelated
random Gaussian noise which dominates the signal on small-scales (high k).

table 2.1 and Figure 2.8) because the size of the skewers and the nyquist frequency vary

at these redshifts. At both redshifts we chose 15 logarithmically spaced values for sn

(and k). At this redshift and signal to noise ratio, we can see distinct bumps for the

contribution of noise and wavelet amplitudes for 290.75 km s−1 ≥ sn ≥ 55.09 km s−1.

Again we have also shown three model wavelet amplitude PDFs: log(T0) = 3.4 (blue),

log(T0) = 4.1625 (orange), and log(T0) = 4.4 (green). These wavelet amplitude PDFs all

agree with each other for the smallest scales sn < 23.98 km s−1 where noise dominates

the PDF which is the same for all temperature models. The correlation for all wavelet

amplitude PDFs at log(T0) = 4.1625 is shown in Figure 2.23. The 10×10 diagonal blocks

for the largest scales (sn > 440.7 km s−1) and the smallest scales (36.34 km s−1 > sn) look

similar to that shown for z = 5 in Figure 2.10 since the PDFs also have the same shape.

The 10 × 10 diagonal blocks for the mid-range values of sn are different from the others

due to the combined PDF shape as seen in Figure 2.22. Again the off-diagonal blocks

show a similar pattern to the diagonal blocks modified by positive or negative numbers,

mimicking the off-diagonal correlations from the power at z = 6 seen in Figure 2.21.

The off-diagonal correlation values between the sn ≤ 23.98 km s−1 and all other values of
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sn show no strong correlations because the uncorrelated noise dominates at these small

scales.

At this redshift we chose not to investigate the combination of the wavelet amplitude

PDFs and the power spectrum due to the computational time required and the results

at z = 5 which showed no significant improvement from combining these statistics when

the same scales are covered in both.
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Figure 2.22: The black points show the PDFs from one mock data set for each sn with log(T0) =
4.1265 and z = 6. The 1σ error bars are calculated from the square root of the diagonal of
the covariance matrix. Each panel also shows the “model” values of the PDFs from the stated
smoothing scale for three different values of T0: log(T0) = 3.4 (blue), log(T0) = 4.1625 (orange),
and log(T0) = 4.4 (green). This redshift shows broad PDFs with arguable two bumps in the
mid-range values of sn where the flux and noise power levels are comparable.
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Figure 2.23: The correlation matrix for fifteen wavelet amplitude PDFs at log(T0) = 4.1625
and z = 6. The wavelet amplitude PDFs for large smoothing scales, 2326 km s−1 ≥ sn ≥
36.34 km s−1, have significant correlations off the diagonal. The off diagonal blocks show a
similar repeating shape to those on the diagonal modified by numbers. These numbers are
positive close to the diagonal and are negative further from the diagonal. For sn ≤ 29.98 km s−1,
the wavelet amplitudes begin to be dominated by noise, so the correlations between PDFs for
different values of sn become very small. This pattern mimics that seen in the power spectrum
correlation shown in Figure 2.21. The pattern of the diagonal blocks are the most different for
the mid range values of 290.7 km s−1 ≥ sn ≥ 83.5 km s−1, which is where the PDF shapes are
the most different from the typical shape, as seen in Figure 2.22.
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Chapter 3

Forecasting constraints on the mean

free path of ionizing photons at

z ≥ 5.4 from the Lyman-α forest flux

auto-correlation function

This chapter was reproduced from Wolfson et al. (2023b) with only minor changes to fit

the formatting of this dissertation. I’d like to thank my coauthors, without whom this

work would not have been possible: Joseph F. Hennawi, Frederick B. Davies, and Jose

Oñorbe.

3.1 Introduction

The neutral hydrogen in the intergalactic medium (IGM) was reionized by the first

luminous sources during the epoch of reionization. This period was one of the most

dramatic changes in the history of the universe. Current Planck constraints from the
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cosmic microwave background put the midpoint of reionization at zre = 7.7±0.7 (Planck

Collaboration et al., 2020). There have also been multiple measurements that suggest

reionization was not completed until after z ≤ 6 (Fan et al., 2006; Becker et al., 2015,

2018; Bosman et al., 2018, 2022; Eilers et al., 2018; Boera et al., 2019; Yang et al., 2020;

Jung et al., 2020; Kashino et al., 2020; Morales et al., 2021). However, much is still

unknown about this process such as the exact timing, the impact on the thermal state

of the IGM, the driving sources, and the number of photons that must be produced to

complete reionization.

Characterizing the IGM both during and immediately after reionization will give vital

information to answer these remaining questions. Of particular interest is the average

distance that the ionizing photons travel through the IGM before interacting with its

neutral hydrogen – also known as the mean free path of ionizing photons, λmfp. The end

of reionization results in a rapid increase in λmfp as the initially isolated regions of ionized

hydrogen overlap to form a mostly ionized universe (Gnedin, 2000; Gnedin & Fan, 2006;

Wyithe et al., 2008; D’Aloisio et al., 2018; Kulkarni et al., 2019; Keating et al., 2020b,a;

Nasir & D’Aloisio, 2020; Cain et al., 2021; Gnedin & Madau, 2022). Detecting this rapid

increase is therefore a clear signal of the end of reionization.

Direct measurements of λmfp at z ≤ 5.2 have been achieved from stacked quasar

spectra (Prochaska et al., 2009; Fumagalli et al., 2013; O’Meara et al., 2013; Worseck

et al., 2014). Using a similar method, Becker et al. (2021) recently reported measurements

of λmfp = 9.09+1.62
−1.28 proper Mpc at z = 5.1 and λmfp = 0.75+0.65

−0.45 proper Mpc at z = 6.

This value at z = 6 is significantly smaller than extrapolations from previous lower z

measurements (Worseck et al., 2014), causes tension with measurements of the ionizing

output from galaxies (Cain et al., 2021; Davies et al., 2021), and also suggests a roughly

12-fold increase in λmfp between z = 6 and z = 5.1, potentially signalling the end of

reionization. An alternative method presented in Bosman (2021) used lower limits on
67



Forecasting constraints on the mean free path of ionizing photons at z ≥ 5.4 from the Lyman-α
forest flux auto-correlation function Chapter 3

individual free paths towards high-z sources to place a 2σ limit of λmfp > 0.31 proper Mpc

at z = 6.0. This Bosman (2021) method is similar to other measurements using individual

free paths (Songaila & Cowie, 2010; Rudie et al., 2013; Romano et al., 2019). Additional

independent methods of measuring λmfp are necessary to verify these measurements. Of

particular interest are methods that can be used at several redshift bins at z > 5 in order

to study the evolution of λmfp in finer detail.

In this paper we investigate using the auto-correlation function of Lyα forest flux

in high-z quasar sightlines to constrain λmfp. The Lyα opacity, τLyα, is related to λmfp

via τLyα = nHIσLyα ∝ 1/ΓHI ∝ 1/λα
mfp where α is typically between 3/2 and 2 (see e.g.

Rauch (1998); Haardt & Madau (2012)). Additionally, during reionization the existence

of significant neutral hydrogen in the IGM will cause a short mean free path value to

also result in large spatial fluctuations in the ultraviolet background (UVB). This is

because, during reionization ionizing photons are produced from the first sources and

then quickly absorbed by the remaining neutral hydrogen. Thus there are large values of

the UVB where the photons are produced and very small values where neutral hydrogen

remains. If the mean free path is large, photons will travel further and effectively smooth

the UVB (Mesinger & Furlanetto, 2009). The positive fluctuations in the UVB on small

scales that accompany a short mean free path would then boost the flux of the Lyα forest

on small scales, which could then be detected in the auto-correlation function. Various

previous studies have investigated the effect of large scale variations in the UVB on the

auto-correlation function and power spectrum of the Lyα forest (Zuo, 1992a,b; Croft,

2004; Meiksin & White, 2004; McDonald et al., 2005; Gontcho A Gontcho et al., 2014;

Pontzen, 2014; Pontzen et al., 2014; D’Aloisio et al., 2018; Meiksin & McQuinn, 2019;

Oñorbe et al., 2019). Our work is focused on determining if the effect of the fluctuating

UVB on the auto-correlation function can lead to a constraint on λmfp.

While the power spectrum has been a more popular statistic used on the high-z
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Lyα forest to date (Boera et al., 2019; Walther et al., 2019; Gaikwad et al., 2021),

the auto-correlation function has a few characteristics that make it easier to work with

than the power spectrum. The two most obvious are the effect of noise and masking

on the auto-correlation function when compared to the power spectrum. Astronomical

spectrograph noise is expected to be white or uncorrelated. Uncorrelated noise only

impacts the auto-correlation function at zero lag, since at all other lags the uncorrelated

noise will average to zero. Therefore, by not measuring the auto-correlation at zero lag

we have fully removed the effect of white noise. On the other hand, white noise is a

constant positive value at all scales for the power spectrum. Thus the unknown noise

level must be calculated and subtracted from power spectrum measurements which will

add additional uncertainty to the final measurement. Additionally, real data often has

regions of spectra that need to be removed from the quasar spectrum (e.g. for metal

lines). Masking out these and other regions introduces a complicated window function

to the power spectrum that must be corrected for (see e.g. Walther et al. (2019)) and

will again increasing the uncertainty in the measurement. The auto-correlation function

does not require a similar correction since masking only result in fewer points in bins for

certain lags.

The structure of this paper is as follows. We discuss our simulation data in Section

3.2. The auto-correlation function and our other statistical methods are described in

Section 3.3. We then discuss our results in Section 3.4 and summarize in Section 3.5.

Here we also touch on how additional work on modeling λmfp in simulations as well as

better statistical methods will improve these constraints.
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3.2 Simulation Data

3.2.1 Models

In this work we use a simulation box run with Nyx code (Almgren et al., 2013). Nyx is

a hydrodynamical simulation code that was designed for simulating the Lyα forest with

updated physical rates from Lukić et al. (2015). The Nyx box has a size of Lbox = 100

cMpc h−1 with 40963 dark matter particles and 40963 baryon grid cells. This box is

reionized by a Haardt & Madau (2012) uniform UVB that is switched on at z ∼ 15. We

have two snapshots of this simulation at z = 5.5 and z = 6. In this work we want to

consider these models at seven redshifts: 5.4 ≤ z ≤ 6 with ∆z = 0.1. In order to consider

the redshifts for which we do not have a simulation output, we select the nearest snapshot

and use the desired redshift when calculating the proper size of the box and the mean

density. This means we use the density fluctuations, temperature, and velocities directly

from the nearest Nyx simulation output. We additionally used the z = 6.0 simulation

snapshot to generate low-resolution skewers at z = 5.7 and found no significant change

in our finally results, confirming that using the nearest simulation snapshot in this way

is sufficient.

We also have separate boxes of fluctuating ΓHI values generated with the semi-

numerical method of Davies & Furlanetto (2016b). These boxes have a size Lbox = 512

cMpc and 1283 pixels. We have one snapshot of these ΓHI boxes at z = 5.5. To get the

flux skewers used in this work, we combine random skewers of ΓHI from these UVB boxes

with the skewers from the Nyx box. The UVB boxes have a different resolution than the

Nyx box, to generate a skewer of ΓHI values we randomly selected a starting location and

direction in the UVB box then linearly interpolated the log(ΓHI) values onto the same

length and resolution as the Nyx skewers.

The method of Davies & Furlanetto (2016b) allows for a spatially varying mean free
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Figure 3.1: Each quadrant of this figure shows a slice through the box of the z = 5.5 UVB
model used for four example values of λmfp (5, 15, 50, and 150 cMpc). The colorbar is cut
off at log(ΓHI/10−12s−1) = −1 in order to better visualize the differences between the models.
The models with smaller λmfp values show greater variation in the UVB than those with larger
λmfp, as expected.
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Figure 3.2: The blue triangles and orange squares show previous measurements of λmfp at high-
z from Becker et al. (2021) and Worseck et al. (2014) respectively. The green limit is from
Bosman (2021). Additionally, the dotted line shows the results of the power law fit to data
from z = 2 − 5 from Worseck et al. (2014). For this work, we modified this power law fit into a
double power law using the same low-z scaling by eye in order to agree with the Becker et al.
(2021) points. This new scaling is shown by the dot-dashed line. We used this double power
law as an example redshift evolution of λmfp, where the values we modeled are shown as black
circles.
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path generated from fluctuations in the density of the sources of ionizing radiation with

λ ∝ Γ2/3
HI ∆−1, for λ, the local mean free path, and ∆, the local matter density. These

simulations are scaled such that the mean value ⟨λ⟩ = λmfp as desired. A brief summary

of the Davies & Furlanetto (2016b) method is as follows. Cosmological initial conditions,

independent of those from the 100 cMpc h−1 Nyx boxes, were generated for the 512 cMpc

box and evolved to z = 5.5 via the Zel’dovich approximation (Zel’dovich, 1970). Halos

were created via the approach of Mesinger & Furlanetto (2007) down to a minimum

halo mass of Mmin = 2 × 109M⊙. The ionizing luminosity of galaxies corresponding to

each halo were determined following two steps: first the UV luminosities of galaxies were

assigned by abundance matching to the Bouwens et al. (2015) UV luminosity function

and then the ionizing luminosity of each galaxy was assumed to be proportional to its

UV luminosity where the constant of proportionality is left as a free parameter. The

ionizing background radiation intensity, Jν , is then computed by a radiative transfer

algorithm. The photoionization rate, ΓHI, is finally calculated by integrating over Jν .

For more details on the method see Davies & Furlanetto (2016b), Davies et al. (2018b)

or Davies et al. 2022 in prep. where they also use this stitching procedure. Note that

this method of generating UVB fluctuations ignores the effect of correlations between the

baryon density in the Nyx boxes and the UVB. This is sufficient for the aims of this work

but see Section 3.3.2 for a discussion on the effects of ignoring these correlations on the

resulting auto-correlation function and therefore future measurements of λmfp from real

data.

Example slices through the UVB boxes for four values of λmfp are shown in Figure 3.1

with a lower cutoff of log(ΓHI/⟨ΓHI⟩) = −1 for visual purposes. The top left box shows a

slice of ΓHI for the UVB simulation with the shortest λmfp = 5 cMpc and has the greatest

fluctuations. The bottom right box shows a slice of ΓHI for the UVB simulation with

the longest λmfp = 150 cMpc and has the weakest fluctuations. This follows since overall
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longer λ values means that photons travel further and effectively smooth the UVB over

these large scales.

We ran UVB boxes for 14 values of λmfp (in cMpc): 5, 6, 8, 10, 15, 20, 25, 30, 40, 50,

60, 80, 100, and 150. To generate UVB boxes for additional values of λmfp we linearly

interpolated the log(ΓHI) values at each location in the box between the two UVB boxes

with the nearest λmfp values. This was done for three linearly spaced values between each

existing λmfp values, resulting in a total of 53 UVB boxes.

To model a hypothetical evolution of λmfp as a function of redshift we used the double

power law shown as the dot dashed line shown in Figure 3.2. This double power law was

fit by eye with the following two considerations. We fixed the low z behavior to the power

law fit from Worseck et al. (2014) for z < 5: λmfp(z) = (37 ± 2)h−1
70 [(1 + z)/5]−5.4±0.5

Mpc (proper). We also required consistency with the new measurements at higher z from

Becker et al. (2021). The resulting double power law is:

λmfp(z) =
37h−1

70

(
5

6.55

)5.4

(
1+z
6.55

)5.4
+
(

1+z
6.55

)25.5 Mpc (proper). (3.1)

We then evaluated equation (3.1) at center of the seven redshift bins we considered and

rounded to the nearest integer. The resulting true model λmfp values are listed in Table

3.1 and are plot as the black circles in Figure 3.2. If these values were already in our

set of 53 models then nothing else was done. If not, we linearly interpolated the value

of log(ΓHI) at each point in the UVB simulation box between the two UVB boxes with

the closest values of λmfp to get the final desired UVB box. This ultimately caused

some redshifts to have 53 models of λmfp while others have 54. To generate the final

flux skewers, we calculated the optical depths assuming a constant UVB then rescaled

τmfp = τconst./(ΓHI/⟨ΓHI⟩). The z = 5.5 values of ΓHI are used when generating flux

skewers at all redshifts. This is justified because the value of λmfp is more important

than the redshift evolution of the bias of the source population between 5 ≤ z ≤ 6
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Table 3.1: This table lists several relevant parameters for our simulations and mock data
set. The second column lists the “true” values of the redshift-dependent λmfp calculated from
equation (3.1). The third column gives the true values of ⟨F ⟩ at each z from Bosman et al.
(2022). These ⟨F ⟩ values are the central value for the grid of values considered. The final
column contains the number of quasar sightlines we modeled for one mock data set, which is
the data set size in Bosman et al. (2022). These sightlines each have a length of ∆z = 0.1.

z λmfp (cMpc) ⟨F ⟩ # QSOs

5.4 39 0.0801 64

5.5 32 0.0591 64

5.6 26 0.0447 59

5.7 20 0.0256 51

5.8 16 0.0172 45

5.9 12 0.0114 28

6.0 9 0.0089 19

(Furlanetto et al., 2017).

The overall average of ΓHI calculated in the UVB fluctuation simulations is not

uniquely determined since this originates from complicated galaxy physics. Thus, we

force the average mean flux, ⟨F ⟩, to be the same for each model where the average is

taken over all flux skewers considered. This is achieved by calculating a constant, a, such

that ⟨e−aτ ⟩ = ⟨F ⟩. Additionally, we want to consider how changes in ⟨F ⟩ would affect

the auto-correlation function and determine if there is a degeneracy with λmfp. Therefore

we create a grid of 9 values of ⟨F ⟩ at each redshift. We chose the central value of ⟨F ⟩

for a grid from Bosman et al. (2022) and chose the range of values to keep ⟨F ⟩ > 0 while

not running into boundary issues during our inference.
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Figure 3.3: This figure shows the flux for one skewer of our simulation at at z = 5.4 with
different values of λmfp all normalized to ⟨F ⟩ = 0.0801 in the top panel. The bottom panel
shows the corresponding UVB skewer used to calculate the flux. Smaller λmfp values (such
as λmfp = 5 cMpc in blue) has greater variations in ΓHI while the larger λmfp values (such as
λmfp = 150 cMpc in green) are more uniform. Larger values of ΓHI leads to increased flux in
that region which can be seen when comparing the two panels. Consider ∆v = −2000 km s−1,
here λmfp = 5 cMpc model (blue) has a peak in ΓHI. The corresponding flux is boosted when
compared to the other models. Additionally, for λmfp = 5 cMpc (blue) the ΓHI values are very
small for ∆v ≥ 0 km s−1 resulting in F ∼ 0.
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3.2.2 Comparison of Flux Skewers

We drew 1000 skewers from the Nyx simulation and 1000 independent skewers of ΓHI

from the UVB boxes to use in this work. One example flux skewer, which combines the

Nyx simulation skewer and the ΓHI values from the UVB boxes, at z = 5.4 is shown in

Figure 3.3 for three different values of λmfp all normalized to ⟨F ⟩ = 0.0801. The bottom

panel of this figure shows the corresponding UVB skewers that were used to calculate

the flux. 2D slices of the UVB boxes these skewers came from are shown in Figure 3.1.

The model shown with the shortest λmfp, 5 cMpc (blue), results in the greatest variation

of ΓHI/⟨ΓHI⟩. In particular, note that at ∆v = −2000 km s−1, the λmfp = 5 cMpc model

(blue) has a peak in ΓHI and the corresponding flux is boosted when compared to the

other models. Additionally, for λmfp = 5 cMpc (blue) the ΓHI values are very small for

∆v ≥ 0 km s−1 resulting in F ∼ 0. The model with the largest λmfp, 150 cMpc (green),

shows a mostly uniform ΓHI skewer throughout the whole velocity range leading to more

consistent flux levels.

3.2.3 Forward Modeling

For this work we aim to model the resolution, noise, and size properties of a real-

istic data set. We first chose to model a simplified version of the XQR-30 (main and

extended) data set1. The main XQR-30 data set consists of 30 spectra of the brightest

z > 5.8 quasars observed with VLT/X-shooter (Vernet et al., 2011a). These spectra

are supplemented with an extended data set consisting of 12 archival X-shooter spectra

with comparable signal-to-noise ratio. See D’Odorico in prep. for additional information

on these data. For this work we specifically model properties similar to the data set

of Bosman et al. (2022) which consists of the etended XQR-30 data supplemented with
1https://xqr30.inaf.it/
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additional archival X-Shooter data and archival Keck/ESI spectra which have a lower

resolution than the X-shooter spectra.

For our simplified modeling, we use the resolving power of X-shooter for visible light

with a 0.9” slit, so R = 8800. We also use a typical signal to noise ratio per 10 km s−1 pixel

(SNR10) of SNR10 = 35.9, which is the median of all the data presented in Bosman et al.

(2022). Additionally, we investigate how higher resolution data with access to smaller

scales in the Lyα forest would impact measurements of λmfp from the auto-correlation

function. To achieve this we consider a “high-resolution” data set with the same SNR10

and size properties as the “low-resolution” (R = 8800) data set but with R = 30000.

This resolution is achievable with instruments such as Keck/HIRES, VLT/UVES, and

Magellan/MIKE though the number of sightlines and noise properties used here do not

represent a high-resolution data set currently in existence.

We model the resolution by smoothing the flux by a Gaussian filter then after smooth-

ing we re-sampled such that there are 4 pixels per resolution element, where the reso-

lution element is the FWHM. This means, for the low-resolution data set we smoothed

by a Gaussian filter with FWHM ≈ 34 km s−1 then re-sampled so the pixel size was

∆v = 8.53 km s−1. For the high-resolution data set we smoothed by a Gaussian filter

with FWHM = 10 km s−1 then re-sampled so the pixel size was ∆v = 2.5 km s−1.

As stated above, we modeled a SNR10 = 35.9. Using SNR∆v = SNR10

√
∆v/10 km s−1

this corresponds to a signal to noise ratio of 33.2 per 8.53 km/s low-resolution pixel and

a signal to noise ratio of 18.0 per 2.5 km/s high-resolution pixel. For simplicity, we add

flux-independent noise in the following way. We generate one realization of random noise

drawn from a Gaussian with σN = 1/SNR∆v for each SNR value and add this noise

realization to every model at every redshift. The size of each noise realization is the

number of skewers created (1000) by the number of pixels in the re-sampled flux skewers

(1705 pixels for low-resolution and 5814 pixels for high-resolution). Using the same noise
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Figure 3.4: Both panels show initial and forward-modeled flux from a skewer with λmfp = 39
cMpc and ⟨F ⟩ = 0.0801 at z = 5.4. The initial flux is the same in both panels (red dashed
line) while the forward modeled flux (black histogram) varies. The top panel shows the low-
resolution flux with R = 8800, which represents XQR-30 data. The bottom panel shows the
high-resolution flux with R = 30000. Both of these resolutions have SNR10 = 35.9 which leads
to differing SNR∆v as can be seen when comparing the two panels.

realization over the different models prevents stochasticity from different realizations of

the noise from causing a noisy likelihood, which means the likelihood will be smooth as a

function of model parameter. Thus the noise modeling will not unduly, adversely effect

the parameter inference.

A section of one skewer for both the initial and forward-modeled flux is shown in

Figure 3.4. Both panels shows a skewer at z = 5.4 with λmfp = 39 cMpc and ⟨F ⟩ = 0.0801,

our assumed true parameter values at this redshift. The initial flux in both panels is

the same and is shown as a red dashed line. The top panel shows the low-resolution

forward-modeled flux (black histogram) with R = 8800. The bottom panel shows the

high-resolution forward-modeled flux (black histogram) with R = 30000. Again both of

these panels have the same SNR10 = 35.9 which results in different noise levels per pixel,

as can be seen when comparing the two panels.
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We assume a fiducial data set size that matches the number of sightlines reported in

Table 4 of Bosman et al. (2022) each with a length of ∆z = 0.1. The number of sightlines

are reported in the last column of Table 3.1 where to total pathlength considered is equal

to these values multiplied by ∆z = 0.1. Redshift bins of ∆z = 0.1 correspond to distances

of 33 to 29 cMpc h−1 when centered at z = 5.4 to z = 6.0. However, the Nyx simulation

box is 100 cMpc h−1 long, much longer than these redshift bins. If we were to use the full

100 cMpc h−1 skewers in our calculation we would be averaging over fewer skewers to get

the same total ∆z path. We wanted to use a greater number independent skewers with

more accurate lengths when compared with observed Lyα forest regions. For simplicity,

we split all our skewers into two 40 cMpc h−1 regions which we treated as independent,

giving us an effective number of 2000 independent skewers.

Note that unless otherwise specified the plots in this work mainly show results from

the low resolution, R = 8800 data, since it represents existing XQR-30 data.

3.3 Methods

3.3.1 Auto-correlation function

The auto-correlation function of the flux (ξF (∆v)) is defined as

ξF (∆v) = ⟨F (v)F (v + ∆v)⟩ (3.2)

where F (v) is the flux of the Lyα forest and the average is performed over all pairs of

pixels at the same velocity lag (∆v). The auto-correlation function is related to the

power spectral density (PF (k)) as

PF (k) = ⟨F ⟩−2
∫ ∞

−∞
ξF (∆v)e−ik∆vd(∆v). (3.3)
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Note that this implies that the auto-correlation function should be sensitive to the same

physical parameters as the power spectrum. Additionally, the auto-correlation function

has nice properties with respect to white noise and spectral masks that make it a promis-

ing statistic to measure. Conventionally, the flux contrast field, (F − ⟨F ⟩)/⟨F ⟩, is used

when measuring statistics of the Lyα forest. Here, we chose to use the flux since ⟨F ⟩

is small and has large uncertainties at high-z where we are most interested in this mea-

surement. Using the flux thus prevents us from dividing by a small number which would

come from an independent measurement and could potentially blow up the value of the

flux contrast. This leads to the factor of ⟨F ⟩−2 in Equation (3.3).

For each resolution and model we compute the auto-correlation function with a bin

size of one FWHM of the resolution (either 34 km s−1 or 10 km s−1) starting from this

resolution size out to 20 cMpc h−1 (half the length of the skewer) which corresponds

to ∼ 2900 km s−1 at z = 5.4. The model value of the auto-correlation function was

determined by taking the average of the auto-correlation function over all 2000 forward-

modeled skewers. Each mock data set of the auto-correlation were calculated by taking

an average over the appropriate number of random skewers for the number of quasars

at that redshift from the initial 2000 forward-modeled skewers. The value of the auto-

correlation function for small-scale bins is affected by the finite resolution. This effect is

left in both the models and the mock data. We determine the errors on the models via

the following estimate of the covariance matrix from mock draws of the data:

Σ(ξmodel) = 1
Nmocks

Nmocks∑
i=1

(ξi − ξmodel)(ξi − ξmodel)T (3.4)

where ξi is the auto-correlation function calculated for the i-th mock data set, ξmodel is

the average value of the auto-correlation function over all 2000 skewers, and Nmocks is

the number of forward-modeled mock data sets used. Both the mock data sets and the

overall average have the same values of λmfp and ⟨F ⟩ in this calculation, so we end up
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Figure 3.5: This figure demonstrates the effects of varying λmfp and ⟨F ⟩ on the model values
of the auto-correlation function at z = 5.4 and R = 8800. The solid lines show the model
values calculated by averaging the auto-correlation function from all forward modeled skewers
available while the shaded regions show the errors from the covariance matrix as estimated in
equation (3.4). The top panel varies λmfp with a constant ⟨F ⟩ labeled in the top left corner while
the bottom panel does the opposite. Both λmfp and ⟨F ⟩ change the auto-correlation function
on all scales shown, though λmfp appears to effect small scales more than large scales. In the
top panel, the model value of the auto-correlation function are further apart for λmfp = 5 cMpc
(blue) and λmfp = 15 cMpc (orange) than for λmfp = 15 cMpc (orange) and λmfp = 150 cMpc
(green), which is a greater difference in λmfp value. This means the auto-correlation function
is more sensitive to small λmfp values than large λmfp values. Comparatively, in the bottom
panel, the differences in the mean auto-correlation function appear roughly linear with varying
⟨F ⟩ which should result in similar sensitivity for all ⟨F ⟩ values.

with a covariance matrix at each parameter grid point. We use Nmocks = 500000 for all

models and redshifts in this work, see Appendix 3.6 for a discussion on the convergence

of the covariance matrix.

Figure 3.5 shows the model value of the auto-correlation function with different pa-

rameter values at z = 5.4. The top panel shows models with a changing λmfp and constant

⟨F ⟩ = 0.0801. The solid lines show the model values calculated by averaging the auto-

correlation function from all forward modeled skewers while the shaded regions show

the errors from the diagonal elements of the covariance matrix as estimated in equation

(3.4). Smaller λmfp values (such as λmfp = 5 cMpc - blue) result in a greater correlation

81



Forecasting constraints on the mean free path of ionizing photons at z ≥ 5.4 from the Lyman-α
forest flux auto-correlation function Chapter 3

function at all scales, though mainly at small scales, and larger error bars than large λmfp

values (such as λmfp = 150 cMpc - green). These models are non-linearly spaced with

greater differences between the models at small λmfp (blue vs orange) than large λmfp (or-

ange vs green) which will result in variable sensitivity to λmfp from the auto-correlation

function at different λmfp values. The bottom panel shows models with varying ⟨F ⟩ and

constant λmfp = 39 cMpc. ⟨F ⟩ sets the overall amplitude of the auto-correlation func-

tion. Here the differences between models are linear where larger ⟨F ⟩ leads to larger

auto-correlation values. This scaling is roughly ∝ ⟨F ⟩2, which follows from the definition

of the auto-correlation function.

To visualize the covariance matrix, we define the correlation matrix, C. The correla-

tion matrix is the covariance matrix with the diagonal normalized to 1. This is done to

the jth, kth element by

Cjk = Σjk√
ΣjjΣkk

. (3.5)

One example correlation matrix is shown in Figure 3.6 for z = 5.4, λmfp = 39 cMpc, and

⟨F ⟩ = 0.0801. All bins of the auto-correlation function are very-highly correlated which

is due to the fact that each pixel in the Lyα forest contribute to multiple (in fact almost

all) bins in the auto-correlation function.

3.3.2 Effect of Model Limits on the Auto-correlation Function

As stated in Section 3.2, the semi-numerical method to generate the fluctuating UVB

with various λmfp ignores the correlation between the density and ΓHI. This is a result of

the current limitations on available simulation boxes. We require that the UVB boxes are

large enough to avoid suppressing UVB fluctuations and we require that the underlying

hydrodrynamical simulation boxes of the IGM have a grid that is fine enough to resolve

the small structures in the Lyα forest. Lukić et al. (2015) found that this grid needs
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Figure 3.6: This figure shows the correlation matrix calculated with equation (3.5) with
Nmocks = 500000 for the model at z = 5.4 with λmfp = 39 cMpc, ⟨F ⟩ = 0.0801, and R = 8800.
The color bar is fixed to span from -1 to 1, which is all possible values of the correlation matrix.
Here it is clear that all bins in the auto-correlation function are highly correlated with each
other.

to have a grid resolution of 20 h−1 kpc to produce 1% convergence of Lyα forest flux

statistics. Davies & Furlanetto (2016b) found that, with their 400 Mpc box of ΓHI values,

the tail of their optical depth distribution was impacted by cosmic variance, highlighting

the need to go to even larger boxes. Having both a large box with a fine grid, which

would be required to correlate the UVB and simulation box density, is currently too

computationally expensive to be feasible.

In general, there is a positive correlation between density and ΓHI and a negative

correlation between density and transmitted flux. This means that in areas with high

ΓHI there should also be higher density which would in turn decrease the transmitted

flux, therefore reducing the extra signal from the short λmfp. To quantitatively explore

this, we used a Nyx simulation box with a size of Lbox = 40 cMpc h−1 at z = 5.8. This

box size has associated UVB values for λmfp = 15 cMpc generated with the same method

of Davies & Furlanetto (2016b) as described in Section 3.2.1. For these UVB boxes the

local matter density matches that of the Nyx simulations of the IGM. We selected skewers

from the UVB boxes in two ways: from the same location as the Nyx skewers or from a
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Figure 3.7: This figure demonstrates the effect of ignoring density correlations as well as using
a small box size when generating ΓHI. The blue line shows the auto-correlation function when
using a ΓHI calculated with the appropriate density field and a box size of Lbox = 40 cMpc h−1.
The orange line shows the same for a ΓHI calculated with the a random density field and a box
size of Lbox = 40 cMpc h−1, isolating the effect of density correlations when compared to blue.
The green line shows the same for a ΓHI calculated with the a random density field and a box
size of Lbox = 512 cMpc, isolating the effect of the box size when compared with orange. Here
we see that the correct density field will cause the signal on small scales to be reduced and that
using a larger box size will increase the signal for all scales.

random location in the box. When the UVB skewers come from the same location as the

Nyx skewers the density field and UVB field are correlated. When the UVB skewers come

from a random location these two fields will not be correlated, which is analogous to the

uncorrelated modeling adopted in the main text. The resulting auto-correlation function

models are shown in Figure 3.7 as the blue and orange lines. The blue line is the model

with UVB skewers from the 40 h−1 cMpc box that were derived from the same density

field as the Nyx simulations. The orange line is the model with UVB skewers from the

40 h−1 cMpc box that were derived from a random density field. Comparing these two

lines isolates the effects of ignoring the UVB-density correlations. Here we see that the

density correlations reduce the auto-correlation signal at small scales while leaving the

large scale signal unchanged. When correlated, ΓHI is proportional to the local density

field so the regions of high ΓHI values will also be regions of higher density. Since the

optical depth scales as a power of the local density field, the boosted signal on small
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scales from regions of high ΓHI in the orange model will be reduced by the corresponding

increased local density leading to the reduction in small scales in the blue model. Since

the reduction is happening on small scales, this mimics the effect of instead having a

model with a larger λmfp.

Additionally, we investigated the effect of the box size used to generate the UVB on

the amount of fluctuations in ΓHI seen at a fixed λmfp. Using a smaller box size, such

as the 40 h−1 cMpc box considered in Oñorbe et al. (2019), can suppress fluctuations

in the local λ value since there is a smaller volume that must average to λmfp. For this

comparison, we use randomly selected UVB skewers from the 40 h−1 cMpc box as well

as randomly selected skewers from our 512 cMpc UVB box with λmfp = 15 cMpc from

the main text of this work as described in Section 3.2.1. The UVB skewers chosen with

both of these methods are uncorrelated with the density field, so we isolate the effect of

only the box size. The two resulting auto-correlation function models are also shown in

Figure 3.7. Again, the orange line is the model with UVB skewers from the 40 h−1 cMpc

box that were derived from a random density field. The green line shows the model with

UVB skewers from the 512 cMpc box that has a random density field compared to the

Nyx simulation. Comparing this green line to the orange line thus isolates the effect of

the small box size where again the large box size is required for UVB fluctuations to

converge for a given λmfp. Here we see that the green model has a greater signal than

the orange at all scales. Therefore, both the blue and orange models with UVB skewers

generated in a 40 h−1 cMpc box are likely underestimating the auto-correlation function

on all scales. This makes it difficult to quantify the level of excess signal in the auto-

correlation function that we get from ignoring correlations between the UVB and the

local density field since the signal is underestimated on all scales when using the smaller

UVB box. For this reason, we choose not to correct the mock data to account for the

effect of using an uncorrelated UVB.
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The mock data and models of the auto-correlation function from this study are self-

consistently generated since both ignore the correlations between the UVB and the local

density field. Therefore, the excess signal on small scales from modeling with an uncor-

related UVB will not bias the constraints obtained in this work. However, this excess

on small scales needs to be accounted for when using the models of the auto-correlation

function from the main text to constrain λmfp with observational data. We would ex-

pect measurements made by comparing data to models generated without UVB-density

correlations to be biased towards larger values of λmfp, since the reduced signal on small

scales from real density correlations would look like a larger λmfp in our models. We can

not quantify this potential bias with these simulations because, again, the small box size

of 40 h−1 cMpc reduces the auto-correlation function signal on all scales. Modeling the

UVB consistently with Lyα forest simulations in larger boxes is necessary to conclusively

study the limitations of the model used in this work. We therefore leave this to future

work.

3.3.3 Parameter Estimation

To quantify the precision with which λmfp can be measured we use Bayesian inference

with a multi-variate Gaussian likelihood and a flat prior over the parameters of interest.

This likelihood (L = p(ξ|λmfp, ⟨F ⟩)) has the form:

L = 1√
det(Σ)(2π)n

exp
(

−1
2(ξ − ξmodel)TΣ−1(ξ − ξmodel)

)
(3.6)

where ξ is the auto-correlation function from our mock data, Σ = Σ(ξmodel) is the model

dependent covariance matrix estimated by equation (3.4), and n is the number of points

in the auto-correlation function. We discuss the assumption of using a multivariate

Gaussian likelihood in Appendix 3.7.

Our models are defined by two parameters: λmfp and ⟨F ⟩. We compute the posteriors
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for these parameters using Markov Chain Monte Carlo (MCMC) with the EMCEE package

(Foreman-Mackey et al., 2013). We linearly interpolate the model values and covariance

matrix elements onto a finer 2D grid of λmfp and ⟨F ⟩ then use the nearest model during

the MCMC. This fine grid has 137 values of λmfp and 37 values of ⟨F ⟩. Our MCMC was

run with 16 walkers taking 5000 steps each and skipping the first 500 steps of each walker

as a burn-in.

Figure 3.8 shows the result of our inference procedure for one mock data set at

z = 5.4. The top panel shows the mock data set with various lines relating to the

inference procedure as follows. The green dotted line and accompanying text presents

the true model that the mock data was drawn from. The mock data set is plot as

the black point with error bars that come from the diagonal elements of the covariance

matrix of the model that is nearest to the inferred model. The inferred model is the

model that comes from the median of each parameter determined independently via the

50th percentile of the MCMC chains. The red lines and accompanying text shows the

inferred model from MCMC. The errors on the inferred model written in the text are

the distance between the 16th, 50th, and 84th percentiles of the MCMC chains. The

blue lines show the models corresponding to 100 random draws from the MCMC chain

to visually demonstrate variety of models that come from the resulting posterior. The

bottom left panel shows a corner plot of the posteriors for both λmfp and ⟨F ⟩. Here

we see evidence of an extended tail out towards larger λmfp which is quantified in the

asymmetric errors reported on the inferred value of λmfp. This asymmetry comes from

the non-linear spacing of the auto-correlation function models as discussed in Section

3.3.1.
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Figure 3.8: This figure illustrated the results of our inference procedure applied to one mock data
set at z = 5.4. The top panel shows the resulting models from our inference procedure without
re-weighting while the bottom panel has two corner plots that show the resulting parameters,
the left without re-weighting and the right with re-weighting. In the top panel, the black
points with error bars are the mock data with error bars from the inferred model. The inferred
model was calculated by the median (50th percentile) of the MCMC chains of each parameter
independently. The inferred model is shown as a red line while the accompanying red text
reports errors calculated from the 16th and 84th percentiles of each parameter. In comparison,
the true model the data was drawn from is the green dotted line and accompanying text. To
demonstrate the width of the posterior, multiple faint blue lines are shown which are the models
corresponding to the parameters from 100 random draws of the MCMC chain. The bottom
left panel shows a corner plot of the values of λmfp and ⟨F ⟩ that immediately result from our
inference procedure. The bottom right panel shows the corner plot of the values of λmfp and
⟨F ⟩ from our inference procedure using the re-weighting approach. This means the corner plot
has been made with the weights calculated from our inference test as described in Section 3.3.4
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3.3.4 Inference Test and Re-weighting

We perform a test to check the fidelity of our inference procedure in order to ensure

that our resulting posteriors act in a statistically valid way. This will ensure any as-

sumptions we make during our inference are justified. For example, in this work we used

an approximate likelihood in the form of a multivariate Gaussian likelihood. The Lyα

forest is known to be a non-Gaussian random field. By adopting a multivariate Gaus-

sian likelihood here, we are tacitly assuming that averaging over all pixel pairs when

calculating the auto-correlation function will Gaussianize the resulting distribution of

the values of the auto-correlation function, as is expected from the central limit theo-

rem. We discuss the distribution of these values for our mock data in detail in Appendix

3.7. If this assumption is not valid our reported errors may be either underestimated or

overestimated.

The general idea of our inference test is to compare the true probability contour

levels with the “coverage” probability. The coverage probability is the percent of time

the probability of the true parameters of a mock data set fall above a given probability

level over many mock data sets. In our case, we compute this over 500 mock data sets

where the true parameters considered are samples from our priors. Ideally, this coverage

probability should be equal to the chosen probability contour level. This calculation

can be done at many chosen probabilities resulting in multiple corresponding coverage

probabilities. Existing work that explore this coverage probability include Prangle et al.

(2013); Ziegel & Gneiting (2013); Morrison & Simon (2017); Sellentin & Starck (2019).

When considering multiple chosen probabilities, Ptrue, and resulting coverage proba-

bilities, Pinf, the results can be plot against each other. The results of our inference test

at z = 5.4 from 500 posteriors with true parameters randomly drawn from our priors

are shown in the left panel of Figure 3.9. The grey shaded regions around our resulting
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Figure 3.9: The left panel of this figure shows the coverage resulting from the inference test
from 500 models at z = 5.4 and R = 8800 drawn from our priors on λmfp and ⟨F ⟩. Here we
see that the true parameters for the models fall above the 60th percentile in the MCMC chain
∼ 50% of the time, for example. The right panel of this figure shows the coverage resulting
from the inference test with the use of one set of weights to re-weight the posteriors. With
these weights we are able to pass the inference test.

line show the Poisson errors for our results. Again we expect Ptrue = Pinf which would

give the red dashed line in this figure. To interpret this plot, first consider one point, for

example Ptrue ≈ 0.6. This represents the 60th percentile contour, which was calculated

by the 60th percentile of the probabilities from the draws of the MCMC chain for each

mock data set. Here, the true parameters fall within the 60th percentile contour only

≈ 50% of the time. This implies that our posteriors are too narrow and should be wider

such that the true model parameters will fall in the 60th percentile contour more often,

so we are in fact underestimating our errors. We run this inference test at all z consid-

ered in this work and found the deviation from the 1-1 line is worse at higher redshifts.

See Appendix 3.8 for a discussion of the inference test at z = 6. We additionally run

the inference test for mock data generated from a multi-variate Gaussian distribution in

Appendix 3.9.

There has also been past work trying to correct posteriors that do not pass this
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coverage probability test (Prangle et al., 2013; Grünwald & van Ommen, 2014; Sellentin

& Starck, 2019). In this work, we are using the method of Hennawi et al. in prep. where

we can calculate one set of weights for the MCMC draws that broaden the posteriors in

a mathematically rigorous way.

A brief description of the reweighting method from Hennawi et al. in prep. is as

follows. Consider one data set which gives a corresponding posterior PDF. Initially we

have: ∫
dx̂p(x̂)H(p(x̂) > p0) = α0 (3.7)

where p(x̂) is the PDF of the posterior of some parameters x̂, p0 is a chosen posterior

probability, H is the Heaviside function – causing the integrand to be 0 when the prob-

ability is less than the given contour p0, and α0 is the corresponding volume of the PDF

where the probability of x̂ is greater than p0. This means that α0 = 1 − C(p0) where C

is the cumulative distribution function.

If we instead consider our MCMC chain used to estimate the posterior with Nsamples

points each with probability 1/Nsamples in the chain we get:

1
Nsamples

Nsamples∑
i

H(pi > p0) = # of samples with p > p0

Nsamples
= α0 (3.8)

where the last equality comes from the fact that this sum is a Monte Carlo integral.

Consider the corresponding percentile, Ptrue, of this probability contour. By defini-

tion, C(Ptrue) = 1 − Ptrue (because the greatest values of the probability correspond to

the smallest percentile contours). Thus we have:

1
Nsamples

Nsamples∑
i

H(pi > p0) = Ptrue (3.9)

However, as discussed above, after running an inference test what was thought of as

the Ptrue percentile contour is in reality the inferred percentile, Pinf, contour. Previous

works Sellentin & Starck (2019) suggested relabeling the Ptrue contour as the Pinf contour.
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However, another method to broaden (or condense) the probability contour is by using

a set of weights. Consider re-writing equation (3.9) using weights, w:

1
Nsamples

Nsamples∑
i

w(xi)H(pi > p0) ≈ f(Ptrue) (3.10)

You can then consider multiple values of Ptrue and absorb the factor of 1
Nsamples

into the

weights:

Aw = f(Ptrue) (3.11)

where A is matrix of only 1s and 0s from the Heaviside function, w is the vector of

weights, and Ptrue is the vector of probability contours considered. In fact, we can

order the samples from the smallest probability value to the largest probability value

such that A is an upper triangular matrix. To guarantee the new weighted probability

contours behave as they should statistically (i.e. the true value falls in the P -th percentile

contour P% of the time), we set f(Ptrue) = Pinf. This works because Pinf is the measured

statistically correct percentile contour for this Ptrue value from the previous inference

test. Therefore, we can compute weights by:

w = A−1Pinf. (3.12)

Note that this equation implies that we must run the inference test for the number of

probability contours equal to the number of MCMC probability samples we have for each

posterior. However, in practice we compute much fewer Pinf values during the inference

test and then interpolate this vector onto one with the number of MCMC samples we

have.

Thus we are able to calculate one set of (5000−500)×16 = 72000 weights that would

be used for all 500 mock data sets to broaden the posteriors and pass this inference test.

The weights calculated by this method, for a given set of MCMC chains, are unique. The

line resulting from the inference test after calculating and using a set of weights is shown
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in the right panel of Figure 3.9. This line clearly falls along the 1-1 line as expected

so our calculated weights allow us to re-weight our posteriors into a statistically correct

form. See Appendix 3.8 for a discussion of the re-weighting at z = 6.

We show the re-weighted posteriors on λmfp and ⟨F ⟩ in the bottom right part of

Figure 3.8. The weights give greater importance to larger values of λmfp in the tail of

values to the right, effectively broadening the posteriors and increasing the errors on the

fit. For the mock data set in Figure 3.8 the re-weighted marginalized posterior for λmfp

gives λmfp = 30+14
−7 cMpc whereas before the inferred value was 30+10

−6 cMpc, so the new

errors are ∼ 30% larger. When looking at the 2D distribution in this panel we see that

the weights do introduce an additional source of noise to the posterior distribution.

This whole inference procedure is not the optimal and will not give the best constraints

on λmfp possible from this statistic. The need to use re-weighting, or some method

to correct our posteriors to pass an inference test, comes from our incorrect (though

frequently used) assumption of a multivariate Gaussian likelihood. The values of the

auto-correlation function at these high z do not sufficiently follow a multivariate Gaussian

distribution to justify this assumption, which should be a warning for other studies of

the Lyα forest at these z. Using a more correct form of the likelihood (such as a skewed

distribution) or likelihood-free inference (such as approximate Bayesian computation as

used in Davies et al. (2018b) or other machine learning methods) would lead to more

optimal posteriors that better reflect the information in the auto-correlation function.

Therefore, future work on this inference procedure will improve the constraints on λmfp.

3.4 Results

In order to consider the range of observational constraints possible from one set of λmfp

and ⟨F ⟩ values because of cosmic variance, we study the distribution of measurements
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z Model λmfp (cMpc)
Measured λmfp (cMpc)

R = 8800 R = 30000

5.4 39 40+27
−9 32+7

−5

5.5 32 35+12
−6 33+6

−4

5.6 26 28+7
−4 27+5

−3

5.7 20 22+7
−4 20+4

−3

5.8 16 18+6
−4 16+3

−3

5.9 12 14+5
−4 13+3

−3

6.0 9 12+6
−3 11+4

−2

Table 3.2: This table contains the results of analyzing the λmfp posteriors for the model value of
the auto-correlation function. The mock data at each z has the same value of λmfp as recorded
in Table 3.1. The first column contains the modeled value of λmfp at each z that was used in this
measurement. The next column contains the resulting measurements at each z for R = 8800
data while the last column has the resulting measurements for R = 30000 data. In general
the trend of the errors is to initially decrease with increasing redshift and then stay about flat
beyond z = 5.7. This trend follows from the evolution in the true value of λmfp and the data
set size at each z.
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for 100 mock data sets. For each z we use the λmfp and ⟨F ⟩ values reported in Table 3.1.

Each mock data set is chosen by randomly selecting the appropriate number of skewers

given the data set size at each redshift, and averaging the auto-correlation function for

each individual skewer. For each mock data set, we perform MCMC as described in

Section 3.3.3 and then re-weight the resulting posteriors following Section 3.3.4. Once we

have the weights and the chains resulting from our inference procedure we can calculate

the marginalized posterior for λmfp.

We calculate the marginalized re-weighted posteriors for 100 mock data sets at each

z and R. All 100 marginalized re-weighted posteriors are shown as the faint blue lines

in Figure 3.10 at z = 5.4 for R = 8800 (top panel) and R = 30000 (bottom panel). In

addition to the randomly selected mock data sets, we computed the re-weighted posterior

using the model value of the auto-correlation. This is shown as the blue histogram in

Figure 3.10. Using the model value as mock data is the ideal case and removes the luck

of the draw from affecting the precision of this posterior. The measurement resulting

from the model data is written in the blue text of this figure and the values at each z

and R are reported in Table 3.2.

Figure 3.10 shows the results from all 100 mock data sets (blue lines) at z = 5.4 in

order to visualize the various shapes of the resulting re-weighted posteriors. These data

sets all have the true values of λmfp = 39 cMpc, ⟨F ⟩ = 0.0801, and a 64 quasar data set.

The top panel shows the low-resolution R = 8800 results and the bottom panel shows the

high-resolution R = 30000 results. The re-weighted histograms in Figure 3.10 are noisy,

much like is seen in the bottom right panel of Figure 3.8. This is a direct consequence

of our re-weighting procedure and will be improved with further work on likelihood-free

inference. There are roughly two behaviors of posteriors shown here: those that have a

large peak at low values and those that are lower limits starting at low value and staying

non-zero at our upper boundary of 150 cMpc. For both the lower resolution and higher
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resolution data, the model values of the auto-correlation function give posteriors with

typical widths when compared to the mock data. Both model posteriors also contain the

true value of λmfp within their 1σ error bars. Overall, the higher resolution data does

produce tighter, more precise posteriors for both the model value and the mock data.

Table 3.2 reports the measurements that result from using the model values of the

auto-correlation function as our data. This is an ideal scenario that removes luck of the

draw from the resulting measurement. The first column contains the modeled value of

λmfp at each z that was used in this measurement, which also appear in Table 3.1. The

next column has the resulting measurements for R = 8800 data while the last column

has the resulting measurement for the R = 30000 data. The errors initially decrease

with increasing redshift and then stay about the same beyond z = 5.7. There are two

important factors to consider when looking at this trend. First is the trend of the true

value of λmfp with z where λmfp decreases with increasing z. The auto-correlation function

is more sensitive to smaller values of λmfp as discussed in Section 3.3.1. Briefly this is

due to the fact that smaller λmfp produce greater fluctuations resulting in a larger signal.

This means we would expect the results to get more precise and thus have smaller errors

at higher z. The other factor is the size of the data set, which is greatest at the lowest z.

We would expect the measurements to be less precise and thus have larger errors for the

smaller data sets at high z. These effects combine resulting in the trend we see. When

comparing the R = 8800 and R = 30000 measurements, we find that the R = 30000

values are on average 40% more precise. Note that it also appears that the measured

values of λmfp are always biased high. However, these posterior distributions have tails

to greater values of λmfp which causes the reported median measured value of λmfp to be

greater than the most likely value of λmfp.

In order to visualize the differences between measurements at different redshifts, we

plot the results for five random mock data sets with R = 8800 in Figure 3.11. Each violin
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Figure 3.10: This figure shows 100 re-weighted posteriors of λmfp at z = 5.4 with true λmfp = 39
cMpc and ⟨F ⟩ = 0.0801 (blue faint lines). The top panel shows the low-resolution R = 8800
results and the bottom panel shows the high-resolution R = 30000 results. It also displays
the re-weighted posterior (thick blue histogram) from the model’s value of the auto-correlaiton
function with the measurement of this average posteriors written in blue text. This demon-
strates the different possible behaviors the posterior can have from our method. Overall, the
higher resolution data does produce more precise posteriors, including the average posterior
which is seen in the higher peak and smaller reported errors.
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is the re-weighted marginalized posterior for one randomly selected mock data set at the

corresponding redshift. The light blue shaded region demarcates the 2.5th and 97.5th

percentiles (2σ) of the MCMC draws while the darker blue shaded region demarcates the

16th and 84th percentiles (1σ) of the MCMC draws. The dot dashed line is the double

power law, equation (3.1), which we used to determine the true λmfp evolution as shown

in Figure 3.2.

Looking at the posteriors for a given redshift (one column in the figure), the only

difference between the posteriors is the random mock data set drawn. This still produces

different precision results as seen in Figure 3.10 for z = 5.4. There are then three

differences between mock data sets shown for a given panel. First is again the mock data

is chosen at random so there will be fluctuations in the precision with the luck of the

draw. The mock data at different redshift also have different true λmfp values, shown

in the dot-dashed black line, where the smallest λmfp value is at the highest z. The

auto-correlation function is most precise at small inferred λmfp values which are more

likely at the highest z. Additionally, the redshifts each have different data set sizes, as

reported in Table 3.1. The highest redshifts have the smallest data set sizes, leading to

greater scatter in the precision of the posteriors. Again, the individual posteriors are

noisy, resulting from the re-weighting procedure as described in Section 3.3.4.

Here all the mock data sets are at our lower-resolution, R = 8800, which was chosen

to mimic the existing XQR-30 data. In Appendix 3.10 we discuss the same plot (Figure

3.17) but with the higher resolution, R = 30000, data. The only difference between

the data used in Figure 3.11 and Figure 3.17 is the resolution of the mock data. The

randomly chosen mock data sets, the data set sizes, and the true values are the same.
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Figure 3.11: Each panel of this figure shows one posterior for a different randomly selected
low-resolution (R = 8800) mock data set at each z. For each posterior, the light blue shaded
region demarcates the 2.5th and 97.5th percentile of the MCMC draws while the darker blue
shaded region demarcates the 17th and 83rd percentile of the MCMC draws. The black dot
dashed line shows the double power law from equation (3.1) and Figure 3.2. The behavior of
each posterior at the different z is determined by the luck of the draw when selecting the mock
data, the true λmfp value at each z, and the data set size at each z. The true λmfp values and
data set sizes are reported in Table 3.1.

99



Forecasting constraints on the mean free path of ionizing photons at z ≥ 5.4 from the Lyman-α
forest flux auto-correlation function Chapter 3

3.5 Conclusions

In this work we have investigated to what precision λmfp can be constrained using

the auto-correlation function of Lyα forest flux in quasar sightlines. Overall, we found

that the auto-correlation function is sensitive to the value of λmfp across multiple redshift

bins and for realistic mock data with both high and low resolution. We computed the

marginalized re-weighted posterior for λmfp for 100 mock data sets with properties similar

to the XQR-30 extended data set at 5.4 ≤ z ≤ 6.0 We additionally considered 100 mock

data sets with R = 30000, over three times greater than XQR-30 data resolution. The

re-weighted posterior showed a variety of behaviors based on the luck of the draw of the

mock data chosen, the true value of λmfp for the mock data, and the data set size at each

z.

We considered an ideal data set which had the model value of the auto-correlation

function, effectively removing the luck of the draw from our measurement. The error

on these measurements for both the high resolution and low resolution data initially

got smaller (more precise) with increasing redshift then stayed about the same beyond

z = 5.7. This followed from the changing true value of λmfp and the size of the data set

at each z. Small values of λmfp lead to greater fluctuations in the UVB and thus produce

an increased signal in the auto-correlation function. This makes the auto-correlation

function more sensitive to smaller values of λmfp than larger values of λmfp where the

fluctuations are smaller. This work has opened up the possibility for future measurements

of λmfp with the auto-correlation function by quantifying the sensitivity of this method.

Of particular interest is the measurement at z = 6.0, where recent measurements

imply a rapid evolution of λmfp. For our ideal model data at z = 6.0 with R = 8800,

we get λmfp = 12+6
−3 cMpc where the true value we modeled was λmfp = 9 cMpc. In

comparison, the measurement from Becker et al. (2021) at z = 6.0 is 0.75+0.65
−0.45 proper
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Mpc (or 5.25+4.25
−3.15 cMpc). Thus our ideal measurement with this new statistical method

has comparable error bars as those from Becker et al. (2021). We therefore expect that

a measurement using this technique on real data will provide a competitive, secondary

check on the value of λmfp at z = 6.0. Additionally, we have shown that our method can

be applied to multiple fine redshift bins from 5.4 ≤ z ≤ 6.0 to precisely constrain the

evolution of λmfp.

Note that our procedure uses a multi-variate Gaussian likelihood, MCMC, and a set

of weights for the MCMC chains that ensures our posteriors pass an inference test. The

original failure of our procedure to pass an inference test is likely due to the incorrect as-

sumption that the auto-correlation function follows a multi-variate Gaussian distribution,

as discussed in Appendix 3.7. This result should caution against using a multi-variate

Gaussian likelihood with other statistics, such as the power spectrum, when making

measurements at z > 5 as the same issue of non-Gaussian data likely applies. This is

especially concerning if the low value of λmfp with high corresponding fluctuations in the

UVB at high-z holds true. In the future, better likelihoods or likelihood-free inference

will allow for a more optimal inference procedure (see e.g. Davies et al. (2018b) or Alsing

et al. (2019)). This will lead to tighter constraints on λmfp from the auto-correlation

function.

For this work, we used the method of Davies & Furlanetto (2016b) to generate the

UVB boxes as described in section 3.2.1. This assumes a fixed source model which could

potentially prove to be incorrect. For example, if fainter galaxies had higher escape

fractions it would reduce the strength of UVB fluctuations at fixed λmfp, also reducing

the auto-correlation signal. This would bias λmfp measurements through this method

from real data compared to these models (though it is consistent for our mock data

generated from our models). We leave a detailed consideration of the effect of other

source models to future work.
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Our work also discussed the effect of the current limitations in modeling the UVB and

Lyα forest on the auto-correlation function. Namely, our UVB boxes are not correlated

with the density of our Nyx simulation box, where in reality these quantities are physically

correlated. We considered the effect of a correlated UVB in Section 3.3.2. We found that

the correlation between high density areas with increased UVB values would reduce the

auto-correlation signal for a fixed λmfp on small scales, since higher density leads to

reduced transmission. This would again bias a measurement from real data, where these

correlations would exist, because the true signal for a given λmfp should be lower than it is

in our models, which mimics a model with a larger λmfp value. However, this comparison

was done in a small box (40 cMpc h−1) which suppresses UVB fluctuations on all scales

as is also discussed in Section 3.3.2. Suppressing fluctuations in the UVB causes the

auto-correlation signal to be lower in these boxes. Thus in this comparison the signal is

smaller from the density correlations but the UVB fluctuations are also under-estimated

due to the box size. The existence of both of these effects means that we were not able

to quantify any potential bias from the uncorrelated UVB boxes. The mock data used

in this work is generated in the same ways as the models they are compared to, so the

measurements here are self-consistent. However, any attempts to compare these models

with actual data will need to take into account the effect of using an uncorrelated UVB in

the modeling. Thus, future work on UVB models will be necessary before observational

λmfp constraints can be produced.

Another potential physical impact on the auto-correlation signal is fluctuation in the

temperature of the IGM. Oñorbe et al. (2019) showed that fluctuations in the temperature

of the IGM impacted the largest scales of the power spectrum at z > 5. We therefore

would conclude these fluctuations would also impact the auto-correlation function, which

is the Fourier transform of the power spectrum. However Oñorbe et al. (2019) also

considered a fluctuating UVB and found that this effectively cancelled out the impact of
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the thermal fluctuations on the largest scales of the power spectrum. We leave further

work on the impact of temperature fluctuations along with UVB fluctuations to future

work.

Continuum errors will effect the measurement of the auto-correlation on larger scales

which are less important than the small scales when considering λmfp. The reconstruc-

tion done in Bosman et al. (2022) is shown to reconstruct the continuum within 8%.

Additionally, Eilers et al. (2017) showed that continuum errors had minimal effect on the

shape of the normalized flux PDF at z = 5 where transmission is low. We have left a

detailed exploration of the effect of continuum errors on the auto-correlation function for

future work.

We also note that there is additional z > 5 Lyα forest data in telescope archives

with lower SNR that could be used in our analysis. Here we limited the consideration to

mock XQR-30 data (and a high-resolution analog) but will consider the impact of adding

noisier data in future work.

The value of λmfp and its evolution at high z is important for understanding reion-

ization. Measuring λmfp at high z is a difficult task that so far has been restricted to two

redshift bins at z > 5. This work has shown that the auto-correlation function of the

Lyα forest flux provides a new, competitive way to constrain λmfp in multiple redshift

bins at z ≥ 5.4.

3.6 Appendix A: Convergence of the Covariance Ma-

trices

We calculate the covariance matrices for our models with mock draws, as defined in

equation (3.4). Using mock draws is inherently noisy and it should converge as 1/
√

N
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Figure 3.12: This figure shows the behavior of three elements of the model covariance matrix
(z = 6, R = 8800, λmfp = 9 cMpc, and ⟨F ⟩ = 0.0089) for different numbers of mock draws. At
all values of the number of mocks considered, the covariance elements fall within 3% of their
final value. By around ∼ 200000 draws, all of the values fall within 1% of the final value. For
this reason, we believe using 500000 mock draws is sufficient to generate the covariance matrices
used in this study. 500000 mock draws is represented by the vertical dashed black line.

where N is the number of draws used. As stated in the text, we used 500000 mock draws.

To check that this number is sufficient to minimize the error in our calculation, we looked

at the behavior of elements of one covariance matrix in Figure 3.12. This covariance

matrix is for the model with z = 6, R = 8800, λmfp = 9 cMpc, and ⟨F ⟩ = 0.0089,

chosen because z = 6 has the lowest “true” λmfp value which would lead to the largest

fluctuations in the UVB. The values in the plot have been normalized to 1 at 106 draws.

The three elements have been chosen such that there is one diagonal value and two off-

diagonal values in different regions of the matrix. Looking at the correlation matrix in

Figure 3.6 (which is for a different model but the qualitative behavior is the same for this

model) we see that at all values both on and off the diagonal of the correlation matrix

are high and positive, so we expect the convergence for all elements to be roughly the

same. At all values of the number of mock draws considered, the covariance elements

fall within 3% of their final value. By around ∼ 200000 draws, the values fall within 1%

of the final value. For this reason, we believe using 500000 mock draws is sufficient to

generate the covariance matrices used in this study. In Figure 3.12, 500000 mock draws

is represented by the vertical dashed black line.
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3.7 Appendix B: Non-Gaussian distribution of the

values of the auto-correlation function

For our inference, we used the multi-variate Gaussian likelihood defined in equation

(3.6). This functional form assumes that the distribution of mock draws of the auto-

correlation function is Gaussian distributed about the mean for each bin. In order to

visually check this we will look at the distribution of mock draws from two bins of the

auto-correlation function for two different models.

Both Figures 3.13 and 3.14 show the distribution of 1000 mock data sets from the ve-

locity bins of the auto-correlation function with ∆v = 85.0 km s−1 and ∆v = 289.0 km s−1.

The bottom left panels show the 2D distribution of the auto-correlation values from these

bins. The blue (green) ellipses represents the theoretical 68% (95%) percentile contour

calculated from the covariance matrix calculated for each model from equation (3.4).

The red crosses shows the calculated mean. The top panels show the distribution of

only the v = 289.0 km s−1 bins while the right panels show the distribution of only the

v = 85.0 km s−1 bins.

Figure 3.13 shows mock values of two bins of the auto-correlation function for the

model at z = 5.4 with R = 8800, λmfp = 39 cMpc and ⟨F ⟩ = 0.0801. These mock data

sets consist of 64 quasar sightlines of length ∆z = 0.1. Both the 1D and 2D distributions

seem relatively well described by Gaussian distributions by eye though they do show

some evidence of non-Gaussian tails to larger values. The number of points falling in

each contour both fall within 2% of the expected values. In the bottom left panel with

the 2D distribution there are more mock values falling outside the 95% contour to the

top right (higher values) than in any other direction. For this reason the distribution is

not exactly Gaussian but a Gaussian visually appears as an acceptable approximation.

Figure 3.14 shows mock values of two bins of the auto-correlation function for the
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model at z = 6 with R = 8800, λmfp = 9 cMpc, and ⟨F ⟩ = 0.0089. These mock data sets

consist of 19 quasar sightlines of length ∆z = 0.1. In both the top and right panels, which

show the distribution of values for one bin of the auto-correlation function, it is clear that

the distribution of mock draws is skewed and a Gaussian is not a good approximation

for the distributions. This is quantified by the percent of points in the two ellipses from

the bottom left panel labeled in the top right with 79.0% of the mock draws falling

within the 68% contour and 92.2% of the mock draws falling within the 95% contour.

The points outside of the contours are highly skewered towards the top right (higher

values). It is only possible for the auto-correlation function to be negative due to noise,

which generally averages to very small values approaching zero at the non-zero lags of

the auto-correlation function. However real fluctuations in the UVB cause the positive

fluctuations, making them much more likely and cause the resulting skewed distribution

at high z where the overall signal is closer to zero.

Figures 3.13 and 3.14 show the changing distribution of the auto-correlation value

with λmfp, ⟨F ⟩, and mock data set size. There is a greater deviation from a multi-variate

Gaussian distribution at higher z. It is possible that adding additional sightlines will

cause the auto-correlation function to better follow a multi-variate Gaussian distribution

due to the central limit theorem, though investigating this in detail is beyond the scope

of the paper. The incorrect assumption of the multi-variate Gaussian likelihood thus

contributes to the failure of our method to pass an inference test as discussed in Section

3.3.4 for z = 5.4 and Appendix 3.8 for z = 6. For our final constraints, we calculated

weights for our MCMC chains such that the resulting posteriors do pass our inference test,

as discussed in Section 3.3.4. The whole method of assuming a multi-variate Gaussian

then re-weighting the posteriors in non-optimal and future work using a more correct

likelihood or likelihood-free inference will improve our results.
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Figure 3.13: This figure shows the distribution 1000 mock draws from two bins of the auto-
correlation function (∆v = 85.0 km s−1 and ∆v = 289.0 km s−1) for one model (z = 5.4, R =
8800, λmfp = 39 cMpc, and ⟨F ⟩ = 0.0801). The top panel shows the distribution of only the
∆v = 289.0 km s−1 bin while the right panel shows the distribution of only the ∆v = 85.0 km s−1

bin. The blue (green) circle represents the 68% (95%) ellipse calculated from the covariance
matrix calculated for this model from equation (3.4). The red plus shows the calculated mean.
Additionally the percent of mock draws that fall within each of these contours is written in
the top right. Both the 1D and 2D distributions seem relatively well described by a Gaussian
distribution. In the 2D plot, there are more points outside the 95% contour to the top right
than on any other side but it is not extreme.
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Figure 3.14: This figure shows the distribution 1000 mock draws from two bins of the auto-
correlation function (∆v = 85.0 km s−1 and ∆v = 289.0 km s−1) for one model (z = 6, R =
8800, λmfp = 9 cMpc, and ⟨F ⟩ = 0.0089). The top panel shows the distribution of only the
∆v = 289.0 km s−1 bin while the right panel shows the distribution of only the ∆v = 85.0 km s−1

bin. The blue (green) circle represents the 68% (95%) ellipse calculated from the covariance
matrix calculated for this model from equation (3.4). The red plus shows the calculated mean.
Additionally the percent of mock draws that fall within each of these contours is written in the
top right. Both the 1D and 2D distributions do not seem to be well described by a Gaussian
with 79.0% of the mock draws falling within the 68% contour and 92.2% of the mock draws
falling within the 95% contour.
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3.8 Appendix C: Inference test at high redshift

Here we present the results of the inference test at z = 6. This calculation was done

following the procedure described in Section 3.3.4. Figure 3.15 shows the results for z = 6

and can be compared to the z = 5.4 results in Figure 3.9. The left panel here shows the

initial coverage plot which deviates greatly from the expected Pinf = Ptrue line, much more

so than the z = 5.4. This likely comes from a greater deviation from the assumption of

a multi-variate Gaussian likelihood as described in Appendix 3.7. The z = 6 mock data

show highly skewed distributions that are not well described by a Gaussian likelihood.

This initial coverage plot only ever reaches a value of Pinf ≈ 0.8, which becomes an

issue for the re-weighting. In the right panel of Figure 3.15 the re-weighted inference line

thus still only able to reach Pinf ≈ 0.8 creating a plateau in the line once it reaches this

value. One way to reach higher values is to increase the number of steps in the MCMC

chain. We tried to triple the number of steps but did not see much improvement in

the inference test. For computational reasons we stick with the numbers used at other

redshifts resulting in 72000 total steps as described in Section 3.3.4. This plateau at

Ptrue = 0.8 means that our 1-σ (68th percentile) contours are robust but our 2-σ (95th

percentile) contours are underestimated since we can only correct up to ∼ 80th percentile.

The inference lines at other redshifts are available upon request. For 5.4 ≤ z ≤ 5.8

the coverage plots after re-weighting do not plateau, like the re-weighted coverage plot

shown in Figure 3.9. Both the z = 6.0 and the z = 5.9 coverage plots plateau after

re-weighting, like that in Figure 3.15. This means our re-weighted posteriors at z = 5.9

and z = 6 may still need additional work to further enlarge probability contours above

the value of the plateau.
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Figure 3.15: The left panel of this figure shows the coverage plot resulting from the inference
test from 500 models at z = 6 and R = 8800 drawn from our priors on λmfp and ⟨F ⟩. Here we
see that the true parameters for the models fall above the 60th percentile in the MCMC chain
∼ 20% of the time, for example. The right panel of this figure shows the coverage plot resulting
from the inference test with the use of one set of weights to re-weight the posteriors. With
these weights the true parameters for the models fall on the Pinf = Ptrue line up to Ptrue ∼ 0.8.
This is because the original coverage plot was only able to reach Pinf ∼ 0.8 so our re-weighting
could only match up to this value.

3.9 Appendix D: Gaussian data inference test

As shown in Appendix 3.7, the distribution of mock values of the auto-correlation

function is not exactly Gaussian distributed. In order to confirm the failure of our mock

data to pass an inference test (as discussed in Section 3.3.4 and Appendix 3.8) comes

from the use of a multi-variate Gaussian likelihood, we generate Gaussian distributed

data and run inference tests. For one value of λmfp and ⟨F ⟩, we randomly generate a

mock data set from a multi-variate Gaussian with the given mean model and covariance

matrix that we calculated for our mock data in Section 3.3.1. We can then continue with

the inference test as described in Section 3.3.4. The results for this inference test for

z = 5.4 and z = 6.0 (both with R = 8800) are shown in Figure 3.16. Here both redshifts

inference lines fall along the 1-1 line that is expected for all probability contour, Ptrue,
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Figure 3.16: Both panels of this figure shows the coverage plot resulting from the inference test
from 500 data sets generated by randomly drawing points from the mean model and covariance
matrix. The the means and covariance matrices used come from z = 5.4 and R = 8800 in
the left panel and z = 6.0 and R = 8800 in the right panel. The true parameter values for
both panels were drawn from our priors on λmfp and ⟨F ⟩. In both panels, the Gaussian mock
data produced inference lines that fall on top of the 1-1 line within errors, as expected for the
statistically correct posteriors.

values. This behavior is also seen at the other redshifts and R = 30000. The fact that

perfectly Gaussian data passes an inference test with the same likelihood, priors, and

method as was used on mock data confirms that the failure of our mock data to pass an

inference test is due to the non-Gaussian distribution of the mock data.

3.10 Appendix E: High-resolution results

In section 3.4 we only show the posteriors for multiple mock data sets at different

redshifts for R = 8800. Here we present the same results but for mock data with R =

30000. Each violin plot in Figure 3.17 is the re-weighted marginalized posterior for one

randomly selected mock data set at the corresponding redshift. The light red shaded

region demarcates the 2.5th and 97.5th percentiles (2σ) of the MCMC draws while the

darker red shaded region demarcates the 16th and 84th percentiles (1σ) of the MCMC
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draws. Beneath the red violins are blue violins for the posteriors for the same data with

R = 8800 as shown in Figure 3.11. The dot dashed line is the double power law, equation

(3.1), which we used to determine the true λmfp evolution as shown in Figure 3.2. The

random mock data selected for this figure matches exactly with the random mock data

used to make Figure 3.11. The only difference between the data used in these two figures

is the resolution. Generally, the posteriors from the R = 30000 data shown in Figure

3.17 are more precise than those from the R = 8800 data.

Again, looking at the posteriors for a given redshift (one column in the figure), the

only difference between the posteriors is the random mock data set drawn. These results

still have varying precision as is expected from luck of the draw with the mock data sets.

There are then three differences between mock data sets shown for a given panel. First

is the same as the difference between mocks at one redshift: the mock data is chosen at

random so there is just the luck of the draw. The mock data at each redshift also vary

with the true λmfp value, shown in the dot-dashed black line, where the smallest λmfp

value is at the highest z. The auto-correlation function is most precise at small inferred

λmfp values which are more likely at the highest z. Additionally, the redshifts each have

different data set sizes, as reported in Table 3.1. The highest redshifts have the smallest

data set sizes, leading to greater scatter in the precision of the posteriors. Again, the

individual posteriors are noisy, resulting from the re-weighting procedure as described in

Section 3.3.4.
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Figure 3.17: Each panel of this figure shows one posterior for a different randomly selected high-
resolution (R = 30000) mock data set at each z in shades of red. Note that the low-resolution
(R = 8800) mock data posteriors are plot below the high resolution posteriors in blue. For
each posterior, the light red shaded region demarcates the 2.5th and 97.5th percentile of the
MCMC draws while the darker red shaded region demarcates the 16th and 84th percentile of
the MCMC draws. The black dot dashed line shows the double power law from equation (3.1)
and Figure 3.2. The behavior of each posterior at the different z is determined by the luck of
the draw when selecting the mock data, the true λmfp value at each z, and the data set size at
each z. The true λmfp values and data set sizes are reported in Table 3.1.
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Chapter 4

Forecasting constraints on the high-z

IGM thermal state from the

Lyman-α forest flux auto-correlation

function

This chapter was reproduced from Wolfson et al. (2023a) with only minor changes to

fit the formatting of this dissertation. I’d like to thank my coauthors, without whom

this work would not have been possible: Joseph F. Hennawi, Frederick B. Davies, Zarija

Lukić, and Jose Oñorbe.

4.1 Introduction

Understanding the epoch of reionization, the time period where the first luminous

sources emitted photons that re-ionized the intergalactic medium (IGM), remains a ma-

jor open problem for studies of the early universe. The midpoint of reionization has been
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constrained as zre = 7.7 ± 0.7 from the cosmic microwave background (Planck Collabo-

ration et al., 2020). Initial measurements of transmission in the Lyman-α (Lyα) forest

(Gunn & Peterson, 1965; Lynds, 1971) of high redshift quasars suggested that reioniza-

tion was complete by z ∼ 6 (Fan et al., 2006; McGreer et al., 2011, 2015). Additional

methods used to constrain reionization include observations of Lyα emission from high

redshift galaxies (see e.g. Jung et al., 2020; Morales et al., 2021) and large Lyα absorption

troughs (see e.g. Becker et al., 2018; Kashino et al., 2020). Measurements of the Lyα

forest optical depths scatter on levels that suggest reionization is not actually complete

until z < 6 (Fan et al., 2006; Becker et al., 2015; Bosman et al., 2018; Eilers et al., 2018;

Yang et al., 2020; Bosman et al., 2022).

An alternative, indirect method to constrain reionization is by looking at the thermal

history of the IGM at z > 5 (Boera et al., 2019; Walther et al., 2019; Gaikwad et al., 2021).

During reionization, ionization fronts propagate through the IGM and impulsively heat

the reionized gas in the IGM to ∼ 104 K (McQuinn, 2012; Davies et al., 2016; D’Aloisio

et al., 2019). The details of the driving sources, the timing, and duration of reionization

will determine the precise amount of heat injected. After reionization, the IGM expands

and cools through the adiabatic expansion of the universe and inverse Compton scattering

off CMB photons. The combination of these physical processes will allow the IGM gas to

relax into a state described by a tight power-law relation between the temperature and

density:

T = T0∆γ−1. (4.1)

Where ∆ = ρ/ρ̄ is the overdensity, ρ̄ is the mean density of the Universe, T0 is the

temperature at mean density, and γ is the slope of the relationship (Hui & Gnedin, 1997;

Puchwein et al., 2015; McQuinn & Upton Sanderbeck, 2016). The low-density IGM

has long cooling times, so the thermal memory of reionization will persist for hundreds
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of Myr. This means that thermal state of the IGM at the end and after reionization,

z ∼ 5 − 6, can provide key insights into reionization (Miralda-Escudé & Rees, 1994; Hui

& Gnedin, 1997; Haehnelt & Steinmetz, 1998; Theuns et al., 2002a; Hui & Haiman, 2003;

Lidz & Malloy, 2014; Oñorbe et al., 2017a,b).

The Lyα optical depth, τLyα is related to the temperature via

τLyα = nHIσLyα ∝ T −0.7/ΓHI, (4.2)

see Rauch (1998). Thus, several statistics have been used to measure the thermal state

of the IGM from the Lyα forest, including the flux probability density (Becker et al.,

2007; Bolton et al., 2008; Viel et al., 2009; Calura et al., 2012; Lee et al., 2015), the

curvature (Becker et al., 2011; Boera et al., 2014; Gaikwad et al., 2021), the Doppler

parameter distribution (Schaye et al., 1999, 2000; Ricotti et al., 2000; Bryan & Machacek,

2000; McDonald et al., 2001; Rudie et al., 2012; Bolton et al., 2010, 2012, 2014; Rorai

et al., 2018; Gaikwad et al., 2021), the joint distribution of the Doppler parameters

with the Hydrogen Column Density (Hiss et al., 2018), and wavelets (Lidz et al., 2010;

Garzilli et al., 2012; Gaikwad et al., 2021). One of the most commonly used statistics for

measuring the structure of the Lyα forest is the 1D flux power spectrum, PF (k) (Theuns

et al., 2000; Zaldarriaga et al., 2001; Yèche et al., 2017; Walther et al., 2018; Boera et al.,

2019; Gaikwad et al., 2021; Wolfson et al., 2021).

The thermal state of the IGM significantly influences the Lyα forest, primarily through

two mechanisms: Doppler broadening, which is driven by thermal motions, and Jeans

(pressure) smoothing, which affects the distribution of the underlying baryons. To under-

stand Jeans smoothing, it’s crucial to consider the role of pressure forces. Pressure forces,

influenced by the thermal state, erase gravitational fluctuations at a rate determined by

the local sound speed. At low densities, like those of the IGM, this sound-crossing time

is approximately the Hubble time. Thus, the Jeans (pressure) smoothing scale serves
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as a record of the thermal history of the IGM over extensive timescales (Gnedin & Hui,

1998; Kulkarni et al., 2015; Nasir et al., 2016; Oñorbe et al., 2017a,b; Rorai et al., 2017).

Both Doppler broadening and Jeans smoothing reduce the small-scale structure of the

Lyα forest. These reductions in small-scale structure of the Lyα forest lead to a cut-off

in PF (k) at high-k.

An alternative to the power spectrum is the Lyα forest flux auto-correlation function,

which is the Fourier transform of the power spectrum. In this work we will explore the

ability of the auto-correlation function to constrain the thermal state of the IGM at

z > 5. The auto-correlation function of the Lyα forest has two statistical properties

that make it easier to work with than the power spectrum. First is that uncorrelated

noise (which is the expectation for astronomical spectrograph noise) will not impact non-

zero lags of the auto-correlation function, as it will average to zero. Thus there is no

need to account for uncorrelated noise with the auto-correlation function. For the power

spectrum, uncorrelated noise is a constant positive value at all scales. Thus the unknown

noise level must be calculated and subtracted from power spectrum measurements which

will add additional uncertainty to the final measurement. Additionally, observational

quasar spectra often have regions that need to be removed (e.g. for metal lines). Masking

out these and other regions introduces a complicated window function to the power

spectrum that must be corrected for (see e.g. Walther et al., 2019) and will again increase

the uncertainty in the measurement. The auto-correlation function does not require a

similar correction since masking will only change the number of pixel pairs used at a

given velocity lag.

Many previous studies have measured the Lyα forest flux auto-correlation function

at lower redshifts for a wide range of applications (McDonald et al., 2000; Rollinde et al.,

2003; Becker et al., 2004; D’Odorico et al., 2006). In addition, the first measurement of

the Lyα forest flux auto-correlation function at z > 5 was presented in Wolfson et al.
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(2023c) for moderate resolution quasar spectra.

In this work we will investigate constraints on T0 and γ that can be achieved from

measurements of the Lyα forest flux auto-correlation function. We will do this by creating

mock observational measurements of the auto-correlation function and comparing to

model values of the auto-correlation function determined via semi-numerical methods

applied to hydrodynamical simulations. By applying Bayesian statistics to this setup we

will get mock posterior distributions for T0 and γ.

Beyond a thermal state that follows a tight power law described by T0 and γ, reioniza-

tion can lead to significant fluctuations in the temperature of the IGM (D’Aloisio et al.,

2015; Davies et al., 2018a). At the same time, fluctuations in the ultraviolet background

(UVB) arise during reionization because the ionizing photons produced will be absorbed

by the remaining neutral hydrogen at short distances from their initial sources (Davies

& Furlanetto, 2016b; Gnedin et al., 2017; D’Aloisio et al., 2018). These distances are

characterized by the mean free path of ionizing photons, λmfp (Mesinger & Furlanetto,

2009). Various previous studies have investigated the effect of large scale variations in

the UVB on the auto-correlation function and power spectrum of the Lyα forest (Zuo,

1992a,b; Croft, 2004; Meiksin & White, 2004; McDonald et al., 2005; Gontcho A Gontcho

et al., 2014; Pontzen, 2014; Pontzen et al., 2014; D’Aloisio et al., 2018; Meiksin & Mc-

Quinn, 2019; Oñorbe et al., 2019). In particular, Wolfson et al. (2023b) showed that the

positive fluctuations in the UVB that accompany small λmfp values boost the flux of the

Lyα forest on small scales, which can be detected in the auto-correlation function.

We will use an additional hydrodynamical simulation that models fluctuations in

both the temperature and the UVB to determine the effect on the Lyα forest flux auto-

correlation function. In addition to looking at the qualitative differences between these

models, we will quantify the likelihood ratio between different models for mock data sets.

This provides a quantitative way to discuss constraints on a discrete set of models.
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The structure of this paper is as follows. We discuss our grid of simulations that vary

T0 and γ in Section 4.2. The auto-correlation function and our other statistical methods

to constrain these parameters are described in Section 4.3 with our results being discussed

in Section 4.3.4. We discuss our second set of simulations for models of the IGM with

temperature and UVB fluctuations in Section 4.4 and use the auto-correlation function to

quantitatively distinguish between these models in Section 4.4.3. Finally, we summarize

in Section 4.5.

4.2 Simulation Data

4.2.1 Simulation box

In this work we use a simulation box of size Lbox = 100 comoving Mpc (cMpc) h−1

run with Nyx code (Almgren et al., 2013). Nyx is a hydrodynamical simulation code that

was designed for simulating the Lyα forest with updated physical rates from Lukić et al.

(2015). The simulation has with 40963 dark matter particles and 40963 baryon grid cells.

It is reionized by a Haardt & Madau (2012) uniform UVB that is switched on at z ∼ 15.

We have two snapshots of this simulation at z = 5.5 and z = 6.0. We consider models at

seven redshifts: 5.4 ≤ z ≤ 6.0 with ∆z = 0.1. In order to consider the redshifts for which

we do not have a simulation output, we select the nearest snapshot and use the desired

redshift when calculating the proper size of the box and the mean density. This means

we use the density fluctuations and velocities directly from the nearest Nyx simulation

output. As a test, we used the z = 6.0 simulation snapshot to generate skewers at

z = 5.7 and found no significant change in our finally results, thus the nearest grid point

interpolation between snapshot redshifts is sufficient.

We generate grids of thermal models through a semi-numerical method to set the
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temperature along the sightlines. For each value of T0 and γ, we set the temperature

of each cell following Equation (4.1) for all densities with no cutoff. Our method does

not take into account the full evolution of the thermal state of the IGM, only the instan-

taneous temperature. This simple model is sufficient to achieve the aim of this paper,

which is to see if the auto-correlation function is sensitive to the thermal state. To make

our grid we use 15 values of T0 and 9 values of γ resulting in 135 different combinations

of these parameters at each z. The values of T0 and γ in our grid of thermal models

were chosen based on the current models and available data, as shown in Figure 4.1. We

generate a model for the evolution of the thermal state of the IGM by a method similar

to Upton Sanderbeck et al. (2016) with zreion = 7.7, ∆T = 20, 000 K, and αUVB = 1.5.

For more information on the calculation of the temperature field see Davies et al. (2018

a). We select central “true” T0 and γ values at each redshift from this model, which are

shown as black points in Figure 4.1 and listed in Table 4.1. At all z, we use the errors

on the measurements reported in Gaikwad et al. (2021) at z = 5.8 (∆T0 = 2200 K and

∆γ = 0.22) and modeled from T0 − 4∆T0 to T0 + 4∆T0 and γ − 4∆γ to γ + 4∆γ in linear

bins.

Our simulations don’t predict the overall average of the UVB, ⟨ΓUVB⟩, because this

value originates from complicated galaxy physics that are not included in the simula-

tions. In addition our method of post-processing different thermal states would affect

the resulting ⟨ΓUVB⟩. Instead we choose to model a variety of potential ⟨ΓUVB⟩ values

through the mean transmitted flux, ⟨F ⟩. This is done be re-scaling the optical depths

along the skewer, τ , such that ⟨e−τ ⟩ = ⟨F ⟩ when averaging the transmitted flux over all

skewers. These ⟨F ⟩ model values are centered on the values presented in Bosman et al.

(2022) for each redshift bin. We chose a range of models spanning 4∆⟨F ⟩ where the

∆⟨F ⟩ is the redshift dependent value reported in Bosman et al. (2022). These choices of

⟨F ⟩ are listed in the last column of Table 4.1.
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Table 4.1: This table lists the central “true” values of the redshift-dependent thermal state
models used in this work. The last column states the central “true” value of ⟨F ⟩ modeled in
this work, which are the measurements from Bosman et al. (2022).

z T0 (K) γ ⟨F ⟩

5.4 9,149 1.352 0.0801

5.5 9,354 1.338 0.0591

5.6 9,572 1.324 0.0447

5.7 9,804 1.309 0.0256

5.8 10,050 1.294 0.0172

5.9 10,320 1.278 0.0114

6.0 10,600 1.262 0.0089
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Figure 4.1: The blue squares, orange pentagons, and green triangles show previous measure-
ments of T0 and γ at high z from Gaikwad et al. (2021), Boera et al. (2019), and Walther et al.
(2019) respectively. The dashed line shows the results for a thermal evolution model calculated
with methods similar to Upton Sanderbeck et al. (2016) and Davies et al. (2018a) This model
has zreion = 7.7, ∆T = 20, 000 K, and αUVB = 1.5. We use this model as our “true” redshift
evolution for T0 and γ in this work. The chosen models are shown as black circles.
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Figure 4.2: The top panel shows the density along a section of one skewer in black for z = 5.4.
There are then two pairs of panels each depicting the temperature (top) and flux (bottom) along
this skewer. The first pair varies T0 with constant γ = 1.352 and ⟨F ⟩ = 0.0801. Shifting T0
causes a corresponding shift in the temperature values along the skewer. Hotter temperatures
(orange and green) smooths the flux, as seen clearly in the loss of a second transmission spike
at z ∼ −300 km s−1. The second pair varies γ with constant T0 = 9148 K and ⟨F ⟩ = 0.0801.
When γ > 1 (orange and green) the temperature is directly proportional to the density fluc-
tuations while γ < 1 (blue) causes the temperature to be inversely proportional to the density
fluctuations. When temperature is inversely proportional to density, lower densities have higher
temperatures. Low densities and higher temperatures will locally increase the flux so the γ < 1
(blue) model will lead to transmission spikes with the greatest flux, as seen at v ∼ −100 km s−1.
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We draw 1000 skewers from the simulation box. One example skewer at z = 5.4 for

different T0 and γ models is shown in Figure 4.2. The top panel shows the density of

this skewer for all models in black. There are then two pairs of panels each depicting

the temperature (top) and flux (bottom) along this skewer. The second and third panels

vary T0 with constant γ = 1.352 and ⟨F ⟩ = 0.0801. The coldest model, T0 = 2863 K

(blue), has some of the sharpest features. This is seen at v ∼ −300 km s−1 where the

low T0 (blue) model has a secondary sharp peak in the flux. In comparison the hottest

model, T0 = 15 435 K (green), has one wider transmission spike. In addition, increasing

T0 decreases τLyα as described in Equation (4.2), which in turn increases the transmitted

flux. For this reason we get the greatest transmission from the T0 = 15435 K (green)

model, seen in the transmission spike at v = 50 km s−1. With fixed ⟨F ⟩ this leads to

greater variation in the flux for higher T0 models.

The fourth and fifth panels vary γ with constant T0 = 9149 K and ⟨F ⟩ = 0.0801.

When γ > 1 (orange and green) the temperature is directly proportional to the density

fluctuations while γ < 1 (blue) causes the temperature to be inversely proportional to

the density fluctuations. When temperature is inversely proportional to density, lower

densities have higher temperatures. Low densities and higher temperatures will locally

increase the flux so the γ < 1 (blue) model will lead to transmission spikes with the

greatest flux, as seen at v ∼ −100 km s−1.

4.2.2 Forward Modeling

In order to mimic realistic high-resolution observational data from echelle spectro-

graphs, (e.g. from Keck/HIRES, VLT/UVES, and Magellan/MIKE) we forward model

our ideal simulation skewers to have imperfect resolution and flux levels. We consider

a resolution of R = 30000 and a signal to noise ratio per 10 km s−1 pixel (SNR10) of
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SNR10 = 30 at all redshifts.

We model this resolution by smoothing the flux by a Gaussian filter with FWHM =

10 km s−1. After smoothing we re-sampled the new flux such that the new pixel size was

∆v = 2.5 km s−1. With this pixel scale, SNR10 = 30 corresponds to a signal to noise ratio

of the pixel size (SNR∆v) of 15. For simplicity, we add flux-independent noise in the

following way. We generate one 1000 skewer × skewer length realization of random noise

drawn from a Gaussian with σN = 1/SNR∆v and add this noise realization to every model

at every redshift. Using the same noise realization over the different models prevents

stochasticity from different realizations of the noise from adding additional variations

between the models. Thus the noise modeling will not unduly corrupt the parameter

inference.

As discussed in Section 4.2.1 simulation skewers are 100 cMpc h−1 long, much longer

than the ∆z = 0.1 redshift bins we have chosen to analyze. Therefore, we split these

skewers into two regions of length ∆z = 0.1 and treating these two regions as independent,

resulting in a total of 2000 skewers. Note that ∆z = 0.1 corresponds to 33 cMpc h−1 at

z = 5.4 and 29 cMpc h−1 at z = 6.0.

The initial and forward-modeled flux for one z = 5.4 skewer is shown in Figure

4.3. This skewer has T0 = 9149 K, γ = 1.352, and ⟨F ⟩ = 0.0801 (our assumed “true”

parameters at this redshift). The forward modeled skewer, as is always true, uses R =

30000 and SNR10 = 30. The initial flux is plotted as the red dashed line while the forward

modeled flux is plotted as the black histogram.

We assume a fiducial data set size of 20 quasar spectra that probe a redshift interval

of ∆z = 0.1 per quasar for a total pathlength of ∆z = 2.0 at all redshifts. This is a

reasonable number of high-z, high resolution quasar observations to consider for a future

measurement.
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Figure 4.3: A forward-modeled skewer at z = 5.4 with T0 = 9149 K, γ = 1.352, and ⟨F ⟩ = 0.0801
(our assumed “true” parameters at this redshift). This skewer, as is true for all skewers, is
forward modeled with R = 30000 and SNR10 = 30. The initial flux from the simulations is a
red dashed line while the forward modeled flux is a black histogram.

4.3 Methods

4.3.1 Auto-correlation

The auto-correlation function of the flux, ξF (∆v), is defined as

ξF (∆v) = ⟨F (v)F (v + ∆v)⟩ (4.3)

where F (v) is the flux of the Lyα forest and the average is performed over all pairs

of pixels with the same velocity lag, ∆v. Conventionally, the flux contrast field, δF =

(F − ⟨F ⟩)/⟨F ⟩, is used when measuring the power spectrum of the Lyα forest. Here, we

chose to use the flux since ⟨F ⟩ is small and has large uncertainties at high-z where we

are most interested in this measurement. Using the flux thus prevents us from dividing

by a small number which comes from an independent measurement and could potentially

blow up the value of the flux contrast. The auto-correlation function of the flux contrast

can be written as

ξδf
(∆v) = ξF (∆v) − ⟨F ⟩2

⟨F ⟩2 . (4.4)
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ξδf
can be computed via the Fourier transform of the dimensionless power spectrum of

the Lyα forest flux contrast, ∆2
δF

(k) = kPδf
(k)/π. In one dimension this can be written

as:

ξδf
(∆v) =

∫ ∞

0
∆2

δf
(k) cos(k∆v)d ln k (4.5)

The dimensionless power, ∆2
δf

(k), is a smoothly rising function that has a sharp cutoff

set by the thermal state of the IGM. Higher temperature values lead to sharper cutoffs as

the power at small scales in the Lyα forest is removed. Equation (4.5) can be particularly

useful when building intuition for the trends seen in the auto-correlation function with

changing T0 and γ, which we will discuss later in this section.

We compute the auto-correlation function with the following consideration for the ve-

locity bins. We set the left edge of the smallest bin to be the resolution length, 10 km s−1,

and continue with linear bin sizes with a width of the resolution length, 10 km s−1, up to

300 km s−1. Then we switch to logarithmic bin widths where log(∆v) = 0.029 out to a

maximal distance of 2700 km s−1. This results in 59 velocity bins considered where the

first 28 have linear spacing. The center of our smallest bin is 15 km s−1 and the center

of our largest bin is 2295 km s−1. This largest bin corresponds to ∼ 16.5 cMpc h−1 at

z = 5.4. We chose to use linear bins on the smallest scales because this is where the

thermal state has the greatest effect on the Lyα forest flux. At larger scales we switch to

logarithmic binning as this is only sensitive to ⟨F ⟩ and not the thermal parameters. The

main aim of this work is to constrain the thermal parameters so having fine binning at

large scales is not as important. To check this we compared out results at z = 5.4 to those

when using linear bins at all scales and found no significant change to the constraints on

the parameters. However, using linear bins at all scales results in 268 total bins, which

significantly slowed down our computations. Therefore we used the linear-logarithmic

bins at all z throughout the rest of this work.
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Figure 4.4: This figure demonstrates the effects of varying the parameters on the auto-
correlation function from the simulations at z = 5.4. Each of the three panels varies one
parameter from T0, γ, and ⟨F ⟩ while keeping the others constant. The constant parameter
values are written in the top left of each panel. The solid lines show the model values and
the shaded regions show errors estimated by the diagonals of the covariance matrices. T0 (top
panel) and γ (middle panel) affect the auto-correlation function on small scales. ⟨F ⟩ (bottom
panel) affects the auto-correlation function on all scales.

The model value of the auto-correlation function was determined by taking the aver-

age of the auto-correlation function over all 2000 forward-modeled skewers. Each mock

data set of the auto-correlation was calculated by taking an average over 20 random

skewers (representing 20 quasar sightlines) from the initial 2000 forward-modeled skew-

ers. The value of the auto-correlation function at the smallest velocity lags is affected by

the finite resolution. This effect is left in both the models and the mock data.

We show the correlation functions calculated for different thermal state parameters

in Figure 4.4 at z = 5.4. The solid lines show the mean values while the shaded regions

represent the errors estimated from the diagonal of the covariance matrices. We discuss
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the computation of these covariance matrices later in this section.

The top panel shows models that vary T0 with constant γ and ⟨F ⟩. Varying T0 results

in small changes for the smallest velocity lags, where the second bin centered on 25 km s−1

has the largest percent change in the models. The middle panel has models that vary γ

with constant T0 and ⟨F ⟩ where the effect of changing γ is strongest on small scales. The

bottom panel has models that vary ⟨F ⟩ with constant T0 and γ. ⟨F ⟩ sets the amplitude

of the auto-correlation function at all velocity lags. Here the differences between models

are linear where larger ⟨F ⟩ leads to larger auto-correlation values. This scaling is roughly

∝ ⟨F ⟩2, which follows from the definition of the auto-correlation function.

For the thermal models, larger T0 and smaller γ lead to larger correlation function

values on small scales. Though these models do not seem to show large differences by eye,

we will investigate what statistically rigorous measurements could look like in Section

4.3.4.

To build intuition for the behavior of the auto-correlation function with the thermal

parameters we refer to Equation (4.5). In Appendix 4.6 we show the integrand from this

equation for ∆v = 15 km s−1. As mentioned above ∆2
δf

(k) has a sharp thermal cutoff

which would naively lead to the belief that the auto-correlation function could show lower

values at small-scales for hotter thermal states. However, as seen in Figure 4.4, greater T0

values have greater values of the auto-correlation function at small scales. This behavior

is explained by both the great variation in the flux in these models, as described earlier

in the section, and by the behavior of ∆2
δf

(k) at small k values with a linear y-scale, as

seen in Figure 4.14.

We compute the covariance matrices for the models from mock draws of the data:

Σ(T0, γ, ⟨F ⟩) = 1
Nmocks

Nmocks∑
i=1

(ξi − ξmodel)(ξi − ξmodel)T (4.6)

where ξi = ξi(T0, γ, ⟨F ⟩) is the i-th mock auto-correlation function, ξmodel = ξmodel(T0, γ, ⟨F ⟩)
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Figure 4.5: This figure shows the correlation matrix calculated with equation (4.7) for the
model at z = 5.4 with T0 = 9149 K, γ = 1.352, ⟨F ⟩ = 0.0801. The color bar is fixed to span
from -1 to 1, which is all possible values of the correlation matrix. This illustrates that all bins
in the auto-correlation function are highly correlated with each other.

is the model value of the auto-correlation function, and Nmocks is the number of forward-

modeled mock data sets used. We use Nmocks = 500000 for all models and redshifts in

this work, see Appendix 4.7 for a discussion on the convergence of the covariance matrix.

Note that ξi(T0, γ, ⟨F ⟩) and Σ(T0, γ, ⟨F ⟩) are computed at each point on the grid of T0,

γ, and ⟨F ⟩, resulting in 1215 separate computations.

To visualize the covariance matrix, we define the correlation matrix, C, which ex-

presses the covariances between jth and kth bins in units of the the diagonal elements

of the covariance matrix. This is done for the jth, kth element by

Cjk = Σjk√
ΣjjΣkk

. (4.7)

One example correlation matrix is shown in Figure 4.5 for z = 5.4 with T0 = 9149 K,

γ = 1.352, ⟨F ⟩ = 0.0801. All bins of the auto-correlation function are highly correlated,

which is caused by each pixel in the Lyα forest contributing to multiple (in fact almost

all) bins in the auto-correlation function.
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4.3.2 Parameter Estimation

To quantitatively constrain the parameters we modeled (T0, γ, and ⟨F ⟩), we use

Bayesian inference with a multivariate Gaussian likelihood and a flat prior over the

parameters. This likelihood, L = p(ξ|T0, γ, ⟨F ⟩), has the form:

L = 1√
det(Σ)(2π)n

exp
(

−1
2(ξ − ξmodel)TΣ−1(ξ − ξmodel)

)
(4.8)

where ξ is the auto-correlation function from our mock data, ξmodel = ξmodel(T0, γ, ⟨F ⟩)

is the model value of the auto-correlation function, Σ = Σ(T0, γ, ⟨F ⟩) is the model de-

pendent covariance matrix estimated by Equation (4.6), and n = 59 is the number of

points in the auto-correlation function. We discuss the assumption of using a multivari-

ate Gaussian likelihood in Appendix 4.8. This discussion shows that our mock data does

not exactly follow a Guassian distribution. This discrepancy may affect our parameter

inference, we investigate the consequences of this assumption in a later section.

Our models are defined by three (T0, γ, and ⟨F ⟩) parameters. We compute the

posteriors on these parameters using Markov Chain Monte Carlo (MCMC) with the

EMCEE (Foreman-Mackey et al., 2013) package. We linearly interpolate the model values

and covariance matrix elements onto a finer 3D grid of T0, γ, and ⟨F ⟩ then use the nearest

model during the MCMC. This fine grid has 29 values of T0, 33 values of γ, and 41 values

of ⟨F ⟩ which corresponds to adding 1, 3, and 4 points between the existing grid points

respectively. Our MCMC was run with 16 walkers taking 3500 steps each and skipping

the first 500 steps of each walker as a burn-in.

Figure 4.6 shows the result of our inference procedure for one mock data set at

z = 5.4. The top panel shows the mock data set with various lines relating to the inference

procedure as follows. The green dotted line and accompanying text present the model

value for the simulation that the mock data was taken from. The mock data set is plot as

the black points with error bars that come from the diagonal elements of the covariance
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matrix of the model that is nearest to the inferred model. The inferred model is the model

that comes from the median of each parameter’s samples determined independently via

the 50th percentile of the MCMC chains. The red line and accompanying text present

this inferred model. The errors on the inferred model written in the text are from the 16th

and 84th percentiles of the MCMC chains. The blue lines show models corresponding

to 100 random draws from the MCMC chain to visually demonstrate variety of models

that come from the resulting posterior. The bottom left panel shows a corner plot of the

posteriors for T0, γ, and ⟨F ⟩.

4.3.3 Inference Test and Re-weighting

We test to check the fidelity of our inference procedure. This test ensures that the be-

havior of our posteriors is statistically correct and checks the validity of any assumptions

we make during our inference. For example, in this work we used an approximate likeli-

hood in the form of a multivariate Gaussian likelihood. The Lyα forest is known to be a

non-Gaussian random field. By adopting a multivariate Gaussian likelihood here, we are

tacitly assuming that averaging over all pixel pairs when calculating the auto-correlation

function will Gaussianize the resulting distribution of the values of the auto-correlation

function, as is expected from the central limit theorem. We discuss the distribution of

these values for our mock data in detail in Appendix 4.8. If this assumption is not valid

our reported errors may be either underestimated or overestimated.

The general idea of our inference test is to compare the true probability contour

levels with the “coverage” probability. The coverage probability is the percent of time

(over many mock data sets) the true parameters of a mock data set fall within a given

probability contour. In our case, we compute this over 300 mock data sets where the

true parameters considered are sampled from our priors. Ideally, this coverage probability
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Figure 4.6: This figure illustrates the results of our inference procedure applied to one mock
data set at z = 5.4. The top panel shows the data and models that resulted from our inference
procedure, the bottom left has the corner plot resulting from the fit, and the bottom right has
the same corner plot which has been re-weighted to pass our inference test. In the top panel,
the black points are the mock data with error bars from the diagonals of the covariance matrix
of the inferred model. The inferred model was calculated by the median (50th percentile) of the
MCMC chains of each parameter independently. The inferred model is shown as a red line while
the accompanying red text reports errors calculated from the 16th and 84th percentiles of each
parameter. In comparison, the “true” model, which was used to generate the data, is shown
as a green dotted line. The parameters for this model is written in the accompanying green
text. To demonstrate the width of the posterior, multiple faint blue lines are shown which are
the models corresponding to the parameters from 100 random draws of the MCMC chain. The
bottom left panel shows a corner plot of the values of T0, γ, and ⟨F ⟩ that immediately result
from our inference procedure. The bottom right panel shows the corner plot of the values of T0,
γ, and ⟨F ⟩ from our inference procedure that has been re-weighted with the weights calculated
from our inference test as described in Section 4.3.3. For this mock data set, the “true” model
parameters fall within the 68th percentile contours.
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should be equal to the chosen probability contour level. This calculation can be done

at many chosen probabilities resulting in multiple corresponding coverage probabilities.

Existing work that explore this coverage probability include Prangle et al. (2013); Ziegel

& Gneiting (2013); Morrison & Simon (2017); Sellentin & Starck (2019).

We plot the results of our inference procedure (i.e. Pinf vs Ptrue) at z = 5.4 from 300

posteriors in the left panel of Figure 4.7. The grey shaded regions around our resulting

line show the Poisson errors for our results. Again we expect Ptrue = Pinf which would

give the red dashed line in this figure. To interpret this plot, first consider one point, for

example Ptrue ≈ 0.6. This represents the 60th percentile contour, which was calculated by

the 60th percentile of the probabilities from the draws of the MCMC chain for each mock

data set. Here, the true parameters fall within the 60th percentile contour only ≈ 52% of

the time. This implies that our posteriors are too narrow and should be wider such that

the true model parameters will fall in the 60th percentile contour more often, so we are

in fact underestimating our errors. We run this inference test at all z considered in this

work and found the deviation from the 1-1 line is worse at higher redshifts. See Appendix

4.9 for a discussion of the inference test at z = 6. We additionally run the inference test

for mock data generated from a multi-variate Gaussian distribution in Appendix 4.10.

The inference test using Gaussian mock data agrees with the 1-1 line, which indicates the

reason for the inference test from forward-modeled data failing is that the distribution

of the data is not perfectly Gaussian.

There has been much recent work trying to correct posteriors that do not pass this

coverage probability test (see e.g. Prangle et al., 2013; Grünwald & van Ommen, 2014;

Sellentin & Starck, 2019). In this work, we are using the method of Hennawi et al. in

prep. where we calculate one set of weights for the MCMC draws that broaden the

posteriors in a mathematically rigorous way. This method has been described in some

detail in Wolfson et al. (2023b) so we refer to that paper for details on computing this set
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Figure 4.7: The left panel shows the coverage resulting from the inference test at z = 5.4 from
300 mock data sets with parameters drawn from our priors on T0, γ, and ⟨F ⟩. This shows that,
for example, the true parameters fall above the 60th percentile in the MCMC chain ∼ 50% of
the time. The line falls below the 1-1 line, meaning that the posteriors are overconfident (too
narrow). The right panel of this figure shows the coverage resulting from the inference test with
the use of one set of weights to re-weight the posteriors, which passes.

of weights. For now, we will proceed with discussing the effect of adding these weights

to the posteriors.

We show the re-weighted posteriors on T0, γ, and ⟨F ⟩ in the bottom right panel

of Figure 4.6. The weights give greater importance to values of T0, γ, and ⟨F ⟩ that are

outside of the 68% contour, effectively broadening the posteriors and increasing the errors

on the fit. For the mock data set in Figure 4.6 the re-weighted marginalized posterior for

T0 gives T0 = 7341+2752
−2617 K whereas before the inferred value was 7282+2646

−2435 K, so the new

errors are ∼ 6% larger. The re-weighted posterior for γ gives γ = 1.399+0.126
−0.144 whereas

before the inferred value was 1.400+0.120
−0.132, so the new errors are ∼ 7% larger. The error

on ⟨F ⟩ does not change. When looking at the 2D distributions in this corner plot, such

as the (γ, ⟨F ⟩) distribution in the middle panel of the bottom row, we see small regions

outside of the main 95% contour that are important. This comes from weighting one

draw quite highly, which demonstrates how the weights introduce an additional source
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of noise to the posterior distribution.

This whole inference procedure is not the optimal and may not give the best possible

constraints on T0 or γ from the auto-correlation function. The need to use re-weighting,

or some method to correct our posteriors to pass an inference test, comes from our

incorrect (though frequently used) assumption of a multivariate Gaussian likelihood.

The values of the auto-correlation function at these high z do not sufficiently follow a

multivariate Gaussian distribution to justify this assumption, which should be a warning

for other studies of the Lyα forest at these z. Using a more correct form of the likelihood

(such as a skewed distribution) or likelihood-free inference (such as approximate Bayesian

computation as used in Davies et al. (2018b) or other machine learning methods) would

lead to more optimal posteriors that better reflect the information content of the auto-

correlation function.

4.3.4 Thermal state measurements

We study the distribution of measurements for 100 mock data sets with one “true”

(T0, γ, ⟨F ⟩) model in order to account for cosmic variance. For each z we use the T0, γ,

and ⟨F ⟩ values reported in Table 4.1. Each mock data set is chosen by randomly selecting

and averaging the auto-correlation function over 20 skewers. For each mock data set, we

perform MCMC as described in Section 4.3.2 and then re-weight the resulting posteriors

following Section 4.3.3. Once we have the weights and the chains resulting from our

inference procedure we can calculate the marginalized posterior for T0 and γ.

At z = 5.4, all 100 marginalized re-weighted posteriors are shown as the faint blue

lines in Figure 4.8 for T0 (top panel) and γ (bottom panel). Attempting to fit the model

value of the auto-correlation function removes the luck of the draw that exists in selecting

mock data and gives the optimal precision of the posteriors. The resulting posteriors from
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fitting the model is shown as the thick blue histogram in the figure. The measurement

resulting from this fit is written in the blue text of this figure and the values at each z

are reported in Table 4.2.

The re-weighted histograms in Figure 4.8 are noisy, much like is seen in the bottom

right panel of Figure 4.6. This is a direct consequence of our re-weighting procedure

and will be improved with further work on likelihood-free inference. For T0, the model

value of the auto-correlation function gives a posterior with a width that is typical of

those from the mock data. For γ, the posterior has a slightly narrower peak. Also for

γ, posteriors that peak at lower γ values are broader than those that peak at higher γ

values. Both model posteriors contain the true value of T0 and γ within their 1σ error

bars.

Table 4.2 reports the measurements that result from using the model values of the

auto-correlation function as our data at all z. This is an ideal scenario that removes

luck of the draw from the resulting measurement. The first (third) column contains the

“true” modeled value of T0 (γ) at each z that was used in this measurement. The second

(fourth) column contains the measurements for T0 (γ) calculated by the 16th, 50th, and

84th percentiles. In general the trend of the errors is to increase with increasing redshift.

At z = 5.4, the measurement of the model constrains T0 to 29% and γ to 9%.

In order to visualize the differences between measurements at different redshifts, we

plot the results for two random mock data sets in Figure 4.9. The first and third panels

show the marginalized posteriors for T0 while the second and fourth panels shows the

marginalized posteriors for γ. Each violin is the re-weighted marginalized posterior for

one randomly selected mock data set at the corresponding redshift. The light blue shaded

region demarcates the 2.5th and 97.5th percentiles (2σ) of the MCMC draws while the

darker blue shaded region demarcates the 16th and 84th percentiles (1σ) of the MCMC

draws. The dot dashed line is the true simulated model value evolution as shown in
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Figure 4.8: 100 re-weighted marginalized posteriors of T0 and γ at z = 5.4 from mock data
sets with true T0 = 9149, γ = 1.352, and ⟨F ⟩ = 0.0801 (faint blue lines). The top panel shows
the marginalized posteriors for T0 and the bottom panel shows the marginalized posteriors
for γ. Both panels also show the re-weighted posterior from the model value of the auto-
correlation function (thick blue histograms). The measurement resulting from fitting the model
are written in blue text. This demonstrates the different possible behaviors the posterior can
have for different mock data sets with the same “true” T0, γ, and ⟨F ⟩ values.
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z Model T0 Measured T0 Model γ Measured γ

5.4 9149 8455+2642
−2379 1.352 1.408+0.104

−0.122

5.5 9354 8643+3152
−3054 1.338 1.422+0.116

−0.141

5.6 9572 8480+3720
−3642 1.324 1.433+0.121

−0.151

5.7 9804 8222+5188
−4176 1.309 1.460+0.139

−0.166

5.8 10050 8346+4926
−4576 1.294 1.485+0.157

−0.204

5.9 10320 7892+6111
−4655 1.278 1.513+0.170

−0.223

6.0 10600 9574+6219
−5133 1.262 1.511+0.196

−0.256

Table 4.2: The results of fitting to the models of the auto-correlation function for given T0 and
γ values. The first (third) column contains the modeled value of T0 (γ) at each z. The second
(fourth) column contains the measurements for T0 (γ) calculated by the 16th, 50th, and 84th
percentiles. In general the trend of the errors is to increase with increasing redshift.

Figure 4.1 and reported in Table 4.1.

Looking at the posteriors for a given redshift (one column in the figure), the only

difference between the posteriors is the random mock data set drawn. This still produces

different precision results as seen in Figure 4.8 for z = 5.4. For the different posteriors

within one section of this figure, the random mock data set differs as does the true values

of T0 and γ. Again, the individual posteriors are noisy, resulting from the re-weighting

procedure as described in Section 4.3.3. The behavior here echos that found with the

model measurements where the precision of the constraints on T0 and γ decrease with

increasing z. In the highest redshift bins, z > 5.7, the posteriors for the mock data sets

have high values at the boundary of our prior much more often.

4.4 Inhomogeneous Reionization

So far in this work we have used a semi-numerical method to “paint on” different

thermal states to our simulations for a tight temperature-density relationship. This is
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Figure 4.9: The marginalized posteriors for two random mock data sets at each z for T0 and γ.
The first and third panels show the marginalized posteriors for T0 while the second and fourth
panels show the same for γ. For each posterior, the light blue shaded region demarcates the
2.5th and 97.5th percentile of the weighted MCMC draws while the darker blue shaded region
demarcates the 17th and 83rd percentile of the weighted MCMC draws. There are 14 total
random mock data sets used to make this figure. For a given T0 and γ posterior pair (in the
first and second or third and fourth panels) the mock data set is the same. The behavior of
each posterior is partially determined by the luck of the draw when selecting the mock data.
The size of the data set is consistent across z but the true parameter values of the mock data
varies as shown by the black dot dashed line. This black dot dashed line was also shown in
Figure 4.1 and the values at each z are reported in Table 4.1.
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sufficient to explore the sensitivity of the Lyα forest flux auto-correlation function to

the thermal state of the IGM at high-redshifts. However, as previously discussed, recent

measurements of the Lyα optical depth at z > 5.5 have shown scatter that can’t be

explained by density fluctuations alone (Fan et al., 2006; Becker et al., 2015; Bosman

et al., 2018; Eilers et al., 2018; Bosman et al., 2022). It is possible that these fluctuations

come from fluctuations in the temperature field (D’Aloisio et al., 2015; Davies et al., 2018

a) or fluctuations in the UVB (Davies & Furlanetto, 2016b; Gnedin et al., 2017; D’Aloisio

et al., 2018). Fluctuations in either of these fields can arise if reionization is extended or

patchy.

On top of the measurements of fluctuations in the Lyα forest optical depth at z > 5.5,

recent measurements of the mean free path of ionizing photons at z > 5 suggest a UVB

that cannot be well described by uniform fields (Becker et al., 2021; Bosman, 2021;

Gaikwad et al., 2023; Zhu et al., 2023).

In order to explore the effect of temperature and UVB fluctuations on the Lyα for-

est flux auto-correlation function, we consider a set of four simulation models. These

simulations have two different reionization models (one of which causes temperature

fluctuations) and two UVB models (one of which has fluctuations). These simulations

and their results will be described in detail in the following sections.

4.4.1 Simulation box

For these models we use an additional Nyx simulation box with a size of Lbox = 40

cMpc h−1 and 20483 resolution elements at z = 5.8. A slice through the density field of

this simulation is shown in the top left panel of Figure 4.10.

We consider two reionization models: an instantaneous model and an extended, in-

homogeneous model (the “flash” and inhomogeneous methods described in Oñorbe et al.
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(2019), respectively). The instantaneous model of reionization assigns all resolution ele-

ments the same redshift of reionization, zreion, HI. For this work we use zreion, HI = 7.75. A

brief summary of the inhomogeneous model of reionization is as follows, each resolution

element is assigned its own redshift of reionization such that reionization has a given

midpoint, zmedian
reion, HI, and duration, ∆zreion, HI. For this work we use zmedian

reion, HI = 7.75 and

∆zreion, HI = 4.82. It is possible for cells to be ionized before the redshift of reionization

through other processes such as collisional reionization. In both models, at the redshift of

reionization for a given resolution element heat, ∆T , is injected. In both of our reioniza-

tion models ∆T = 2×104 K. These two models result in two different temperature fields.

We say that the instantaneous reionization model has “no temperature fluctuations” and

the inhomogeneous reionization model has “temperature fluctuations”.

The bottom row of Figure 4.10 shows slices through the resulting temperature field

from these two simulations: one with no temperature fluctuations on the left and one

with temperature fluctuations on the right. From this figure we see that model with

temperature fluctuations has a larger scatter in the temperature with the greater abun-

dance of colder (darker blue) regions. These cold regions correspond to the regions of

higher density in the top left panel. This follows from the model of reionization where

the denser regions reionize (and are heated) first and thus have more time to cool to a

lower temperature by z = 5.8.

In addition to a constant UVB model, we have a model with uvb fluctuations. This

UVB model was generated by the same method presented in Oñorbe et al. (2019) with

λmfp = 15 cMpc. The method follows the approach of Davies & Furlanetto (2016b) where

we consider modulations in the ionization state of optically thick absorbers assuming that

λmfp ∝ Γ2/3
UVB/∆ where ∆ is the local matter density. For the fluctuating UVB, ΓHI was

calculated on a uniform grid of 643 at z = 6 and then linearly interpolated the log ΓUVB

field to match the hydrodynamical simulation with 20483. The top right panel of Figure
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4.10 shows a slice through the UVB model with fluctuations. The largest UVB values are

in the same location as the high density areas shown in the top left panel. These are the

densest regions of the simulation which contain the majority of the sources of ionizing

photons. We do not show the model without UVB fluctuations as this is a constant field.

Thus our four models of reionization are (1) no temp. fluctuations and no UVB

fluctuations (2) no temp. fluctuations with UVB fluctuations (3) temp. fluctuations

with no UVB fluctuations and (4) both temperature and UVB fluctuations. All four

models are normalized to ⟨F ⟩ = .0172, which is the measured value at z = 5.8 from

Bosman et al. (2022). We do not consider multiple values of ⟨F ⟩ for these models since

they represent four discrete models and we will not try to constrain any parameters.

We now consider the effect of these four simulation models on the transmitted flux.

Figure 4.11 shows one skewer from each of the four different reionization models at

z = 5.8. The top panel shows the resulting Lyα forest flux. The second panel shows

the density field along the skewer. The third panel shows the temperature along the

skewer. The bottom panel shows the UVB background values. Each panel has four

lines representing models with no temperature and no UVB fluctuations (solid blue),

no temperature fluctuations with UVB fluctuations (dashed blue), temperature fluctua-

tions with no UVB fluctuations (solid red), and both temperature and UVB fluctuations

(dashed red). Comparing the solid lines to each other isolates the effect of temperature

fluctuations only. When comparing these two models, we see that a positive scatter in the

temperature of the IGM leads to increased flux over −1600 km s−1 < v < −1000 km s−1.

Comparing the dashed lines to the solid lines of the same color isolates the effect of UVB

fluctuations. For example consider v > 1000 km s−1 where the models with UVB fluctua-

tions (dashed) in the bottom panel are constantly greater than the models without UVB

fluctuations (solid). In the top panel, these positive fluctuations in the UVB boost the

flux in these dashed lines over the solid lines of the same color.
142



Forecasting constraints on the high-z IGM thermal state from the Lyman-α forest flux
auto-correlation function Chapter 4

10

30
density field

1 0 1 2
log( / )

UVB fluctuations

0.0 0.5 1.0
log( HI/ HI )

10

30
no temp. fluctuations temp. fluctuations

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Temp. (104 K)

D
is

ta
nc

e 
(c

M
pc

 h
1 )

Figure 4.10: This figure shows slices of density field (top left), the temperature field (bottom
row), and UVB (top right) for the Nyx simulation described in Section 4.4. The bottom left
panel shows the temperature field without fluctuations. The bottom right panel right shows
the temperature field with fluctuations. The model with temperature fluctuations has a greater
scatter in the temperature field, as can be seen by the greater abundance of colder (darker blue)
regions. These cold regions correspond to the regions of higher density in the top left panel.
The top right panel shows a slice through the UVB field of the simulation with λmfp = 15 cMpc,
which gives a fluctuating UVB. The largest UVB values are in the same location as the high
density areas shown in the top left panel. These are the densest regions of the simulation which
contain the majority of the sources of ionizing photons.
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Figure 4.11: This figure shows one skewer from the four various reionization models at z = 5.8.
The top panel shows the resulting Lyα forest flux. The second panel shows the density field
along the skewer. The third panel shows the temperature along the skewer. The bottom
panel shows the UVB background values. Each panel has four lines representing models with
no temperature and no UVB fluctuations (solid blue), no temperature fluctuations with UVB
fluctuations (dashed blue), temperature fluctuations with no UVB fluctuations (solid red),
and both temperature and UVB fluctuations (dashed red). Comparing the solid lines to each
other isolates the effect of temperature fluctuations only. When comparing these two models,
we see that a positive scatter in the temperature of the IGM leads to increased flux over
−1600 km s−1 < v < −1000 km s−1. Comparing the dashed lines to the solid lines of the same
color isolates the effect of UVB fluctuations. For example consider v > 1000 km s−1 where the
models with UVB fluctuations (dashed) in the bottom panel are constantly greater than the
models without UVB fluctuations (solid). In the top panel, these positive fluctuations in the
UVB boost the flux in these dashed lines over the solid lines of the same color.
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In general, the UVB fluctuations are anti-correlated with the temperature fluctua-

tions. This follows from the dense regions in the simulations causing negative temperature

fluctuation and positive UVB simulation as discussed earlier. For example, consider the

positive temperature fluctuation and negative UVB fluctuation at −1600 km s−1 < v <

−1000 km s−1. Overall this anti-correlation will result in the effects of these two fluctuat-

ing fields to cancel out, causing the model with both temperature and UVB fluctuations

(dashed red) to look similar to the model with no temperature fluctuations and np UVB

fluctuations (solid blue). This is indeed generally seen across the flux panel of Figure

4.11.

From here, we forward model the skewers in the same way as discussed in Section

4.2.2 with R = 30000 and SNR10 = 30. The only difference is that we leave the skewers

with the full 40 cMpc h−1 length and then use only 15 (where before we used 20) skewers

when calculating mock data sets. The mock data sets here and in the previous section

contain the same pathlength corresponding to 20 observed quasars with ∆z = 0.1. We

do not show an example of the forward modeled skewer here as they are very similar to

that shown in Figure 4.3.

4.4.2 Auto-correlation

The auto-correlation functions are computed via Equation (4.3) and the covariance

matrices are computed via Equation (4.6).

Figure 4.12 shows the correlation function for the four reionization models at z = 5.8

with a logarithmic y-axis. The inset shows the first 100 km s−1 of the auto-correlation

functions with a linear y-axis to highlight the differences at small scales. The lines show

the model value while the shaded regions are the error estimated from the diagonals

of the covariance matrices. The colors and line styles here match those in Figure 4.11

145



Forecasting constraints on the high-z IGM thermal state from the Lyman-α forest flux
auto-correlation function Chapter 4

with the model with no temperature fluctuations and no UVB fluctuations (solid blue),

no temperature fluctuations with UVB fluctuations (dashed blue), temperature fluctua-

tions with no UVB fluctuations (solid red), and both temperature and UVB fluctuations

(dashed red). Comparing the red to the blue lines with the same style isolates the effect

of temperature fluctuations while comparing the dashed to the solid line with the same

color isolates the effect of UVB fluctuations. Note that the shaded regions are about the

same size for all four models.

First compare the model with no temperature fluctuations and no UVB fluctuations

(solid blue) and the model with temperature fluctuations with no UVB fluctuations

(solid red), which isolates the effect of temperature fluctuations. The model values for

these models show that adding temperature fluctuations boosts the value of the auto-

correlation function for ∆v < 1800 km s−1. This follows from the additional variation

added by the temperature fluctuations.

Now consider the model with no temperature fluctuations and no UVB fluctuations

(solid blue) and the model with no temperature fluctuations with UVB fluctuations

(dashed blue), which adds UVB fluctuations to a model without temperature fluctuations.

Comparing these line in the inset shows that adding UVB fluctuations increases the value

of the auto-correlation function on small scales. This result falls in line with that found

in Wolfson et al. (2023b) which says that a shorter λmfp value leads to greater boosts on

small scales of the auto-correlation function. At larger scales there is a slight boost in

the model with no temperature fluctuations with UVB fluctuations (dashed blue) seen

with the logarithmic scale.

Finally consider the model with temperature fluctuations with no UVB fluctuations

(solid red) and the model with both temperature and UVB fluctuations (dashed red),

which compares adding UVB fluctuations to a model with temperature fluctuations. In

this case adding UVB fluctuations decreases the value of the auto-correlation function
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for ∆v < 1800 km s−1. This is the opposite effect as adding UVB fluctuations to a model

without temperature fluctuations (seen in comparing the blue lines) and the results from

Wolfson et al. (2023b). However, there is an anti-correlation between the UVB and

temperature fluctuations resulting from the correlations with the density field. For a

fluctuating UVB, the UVB is highest where the density is greatest, since this is where

ionizing photon sources are located. For a fluctuating temperature model, the tempera-

ture is lowest where the density is greatest, which decreases the transmitted flux. This

causes more constant flux levels and decreases the auto-correlation function values at

these small scales, as seen in these lines. Ultimately, the correlations with density cause

the model with both temperature and UVB fluctuations (dashed red) to be most similar

to the model with no temperature fluctuations and no UVB fluctuations (solid blue).

Note that on small scales there is still a boost in the model with both temperature and

UVB fluctuations (dashed red) over the model without both fluctuations (solid blue),

which comes from increased variation in the flux.

4.4.3 Ruling-out Reionization scenarios

For these four reionization models, there is no grid of parameters that can be con-

strained via MCMC. Instead, we will investigate how confidently other models can be

ruled out given mock data from a single model. We will rule out models via the likelihood

ratio, R, which is defined as

R = L(model)
L(reference model) (4.9)

Again for this we assume the likelihood, L, is the multivariate Gaussian likelihood from

Equation (4.8).

Here we assume that the mock data comes from the model with both temperature

and UVB fluctuations (red dashed lines in the Figures 4.11 and 4.12). Therefore, we will
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Figure 4.12: This figure shows the correlation function for the four reionization models at
z = 5.8 with a logarithmic y-axis. The lines show the model values of the correlation function
while the shaded region shows the errors estimated from the diagonal of the covariance matrices.
The colors and line styles here match those in Figure 4.11 with the model with no tempera-
ture fluctuations and no UVB fluctuations (solid blue), no temperature fluctuations with UVB
fluctuations (dashed blue), temperature fluctuations with no UVB fluctuations (solid red), and
both temperature and UVB fluctuations (dashed red). Comparing the red to the blue lines
with the same style isolates the effect of temperature fluctuations while comparing the dashed
to the solid line with the same color isolates the effect of UVB fluctuations. Note that the
shaded regions are about the same size for all four models. The inset shows the first 100 km s−1

of the auto-correlation functions with a linear y-axis to see the differences at small scales.

be looking at the value of the likelihood for the mock data sets using the other three

reionization models divided by the likelihood for what we know is the true mock data

model (with both temperature and UVB fluctuations). To investigate the distribution of

potential likelihood ratio values, we use 1000 mock data sets.

The distribution of the 1000 likelihood ratio values for each of the alternative reion-

ization models are shown in Figure 4.13. The violin plots show the full distribution

where the light orange shaded region demarcates the 2.5th and 97.5th percentiles (2σ)

of the ratio values while the darker orange shaded region demarcates the 16th and 84th

percentiles (1σ) of the ratio values. The solid black line shows where the ratio is equal

to 1, which is where both models are just as likely given the mock data. The dashed,

dot-dashed, and dotted back lines show the value where the alternative models are ruled

out at the 1, 2, and 3 σ levels respectively.
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Overall, it is most difficult to rule out the model with no temperature fluctuations

and no UVB fluctuations (solid blue lines in previous plots), as is seen in the left most

violin in Figure 4.13. This distribution has 44.6% of the mock data sets that favor the

incorrect, alternative reionization scenario than the true model with both temperature

and UVB fluctuaions. Then only 40.4%, 17.4%, and 3.4% of mock data sets can be

ruled out at the 1, 2, and 3 σ levels respectively. This follows from the auto-correlation

values for these models seen in Figure 4.12 and the discussion there about how the

temperature fluctuations and UVB fluctuations are anti-correlated and thus produce an

auto-correlation function most similar to the model which lacks both of these fluctuations.

The next most difficult model to rule out is the model with no temperature fluctua-

tions but with UVB fluctuations (dashed blue lines in the previous plot) as seen in the

central violin in Figure 4.13. This distribution has 26.5% of the mock data sets that

favor the incorrect, alternative reionization scenario than the true model with both tem-

perature and UVB fluctuations. Then 60.6%, 23.8%, and only 0.3% of mock data sets

can be ruled out at the 1, 2, and 3 σ levels respectively. Between this and the left plot

there are fewer mock data sets here that can be ruled out at least at the 3σ level but

over half of them can be ruled out at 1σ.

The easiest model to rule out is the model with temperature fluctuations but with no

UVB fluctuations (solid red lines in the previous plots) as seen in the right most violin

in Figure 4.13. This distribution has only 21.8% of the mock data sets that favor the

incorrect, alternative reionization scenario than the true model with both temperature

and UVB fluctuations. Then 73.9%, 54.0%, and 7.9% of mock data sets can be ruled

out at the 1, 2, and 3 σ levels respectively, which is the greatest percentages out of the

three alternative models. This also follows from the differences between these models in

Figure 4.12. The model with temperature fluctuations but no UVB fluctuations has the

greatest values of the auto-correlation function at most scales, making it the easiest to
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Figure 4.13: This figure shows the distribution of likelihood ratios from 1000 mock data sets
where the mock data originates from the model with both temperature and UVB fluctuations.
The violin plots show the full distribution where the light orange shaded region demarcates
the 2.5th and 97.5th percentiles (2σ) of the ratio values while the darker orange shaded region
demarcates the 16th and 84th percentiles (1σ) of the ratio values. The solid black line shows
where the ratio is equal to 1, which is where both models are just as likely given the mock data.
The dashed, dot-dashed, and dotted back lines show the value where the alternative models are
ruled out at the 1, 2, and 3 σ levels respectively.

distinguish.

This is the distribution of the likelihood ratio for 1000 mock data sets. For a given

observational data set, the luck of the draw would ultimately determine if it is possible

to rule out each model. It is possible that the incorrect models is favored over the true

model from which the mock data was drawn, though this was always true for less than

half of the mock data sets.

4.5 Conclusions

In this work we have investigated the precision of possible constraints on the thermal

state of the IGM from the auto-correlation function of Lyα forest flux in high resolution
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quasar observations. This came in two forms: constraining T0 and γ when the IGM

thermal state follows a tight power law of the form of Equation (4.1) and investigating

the likelihood ration for models with temperature fluctuations from different reionization

scenarios.

We discussed the results of constraints on T0 and γ in Section 4.3. Overall, we found

that the auto-correlation function is sensitive to T0 and γ across multiple redshift bins

for realistic mock data of 20 quasars with R = 30000. We computed the marginalized re-

weighted posterior for T0 and γ for 100 mock data sets at 5.4 ≤ z ≤ 6.0. The re-weighted

posterior showed a variety of behaviors based on the luck of the draw of the mock data

chosen, the true value of T0 and γ for the mock data, and the data set size at each z.

We also considered an ideal data set which had the model value of the auto-correlation

function, effectively removing the luck of the draw from our measurement. The error on

these measurements for both the T0 and γ increase with redshift, which may be from the

low ⟨F ⟩. At z = 5.4 we found that ideal data can constrain T0 to 29% and γ to 9%.

Note that our procedure uses a multi-variate Gaussian likelihood, MCMC, and a

set of weights for the MCMC chains that ensures our posteriors pass an inference test.

The original failure of our procedure to pass an inference test is due to the incorrect as-

sumption that the auto-correlation function follows a multi-variate Gaussian distribution,

as discussed in Appendix 4.8. This result should caution against using a multi-variate

Gaussian likelihood with other statistics, such as the power spectrum, when making

measurements at z > 5 as the same issue of non-Gaussian data may appear. In the fu-

ture, better likelihoods or likelihood-free inference will allow for a more optimal inference

procedure (see e.g. Davies et al., 2018b; Alsing et al., 2019).

We discussed the likelihood ratios for four different reionization models in Section 4.4,

assuming a Gaussian distribution of data. Looking at mock data from model which has

temperature fluctuations and UVB fluctuations, we found that it is easiest to rule out
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a model with temperature fluctuations and no UVB fluctuations and it is most difficult

to rule out a model with no temperature or UVB fluctuations. The actual ability to

distinguish between models depends on the luck of the draw for the actual data that is

measured. In this most difficult case, we found that 40.4% of mock data sets from the

model with temperature and UVB fluctuations can rule out a model without temperature

or UVB fluctuations at > 1σ level.

Note that the UVB models used in this section were computed in in a small box (40

cMpc h−1) which suppresses UVB fluctuations on all scales, as was discussed in Wolfson

et al. (2023b). Suppressing fluctuations in the UVB causes the auto-correlation signal to

be lower in these boxes. For this reason, it may be easier to distinguish between models

with and without UVB fluctuations if they were generated in a larger box. Thus, future

work on UVB models will be necessary to get the best possible constraints on reionization

from these models.

Both the thermal state and the UVB fluctuations affect the Lyα forest flux auto-

correlation function. Modeling both of these physical effects by varying multiple pa-

rameters in a larger box will allow the auto-correlation function to constrain the two

simultaneously. This will allow us to put quantitative constraints on the thermal state

of the IGM, the λmfp that describes the UVB, and ultimately reionization. We leave this

exploration to future work.

This work assumed 20 high-resolution quasar observations in our forecasting. There

are currently over 100 known quasars above a redshift of 6, a subset of which already

have high resolution spectroscopic observations. Thus the 20 quasars used in this work is

reasonable for a near-future observational constraint. In addition, the number of known

quasars with high resolution observations is expected to continue to grow in the coming

years which would only improve the prospects of this constraint.

Here we used the auto-correlation function of the Lyα forest flux. We chose to look at
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this clustering statistic for a couple statistical properties: namely that uncorrelated noise

averages out and spectral masking is easy to implement. In comparison to the power

spectra, the auto-correlation function has a covariance matrix with large off-diagonal

values which makes it more difficult to intuitively look at the resulting fits to data (e.g.

Figure 4.6). In addition to the intuition, these large off-diagonal values also make it more

difficult to trouble-shoot the inference procedure using a Gaussian likelihood. Using a

statistic with a more diagonal covariance matrix, like the power spectra, is easier to

implement when fitting data.

Constraining the thermal state of the IGM, such as through constraining characteristic

T0 and γ values at high-z is an important method to constrain reionization. Measuring

these parameters at z > 5 is a difficult task that has so far been done with few methods

(Boera et al., 2019; Walther et al., 2019; Gaikwad et al., 2021). This work has shown

that the auto-correlation function of the Lyα forest flux provides a new, competitive way

to constrain T0 and γ in multiple redshift bins at z ≥ 5.4.

4.6 Appendix A: Power spectra models

As explained in Section 4.3.1, the dimensionless power, ∆2
δf

(k), can be written as the

Fourier transform of the auto-correlation function of the flux contrast, ξδf
(∆v). ξδf

(∆v) is

explicitly written in terms of ∆2
δf

(k) in Equation (4.5), which says ξδf
(∆v) is the integral

of ∆2
δf

(k) cos(k∆v) in logarithmic k bins. We refer to ∆2
δf

(k) cos(k∆v) as the integrand

for the rest of this discussion. To build intuition for the auto-correlation function at

small scales we show the integrand for ∆v = r = 15 km s−1 in Figure 4.14.

This Figure mimics the set up of Figure 4.4 for the auto-correlation function where

each panels varies one parameter while keeping the others constant. For these panels the

solid lines show the model values calculated by averaging ∆2 from all forward modeled
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Figure 4.14: This figure shows the mean value of ∆2 cos(kr) where r = 15 km s−1 for different
sets of parameters. Each panels varies one parameter while keeping the others constant with
T0, γ, and ⟨F ⟩ varying in the top, middle, and bottom panels respectively. For these panels the
solid lines show the model values calculated by averaging ∆2 from all forward modeled skewers
available. This figure is meant to explain the behavior of the auto-correlation seen in Figure
4.4 at ∆v = r = 15 km s−1 due to the relation in Equation (4.5).

skewers available. The vertical grey dashed line shows where cos(kr) = 0.

In the top panel T0 varies while γ and ⟨F ⟩ are constant. At small k the larger values

of T0 have larger values of the integrand while at small k there is thermal cutoff and

smaller values of T0 now have larger values of the integrand. When integrating over these

logarithmic bins the greater T0 values end up with more area and thus the auto-correlation

functions are also greater.
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4.7 Appendix B: Convergence of the Covariance Ma-

trices

We calculate the covariance matrices for our models with mock draws, as defined in

equation (4.6). Using mock draws is inherently noisy and it should converge as 1/
√

N

where N is the number of draws used. As stated in the text, we used 500000 mock draws.

To check that this number is sufficient to minimize the error in our calculation, we looked

at the behavior of elements of one covariance matrix in Figure 4.15. This covariance

matrix is for the model with z = 5.4, T0 = 9149 K, γ = 1.352, and ⟨F ⟩ = 0.0801, which

is the “true” model at this redshift. The correlation matrix for this model is also shown

in Figure 4.5.

The values in the plot have been normalized to 1 at 106 draws. The four elements

have been chosen such that there is one diagonal value and three off-diagonal values in

different regions of the matrix. At all values of the number of mock draws considered,

the covariance elements fall within 2% of their final value. By around ∼ 100000 draws,

the values fall within 0.5% of the final value. For this reason, using 500000 mock draws is

sufficient to generate the covariance matrices used in this study. In Figure 4.15, 500000

mock draws is represented by the vertical dashed grey line.

4.8 Appendix C: Non-Gaussian distribution of the

values of the auto-correlation function

For our inference, we used the multi-variate Gaussian likelihood defined in equation

(4.8). This functional form assumes that the distribution of mock draws of the auto-

correlation function is Gaussian distributed about the mean for each bin. In order to
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Figure 4.15: This figure shows the behavior of four elements of the model covariance matrix
(z = 5.4, T0 = 9149 K, γ = 1.352, and ⟨F ⟩ = 0.0801) for different numbers of mock draws. At
all values of the number of mocks considered, the covariance elements fall within 2% of their
final value. By around ∼ 100000 draws, all of the values fall within 0.5% of the final value. For
this reason, using 500000 mock draws is sufficient to generate the covariance matrices used in
this study. 500000 mock draws is represented by the vertical dashed grey line.

visually check this we will look at the distribution of mock draws from two bins of the

auto-correlation function for two different models.

Both Figures 4.16 and 4.17 show the distribution of 1000 mock data sets from the ve-

locity bins of the auto-correlation function with ∆v = 25.0 km s−1 and ∆v = 65.0 km s−1.

The bottom left panels show the 2D distribution of the auto-correlation values from these

bins. The blue (green) ellipses represents the theoretical 68% (95%) percentile contour

calculated from the covariance matrix calculated for each model from equation (4.6).

The red crosses shows the calculated mean. The top panels show the distribution of

only the v = 65.0 km s−1 bins while the right panels show the distribution of only the

v = 25.0 km s−1 bins.

Figure 4.16 shows mock values of two bins of the auto-correlation function for the

model at z = 5.4 with T0 = 9148 K, γ = 1.352, and ⟨F ⟩ = 0.0801. Both the 1D and

2D distributions seem relatively well described by Gaussian distributions by eye though

they do show some evidence of non-Gaussian tails to larger values. The number of points

falling in each contour both fall within 1% of the expected values. In the bottom left panel

with the 2D distribution there are more mock values falling outside the 95% contour to
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the top right (higher values) than in any other direction. For this reason the distribution

is not exactly Gaussian but a Gaussian visually appears as an acceptable approximation.

Figure 4.17 shows mock values of two bins of the auto-correlation function for the

model at z = 6 with T0 = 10600 K, γ = 1.262, and ⟨F ⟩ = 0.0089. In both the top and

right panels, which show the distribution of values for one bin of the auto-correlation

function, the distribution of mock draws is skewed with tails to the right. This is quan-

tified by the percent of points in the two ellipses from the bottom left panel labeled in

the top right with 72.3% of the mock draws falling within the 68% contour and 94.0%

of the mock draws falling within the 95% contour. The points outside of the contours

are highly skewered towards the top right (higher values). It is only possible for the

auto-correlation function to be negative due to noise, which generally averages to very

small values approaching zero at the non-zero lags of the auto-correlation function. This

can be seen in the black points and histogram do not go below 0, though the 95% ellipse

shown in green in the bottom left panel does go negative for ∆v = 65 km s−1.

Figures 4.16 and 4.17 show the changing distribution of the auto-correlation value

with z, T0, γ, and ⟨F ⟩. There is a greater deviation from a multi-variate Gaussian

distribution at higher z. It is possible that adding additional sightlines will cause the

auto-correlation function to better follow a multi-variate Gaussian distribution due to

the central limit theorem, though investigating this in detail is beyond the scope of the

paper. However, even with more sightlines ⟨F ⟩ will be low at high-z so we still expect

the distribution to be skewed as the values mainly will not fall below 0. The incorrect

assumption of the multi-variate Gaussian likelihood thus contributes to the failure of our

method to pass an inference test as discussed in Section 4.3.3 for z = 5.4 and Appendix

4.9 for z = 6. For our final constraints, we calculated weights for our MCMC chains such

that the resulting posteriors do pass our inference test, as discussed in Section 4.3.3. The

whole method of assuming a multi-variate Gaussian then re-weighting the posteriors in
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Figure 4.16: This figure shows the distribution 1000 mock draws from two bins of the auto-
correlation function (∆v = 25.0 km s−1 and ∆v = 65.0 km s−1) for one model (z = 5.4, T0 =
9148 K, γ = 1.352, and ⟨F ⟩ = 0.0801). The top panel shows the distribution of only the
∆v = 65.0 km s−1 bin while the right panel shows the distribution of only the ∆v = 25.0 km s−1

bin. The blue (green) circle represents the 68% (95%) ellipse calculated from the covariance
matrix calculated for this model from equation (4.6). The red plus shows the calculated mean.
Additionally the percent of mock draws that fall within each of these contours is written in
the top right. Both the 1D and 2D distributions seem relatively well described by a Gaussian
distribution. In the 2D plot, there are more points outside the 95% contour to the top right
than on any other side but it is not extreme.
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Figure 4.17: This figure shows the distribution 1000 mock draws from two bins of the auto-
correlation function (∆v = 25.0 km s−1 and ∆v = 65.0 km s−1) for one model (z = 6, T0 =
10600 K, γ = 1.262, and ⟨F ⟩ = 0.0089). The top panel shows the distribution of only the
∆v = 65.0 km s−1 bin while the right panel shows the distribution of only the ∆v = 25.0 km s−1

bin. The blue (green) circle represents the 68% (95%) ellipse calculated from the covariance
matrix calculated for this model from equation (4.6). The red plus shows the calculated mean.
Additionally the percent of mock draws that fall within each of these contours is written in the
top right. Both the 1D and 2D distributions are not well described by a Gaussian with 72.3%
of the mock draws falling within the 68% contour and 94.% of the mock draws falling within
the 95% contour.
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Figure 4.18: The left panel of this figure shows the coverage resulting from the inference test
from 300 models at z = 6. drawn from our priors on T0, γ, and ⟨F ⟩. Here we see that the true
parameters for the models fall above the 60th percentile in the MCMC chain ∼ 35% of the time,
for example. The right panel of this figure shows the coverage resulting from the inference test
with the use of one set of weights to re-weight the posteriors. With these weights we are able
to pass the inference test.

non-optimal and future work using a more correct likelihood or likelihood-free inference

will improve our results.

4.9 Appendix D: Inference test at high redshift

Here we present the results of the inference test at z = 6. This calculation was done

following the procedure described in Section 4.3.3. Figure 4.18 shows the results for z = 6

and can be compared to the z = 5.4 results in Figure 4.7. The left panel here shows the

initial coverage plot which deviates greatly from the expected Pinf = Ptrue line, much more

so than the z = 5.4. This likely comes from a greater deviation from the assumption of

a multi-variate Gaussian likelihood as described in Appendix 4.8. The z = 6 mock data

show highly skewed distributions that are not well described by a Gaussian likelihood.

The inference lines at other redshifts are available upon request.
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4.10 Appendix E: Gaussian data inference test

As shown in Appendix 4.8, the distribution of mock values of the auto-correlation

function is not exactly Gaussian distributed. In order to confirm the failure of our mock

data to pass an inference test (as discussed in Section 4.3.3 and Appendix 4.9) comes

from the use of a multi-variate Gaussian likelihood, we generate Gaussian distributed

data and run inference tests. For one value of T0, γ, and ⟨F ⟩, we randomly generate a

mock data set from a multi-variate Gaussian with the given mean model and covariance

matrix calculated from our mock data as described in Section 4.3.1. We can then continue

with the inference test as described in Section 4.3.3. The results for this inference test

for z = 5.4 and z = 6.0 are shown in Figure 4.19. Here both redshifts inference lines

fall along the 1-1 line that is expected for all probability contour, Ptrue, values. This

behavior is also seen at the other redshifts. The fact that perfectly Gaussian data passes

an inference test with the same likelihood, priors, and method as was used on mock

data confirms that the failure of our mock data to pass an inference test is due to the

non-Gaussian distribution of the mock data.
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Figure 4.19: Both panels of this figure shows the coverage plot resulting from the inference test
from 300 data sets generated by randomly drawing points from the mean model and covariance
matrix. The the means and covariance matrices used come from z = 5.4 in the left panel and
z = 6.0 in the right panel. The true parameter values for both panels were drawn from our
priors on T0, γ, and ⟨F ⟩. In both panels, the Gaussian mock data produced inference lines that
fall on top of the 1-1 line within errors, as expected for the statistically correct posteriors.
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Chapter 5

Measurements of the z > 5 Lyman-α

forest flux auto-correlation functions

from the extended XQR-30 data set

This chapter was reproduced from Wolfson et al. (2023c) with only minor changes to fit

the formatting of this dissertation. I’d like to thank my coauthors, without whom this

work would not have been possible: Joseph F. Hennawi, Sarah E. I. Bosman, Frederick

B. Davies, Zarija Lukić, George D. Becker, Huanqing Chen, Guido Cupani, Valentina

D’Odorico, Anna-Christina Eilers, Martin G. Haehnelt, Laura C. Keating, Girish Kulka-

rni, Samuel Lai, Andrei Mesinger, Fabian Walter, and Yongda Zhu.

5.1 Introduction

The reionization of the neutral hydrogen in the intergalactic medium (IGM) is one

of the major phase changes in our Universe’s history. Understanding the timing of this

process has been the focus of many recent studies. Current Planck constraints put the
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midpoint of reionization at zre = 7.7 ± 0.7 (Planck Collaboration et al., 2020) with

mounting evidence that it was not completed until after z ≤ 6 (Fan et al., 2006; Becker

et al., 2015, 2018; Bosman et al., 2018, 2022; Eilers et al., 2018; Boera et al., 2019; Yang

et al., 2020; Jung et al., 2020; Kashino et al., 2020; Morales et al., 2021).

Before the end of reionization, the mean free path of hydrogen-ionizing photons (λmfp)

is expected to be short due to the significant neutral hydrogen remaining in the IGM

which will absorb these photons close to their sources. In some models, as reionization

ends λmfp will rapidly increase due to the overlap of initially isolated ionized bubbles

and the photo-evaporation of dense photon sinks (Gnedin, 2000; Shapiro et al., 2004;

Furlanetto & Oh, 2005; Gnedin & Fan, 2006; Wyithe et al., 2008; Sobacchi & Mesinger,

2014; Park et al., 2016; Kulkarni et al., 2019; Keating et al., 2020b,a; Nasir & D’Aloisio,

2020; Cain et al., 2021; Gnedin & Madau, 2022). Thus detecting an increase in λmfp will

provide insights into the end of reionization.

Becker et al. (2021) reported the first direct measurement of λmfp at z ∼ 6 from

stacked quasar spectra. Zhu et al. (2023) updated this measurement and added two

additional redshift bins at z = 5.31 and z = 5.65. They found that λmfp = 9.33+2.06
−1.80,

5.40+1.47
−1.40, 3.31+2.74

−1.34, and 0.81+0.73
−0.48 pMpc at z =5.08, 5.31, 5.65, and 5.93, respectively.

Becker et al. (2021) and Zhu et al. (2023) expanded on previous measurements of λmfp

at z ≤ 5.1 (Prochaska et al., 2009; Fumagalli et al., 2013; O’Meara et al., 2013; Worseck

et al., 2014). The Zhu et al. (2023) measurement has λmfp rapidly increasing between

z = 6 and z = 5.1, potentially signalling the end of reionization. The values at z ≥ 5.3 are

significantly smaller than extrapolations from previous lower z measurements (Worseck

et al., 2014) based on a fully ionized IGM. In addition, the value at z ∼ 6 may cause

tension with measurements of the ionizing output from galaxies (Cain et al., 2021; Davies

et al., 2021).

Alternative methods to constrain λmfp are needed to check the measurements dis-
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cussed above and to constrain the timing of reionization in finer redshift bins. One such

method from Bosman (2021) used lower limits on individual free paths (the distance

ionizing radiation travels from an individual source) towards high-z sources to place a

2σ limit of λmfp > 0.31 proper Mpc at z = 6.0. This Bosman (2021) method is similar to

other measurements using individual free paths (Songaila & Cowie, 2010; Rudie et al.,

2013; Romano et al., 2019). Additionally, Gaikwad et al. (2023) constrained λmfp for

4.9 < z < 6.0 with ∆z = 0.1 by comparing the observed probability distribution function

of the Lyα optical depth to predictions from simulations with a fluctuating ultraviolet

background (UVB) driven by a short λmfp. The measurement of λmfp at z < 5.1 in

Gaikwad et al. (2023) shows a good agreement with the measurements from Worseck

et al. (2014) and Becker et al. (2021). At z = 6.0 Gaikwad et al. (2023) measured

λmfp = 8.318+7.531
−4.052 comoving Mpc (cMpc) h−1, which agrees with the Zhu et al. (2023)

measurement at the 1.2σ level and also falls above the lower limit found by Bosman

(2021).

The level of fluctuations in the UVB are set by the distribution of ionizing photon

sources and λmfp. For large values of λmfp, photons travel further from their sources and

effectively creates a more uniform UVB (Mesinger & Furlanetto, 2009). Alternatively,

small values of λmfp lead to greater fluctuations in the UVB, causing some regions to have

very large ΓHI values. These fluctuations then imprint themselves on the Lyα forest flux

transmission in high-z quasar spectra via the Lyα opacity, τLyα where τLyα = nHIσLyα ∝

1/ΓHI ∝ 1/λα
mfp where 3/2 < α < 2 (see e.g. Rauch, 1998; Haardt & Madau, 2012). Many

previous studies have investigated the effect of large scale variations in the UVB on the

structure of the Lyα forest (Zuo, 1992a,b; Croft, 2004; Meiksin & White, 2004; McDonald

et al., 2005; Gontcho A Gontcho et al., 2014; Pontzen, 2014; Pontzen et al., 2014; D’Aloisio

et al., 2018; Meiksin & McQuinn, 2019; Oñorbe et al., 2019). This is similar to the

argument explored by Gaikwad et al. (2023) in using the probability distribution function
165



Measurements of the z > 5 Lyman-α forest flux auto-correlation functions from the extended
XQR-30 data set Chapter 5

of the Lyα optical depth to constrain λmfp. The probability distribution function of the

Lyα optical depth does not consider the 2-point clustering, which can be quantified

through the auto-correlation function and the power spectrum, which is the Fourier

transform of the auto-correlation function, of the Lyα forest flux. Beyond the effect of

UVB fluctuations, the power spectrum of the Lyα forest flux contrast has been measured

at high z and used to constrain the thermal state of the IGM (Boera et al., 2019; Walther

et al., 2019; Gaikwad et al., 2021) as well as warm dark matter particle mass (Viel et al.,

2013; Iršič et al., 2017; Garzilli et al., 2017).

This work is specifically building on Wolfson et al. (2023b) which investigated the

effect of a fluctuating UVB on small scales in Lyα forest transmission at z ≥ 5.4. They

found that the Lyα forest transmission on small scales will be boosted for small val-

ues of λmfp and that this can be quantified with the Lyα forest flux auto-correlation

function. They used the auto-correlation function to recover λmfp from simulated mock

data. The Lyα forest flux auto-correlation function has yet to be measured at z ≳ 5.5

for observational data. Many previous studies have measured the Lyα forest flux auto-

correlation function at lower redshifts for a wide range of applications (McDonald et al.,

2000; Rollinde et al., 2003; Becker et al., 2004; D’Odorico et al., 2006).

In this paper we use the XQR-30 extended data set to measure the Lyα forest flux

auto-correlation function. We discuss this observational data in Section 5.2. The details

on the data selection and measurement process with a full account of relevant errors are

described in Section 5.3. We then discuss our resulting measurements in Section 5.4 and

some preliminary comparisons to simulations in Section 5.5. We summarize our results

in Section 5.6.
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5.2 Data

The quasar spectra used in this work are a subset of those presented in Bosman

et al. (2022). The data reduction was performed and discussed in detail there but will

be summarized again in this work for the sake of completeness. Additionally, more

information on the continuum reconstructions can be found in Bosman et al. (2021).

All of the observations used in this work comes from the XQR-30 program1 (1103.A0817(A),

D’Odorico et al., 2023), which consists of a sample of 30 very luminous quasars at z ≳ 5.8

observed with the X-Shooter instrument (Vernet et al., 2011b) on ESO’s Very Large

Telescope. We use 24 quasars from the XQR-30 sample which do not show strong broad

absorption lines (BALs) that would create issues in the modelling of the intrinsic contin-

uum (Bischetti et al., 2022) and could also possibly contaminate the Lyα forest region.

Three additional spectra (PSO J231-20, ATLAS J2211-3206, and SDSS J2310+1855)

were identified as hi-BALs so we exclude regions of the spectra where there is possible

strong OVI contamination (7770Å < λobs < 7870Å, λobs < 7280Å, and λobs < 6700Å

respectively). All XQR-30 spectra have signal-to-noise ratios (SNRs) larger than 20 per

10 km s−1 pixel measured over 1165Å < λrest < 1170Å (Table 5.1). In addition to the

24 XQR-30 quasars, we use 11 archival X-Shooter spectra that are from the extended

XQR-30 sample (D’Odorico et al., 2023). These spectra have SNR ¿ 40 per 10 km s−1

pixel from the literature (Table 5.1, marked with *). The extended XQR-30 sample has a

median effective resolving power over all 42 quasars of R ≃ 11400 and 9800 in the visible

(5500Å < λobs < 10200Å) and infrared arm (10200Å < λobs < 24800Å) of X-Shooter,

respectively (D’Odorico et al., 2023).

All quasars are reduced with the same procedure. Observations are first flat-fielded

and sky-subtracted following the method of Kelson (2003). The spectra are extracted
1https://xqr30.inaf.it/
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Table 5.1: The extended XQR-30 quasars included in this work. Those with a * represent the
extended data set quasars which did not get new spectra in the XQR-30 program. References
correspond to: discovery, redshift determination.

Quasar ID zqso SNR pix−1 Refs.
PSO J323+12 6.5872 35.9 Mazzucchelli et al. (2017), Venemans et al. (2020)
PSO J231-20 6.5869 42.3 Mazzucchelli et al. (2017), Venemans et al. (2020)
VDES J0224-4711 6.5223 24.4 Reed et al. (2017), Wang et al. (2021)
PSO J036+03* 6.5405 61.4 Venemans et al. (2015), Venemans et al. (2020)
PSO J1212+0505 6.4386 55.8 Mazzucchelli et al. (2017), Decarli et al. (2018)
DELS J1535+1943 6.3932 22.6 Wang et al. (2019), Bosman et al. (2022)
ATLAS J2211-3206 6.3394 37.5 Chehade et al. (2018)/Farina et al. (2019), Decarli et al. (2018)
SDSS J0100+2802* 6.3269 560.5 Wu et al. (2015), Venemans et al. (2020)
ATLAS J025-33* 6.318 127.3 Carnall et al. (2015), Becker et al. (2019)
SDSS J1030+0524* 6.309 69.6 Fan et al. (2001), Jiang et al. (2007)
PSO J060+24 6.192 49.7 Bañados et al. (2016), Bosman et al. (2022)
PSO J065-26 6.1871 77.9 Bañados et al. (2016), Venemans et al. (2020)
PSO J359-06 6.1722 68.8 Wang et al. (2016), Eilers et al. (2021)
PSO J217-16 6.1498 73.0 Bañados et al. (2016), Decarli et al. (2018)
ULAS J1319+0950* 6.1347 81.7 Mortlock et al. (2009), Venemans et al. (2020)
CFHQS J1509-1749* 6.1225 43.0 Willott et al. (2007), Decarli et al. (2018)
PSO J239-07 6.1102 56.3 Bañados et al. (2016), Eilers et al. (2021)
SDSS J0842+1218 6.0754 83.2 De Rosa et al. (2011)/Jiang et al. (2015), Venemans et al. (2020)
ATLAS J158-14 6.0685 60.3 Chehade et al. (2018), Eilers et al. (2021)
VDES J0408-5632 6.0345 86.6 Reed et al. (2017), Reed et al. (2017)
SDSS J1306+0356* 6.033 65.3 Fan et al. (2001), Venemans et al. (2020)
ATLAS J029-36 6.021 57.1 Carnall et al. (2015), Becker et al. (2019)
SDSS J2310+1855 6.0031 113.4 Jiang et al. (2016), Wang et al. (2013)
PSO J007+04 6.0015 54.4 Jiang et al. (2015)/Bañados et al. (2014), Venemans et al. (2020)
ULAS J0148+0600* 5.998 152.0 Jiang et al. (2015), Becker et al. (2019)
SDSS J0818+1722* 5.997 132.1 Fan et al. (2006), Becker et al. (2019)
PSO J029-29 5.984 65.6 Bañados et al. (2016), Bañados et al. (2016)
PSO J108+08 5.9485 104.8 Bañados et al. (2016), Bañados et al. (2016)
PSO J183-12 5.917 61.8 Bañados et al. (2014), Bosman et al. (2022)
PSO J025-11 5.844 50.6 Bañados et al. (2016), Bosman et al. (2022)
PSO J242-12 5.837 22.9 Bañados et al. (2016), Bosman et al. (2022)
PSO J065+01 5.833 25.1 D’Odorico et al. (2023), Bosman et al. (2022)
SDSS J0836+0054* 5.804 73.8 Fan et al. (2001), Bosman et al. (2022)
PSO J308-27 5.7985 53.2 Bañados et al. (2016), D’Odorico et al. (2023)
SDSS J0927+2001* 5.7722 53.8 Fan et al. (2006), Wang et al. (2010)
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Figure 5.1: The X-Shooter spectrum of the Lyα transmission region for the quasar PSO J029-
29 from the XQR-30 sample. The noise vector is shown in red and the PCA-reconstructed
continuum is shown in blue. The light blue lines show draws of the continuum reconstruction
with the appropriate scatter from the covariance matrix of the PCA reconstruction. The pixel
scale is 10 km s−1 and the SNR of the Lyα region (reconstruction divided by uncertainty) is
SNR = 50.6.

(Horne, 1986) separately for the visible and infrared arms of the instrument which are

then stitched together over the 10110Å < λobs < 10130Å spectral window. The infrared

spectrum is re-scaled to match the observed mean flux in the optical arm. The spectrum

is then interpolated over the overlap window in order to minimize the risk of creating an

artificial step in the spectrum between the arms to which the continuum-fitting method

may be non-linearly sensitive (see discussion in Bosman et al., 2022). The reduction

routines are described in more detail in Becker et al. (2009). Further details are presented

in D’Odorico et al. (2023).

An example spectrum from the program is shown in Figure 5.1 for PSO J029-29. The

black line shows the reduced XQR-30 spectrum and the red line shows the noise vector.

The intrinsic continuum reconstructed with the method described in Section 5.3.1 is

shown by the solid blue line, while the continuum fit to the red side of the quasars emission

is shown in green. The light blue lines show draws of the continuum reconstruction with

the appropriate scatter from the covariance matrix of the PCA reconstruction. The

sampling procedure for these draws are also discussed in Section 5.3.1.
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5.3 Methods

5.3.1 Continuum reconstruction

For each quasar, the continuum, Fcont(λrest), was reconstructed using Principal Com-

ponent Analysis (PCA). To do this, we consider both the red side (λrest > 1280Å) and

the blue side (λrest < 1220Å) of the quasar continuum with respect to the Lyα emission.

At low-z, both sides of the quasar continuum are transmitted through the IGM, as the

IGM is mainly ionized. Thus we can use PCA to find the optimal linear decomposition

of both the red side and the blue side of the low-z quasar continuum, then construct an

optimal mapping between the the linear coefficients from the two decompositions. At

high-z, the red side of quasar continua will be transmitted while the blue side is absorbed

by remaining neutral hydrogen in the IGM, see e.g. Figure 5.1. We can thus get the

PCA decomposition for the red side of the continuum then use the optimal mapping,

determined from low-z quasars, to predict the blue side coefficients and thus the con-

tinuum (Francis et al., 1992; Yip et al., 2004). This method has been historically used

to get the continuum for the Lyα forest in Suzuki et al. (2005) then it was further ex-

panded, for example by: McDonald et al. (2005); Pâris et al. (2011); Davies et al. (2018

d,c); Ďurovč́ıková et al. (2020). Previously, Bosman et al. (2021) determined the most

accurate PCA method and Bosman et al. (2022) further improved this method with the

log-PCA approach of Davies et al. (2018d,c).

This work uses the same reconstructions that were generated for Bosman et al. (2022)

using the log-PCA approach. The PCA consists of 15 red-side components and 10 blue-

side components. The training set amounted to 4597 quasars from the SDSS-III Baryon

Oscillation Spectroscopic Survey (BOSS, Dawson et al., 2013) and the SDSS-IV Extended

BOSS (eBOSS, Dawson et al., 2016) at 2.7 < z < 3.5 with SNR ¿ 7. Intrinsic continua

were obtained automatically using a modified version of the method of Dall’Aglio et al.
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(2008), originally based on the procedures outlined in Young et al. (1979) and Carswell

et al. (1982). These continua are re-normalized so that they match the observed mean

Lyα transmission at z ∼ 3 that was measured from high-resolution spectra (Faucher-

Giguère et al., 2008; Becker et al., 2013) to prevent bias from the low spectral resolution

of the SDSS spectrograph (as described in Dall’Aglio et al., 2009). The reconstructions

were tested with an independent set of 4597 quasars from eBOSS. As described in Bosman

et al. (2022), this testing revealed that there is no bias in reconstructing the blue-side

emission lines and that the method predicts the underlying continuum within 8%. The

reconstruction error on this testing set gives us the mean, µcont, and covariance, Σcont,

of the PCA reconstruction as shown in Figure 2 of Bosman et al. (2022).

In the following steps, we always forward-model the full wavelength-dependent un-

certainties from the reconstruction of Fcont(λrest) into all measurements and model com-

parisons. We do this by randomly drawing realizations of the continuum error, Econt ∼

N(µcont, Σcont), where N is the normal distribution. We create a realization of the pre-

dicted continuum with this error, Cpred, from the fit quasar continuum, Cfit, via:

Cpred = Cfit × Econt. (5.1)

We use 500 of these continuum draws to analyze each quasar’s spectrum. When we

performed bootstrap re-sampling as described in Section 5.4.3, each draw uses a random

selection of these 500 continua. Figures showing all PCA fits and blue-side predictions

for all extended XQR-30 quasars are shown in Zhu et al. (2021).

5.3.2 Pixel masking

We want to use flux from the quasar continuum that exclusively corresponds to Lyα

forest absorption. To do this, we only use wavelengths larger than the Lyβ emission at

the redshift of the quasar, or λrest > 1026Å. Additionally, we want to exclude the quasars
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proximity zone, which is the region close to the quasar where the IGM has been ionized by

the quasar’s own emission and the transmission is enhanced. For this reason, we consider

λrest < 1185Å following Bosman et al. (2022) which corresponds to ∼ 7650 km s−1 from

emission at z ∼ 6. This is a conservative estimate based on Bosman et al. (2018), which

found no effect on the Lyα transmission in spectral stacks over this wavelength.

The data reduction procedure should automatically reject outlier pixels. However,

we check for and exclude anomalous pixels that meet either of the following conditions:

the SNR at the unabsorbed continuum level is ¡ 2 per pixel or if pixels have negative

flux at > 3σ significance. This excludes 0% of pixels for the SNR cut at all redshifts and

0.07 − 0.47% of pixels for the negative flux cut depending on redshift.

5.3.3 DLA exclusion

Damped Lyα absorption systems (DLAs) are intervening systems along quasar sight-

lines with hydrogen column densities NHI ≥ 1020.3 cm−2. These systems result in sig-

nificant damping wings in the Lyα absorption profile (Wolfe et al., 2005; Rafelski et al.,

2012). DLAs in quasar spectra at z ≳ 6 can cause complete absorption of Lyα transmis-

sion over ∆v = 2000 km s−1 and additional suppression over ∆v ≳ 5000 km s−1 intervals

(D’Odorico et al., 2018; Bañados et al., 2019; Davies, 2020). DLAs can arise in the

circumgalactic medium (CGM) of galaxies which are not typically included in reioniza-

tion simulations, including those discussed in Section 5.5. For this reason, we attempt

to remove DLAs from our observations based on the presence of metals in the spectra.

This does leave open the possibility that DLAs from pristine neutral patches of the IGM

remain in our observations.

We remove DLAs by identifying and masking out their locations in our spectra. The

detection of z ≳ 5 DLAs relies on the identification of associated low-ionization metal
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absorption lines, since the Lyα absorption from the DLA may not be distinguishable

from the highly-opaque IGM. The typical transitions are CII, OI, SiII, and MgII. DLA

metallicities at z ≳ 5 vary so even relatively weak metal absorption could indicate a

DLA. The identification of intervening metal absorbers in the extended XQR-30 sample

has been described in detail in Davies et al. (2023) and Sodini et al. (2024). Due to

the high SNR of the X-Shooter spectra, we expect to be ¿ 90% complete to absorption

corresponding to log NMgII/cm−2 ≳ 13.

We adopt the following criteria for our masks, following Bosman et al. (2022). We

mask the central ∆v = 3000 km s−1 for systems with metal column densities log NCII/cm−2 >

13, log NOI/cm−2 > 13, or log NSiII/cm−2 > 12.5, measured through the λrest = 1334.53Å,

1302.16Å, and 1526Å transitions, respectively. When none of these ions are accessible,

we also exclude the central ∆v = 3000 km s−1 for systems with log NMgII/cm−2 > 13

based on the high rates of co-occurrence of the MgII 2796.35, 2803.53Å doublet (Cooper

et al., 2019). We exclude a larger window of ∆v = 5000 km s−1 around intervening sys-

tems with log NOI, CII, SiII, MgII/cm−2 > 14 due to the likely presence of extended damping

wings. We do not exclude systems based on the presence of highly ionized ions alone (e.g.

C IV, Si IV) since the corresponding gas is likely highly ionized (Cooper et al., 2019).

We investigate the effect of this mask on the measurement of the auto-correlation

function in Appendix 5.8.

5.3.4 Resulting normalized flux

After combining the masks of the bad pixels discussed in Section 5.3.2 and the DLAs

discussed in Section 5.3.3, we only considered sightlines that maintain at least 10% of

the pixels in a given redshift bin. Only using spectra that maintain at least 10% of pixels

limits noisy contributions to the measurement from short spectra that may only consist
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Figure 5.2: This figure shows the continuum normalized flux for two randomly selected quasars
at five values of z of the Lyα forest from 5.1 ≤ z ≤ 5.5. These sections are centered on
the given z and span ∆z = 0.05. The continuum normalized flux is shown in black with the
continuum normalized uncertainty in red. The shaded regions indicate excluded pixels based
on the masking procedure described in Section 5.3.2 and 5.3.3. Each row shares the same
y-axis to demonstrate the decrease in ⟨F ⟩ with increasing z (down the rows). Note that the
normalized flux for all the quasars considered in each measurement can be found in the online
supplementary material.
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Figure 5.3: The same as Figure 5.2 except for 5.6 ≤ z ≤ 6.0. The y-axis spans a smaller range
than that in Figure 5.2.
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of one transmission spike. Two random examples of the normalized flux from quasars

in our sample at each redshift are shown in Figures 5.2 and 5.3. The normalized flux

for all the sightlines used in each redshift bin can be found in the online supplementary

material, which demonstrate the variance between the sightlines at a given redshift.

Figure 5.2 shows the normalized flux for two quasar sightlines for 5.1 ≤ z ≤ 5.5 while

Figure 5.3 has the same for 5.6 ≤ z ≤ 6.0. Each row has the same z and each column

shows a random quasar sightline. The value of z increases down the rows. The y-axis

is fixed within Figures 5.2 and 5.3 though it varies between the two figures. The fixed

y-axis illustrates the rough trend of decreasing ⟨F ⟩ with increasing z. Both of the random

sightlines shown at z = 6 have very limited transmission, which highlights the difficulty

in making statistical measurements of the Lyα forest at high redshifts.

5.4 Results

5.4.1 Mean flux

The mean flux in this paper was calculated as the average of the normalized flux

values for the non-excluded pixels as shown in Figures 5.2 and 5.3. The resulting values

are reported in Table 5.2 and plotted as a function of redshift in Figure 5.4. The error on

the ⟨F ⟩ values were computed by bootstrap re-sampling the quasar sightlines considered

at each z for 500,000 data set realizations and computing the variance on these values.

See Section 5.4.3 for more information on how the bootstrap realizations were generated.

Figure 5.4 shows the ⟨F ⟩ values computed in this work in red, the previous measure-

ment of Bosman et al. (2022) in black, and the measurements of Becker et al. (2013),

Bosman et al. (2018), and Eilers et al. (2018) in blue, orange, and green, respectively.

Our measurement is in agreement with that from Bosman et al. (2022), as is expected
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z Nlos ⟨F ⟩

5.1 24 0.1456 ± 0.0075

5.2 29 0.1314 ± 0.0072

5.3 29 0.1097 ± 0.0087

5.4 33 0.0830 ± 0.0086

5.5 34 0.0567 ± 0.0055

5.6 34 0.0474 ± 0.0053

5.7 29 0.0269 ± 0.0044

5.8 26 0.0181 ± 0.0035

5.9 15 0.0089 ± 0.0018

6.0 14 0.0090 ± 0.0023

Table 5.2: The second column lists the numbers of lines of sight at each z in our sample. The
third column reports the mean flux, ⟨F ⟩, value that was directly computed from this sample.
The error on ⟨F ⟩ comes from bootstrap re-sampling of the sightlines.
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Figure 5.4: Recent measurements of the average Lyα transmission, ⟨F ⟩, at high-z. The mea-
sured ⟨F ⟩ from this work are shown in red. This is computed directly by taking the average of
the non-excluded normalized flux values from the masks created as discussed in Sections 5.3.2
and 5.3.3. The errors come from bootstrap re-sampling the quasar sightlines. Note that the
measurement shown in red comes from a subset of the quasar sightlines used in Bosman et al.
(2022) which are plotted in black. Additional data points from previous works are shown in
blue, orange, and green over the same z range (Becker et al., 2013; Bosman et al., 2018; Eilers
et al., 2018).

since the data used here is a subset of that used in that work and our method is the

same. In addition, we use the same continuum reconstruction and masking procedure as

in Bosman et al. (2022). At z = 5.1 and z = 5.2 our measurement appears greater than

that from Bosman et al. (2022), but the data set we considered is much smaller and the

measurements are consistent within the error bars. A discussion of the agreement of ⟨F ⟩

with previous work can be found in Bosman et al. (2022).

5.4.2 Auto-correlation Function

The auto-correlation function of the flux (ξF (∆v)) is defined as

ξF (∆v) = ⟨F (v)F (v + ∆v)⟩ (5.2)

where F (v) is the normalized flux of the Lyα forest and the average is performed over

all pairs of pixels at the same velocity lag (∆v). The pixels that have been masked as

discussed in Sections 5.3.2 and 5.3.3 are not used when computing the auto-correlation
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function for each quasar. See Appendix 5.8 for a discussion of the effect of the DLA

exclusion on the measurement of the auto-correlation function. Note that different quasar

sightlines will have a different number of pixel pairs contributing to the same velocity

bin. Thus, when combining the different quasar sightlines, we weight each quasar’s

contribution by the numbers of pixel pairs in each bin. The number count of pixel pairs

contributing to each auto-correlation function bin is output during the auto-correlation

function computation.

We compute the auto-correlation function with the following consideration for the

velocity bins. We start with the left edge of the smallest bin to be 40 km s−1 and use

linear bins with a width of 40 km s−1 up to 280 km s−1. The choice of 40 km s−1 was

done as it is roughly the size of a resolution element for these observations. Then we

switch to logarithmic bin widths where log10(∆v) = 0.058 out to a maximal distance

of 2700 km s−1. This results in 22 velocity bins considered where the first 6 have linear

spacing. The center of our smallest bin was 60 km s−1 and our largest bin was 2223 km s−1,

which corresponds to ∼ 16 cMpc h−1 at z = 5.5. We chose to use linear bins on the

smallest scales because the effect of λmfp is greatest on small scales and these scales

already have access to the most pixel pairs which reduces noise. Larger scales are more

sensitive to ⟨F ⟩ than λmfp so having fewer bins here is not as important. In addition,

there are fewer pixel pairs at large scales to begin with so using larger bins will increase

the pixel pairs per bin and reduce noise.

Previously, Wolfson et al. (2023b) demonstrated the sensitivity of the auto-correlation

function to λmfp for mock data at z ≥ 5.4. Generally, they found that shorter λmfp values

cause a greater boost in the auto-correlation function on the smallest scales. We compute

the auto-correlation functions of the XQR-30 data set discussed in Section 5.2. The

measured auto-correlation function from the extended XQR-30 data set can be seen in

Figures 5.5 and 5.6. The errors on these plots come from bootstrap sampling of the quasar
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sightlines when computing the mean auto-correlation function and will be discussed in

more detail in Section 5.4.3. The first few velocity bins of the final measurement with

error from the diagonal of the covariance matrix estimated via bootstrap re-sampling are

in Table 5.3. The full measurement, error bars, as well as the full bootstrap covariance

matrices for each redshift are available to download online2.

2https://github.com/mollywolfson/lya_autocorr/
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Figure 5.5 has two panels that show the auto-correlation function of this data set at

different z. The top panel shows 5.1 ≤ z ≤ 5.5 while the bottom panel shows 5.6 ≤ z ≤

6.0. They are shown in two different panels in order to better accommodate the dynamic

range of the auto-correlation function over our range of z. The overall amplitude of the

auto-correlation function of the flux is set by ⟨F ⟩2, which decreases with increasing z.

In order to better visually demonstrate the differences in the shape of the auto-

correlation function on small scales, we also plot the measured auto-correlation function

normalized and shifted by ⟨F ⟩2 at each z in Figure 5.6. Note that the ⟨F ⟩ value used is

redshift dependent and is reported in Table 5.2. This is equivalent to the auto-correlation

function of the flux density field. The color of the normalized auto-correlation function

at each z matches those from Figure 5.5. This has been split into two panels for visual

clarity to more easily see the behavior in each redshift bin. The top panel has z =

5.1, 5.3, 5.5, 5.7, 5.9 while the bottom panel has 5.2, 5.4, 5.6, 5.8, 6.0. By looking at the

smallest scales, v < 500 km s−1 or x < 4 cMpc h−1 at z = 5.5, there is a trend of

increasing small-scale values of the auto-correlation function with increasing redshift. For

example, the lines for 5.8 ≤ z ≤ 6.0 have the greatest auto-correlation value (in shades

of purple). Note that these points have the largest error bars, likely caused by both the

limited number of sightlines and the low transmission at these redshifts. Both ⟨F ⟩ and

λmfp affect the small scale boost in the auto-correlation function. Smaller ⟨F ⟩ will lead to

larger fluctuations in the flux contrast field and thus a boost on the small scales. Wolfson

et al. (2023b) found that shorter λmfp values also cause a boost in the auto-correlation

function on the smallest scales. These effects are not completely degenerate since the

overall auto-correlation function shape differs as shown in the forecast measurements of

Wolfson et al. (2023b).

We isolate the redshift evolution of the smallest velocity bin (60 km s−1) of the nor-

malized auto-correlation function in Figure 5.7. Again, the ⟨F ⟩ value used is redshift
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Figure 5.5: The auto-correlation function of Lyα transmission in ten redshift bins for XQR-30
data. The top panel shows the lower z bins, 5.1 ≤ z ≤ 5.5 while the lower panel shows the
higher z bins, 5.6 ≤ z ≤ 6.0. The main trend seen in these plots is the evolution of ⟨F ⟩ which
is very small at high-z.

dependent and is reported in Table 5.2. The errors are computed by propagating the

statistical uncertainty from bootstrap re-sampling both the auto-correlation function and

⟨F ⟩. In general these values increase with redshift, which is expected from decreasing

⟨F ⟩ as well as λmfp. However, the errors also increase with redshift and the values at the

highest redshift are consistent with each other within errors.

5.4.3 Bootstrap Covariance Matrices

In order to calculate the error on ⟨F ⟩ and the auto-correlation functions we used

bootstrap re-sampling. To compute the values we performed averages over Nboot =

500000 realizations of the data set. Each realization is a random selection of Nlos quasars

with replacement. In addition, each choice of quasar goes along with a choice of the 500

continuum realizations that were generated as described at the end of Section 5.3.1. The
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Figure 5.6: The auto-correlation function of Lyα transmission normalized and shifted by the
mean transmission, ⟨F ⟩, in ten redshift bins for XQR-30 data. This is equivalent to the auto-
correlation function of the flux density field. The errors are computed by propagating the
statistical uncertainty from bootstrap re-sampling both the auto-correlation function and ⟨F ⟩.
This is split into two panels for visual clarity, so as to not overcrowd the panels. The top panel
has z = 5.1, 5.3, 5.5, 5.7, 5.9 while the bottom panel has 5.2, 5.4, 5.6, 5.8, 6.0. This figure makes
the trend of higher redshift bins having larger boosts of the auto-correlation function on small
scales when dividing out the flux evolution more visible.
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Figure 5.7: The value of the first bin of the auto-correlation function of Lyα transmission
normalized and shifted by the mean transmission, ⟨F ⟩, as a function of redshift. The errors
are computed by propagating the statistical uncertainty from bootstrap re-sampling both the
auto-correlation function and ⟨F ⟩. These values are also shown in Figure 5.6. There is a general
trend of increasing value with redshift, though the errors also increase. The highest redshift
values are consistent with no evolution.
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computed mean flux for the ith sample is thus ⟨F ⟩i and the error on ⟨F ⟩, σF is:

σF =
 1

Nboot − 1

Nboot∑
i=1

(⟨F ⟩i − ⟨F ⟩)2

1/2

. (5.3)

These errors are reported in Table 5.2 and shown in Figure 5.4.

For the auto-correlation function, ξ, we compute the entire bootstrap covariance

matrix, not only the diagonal error. Again we chose Nboot realizations of the observed

data set by randomly selecting Nlos quasars with replacement each with their own random

selection of the continuum realization. For any given bootstrap realization we computed

the average of the auto-correlation function over the chosen sightlines to construct a

realization of the average auto-correlation function, ξi. The covariance matrix was then

computed by averaging over the ensemble of bootstrap realizations in the following way:

Σboot = 1
Nboot − 1

Nboot∑
i=1

(ξi − ξdata)(ξi − ξdata)T. (5.4)

For visualization purposes, we use the diagonal of the bootstrap covariance matrices to

estimate the error bars on the auto-correlation function shown in Figure 5.5. Specifically

we define σboot =
√

(diag(Σboot)). The diagonal of the covariance matrix is not a full

description of the error since the bins of the auto-correlation function are highly correlated

and should thus fluctuate in a correlated way, thus making the full covariance matrix

necessary in any computations. The error bars in Figure 5.6, σ∆, come from combining

the bootstrap estimate of the errors for ξF with bootstrap estimate of the errors on ⟨F ⟩

via:

σ∆ = ξF − ⟨F ⟩2

⟨F ⟩2

√√√√(σboot

ξF

)2

+ 2
(

σF

⟨F ⟩

)2

(5.5)

Additionally we define the correlation matrix, C, which expresses the covariances

between jth and kth bins in units of the the diagonal elements of the covariance matrix.

This is done for the jth, kth element by

Cjk = Σjk√
ΣjjΣkk

. (5.6)
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The bootstrap correlation matrices for the measured auto-correlation functions at each z

are shown in Figure 5.8. Based on the simulated correlation matrices from Wolfson et al.

(2023b), we expect there to be significant off diagonal values of these bootstrap correla-

tion matrices. This is because, generally, each pixel in the Lyα forest contributes to every

bin of the auto-correlation function so the different velocity bins in the auto-correlation

function are highly covariant. Large off-diagonal values are seen in the bootstrap correla-

tion matrices in Figure 5.8 for z < 5.8. At the highest three redshifts, especially z = 5.9

and z = 6.0, the number of quasar lines of sight are quite small and the transmission

is quite low, leading to large noise fluctuations and non-converged off-diagonal values.

In particular, there are negative values off the diagonal for z = 5.9 and z = 6.0 which

we do not see in our simulated covariance matrices. We expect noisy fluctuations in the

off-diagonal covariance matrix values to go away with the addition of more quasar sight-

lines, though low transmission at the highest redshifts will still make this computation

difficult.

5.5 Modeling the measurement

In order to interpret the physical implications of the measured auto-correlation func-

tion, we construct forward models with the properties of the observed quasars. Functions

to convert any set of simulation skewers into auto-correlation function measurements are

available online at https://github.com/mollywolfson/lya autocorr/. In addition,

there is a Jupyter Notebook that goes through an example of forward-modeling simula-

tion skewers and then computing the auto-correlation function. The simulation method

used here was introduced in Wolfson et al. (2023b) for a simplified mock data set. We

have updated this method to include continuum uncertainty, noise vectors from observa-

tional data, and a ΓHI box that matches the density field of the main simulation suite.
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Figure 5.8: The correlation matrices from bootstrap re-sampling the auto-correlation function
in the ten redshift bins considered in this work. For z < 5.8 we see very strong positive off-
diagonal values of the correlation matrices. This behavior is expected since each pixel in the
Lyα forest contribute to every bin of the auto-correlation function, making these bins highly
correlated. The fluctuations in the correlation matrix values are caused by noise due to the
limited sightlines available to bootstrap. At z ≥ 5.8 the number of sightlines is small and the
transmission is low, causing large noise fluctuations. For z = 5.9 and z = 6.0, the sightlines are
so few and so non-transmissive that noise fluctuations lead to negative values in the correlation
matrices. There is no physical explanation for these negative values. The numbers of sightlines
used at each z are listed in Table 5.2.
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We will briefly describe this updated method here, for more information see Wolfson

et al. (2023b).

Note that this paper is using a simple model that only varies λmfp and ⟨F ⟩. More

sophisticated modeling that includes variation in the IGM thermal state, patchy reioniza-

tion, and more robust UVB modeling is left for future work. For an initial investigation

into the effect of the IGM thermal state and inhomogeneous reionization on the Lyα

forest flux auto-correlation function see Wolfson et al. (2023a). They found that these

mainly affect scales v < 100 km s−1, which corresponds to only the smallest bin consid-

ered here. Thus, while additional simulation work is necessary to include all relevant

parameters, the models presented here are sufficient for an initial comparison.

5.5.1 Simulation box

To begin, we use a Nyx simulation box (Almgren et al., 2013). Nyx is a hydrodynamical

simulation code designed to simulate the Lyα forest with updated physical rates from

Lukić et al. (2015). The Nyx box has a size of Lbox = 100 cMpc h−1 with 40963 dark

matter particles and 40963 baryon grid cells. This box is reionized by a Haardt & Madau

(2012) uniform UVB that is switched on at z ∼ 15, which means these simulation boxes

do not include the effects of a patchy, inhomogeneous reionization.

We have three snapshots of this simulation at z = 5.0, z = 5.5, and z = 6 and we want

to model all ten redshifts 5.1 ≤ z ≤ 6.0 with ∆z = 0.1. In order to consider the redshifts

for which we do not have a simulation output, we select the nearest snapshot and use

the desired redshift when calculating the proper size of the box and the mean density.

This means we use the density fluctuations, temperature, and velocities directly from

the nearest Nyx simulation output. Previously, in Wolfson et al. (2023b) we tested this

choice of simulation interpolation by using the z = 6.0 simulation snapshot to generate
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skewers at z = 5.7 and found no change in the results.

In addition, we have a grid of boxes of ΓHI/⟨ΓHI⟩ values generated with the semi-

numerical method of Davies & Furlanetto (2016b) corresponding to a fluctuating UVB

for different λmfp values, all at z = 5.5. These boxes have a size of Lbox = 100 h−1 cMpc,

643 pixels, and are generated from the density field of the Nyx simulation box. The

method of Davies & Furlanetto (2016b) uses Mesinger & Furlanetto (2007) and Bouwens

et al. (2015) to create halos and assign UV luminosities from the density field. They then

get the ionizing luminosity of each galaxy by assuming it to be proportional to its UV

luminosity where the constant of proportionality is left as a free parameter. Finally the

ionizing background radiation intensity, Jν , is computed by a radiative transfer algorithm

and ΓHI is finally calculated by integrating over Jν . For more information on this method

of generating ΓHI boxes see Davies & Furlanetto (2016b), Davies et al. (2018b), or Wolfson

et al. (2023b). Note that this modeling assumes a number of relations, such as local

λ ∝ Γ2/3
HI ∆−1. Additional work looking into the effect on the UVB from varying these

assumptions is necessary to get robust constraints on λmfp from these models. We leave

this for future work and use this simple one parameter model for an initial, qualitative

comparison with the data.

To combine the Nyx box with the ΓHI values generated via the Davies & Furlanetto

(2016b) method, we linearly interpolated log(ΓHI/⟨ΓHI⟩) onto the higher resolution grid

of the Nyx simulation box. We then re-scale the optical depths from the Nyx box with

a constant UVB, τconst., by these fluctuating ΓHI values to get the optical depths for a

fluctuating UVB, τmfp = τconst./(ΓHI/⟨ΓHI⟩). This implies that we need to know ⟨ΓHI⟩ to

compute our final optical depths, which is not known a priori. We therefore determine

this value by matching an overall mean flux ⟨F ⟩, where we vary ⟨F ⟩ over a range of

models based off the measurement of Bosman et al. (2022). We look at the relationship

between ⟨F ⟩, λmfp, and ⟨ΓHI⟩ in Appendix 5.9. We generate 1000 skewers from this
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simulation method for each λmfp and ⟨F ⟩ at each z for 5.1 ≤ z ≤ 6.0. These skewers

come from the same location in the simulation box for all parameter values and z.

5.5.2 Forward modeling

Our simulations provide skewers of the optical depth of the Lyα forest for given

λmfp and ⟨F ⟩ values. In order to compare these (or any) simulated skewers with the

results of our observational measurement, we forward model the telescope resolution, the

noise properties of our observed sightlines, and the continuum uncertainty from the PCA

continuum fit. This section will describe how each property is modeled for our simulation

skewers, see the lya-autocorr git repository to follow along with an example simulation

skewers being forward modeled.

To model the resolution of X-shooter for visible light with a 0.9” slit, we convolved

the flux by a Gaussian line-spread function with FWHM ≈ 34 km s−1. This corresponds

the nominal resolving power (R ∼ 8800) of the X-Shooter setup used for the XQR-30

data. However, as noted in Section 5.2 the actual data has a higher median resolving

power in the visible of R = 11400 (D’Odorico et al., 2023). Future work will use the

measured resolving power for each quasar in the modeling but using the nominal value for

all is sufficient for this initial comparison. After using this Gaussian filter we interpolated

the line-spread-function convolved flux onto the exact velocity grid from the observation.

This step also reduced the simulation skewers from the box size to the same length as

our observations, as 100 cMpc h−1 corresponds to ∆z ∼ 0.3 at the relevant redshifts and

our observations have ∆z = 0.1.

We add noise to the interpolated, line-spread-function convolved flux, Fres, according

to the noise vectors for each quasar sightline, σqso, with random normal distribution

190



Measurements of the z > 5 Lyman-α forest flux auto-correlation functions from the extended
XQR-30 data set Chapter 5

realization, Nqso ∼ N(0, 1), via

Fnoise = Fres + (Nqso × σqso) . (5.7)

Fnoise is thus the flux modeled with both the resolution of the telescope and the noise

properties of our observed sightlines. This modeling choice is valid because of the low

flux in the Lyα forest at these redshifts such that we are background limited in the

observations.

To model continuum error, we used the mean, µcont, and covariance, Σcont, of the PCA

reconstruction just as we do for the data as described in Section 5.3.1. We randomly

draw realizations of the continuum error, Econt ∼ N(µcont, Σcont), where N is the normal

distribution. In our simulations we do not fit and normalize by the quasar continuum so

we model continuum error by:

Fcont = Fnoise/Econt (5.8)

where Fcont is the final fully forward-modeled Lyα forest spectra. We investigate the

effect of the continuum modeling on the resulting models of the auto-correlation function

in Appendix 5.7.

Ultimately, we generate Nskewer forward-modeled copies of each of the Nlos quasars

in the sample, where Nskewer = 1000 from the simulation and Nlos is the number of

quasar sightlines at each redshift as listed in Table 5.2. For example at z = 5.1 we have

Nskewers × Nlos = 1000 × 24 = 24000 total forward-modeled Lyα forest spectra.

Figure 5.9 shows the normalized flux of the z = 5.6 Lyα forest from PSO J029+29

with four examples of the normalized flux from our simulations that were forward modeled

with this quasar’s properties. The thick line in the middle is the flux from the quasar

while the other four thinner lines are from the simulation. The visual similarities between

the observed data and the forward modeled data highlights the ability of our forward
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Figure 5.9: This figure compares the observed Lyα forest flux at z = 5.6 from PSO J029-29 with
forward modeled simulation skewers modeled to have the same noise properties as this quasar.
The thick line in the middle is the observed flux while the other four thinner lines are from the
forward modeled simulations. The visual similarities between the observed and simulated Lyα
forest flux shown here demonstrates the success of our forward-modeling procedure.

modeling methods to mimic realistic data. The remaining figures all show data and

simulations at z = 5.6 because this redshift has the maximal observed sightlines with

Nlos = 34 and there is a nearby measurement of λmfp at z = 5.6 by Zhu et al. (2023).

Note that Nlos does not affect the convergence of our simulated models but it determines

the convergence of the bootstrap covariance matrix estimate which we will compare to

later in the section.
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5.5.3 Modeled auto-correlation function

We then computed the auto-correlation function of these forward modeled skewers in

the same way as the actual data, with equation (5.2), for each copy of the skewer. We used

the same mask from the observed quasar when computing the auto-correlation function.

This includes the DLA mask as described in Section 5.3.3. In the observations, the DLA

mask corresponds to regions in the spectra where the transmission is low. However, for

the simulations the DLA mask corresponds to random parts of the spectra. We choose

to include this part of the mask for the simulation data in order to keep the number of

pixel pairs used per quasar sightline the same between simulations and observations. A

discussion on the effect of the DLA mask on the measured auto-correlation function can

be found in Appendix 5.8.

To create a mock data set, we randomly selected Nlos quasars from the 1000 forward

modeled skewers without replacement. We then assigned each of the randomly selected

skewers one of each of the Nlos quasars, so each mock data set had exactly one skewer

forward modeled with the properties of each quasar. The value of the auto-correlation

function from the mock data set, ξi, is then the weighted average of the auto-correlation

function from these Nlos forward modeled skewers, where the weights are the number of

pixels pairs in each bin of the auto-correlation function. We defined the model value of

the auto-correlation function, ξmodel = ξmodel(λmfp, ⟨F ⟩), to be the weighted average of

the auto-correlation functions from all Nlos × Nskewers skewers generated. The simulated

covariance matrices, Σsim, are computed for each λmfp and ⟨F ⟩ values from Nmocks mock

data sets in the following way:

Σsim(ξmodel) = 1
Nmocks

Nmocks∑
i=1

(ξi − ξmodel)(ξi − ξmodel)T. (5.9)

Figure 5.10 shows nine measurements of the auto-correlation function from nine differ-

ent mock data sets generated from the simulations at z = 5.6 (colored triangles). These
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Figure 5.10: The black points show the observed auto-correlation function from the extended
XQR-30 data discussed in this work at z = 5.6. The colored triangles show the auto-correlation
value for 9 different simulated mock data sets. The mock data sets shown here were all modeled
with λmfp = 20 cMpc and ⟨F ⟩ = 0.0483, the closest λmfp value to the Zhu et al. (2023)
measurement and the closest ⟨F ⟩ value to our measurement listed in Table 5.2. The model
value of the auto-correlation is shown as the grey line with the shaded region representing the
diagonal elements from the corresponding simulated covariance matrix.

mock measurements were generated from the λmfp = 20 cMpc and ⟨F ⟩ = 0.0483 simu-

lation, the closest λmfp value to the Zhu et al. (2023) measurement and the closest ⟨F ⟩

value to our measurement listed in Table 5.2. This model value of the auto-correlation

function is shown as the grey line where the grey shaded region shows the error from the

diagonal of the simulated covariance matrix. The black points show the measured auto-

correlation function at z = 5.6 with error bars from the bootstrap covariance matrix.

This plot demonstrates that our forward modeling procedure leads to mock correlation

function measurements that are visually similar to our actual measurement. This plot

also shows that our measured auto-correlation function and the model with the value

from Zhu et al. (2023) agree within 1σboot for nearly all the points, though again these

errors come from the diagonal of the covariance matrix only and therefore do not include

information on the strong off-diagonal covariance between auto-correlation function bins.

We discuss the comparison of our measured auto-correlation function and the measure-

ments of Zhu et al. (2023) and Gaikwad et al. (2023) in Section 5.5.5.
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5.5.4 Model based covariance matrices

Figure 5.11 shows correlation matrices from the forward modeled data for six different

parameter values at z = 5.6. The parameter values shown are λmfp = 5, 15, 150 cMpc

going down the rows and then ⟨F ⟩ = 0.0303, 0.0591 across the columns, both of which

span the full range of parameter values available to us. Going from the left to the right

column, we see that increasing the ⟨F ⟩ weakly increases the off-diagonal values of the

correlation matrices, however the effect going down the rows is much stronger. Going

down the rows shows that an increase in λmfp decreases the off-diagonal values for the

correlation matrix. This means that shorter λmfp models have more highly covariant bins

in the auto-correlation function.

To compare a bootstrap covariance matrix from the data with the forward modeled

covariance matrices, Figure 5.12 shows the bootstrap correlation matrix at z = 5.6 with

the same color bar as Figure 5.8. Additionally, Figure 5.12 shows the simulated correla-

tion matrix for the λmfp = 20 cMpc and ⟨F ⟩ = 0.0483 model to directly compare to the

bootstrapped matrix. Again, this is the model with the closest λmfp value to the Zhu

et al. (2023) measurement and the closest ⟨F ⟩ value to our measurement. The bootstrap

covariance matrix is still quite noisy due to the limited data available so it is difficult

to determine the best matching simulated covariance matrix. The bootstrap correlation

matrix has regions of high off diagonal values, such as 1200 km s−1 < v < 2000 km s−1 as

well as individual pixels with relatively small off-diagonal values, such as the combination

of v = 60 km s−1 and v = 1702 km s−1. This potentially suggests additional structure in

the bootstrap covariance matrix compared to the simulated covariance data, but these

fluctuations appear consistent with the noise.

As can be seen in Figure 5.11, the correlation matrices, and therefore the covariance

matrices, strongly depend on the model value of λmfp. For this reason, when attempting
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Figure 5.11: Correlation matrices for six different simulation model values at z = 5.6. These
six covariance matrices come from the combination of λmfp = 5, 15, 150 cMpc and ⟨F ⟩ =
0.0303, 0.0591 as labeled in the title of each subplot. These include the maximal and minimal
λmfp and ⟨F ⟩ values simulated at z = 5.6. This shows the model-dependence of the correlation
(and thus covariance) matrices. Larger values of λmfp result in weaker off-diagonal correlation
matrix values, as is seen going down the rows. Smaller ⟨F ⟩ values also appear to cause weaker
off-diagonal correlation matrix values (as seen when comparing the left and right columns) but
this effect is weaker than the effect of λmfp.
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Figure 5.12: The correlation matrix computed via bootstrap re-sampling the data at z = 5.6
(left) and the simulated correlation matrix from the model with λmfp = 20 cMpc and ⟨F ⟩ =
0.0483 (right). This model was chosen as the model with the closest λmfp value to the Zhu et al.
(2023) measurement and the closest ⟨F ⟩ value to our measurement. This bootstrap correlation
matrix is also shown in Figure 5.8 with a different color bar and has been reproduced here with
the color bar used in Figure 5.11, to more easily compare the values of the correlation matrix
from data to the simulated examples. The bootstrap covariance matrix is noisy due to the
limited data available, though this redshift was selected as the bin with the maximal value of
Nlos = 34.

to fit this data to a model, we would be fitting both the measured auto-correlation

function as well as the covariance structure between the bins. While the amplitude of the

correlation function might favor one combination of model parameters, it is conceivable

that the level of fluctuations between two correlated correlation function bins, which is

quantified by the covariance matrix, could favor a different combination of parameters.

For this reason, fitting these models to our measurements is quite challenging and we

leave this discussion for future work.

5.5.5 Comparison to previous work

We model the auto-correlation function at any value of λmfp and ⟨F ⟩ via nearest

grid-point emulation from our initial grid of values. Therefore, we can compare our

auto-correlation function measurement to the models with the λmfp values measured in

Gaikwad et al. (2023) and Zhu et al. (2023) which updated the measurements of Becker

et al. (2021). Since we need to specify both λmfp and ⟨F ⟩ to get our models, we use
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the measured ⟨F ⟩ from this work to get the models representing the λmfp values from

the corresponding alternative measurements. Figure 5.13 has ten panels, each of which

has one of our measured ξF −⟨F ⟩2

⟨F ⟩2 values (shown as the black points) at a given z. We

have chosen to show ξF −⟨F ⟩2

⟨F ⟩2 instead of the regular auto-correlation function because we

have to use the nearest grid point on a coarse ⟨F ⟩ grid which could be quite far from

the measured ⟨F ⟩ value. This would have a large effect on the auto-correlation function

value and a smaller effect on ξF −⟨F ⟩2

⟨F ⟩2 .

Gaikwad et al. (2023) measured λmfp at each of these redshifts and so each panel has

our model with their λmfp values (green lines). Zhu et al. (2023) has measured λmfp for

z = 5.08, 5.31, 5.65, and 5.93. We show the models for the measured λmfp values from

Zhu et al. (2023) in the z = 5.1, 5.3, (5.6 and 5.7), and 6.0 panels respectively (red lines).

Finally, we also show the model for λmfp = 150 cMpc, our most uniform UVB (blue line).

Making a quantitative comparison of these models with the measured auto-correlation

function is difficult due to the expected large-off diagonal values of the covariance matrix

as well as the noise in the bootstrap covariance matrices as shown in Figure 5.8. For

this reason we leave detailed quantitative comparisons and fitting for future work. It is

interesting to note that our measurements fall above the models from Zhu et al. (2023),

Gaikwad et al. (2023), and λmfp = 150 cMpc for z < 5.8. Also note that models from

Zhu et al. (2023) and Gaikwad et al. (2023) show a small boost over the most uniform

UVB model for z < 5.8.

5.6 Conclusions

In this work we have measured the auto-correlation function of the Lyα forest flux

from the extended XQR-30 data set in 10 redshift bins, 5.1 ≤ z ≤ 6.0. This is the

first measurement of the auto-correlation function of the Lyα forest at these redshifts.
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Figure 5.13: The auto-correlation function of Lyα transmission normalized and shifted by the
mean transmission, ⟨F ⟩, in ten redshift bins measured in this work. Gaikwad et al. (2023)
measured λmfp at each of these redshifts and so each panel has our model with their λmfp values
(green lines). Zhu et al. (2023) has measured λmfp for z = 5.08, 5.31, 5.65, and 5.93. We show
the model models for the measured λmfp values from Zhu et al. (2023) in the z = 5.1, 5.3, (5.6
and 5.7), and 6.0 panels respectively (red lines). The model for a uniform UVB value (blue
line) is also shown as a comparison.

199



Measurements of the z > 5 Lyman-α forest flux auto-correlation functions from the extended
XQR-30 data set Chapter 5

Our final assembled data set includes 36 z > 5.7 quasars with SNR > 20 per spectral

pixel. This data set was analyzed while fully accounting for the error from continuum

reconstruction, instrumentation, and contamination from DLAs. We measured the av-

erage transmission, ⟨F ⟩, from this data and found good agreement with previous work.

We found that the boost in the auto-correlation function on the smallest scales increases

when increasing z, which may suggest a decrease in λmfp. We additionally measured co-

variance matrices of the auto-correlation function by bootstrap re-sampling the available

data. The convergence of these matrices was hindered by noise from the limited number

of sightlines and low transmission, especially for the highest redshift bins, z ≥ 5.8. The

auto-correlation function measurements as well as the bootstrap covariance matrices are

available to download online at https://github.com/mollywolfson/lya autocorr/.

Note that this is the best available sample of quasars at these redshifts in terms of size,

resolution, and SNR. Increasing the number of observations, especially at z ≳ 6.5, with

the same quality would greatly improve these measurements.

In addition, we introduced Lyα forest simulations with a fluctuating UVB model de-

scribed by λmfp. This comparison indicates preliminary agreement between these models

and our measurements. We found that the covariance matrices produced from the sim-

ulations had a strong dependence on λmfp. In order to fit these models to our data, we

would need to use an estimate of the covariance matrix for the bins of the auto-correlation

function. In this work we have presented two options for this covariance matrix: the boot-

strap estimate, Σboot, and the simulation covariance matrices, Σsim. Ideally we would

like to use Σboot when fitting, however as seen in Figure 5.8, these covariance matrices

are quite noisy and non-converged. Therefore, we could hope to use Σsim, where the

off-diagonal structure depends strongly on the value of λmfp. This dependence of Σsim on

λmfp means that fitting the models to the data would require fitting both the mean line

as well as this covariance structure, which is subtle. Thus, additional work is necessary
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to get robust measurements of λmfp, which we leave to the future. We did show a pre-

liminary comparison of our measured auto-correlation function to models with the λmfp

values measured by Gaikwad et al. (2023) and Zhu et al. (2023), leaving a quantitative

comparison of these results to future work.

With this work we have included a link to a Git repository with the code necessary to

measure the auto-correlation function from any set of simulation skewers. This will allow

other simulation groups to compare the auto-correlation function from their simulations

to our measured auto-correlation function and thus foster more work on this statistic.

Future work to get a robust measurement of λmfp from the Lyα forest auto-correlation

function include further considerations in the modeling methods. The Davies & Furlan-

etto (2016b) method to generate ΓHI for various λmfp assumes a fixed source model.

Other source model choices could impact the fluctuations in ΓHI seen at a fixed λmfp

value, and thus bias measurements from observation data when compared with these

models. Additionally, rare bright sources could cause boosts in the auto-correlation func-

tion for individual sightlines that aren’t modeled in our simulations. We leave a detailed

investigation into these effects on the auto-correlation function models and covariance

matrices to future work.

Note that in order to generate UVB fluctuations due to different λmfp values that

matched the density field of our Nyx simulation, we also generated UVB fluctuations

in a 100 cMpc h−1 box. Wolfson et al. (2023b) found that using a 40 cMpc h−1 box

to generate UVB fluctuations significantly reduced the auto-correlation function on all

scales when compared to a 512 cMpc box. Future work would be needed to understand

the effect of the box size on any measured λmfp from the auto-correlation function with

a 100 cMpc h−1 UVB box.

Additionally, this work ignored the effect of inhomogeneous reionization beyond a

fluctuating UVB. It is expected that a patchy, inhomogeneous reionization process would
201



Measurements of the z > 5 Lyman-α forest flux auto-correlation functions from the extended
XQR-30 data set Chapter 5

have other physical effects, such as additional fluctuations in the thermal state of the

IGM. We leave an exploration of the effect of the temperature of the IGM on the Lyα

forest flux auto-correlation function, including the effect of temperature fluctuations, to

a future work.

Overall, this first measurement of the z > 5 Lyα forest flux auto-correlation functions

opens up an exciting new way to measure λmfp at the tail-end of reionization.

5.7 Appendix A: Continuum uncertainty modeling

effect

Figure 5.14 quantifies the difference in the auto-correlation models calculated from

forward-modeled skewers with or without continuum uncertainty multiplied in, as de-

scribed in Section 5.5.2. The first and third panels show the auto-correlation function

from the simulations with (solid line) and without (dashed line) modeling continuum

uncertainty at z = 5.1 and 6. The different colors represent different parameter values of

λmfp and ⟨F ⟩ used. The second and fourth panels show the relative difference in percent,

defined as:
ξcont − ξno cont

ξno cont
. (5.10)

At z = 5.1 there is a < 1% of a difference between the auto-correlation models with

and without the continuum error. At z = 6.0 there is a larger difference between the

models where the difference is < 8% for all the parameter values. However, the effect is

most noticeable when ⟨F ⟩, and hence the auto-correlation function which goes as ⟨F ⟩2, is

quite small. For the other ⟨F ⟩ value at this redshift the error is < 2%. These values are

typically positive because of the bias in the continuum reconstruction as seen in Figure

2 of Bosman et al. (2022).
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Figure 5.14: The first and third panels show the auto-correlation function from the simulations
with (solid line) and without (dashed line) modeling continuum uncertainty at redshifts of 5.1
and 6. The different colors represent different parameter values of λmfp and ⟨F ⟩ used. The
second and fourth panels show the relative difference between these lines defined by Equation
(5.10), in percent.
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We computed the difference in our measured auto-correlation function at all z with

and without continuum error. The difference in the measured data ranges from at most

0.4% to 1.8% with a stronger effect at the highest redshifts.

5.8 Appendix B: DLA modeling effect

In order to investigate how the DLA mask that was described in Section 5.3.3 we

compute the measured auto-correlation functions without using this mask. This is shown

for all redshifts in Figure 5.15 in red. The original measurement including this mask is

shown in black. The measurement at z = 5.2 is not impacted at all by the DLA mask

as no sightline has a detected DLA in this redshift range. Otherwise, for most scales at

most redshifts ignoring the DLA mask reduces the auto-correlation function values. This

follows as generally the regions masked in our procedure are regions with high absorption.

5.9 Appendix C: Mean UVB for fixed mean flux

We computed the ⟨ΓHI⟩ values that arose in our simulations for given values of ⟨F ⟩

and λmfp. These are shown in Figure 5.16 for three fixed values of ⟨F ⟩. Each fixed

⟨F ⟩ value is shown in a different color. These lines demonstrate that increasing ⟨ΓHI⟩ is

required in order to maintain a given ⟨F ⟩ when decreasing λmfp. This follows from the

effect of small λmfp on ⟨F ⟩. Consider Figure 3 from Wolfson et al. (2023b) which shows

the flux along the line of sight of a skewer for different λmfp values. Small λmfp causes

there to be large regions of the Lyα forest with no transmitted flux. Therefore, higher

flux values in regions where there is some transmitted flux are required to match the

average to models with more areas of transmitted flux (in this case larger λmfp models),

meaning a larger ⟨ΓHI⟩. This may seem in conflict to the assumption that λ ∝ Γ2/3
HI ,
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Figure 5.15: The black points show auto-correlation function of Lyα transmission in ten redshift
bins measured in this work. The red points show the measured auto-correlation function of the
Lyα transmission when ignoring the masks for the DLAs as described in Section 5.3.3. In
general, ignoring the DLA mask decreases the auto-correlation function values.
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however this is a local relation and the overall average has additional influences.
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