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ABSTRACT OF THE DISSERTATION

Classical and Quantum Effective Field Theories for Gravitating Spinning Bodies

by

Trevor Scheopner

Doctor of Philosophy in Physics

University of California, Los Angeles, 2024

Professor Zvi Bern, Chair

Amplitudes methods have found increasingly varied applications across physics, in particular in the field

of gravitational waves. In this manuscript we will present how amplitudes techniques apply to interactions

of gravitating spinning bodies. We will analyze the amplitudes of generic spinning bodies and pay special

attention to how the structure of these amplitudes simplifies when specializing to spinning black holes. In

Chapter 1, we develop how several amplitudes tools such as the Kosower-Maybee-O’Connell formalism, eikonal

methods, and effective field theory in the classical limit apply to the dynamics of classically colored particles.

Classically colored particles share many of the theoretical features of classical spinning bodies, with the color

directly analogous to the spin in many ways, and so serve as an effective proof of concept of how these same

tools may be applied to spinning bodies. In Chapter 2, we directly apply these techniques to classical spinning

electromagnetically interacting bodies, which share all of the spin related complications of the gravitational

problem while being simpler due to the relative simplicity of electromagnetism compared to gravity. In doing

so, we find that the effective field theory is capable of carrying an extra vector degree of freedom compared

with the previously established worldline formalism, and that that vector degree of freedom allows for spin

magnitude change in the theory. We also present a modification of the traditional worldline formalism which

perfectly matches the effective field theory. In Chapter 3, we use the worldline formalism to compute generic

spinning body Compton amplitudes through the fifth order in spin, at which several interesting complications

occur. This Compton amplitude is essential for computing one-loop observables for the spinning binary

system. We then use Dixon’s multipole moment formalism to identify an effective source energy-momentum

tensor for a spinning black hole, which if treated as appropriate in the effective theory determines several

previously unconstrained Wilson coefficients which affect black hole observables. In Chapter 4, we extend the

electromagnetic methods of Chapter 2 to gravity. We find that the nonminimal degrees of freedom persist in

having matching physical effects between the worldline and field theory approaches. As well, we find that

those degrees of freedom have observable effects on the gravitational waveform.

ii



The dissertation of Trevor Scheopner is approved.

Eric D’Hoker

Michael Gutperle

Mikhail Pil Solon

Zvi Bern, Committee Chair

University of California, Los Angeles

2024

iii



Contents

List of Figures vii

Acknowledgments vii

Vita viii

1 Yang-Mills observables: from KMOC to eikonal through EFT 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 KMOC approach to color observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Leading order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Next-to-Leading-Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Hamiltonian approach to color dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Classical perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Hamiltonian from effective field theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Observables from the eikonal phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Quantum Field Theory, Worldline Theory, and Spin Magnitude Change in Orbital

Evolution 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Minimal Lagrangian in Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Classical Asymptotic States and Coherent States . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 The Transverse (s,s) Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



2.2.4 The Nontransverse (s,s) Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.5 Nonminimal Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Scattering Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Three-Point Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Four-Point Compton Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Two-Body Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Worldline Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Worldline Action with Dynamical Mass Function . . . . . . . . . . . . . . . . . . . . . 50

2.4.2 Worldline Theory with SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.3 Worldline Theory with no SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Effective Hamiltonian Including Lower-Spin States . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.1 Hamiltonian 1: Solely Spinning Degrees of Freedom . . . . . . . . . . . . . . . . . . . 61

2.5.2 Hamiltonian 2: Inclusion of Boost Operator . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5.3 Amplitudes from the Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.4 Hamiltonian Coefficients from Matching to Field Theory . . . . . . . . . . . . . . . . . 65

2.5.5 Observables from the Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5.6 Observables from an Eikonal Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.5.7 Comparison to Observables from the Worldline Theory . . . . . . . . . . . . . . . . . . 71

2.5.8 On the Reality of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.6 Wilson coefficients and propagating degrees of freedom . . . . . . . . . . . . . . . . . . . . . . 72

2.6.1 Resolution of the Identity and Amplitudes with Lower-Spin States . . . . . . . . . . . 73

2.6.2 Lower-Spin States and their Scaling in the Classical Limit . . . . . . . . . . . . . . . . 75

2.6.3 Lower-Spin States in the Compton Amplitude . . . . . . . . . . . . . . . . . . . . . . . 78

2.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Dynamical Implications of the Kerr Multipole Moments for Spinning Black Holes 82

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.2 Summary of Method and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Electromagnetic MPD Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Dixon’s Multipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.1 Moments of a scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

v



3.3.2 Moments of a general tensor field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.3 Moments of a conserved vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3.4 Moments of the current density in Minkowski space . . . . . . . . . . . . . . . . . . . 94

3.4 Root-Kerr Multipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.1 From Kerr-Newman to Root-Kerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.2 Mechanical Properties of the Stationary Root-Kerr Solution . . . . . . . . . . . . . . . 96

3.4.3 Charge and Current density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.4 Stationary Multipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.5 Dynamical Multipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Electromagnetic Compton Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5.1 Formal Classical Compton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.5.2 Compton Amplitude through Spin Cubed . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.6 Gravitational MPD Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.7 Kerr Multipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.7.1 Moments of the Energy Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . 119

3.7.2 Source of the Kerr Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.7.3 Stationary Multipole Moments of Kerr . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.7.4 Dynamical Multipole Moments of Kerr . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8 Gravitational Compton Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.8.1 Formal Classical Compton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.8.2 Compton Amplitude through Spin to the Fifth . . . . . . . . . . . . . . . . . . . . . . 130

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4 Spin Magnitude Change in Orbital Evolution in General Relativity 139

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.3 Worldline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4 Scattering waveform at leading order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.6 Eikonal Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.7 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 150

vi



List of Figures

• 1.1 - One-loop scalar box and triangle integrals which form a basis of generalized unitarity master

integrals with classical/super-classical contributions.

• 1.2 - The Feynman diagrams which appear in the tree level colored Compton amplitude.

• 1.3 - Residue and cut diagrams for two, three, and four particle cuts for one-loop generalized unitarity.

• 2.1 - The Feynman diagrams which appear in the tree level electromagnetic Compton-amplitude.

• 2.2 - Three point amplitude involving a particle of spin s and s′, representing spin magnitude change.

• 2.3 - The diagrams representing the contribution of spin-magnitude-changing effects in the Compton

amplitude.

• 4.1 - Three-point and four-point Compton amplitudes for gravitational spin magnitude change.

• 4.2 - Waveform plots including and excluding the nonminimal spin-magnitude-changing degrees of

freedom.

List of Tables

• 2.1 - Lagrangian descriptions of the different SSC treatments in Field theory, corresponding amplitude,

and external state description.

• 4.1 - Operators up to quadratic order in S and K which appear in the single body effective Hamiltonian.

vii



Acknowledgments

I thank my advisor Zvi Bern, for providing resources to develop my technical skills, connections to

integrate myself into the community, and advice to guide my growth into a high-level research scientist.

I thank Andres Luna for helpful collaboration throughout my graduate studies. I also thank my

collaborators Leonardo de la Cruz, Mark Alaverdian, Dimitrios Kosmopoulos, Radu Roiban, and Fei Teng for

the work we have done together during my graduate research and insightful discussions we have had along

the way. I especially thank Justin Vines for guidance, on both physics itself and the process of applying for a

postdoctoral position, for dedicated work as a collaborator, and for great discussions on many exciting ideas.

I am also grateful to many UCLA faculty including Robert Finkelstein, for providing me support and

words of wisdom early in my graduate studies; Robert Cousins, for his career advice and excellence as a

teacher of particle physics; Michael Gutperle, for his dedication to a well-designed comprehensive exam; and

Eric d’Hoker, for his dedication to pedagogical lecture notes. As well, I wish to thank my committee members

Zvi Bern, Eric d’Hoker, Michael Gutperle, and Mikhail Solon for their guidance during my graduate career.

I wish to thank Rafael Aoude, Yilber Fabian Bautista, Maor Ben-Shahar, Lucile Cangemi, Thomas

Dellaert, Juan Pablo Gatica, Alfredo Guevara, Kays Haddad, Andreas Helset, Enrico Herrmann, Giulia

Isabella, Callum Jones, Joon-Hwi Kim, Lukas Lindwasser, Richard Myers, Alexander Ochirov, Julio Parra

Martinez, Michael Ruf, and Jordan Wilson-Gerow for many exciting, educational, and insightful discussions.

I thank Mani Bhaumik for his great advice, wisdom, and support. I particularly thank my undergraduate

advisor John P. Ralston, for his intense kindness and clarity of thought, showing me what physics really is. I

thank the many students I have taught during my time as a graduate teaching assistant, for the inspiration

they provided and for furthering my development both as a physicist and as an expositor of physics with

with their many excellent questions. In this regard, I especially thank the students of the 2019-2020 Physics

Honors 1AH, 1BH, 1CH Series.

Finally, I wish to thank my parents, Travis Scheopner and Tameka George, and my partner Gabrielle

Guttormsen, for their love and support in helping me take on the various challenges I encountered during my

graduate career.

viii



Vita

2018 Bachelor of Science in Physics, University of Kansas

2018 Bachelor of Science in Mathematics, University of Kansas

2020 Master of Science in Physics, University of California, Los Angeles

2018-2022 Graduate Teaching Assistant, Physics and Astronomy Department,

University of California, Los Angeles

2021-2024 Graduate Researcher, Physics and Astronomy Department,

University of California, Los Angeles

Contributions of Authors
Chapter 1 is based on work done with Leonardo de la Cruz and Andres Luna in Ref. [1]. Chapter 2 is

based on work done with Zvi Bern, Dimitrios Kosmopoulos, Andres Luna, Radu Roiban, Fei Teng, and Justin

Vines in Ref. [2]. Chapter 3 is based on work done with Justin Vines in Ref. [3]. Chapter 4 is based on work

done with Mark Alaverdian, Zvi Bern, Dimitrios Kosmopoulos, Andres Luna, Radu Roiban, Fei Teng in Ref. [4].

Publications

L. de la Cruz, A. Luna, and T. Scheopner, “Yang-Mills observables: from KMOC to eikonal through EFT,”

JHEP 01 (2022) 045, arXiv:2108.02178 [hep-th]

Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban, T. Scheopner, F. Teng, and J. Vines, “Quantum Field

Theory, Worldline Theory, and Spin Magnitude Change in Orbital Evolution,” arXiv:2308.14176 [hep-th]

T. Scheopner and J. Vines, “Dynamical Implications of the Kerr Multipole Moments for Spinning Black

Holes,” arXiv:2311.18421 [gr-qc]

M. Alaverdian, Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban, T. Scheopner, F. Teng, “Conservative Spin

Magnitude Change in Orbital Evolution in General Relativity,” arXiv:2407.10928 [hep-th]

ix



Chapter 1

Yang-Mills observables: from KMOC to eikonal through EFT

Leonardo de la Cruza, Andres Lunab, Trevor Scheopnerb

aDipartamento di Fisica e Astronomia, Università di Bologna

and INFN Sezione di Bologna, via Irnerio 46, I-40126 Bologna, Italy
bMani L. Bhaumik Institute for Theoretical Physics,

Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095

We obtain a conservative Hamiltonian describing the interactions of two charged bodies in Yang-Mills

through O(α2) and to all orders in velocity. Our calculation extends a recently-introduced framework based

on scattering amplitudes and effective field theory (EFT) to consider color-charged objects. These results

are checked against the direct integration of the observables in the Kosower-Maybee-O’Connell (KMOC)

formalism. At the order we consider we find that the linear and color impulses in a scattering event can be

concisely described in terms of the eikonal phase, thus extending the domain of applicability of a formula

originally proposed in the context of spinning particles.

1.1 Introduction
The Kosower-Maybee-O’Connell (KMOC) formalism [5, 6, 7] is a first principle approach to extract

the classical limit, understood as the limit ~ → 0, from on-shell scattering amplitudes. It is based on the

construction of certain observables which are well-defined at the quantum and classical levels. They can be

defined by considering the expectation value of certain operators O evaluated at the beginning and at the

end of the scattering event. Considering the two-to-two classical scattering the observable associated with the

operator O is given by

〈∆O〉 = 〈Ψ|S†OS|Ψ〉 − 〈Ψ|O|Ψ〉, (1.1.1)

where S = 1+ iT . The “in” states |Ψ〉 are two-particle coherent states for momenta and color, whose function

is to give the notion of point particles with a sharply-defined position, momenta, and color. To make this

1



notion precise, the restoration of ~’s on couplings and color factors as well as the distinction between momenta

p and wavenumber p̄ for certain particles play an important role.

Employing unitarity the observables can be written as

〈∆O〉 = i〈Ψ|[O, T ]|Ψ〉+ 〈Ψ|T †[O, T ]|Ψ〉, (1.1.2)

which can be used to derive general expressions for these observables in terms of amplitudes. In this chapter

we will consider the color charge operator Ca
1 and the momentum operator Pµ

1 of one of the particles, but of

course the other particle can be chosen as well. The observables associated to these operators are called the

color impulse ∆ca1 and the momentum impulse ∆pµ1 . The KMOC formalism has been applied to the study

of waveforms [8], soft theorems [9], radiative gravitational observables at two-loops [10, 11] and adapted to

study the classical limit of thermal currents [12].

On the other hand, the classical limit can also be described in the language of effective field theory

(EFT). This idea was pioneered in Ref. [13], which proposed the application of the well-established scattering-

amplitudes toolkit to the derivation of gravitational potentials. Later, an EFT of non-relativistic scalar

fields was developed [14], and used to translate a one-loop scattering amplitude into the O(G2) canonical

Hamiltonian, which is equivalent to the results of Westpfahl [15]. This approach was later implemented to

obtain novel results at O(G3) order [16, 17, 18].

Besides making use of the KMOC formalism or non-relativistic EFTs, various approaches have been

developed to extract the dynamics of compact objects from scattering data. These include making use of the

Lippman-Schwinger equation [19, 20], a heavy black hole effective theory and its generalizations [21, 22, 23],

developing a boundary-to-bound (B2B) dictionary [24, 25], implementing a post-Minkowskian EFT [26, 27, 28]

and a worldline QFT [29]. More recently the conservative binary potential at O(G4) was obtained by means

of an amplitude-action relation that allows the calculation of physical observables directly from the scattering

amplitude [30].

The techniques mentioned above have been extended in multiple directions in recent years, including the

computation of observables in supergravity [31, 32, 33] and other generalizations of GR [34, 35], the study of

three-body dynamics [36], incorporating the radiation emitted by the binary into their analysis [37, 38, 39,

40, 41, 42], and considering tidal deformations [43, 44, 45, 46, 47, 48, 49] and spin effects [50, 51, 52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66] of the astrophysical objects.

A further relation between amplitudes and classical observables is given through the eikonal phase,

which is obtained as the Fourier transform to impact parameter space of the scattering amplitude [67]. In

turn, one can derive the scattering angle through differentiation of the eikonal phase. This subject has seen

renewed interest [68, 69, 70, 71, 72, 73, 74, 32, 33, 75, 76, 77] and a recent calculation in Ref. [59] showed a

2



surprising structure for the expression of the observables in terms of the eikonal phase. This formula was the

first example of such a relation for arbitrary orientations of the spins1. This striking observation potentially

implies that all physical observables are obtainable via simple manipulations of the scattering amplitude.

While most of the attention has been given to gravitational theories, Yang-Mills theory shares many

important physical features with gravity, like non-linearity and a gauge structure. Furthermore, the double

copy relates scattering amplitudes in both theories2. The connection has showed to be deeper than this,

holding in a classical worldline setting [81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91], and extending to exact

maps [92, 93]3. Then, since perturbation theory in Yang-Mills is far simpler than in standard approaches

of gravity, one may study Yang-Mills as a toy model for gravitational dynamics or as a building block that

could be double copied to gravity. One may also note that, as already pointed out in Ref. [7], the dynamics

of the color degrees of freedom in Yang-Mills, is in many respects analogous to spin (though actually simpler).

This analogy with spin will be evidenced in a generalization of the formula of Ref. [59], now describing the

dynamics of color charges.

The proliferation of approaches to extract classical information from quantum scattering amplitudes

motivates us to strive for an understanding of the relations between them. The goal of this chapter is to use

Yang-Mills theory as a toy model to study the connection between three such approaches. Namely, the KMOC

formalism, the Hamiltonian approach to classical dynamics, and a formula directly relating the eikonal phase

with classical observables.

The remainder of this chapter is structured as follows: In Section 1.2 we compute color and momentum

impulse at NLO using the integrands obtained in Ref. [7]. Then, In Section 1.3, we develop the Hamiltonian

approach to classical dynamics. First, we show the necessary full-theory amplitudes and use a matching

procedure to an EFT to obtain the desired two-body Hamiltonian. Then we use the derived Hamiltonian to

compute scattering observables, and check their match both to the KMOC approach of Section 1.2, as well as

to the conjecture of Ref. [59], which directly relates these observables to the eikonal phase, and holds (almost

unalteredly) when we include color effects. We present our concluding remarks in Section 1.4.

1.2 KMOC approach to color observables
In this Section we introduce the KMOC approach for color and introduce our notation and conventions.

The classical scattering of two color-charged scalar particles of masses m1 and m2 can be modeled by the
1Before this, there was evidence for such a relation in the special kinematic configuration where the spins of the particles are

parallel to the angular momentum of the system [53, 78, 79].

2The double copy has been reviewed thoroughly in Ref. [80].

3The classical double copy has also made contact with fluid dynamics, as shown in Refs. [94, 95].
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action

S =

∫
d̂4x
[ ∑
i=1,2

((Dµϕi)
†(Dµϕi)−

m2
i

~2
ϕ†
iϕi)−

1

4
F a
µνF

aµν
]
, (1.2.1)

where Dµ = ∂µ + igAa
µT

a
R and d̂nx = (d)nx)/(2π)n. The generators TR

a of the Lie algebra of SU(N) are in

some representation R. The color charge operators, obtained from the Noether procedure, satisfy the usual

Lie algebra modified by a factor of ~

[Ca,Cb] = i~fabcCc, (1.2.2)

emphasizing that Ca corresponds to an operator and

〈pi|Ca|pj〉 ≡ (Ca) j
i = ~(T a

R)
j
i . (1.2.3)

So the color factors (Ca) j
i are simply rescalings of the usual generators (T a

R)
j
i . The classical color charges

are then defined by

ca ≡ 〈ψ|Ca|ψ〉, (1.2.4)

where the states |ψ〉 are coherent states for SU(N), whose explicit form will not be relevant for our purposes4.

These states ensure the correct behavior of color charges in the classical limit, namely

〈ψ|Ca|ψ〉 =finite, (1.2.5)

〈ψ|CaCb|ψ〉 =cacb + negligible, (1.2.6)

which is guaranteed by choosing the dimension of the representation R to be large. The factors of ~ in

Eq.(1.2.2) produce a nontrivial interplay between color factors and kinematics in the classical limit. However

ultimately classical quantities do not have any factors of ~ as it should be. Thus, for the purposes of this

chapter we will quote the integrands derived in Ref. [7] dropping the bar notation for wavenumbers. We will

also employ the notation ∆O(L) to indicate the L-loop contribution to the observable such that the full result

is given by

∆O = ∆O(0) +∆O(1) + . . . . (1.2.7)

We also introduce the following notation for the Dirac-delta

δ̂(x) = 2πδ(x), δ̂′(x) =
i

(x− iε)2
− i

(x+ iε)2
. (1.2.8)

4When considering the classical limit of multi-particle states, the full state is a tensor product of coherent states for the
kinematics and coherent states for color. SU(N) coherent states can be constructed using Schwinger bosons [7].
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1.2.1 Leading order

Let us briefly review the LO calculation of Ref. [7] in order to introduce some notation. We define the

integral

I ≡
∫

d̂4q
δ̂(q · u1)δ̂(q · u2)

q2
e−iq·b, (1.2.9)

where pµi = miu
µ
i and bµ is the impact parameter. Recalling that bµ is spacelike we also define |b| ≡

√
−b2.

The classical four velocities ui are normalized to u2i = 1. The divergent integral I can be regulated using a

cut-off regulator L

I =
1

4π
√
σ2 − 1

log

(
|b|2

L2

)
, (1.2.10)

where σ is the standard Lorentz factor σ = u1 · u2. The LO momentum impulse can then be written as

∆p
(0),µ
1 = −g2σc1 · c2

∂I
∂bµ

, (1.2.11)

where c1 · c2 ≡ ca1c
a
2 . So the momentum impulse is given by

∆p
(0),µ
1 = −2α c1 · c2

σ√
σ2 − 1

bµ

b2
, (1.2.12)

where α ≡ g2/(4π). Similarly the color impulse at leading order reads

∆c
(0),a
1 = g2σfabccb1c

c
2I = α fabccb1c

c
2

σ√
σ2 − 1

log

(
|b|2

L2

)
. (1.2.13)

The divergence of the color impulse is the familiar divergence due to the long-range nature of 1/r2 forces in

four-dimensions.

1.2.2 Next-to-Leading-Order

The NLO momentum impulse can be obtained from the QED one computed in Ref. [5] using the

charge to color replacements Q1Q2 → c1 · c2 and e → g. That this replacement works follows from the

color-decomposition of the QCD amplitude and ~-counting as detailed in [7]. The result reads

∆p
µ,(1)
1 = i

g4(c1 · c2)2

2

∫
d̂4` d̂4q

δ̂(u1 · q)δ̂(u2 · q)
`2(`− q)2

e−iq·b

[
qµ

{
δ̂(u2 · `)
m1

+
δ̂(u1 · `)
m2

+ (u1 · u2)2` · (`− q)

(
δ̂(u1 · `)

m2(u2 · `− iε)2
+

δ̂(u2 · `)
m1(u1 · `+ iε)2

)}

− i(u1 · u2)2`µ` · (`− q)

(
δ̂′(u1 · `)δ̂(u2 · `)

m1
− δ̂(u1 · `)δ̂′(u2 · `)

m2

)]
.

(1.2.14)
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On the other hand the NLO color impulse is given by

∆c
a,(1)
1 = g4

∫
d̂4q d̂4` δ̂(u1 · q)δ̂(u2 · q)e−iq·b 1

`2(`− q)2

×

{
δ̂(u1 · `)

[
facdcc1c

d
2(c1 · c2)
m2

[
1 + (u1 · u2)2` · (`− q)

(
1

(u2 · `− iε)2

+ iδ̂′(u2 · `)
)]

− facdfdbecb1c
c
1c

e
2

(u1 · u2)2

2
δ̂(u2 · `)

]

+ δ̂(u2 · `)

[
facdcc1c

d
2(c1 · c2)
m1

[
1 + (u1 · u2)2` · (`− q)

(
1

(u1 · `+ iε)2

− iδ̂′(u1 · `)
)]

+ facdfdbece1c
b
2c

c
2

(u1 · u2)2

2
δ̂(u1 · `)

]}
.

(1.2.15)

Inspecting Eqs.(1.2.14) and (1.2.15) it is easy to see that the color and momentum impulses can be

expressed in terms of the following “master integrals”

Ii
4[α, β, γ] =

∫
d̂4q δ̂(u1 · q)δ̂(u2 · q)e−iq·b

∫
d̂4`

δ̂(ui · `)
[`2]α[(`− q)2]β [(` · uj + (−1)iiε)]γ

, j 6= i (1.2.16)

I/2[α, β] =

∫
d̂4q δ̂(u1 · q)δ̂(u2 · q)e−iq·b

∫
d̂4`

δ̂(u1 · `)δ̂(u2 · `)
[`2]α[(`− q)2]β

, (1.2.17)

where the vector dependence on the momentum transfer qµ can be recovered by taking derivatives w.r.t. the

impact parameter bµ. Notice that we have excluded from the master integrals those involving δ̂′(x) since they

can be reduced to the above cases using the identity∫
d̂x x δ̂′(x)f(x2) = −

∫
d̂x δ̂(x)f(x2). (1.2.18)

Following arguments by Kälin-Porto [26], the integrals below vanish due to the presence of a double pole on a

convergent integral5

Ii
4[1, 1, 2] = Ii

4[0, 1, 2] = Ii
4[1, 0, 2] = 0, i = 1, 2, (1.2.19)

and therefore only Ii4[1, 1, 0] contributes to the observables. In the following we then simply write Ii
4[1, 1, 0] ≡

Ii
4 and for later purpose we write I/2[1, 1] ≡ I/2. We also have that

I/2[1, 0] = I/2[0, 1] = 0 (1.2.20)

since their loop integrals reduce to massless tadpole integrals. Now let us move on with the reductions of

integrals of the form

Iµ =

∫
d̂4` `µ` · (`− q)

δ̂′(u1 · `)δ̂(u2 · `)
`2(`− q)2

, (1.2.21)

which appear in Eq. (1.2.14) and its mirror obtained by 1 ↔ 2. In contrast to the above vanishing integrals,
5This result can also be shown by first using the Dirac-delta constraint and then IBP identities. As emphasized by Kälin-Porto

these integrals do contribute in d > 4 [72].
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the presence of the numerator makes this integral nonzero. Let us also recall that they are still integrated over

the momentum transfer q and therefore in the integral reduction we can set to zero any term proportional to

Eq.(1.2.19) or (1.2.20). Performing a simple Passarino-Veltman reduction we can write

Iµ = K1u
µ
1 +K2u

µ
2 +K3q

µ, (1.2.22)

where setting up a system of equations the resulting coefficients are

K1 =
1

1− σ2
u1 · I, K2 = − σ

1− σ2
u1 · I, K3 =

1

q2
q · I, (1.2.23)

where we have used the delta constraints δ̂(q · u1) and δ̂(q · u2) on which the integral is supported. The result

thus depends only on two integrals, namely u1 · I and q · I. After cancellations, the product q · I leads to

q · I =
1

4

∫
d̂4`

[
2q2

`2
− (q2)2

`2(`− q)2

]
δ̂′(u1 · `)δ̂(u2 · `), (1.2.24)

which can be set to zero after integration over q using Eq.(1.2.19). Therefore we can express Eq.(1.2.21) only

in terms of the integral
u1 · I =

∫
d̂4` u1 · ` ` · (`− q)

δ̂′(u1 · `)δ̂(u2 · `)
`2(`− q)2

= −
∫

d̂4` ` · (`− q)
δ̂(u1 · `)δ̂(u2 · `)

`2(`− q)2
.

(1.2.25)

Without loss of generality, the second equality can be checked by choosing a frame where u1 = (1, 0, 0, 0) and

u2 = (σ, 0, 0, σβ) and β is defined from the condition σ2 − σ2β2 = 1. We can further reduce this integral

ignoring vanishing terms (i.e., terms which have the form (1.2.20)) thus obtaining

u1 · I =
1

2
q2
∫

d̂4`
δ̂(u1 · `)δ̂(u2 · `)

`2(`− q)2
. (1.2.26)

The result for Iµ then reads

Iµ =
1

2
q2
(

1

1− σ2
uµ1 − σ

1− σ2
uµ2

)∫
d̂4`

δ̂(u1 · `)δ̂(u2 · `)
`2(`− q)2

, (1.2.27)

which implies that we can express our results only in terms of the integrals (1.2.16)-(1.2.17) as claimed.

Therefore, excluding all vanishing contributions, the impulses in terms of the master integrals can be written

as

∆p
µ,(1)
1 =

g4(c1 · c2)2

2

{
− ∂

∂bµ

[
I1
4

m2
+

I2
4

m1

]
−
[

σ2

2(1− σ2)

(
uµ1
m1

− σuµ2
m1

)
− (1 ↔ 2)

]
∂

∂bν

∂

∂bν
I/2

}
and

∆c
a,(1)
1 = g4

{
facdcc1c

d
2(c1 · c2)

(
I1
4

m2
+

I2
4

m1

)
+
σ2

2

(
facdfdbece1c

b
2c

c
2 − facdfdbecb1c

c
1c

e
2

)
I/2

}
. (1.2.28)

Let us now consider the integration of the master integrals. The triangle one is well-known (see e.g., Ref.
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[96]) and we simply quote the result

I1
4 =

∫
d̂4q

∫
d̂4` δ̂(u1 · q)δ̂(u2 · q)e−iq·b δ̂(u1 · `)

`2(`− q)2
=

1

16π

1

σβ|b|
. (1.2.29)

The loop integral inside I/2[1, 1] can be computed using dimensional regularization [97], leading to∫
d̂D`

δ̂(u1 · `)δ̂(u2 · `)
`2(`− q)2

=
1

2πσβq2

[
1

ε
− log(−q2)

]
, (1.2.30)

where D = 4 − 2ε and the usual factors µ2εeεγE have been used to avoid the proliferation of the Euler-

Mascheroni constant γE and factors of π. The divergent term leads to a contact term that can be discarded

in the classical limit6. Therefore, keeping only the finite part we have

∂

∂bν

∂

∂bν
I/2 =

1

2πσβ

∫
d̂4q δ̂(u1 · q)δ̂(u2 · q)e−iq·b log(−q2) = 1

2π2σ2β2

1

b2
. (1.2.31)

It will also be convenient to use a cut-off regularization to evaluate the divergent integral I/2. Exchanging the

integration orders and introducing the change of variables Q = −`+ q we have

I/2 =

∫
d̂4`

δ̂(u1 · `)δ̂(u2 · `)
`2

e−i`·b
∫

d̂4Q δ̂(u1 ·Q)δ̂(u2 ·Q)e−iQ·b 1

Q2
, (1.2.32)

which leads to the product of two integrals of the form (1.2.9). Hence the result is simply

I/2 = I2 =
1

16π2σ2β2
log2

(
|b|2

L2

)
. (1.2.33)

For later purposes we will express the color impulse in terms of the cut-off regulated integral. Our full

integrated result for the NLO momentum impulse then reads

∆p
µ,(1)
1 = (c1 · c2)2

2πα2

m1m2

{
− 1

4
√
σ2 − 1

(m1 +m2)
bµ

|b|3

− 1

π

1

b2
σ2

(σ2 − 1)2
[(m2 + σm1)u

µ
1 − (m1 + σm2)u

µ
2 ]

}
, (1.2.34)

and for the NLO color impulse

∆c
a,(1)
1 = α2

{
π
facdcc1c

d
2(c1 · c2)√

σ2 − 1|b|

( 1

m1
+

1

m2

)
+

1

2

σ2

(σ2 − 1)
log2

(
|b|2

L2

)[
facdfdbece1c

b
2c

c
2 − facdfdbecb1c

c
1c

e
2

]}
.

(1.2.35)

1.3 Hamiltonian approach to color dynamics
In this Section we will compute the position-space Hamiltonian H that describes the classical dynamics

of the two-to-two scattering of SU(N) colored objects with masses m1 and m2 and color charges c1 and c2.

The classical dynamics described by such a Hamiltonian must be consistent with Wong’s equations [98] and

its perturbative solutions and by extension to observables in the KMOC formalism. Let r and p be the
6Notice that the factor of q2 in the denominator cancels after taking derivatives with respect to the impact parameter, so the

singular term leads to δ2(b) which we can set to zero because we assume b 6= 0.
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relative distance between the particles and the momentum vector in the center of mass frame, respectively.

We are interested in a perturbative expansion of the Hamiltonian

H ≡ H(r,p, Ci) =
√
p2 +m2

1 +
√

p2 +m2
2 + V (r2,p2, Ci) + . . . , (1.3.1)

where the potential is an expansion up to the second power in the coupling constant α and the color structures

Ci are all possible functions of the color charges that can appear in the amplitude. These charges are

understood in the sense of Wong, i.e., as the classical limit of a quantum operator in a large representation of

the gauge group so they can be treated as c-numbers.

1.3.1 Classical perturbation theory

Consider the general problem of an arbitrary Hamiltonian H describing the interaction of two particles

with color charges c1 and c2 in their center of mass frame. While, as usual, r and p are canonically-conjugate

to each other, color charges do not have a natural canonical conjugate. To derive the equations of motion we

use the fact that they satisfy the relation [99, 100]

{cai , cbj} = δij f
abccci , i, j = 1, 2 , (1.3.2)

where {A,B} is the Poisson bracket of A and B. The equations of motion are then

ṙ =
∂H

∂p
, ṗ = −∂H

∂r
, ċai = fabccbi

∂H

∂cci
, i = 1, 2 . (1.3.3)

In the color equation of motion, no summation over i is implied on the right-hand side. For the purpose of

finding the impulse ∆p we find it convenient to use Cartesian coordinates. One can solve the equations of

motion for coordinates, momenta, and colors as a function of time.

There are conservation laws that aid the construction of classical solutions. These fix the energy and the

total angular momentum in terms of their asymptotic values. For example for the energy we have

E ≡ H(r∞,p∞, c1, c2) =
√

p2
∞ +m2

1 +
√
p2
∞ +m2

2 , (1.3.4)

where p∞ = p∞ez is the incoming momentum at infinity. We take the orbital angular momentum at infinity

to be
L ≡ b× p∞ = b · p∞ey , (1.3.5)

where b = −bex and b is the impact parameter. We solve the equations of motion perturbatively in the

coupling constant, i.e. we search for a solution for coordinates, momenta, and colors of the form

r(t) = r0(t) + αr1(t) + α2r2(t) + . . . ,

p(t) = p0(t) + αp1(t) + α2p2(t) + . . . , (1.3.6)

cai (t) = cai,0(t) + αcai,1(t) + α2cai,2(t) + . . . .
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Figure 1.1: The one-loop scalar box integrals I2 (a) and I./ (b) and the corresponding triangle integrals I4 (c) and
I5 (d). The bottom (top) solid line corresponds to a massive propagator of mass m1 (m2). The dashed lines denote
massless propagators.

Replacing them in the equations of motion (1.3.3) leads to iterative relations between the time derivative of

the n-th term in the expansions above and all the lower-order terms. The O(α0) terms describe the motion

of a free color-charged particle in flat space, i.e. a straight line fixed by the initial momentum, the impact

parameter, and initial color charge. The first-order differential equations for the higher-order terms can be

integrated; the relevant boundary conditions are that rn≥1, pn≥1 and cai,n≥1 vanish at t = −T , where T is a

cutoff time. It is necessary to introduce such a cutoff due to the same divergence identified in Eqs.(1.2.13)

and (1.2.35); the cutoff T is proportional to the cutoff L in those equations. The contribution of each order

in α to an observable O, such as the linear or color impulse, is then

∆O(n) =

∫ T

−T

dt
dO(n)

dt
= O(n)(t = T )−O(n)(t = −T ) , (1.3.7)

with the complete result being their sum weighted with the appropriate powers of α.

1.3.2 Hamiltonian from effective field theory

The perturbative classical problem can be solved straightforwardly once the Hamiltonian is obtained.

We then proceed to compute it following the EFT approach adapted to this case. In order to apply this

approach we will decompose the amplitudes in some color basis and neglect contributions of higher orders in

~ using Eq. (1.2.2). Our amplitude expressions will be directly written in terms of classical color factors, i.e.,

we consider that the expectation value with respect to coherent states has already been taken7.

Full theory amplitudes from unitarity

Let us first show the two-to-two scattering amplitudes between color-charged particles needed to construct

the Hamiltonian. The information to determine the O(α) Hamiltonian is contained in the tree-level amplitude.

We take the incoming momenta of the color-charged particles to be −p1 and −p2 and their outgoing momenta
7This essentially amounts to the replacement Ci → ci which is implemented in Ref.[7] by the double bracket notation.
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to be p3 and p4. The amplitude is given by

Atree =− 4πα

q2
λ1C (tree) + . . . , (1.3.8)

where we omit terms that do not contribute to the classical limit in the ellipsis, along with pieces proportional

to q2, since they cancel the propagator and do not yield long-range contributions. The color structure is given

by C (tree) = c1 · c2 , (1.3.9)

and the coefficient λ1 takes the explicit form

λ1 = −4m1m2σ , (1.3.10)

where we use the kinematic variable
σ =

p1 · p2
m1m2

. (1.3.11)

In order to construct the O(α2) Hamiltonian we further need the corresponding one-loop amplitude. It

was shown in Ref. [7] that classically, the 1-loop scalar YM amplitude has a basis of only one color factor,

and moreover depends on the same topologies as in electrodynamics, so it’s given by

A1-loop = C
( )

A1-loop, QED + . . . , (1.3.12)

in terms of the one-loop QED amplitude. The color structure is given by

C
( )

= (c1 · c2)2 . (1.3.13)

We could express the latter one-loop amplitude as a linear combination of scalar box, triangle, bubble and

tadpole integrals, but Refs. [14, 17] showed that the bubble and tadpole integrals do not contribute to the

classical limit. Dropping these pieces we write

iA1-loop, QED = d2 I2 + d./ I./ + c4 I4 + c5 I5 , (1.3.14)

where the coefficients d2, d./, c4 and c5 are rational functions of external momenta. The integrals I2, I./,

I4 and I5 are shown in Fig. 1.1. The triangle integrals take the form [14]

I4,5 = − i

32m1,2

1√
−q2

+ · · · . (1.3.15)

The box contributions do not contain any novel O(α2) information. They correspond to infrared-divergent

pieces that cancel out when we equate the full-theory and EFT amplitudes [14, 17]. In this sense, the explicit

values for the box coefficients serve only as a consistency check of our calculation and we do not show them.

Instead, we give the result for

iA4+5 ≡ (c4 I4 + c5 I5) C
( )

. (1.3.16)

As detailed in Ref.[59], we use the generalized-unitarity method to obtain the integral coefficients of
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Figure 1.2: The Compton-amplitude Feynman diagrams. The straight line corresponds to the massive color-charged
particle. The wiggly lines correspond to gluons.

(a)

1
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1 1 14
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Figure 1.3: Appropriate residues of the two-particle cut (a) give the triple cuts (b) and (c), and the quadruple cut
(d). The straight lines corresponds to the color-charged particles and the wiggly lines to the exchanged gluons. All
exposed lines are taken on-shell.

Eq. (1.3.14). We start by calculating the Compton amplitude for the color-charged particle, using Feynman

rules. Subsequently, we construct the two-particle cut. The residues of the two-particle cut on the matter

poles give the triple cuts, and localizing both matter poles gives the quadruple cut. We obtain the triangle

and box coefficients from the triple and quadruple cuts respectively. Our result reads

A4+5 =
2π2α2√
−q2

λ2C
( )

+ . . . , (1.3.17)

where the coefficient is given by

λ2 = 2m, (1.3.18)

and m = m1 +m2. In preparation for the matching procedure in the following Section, we specialize our

expressions to the center-of-mass frame. In this frame, the independent four-momenta read

p1 = −(E1,p) , p2 = −(E2,−p) , q = (0, q) , p · q = q2/2 . (1.3.19)

Using the above expressions, our amplitudes take the form

Atree

4E1E2
=

4πα

q2
Λ1C (tree) ,

A4+5

4E1E2
=

2π2α2

|q|
Λ2C

( )
. (1.3.20)

The coefficients Λi are given in terms of the λi of Eqs. (1.3.10) and (1.3.18) by

Λ1 = − νσ

γ2ξ
, Λ2 =

1

2mγ2ξ
, (1.3.21)
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where in addition to the definition in Eq. (1.3.11) we use

ν =
m1m2

m2
γ =

E

m
, E = E1 + E2 , ξ =

E1E2

E2
. (1.3.22)

Construction of the EFT amplitudes

With the full theory amplitudes in hand, we now turn our attention to the task of translating the

scattering amplitudes of color-charged fields to a two-body conservative Hamiltonian. We do this by matching

the scattering amplitude computed above to the two-to-two amplitude of an EFT of the positive-energy

modes of fields. Ref. [14] developed this matching procedure for higher orders in the coupling constants and

all orders in velocity, and we adapt it here to describe the color-charged fields ξ1 and ξ2. We follow closely the

construction for classical spin in Ref. [59]. The action of the effective field theory (supressing representation

indices) for ξ1 and ξ2 is given by

S =

∫
d̂D−1k

∑
a=1,2

ξ†a(−k)
(
i∂t −

√
k2 +m2

a

)
ξa(k) (1.3.23)

−
∫

d̂D−1k

∫
d̂D−1k′ ξ†1(k

′)ξ†2(−k′)V (k′,k, Ĉi) ξ1(k)ξ2(−k) ,

where the interaction potential V (k′,k, Ĉi) is a function of the incoming and outgoing momenta k and k′ and

the color-structure operators Ĉi. We consider kinematics in the center-of-mass frame. As on the full theory

side, one could construct the color asymptotic states of ξi using SU(N) coherent states (analogous to the

spin coherents states of [59]) so color operators satisy the defining properties eqs. (1.2.5)-(1.2.6). We obtain

the classical color charge vector as the expectation value of the color operator with respect to these on-shell

states.

We build the most general potential containing only long-range classical contributions. This will be in

terms of color operators, whose expectation values with respect to SU(N) coherent states are in correspondence

with the classical color structures in the full theory amplitude, Eq. (1.3.20). We use the following ansatz for

the potential operator

V̂ (k′,k, Ĉi) =
4πα

q̂2
d1
(
p̂2
)
Ĉ (tree) +

2π2α2

|q̂|
d2
(
p̂2
)
Ĉ
( )

+O(α3) , (1.3.24)

where p̂2 ≡ (k2 + k′2)/2.

We now evaluate the EFT two-to-two scattering amplitude. To this end we use the Feynman rules
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derived from the EFT action (Eq. (1.3.23)),

(E, k )
=

i I
E −

√
k2 +m2 + iε

,

−k
′

k

−k

k
′

= −iV (k′,k, Ĉi) . (1.3.25)

Using these rules we compute the amplitude up to O(α2) directly evaluating the relevant Feynman

diagrams, omitting terms that do not contribute to long range interactions. The color factors must be treated

as operators, and thus their ordering is important. After carrying out the energy integration, we obtain an

expression for the amplitude

ÂEFT =− V̂ (p′,p, Ĉi)−
∫

d̂D−1k
V̂ (p′,k, Ĉi) V̂ (k,p, Ĉi)

E1 + E2 −
√
k2 +m2

1 −
√

k2 +m2
2

. (1.3.26)

We can now take the expectation value with respect to coherent states. At O(α) the EFT amplitude receives

a contribution only from the first term of Eq. (1.3.26), and after taking the expectation value with respect to

coherent states the result is

AEFT
O(α) = −4πα

q2
d1C (tree) , (1.3.27)

which is a c-number. On the other hand, the EFT amplitude at O(α2) receives contributions from both terms

in Eq. (1.3.26) and can be written as

AEFT
O(α2) =

2π2α2

|q|
Λ2 C

( )
+ (4πα)2 Λiter C (tree)

2
∫

d̂D−1`
2ξE

`2(`+ q)2(`2 + 2p · `)
, (1.3.28)

where ` = k − p and we only keep terms that are relevant in the classical limit. Anticipating the matching,

we write the amplitude in terms of Λ2, which is given directly in terms of the momentum-space potential

coefficient by

Λ2 = −d2 +
1− 3ξ

2ξE
d21 + ξE∂p2d21 , (1.3.29)

The second term in Eq. (1.3.28) is infrared divergent and we have explicitly verified that it cancels out when

we equate the full-theory and EFT amplitudes. The potential takes the form

V (r2,p2, Ci) =
α

|r|
d1(p

2)C (tree) +

(
α

|r|

)2

d2(p
2)C

( )
+O(α3) . (1.3.30)

We obtain the position-space Hamiltonian by taking the Fourier transform of the momentum-space8 Hamilto-

nian with respect to the momentum transfer q, which is the conjugate of the separation between the particles

r. We determine the momentum-space coefficient di in terms of the amplitudes coefficients Λi by a matching
8The position-space coefficients are trivially related to the momentum-space coefficients. This is unlike the case for spinning

particles, where a set of linear relations was established between them.
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procedure, i.e. by demanding that the EFT amplitude matches the full-theory one,

AEFT
O(α) =

Atree

4E1E2
, AEFT

O(α2) =
A1-loop

4E1E2
, (1.3.31)

where the factors of the energy account for the non-relativistic normalization of the EFT amplitude. Using

Eq. (1.3.21) we relate Λi to λi, which are explicitly shown in Eqs. (1.3.10) and (1.3.18). Putting everything

together, we obtain expressions for the position-space coefficients

d1 = − νσ

γ2ξ
, (1.3.32)

d2 =
1

mξ

(
1

2γ2
− νσ

ξγ3
+

(1− ξ)ν2σ2

2ξ2γ5

)
. (1.3.33)

This finishes the computation of the effective Hamiltonian. The classical equations of motion can now be

solved iteratively using the Eqs.(1.3.3), (1.3.6) and the defintion of the observables (1.3.7). Following this

procedure we have found agreement with the results of Section 1.2.

1.3.3 Observables from the eikonal phase

The conservative Hamiltonian we obtained in previous Sections enables the calculation of physical

observables for a scattering of compact objects interacting through gluon exchange. Ref. [59] conjectured a

formula that expresses physical observables in terms of derivatives of the eikonal phase for the spinning case.

In this Section we extend that analysis.

Let us start by obtaining the eikonal phase via a Fourier transform of our amplitudes. Then, following

Ref. [59] we can solve Hamilton’s equations for the impulse and color impulse and relate them to derivatives

of the eikonal phase. The eikonal phase χ = χ1 + χ2 +O(α3) is given by

χ1 =
1

4m1m2

√
σ2 − 1

∫
d̂2q e−iq·bAtree(q) ,

χ2 =
1

4m1m2

√
σ2 − 1

∫
d̂2q e−iq·bA4+5(q) . (1.3.34)

Using our amplitudes expressed in the center-of-mass frame (see Eq. (1.3.20)) we find

χ1 = −ξEα
|p|

Λ1

(
ln

b2

L2

)
C (tree) , (1.3.35)

χ2 =
πξEα2

|p|
Λ2

|b|
C
( )

, (1.3.36)

where in the first order eikonal phase we include a cutoff regulator L as we did in Section 1.2. In the case

without color, the integration is regulated via dimensional regularization, and the divergence is ignored,

because the derivative of the eikonal phase is always taken and they don’t contribute. This is no longer the

case here.

We may now use the eikonal phase to obtain classical observables. Generalizing the conjecture of Ref. [59]
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to the color-charged case, the observables in question are the impulse ∆p and color impulse ∆cai , where

p(t = ∞) = p+∆p , p(t = −∞) = p ,

cai (t = ∞) = cai +∆cai , cai (t = −∞) = cai . (1.3.37)

Inspired by the gravitational spinning case let us decompose the impulse as

∆p = ∆p‖
p

|p|
+∆p⊥ , (1.3.38)

where ∆p‖ can be obtained from the on-shell condition (p+∆p)2 = p2. Therefore, ignoring the mixing of

spin and orbital angular momentum—which is absent in our case since the particle is spinless—the impulse

and color impulse through O(α2) satisfy

∆p⊥ = −{p⊥, χ} −
1

2
{χ, {p⊥, χ}} ,

∆ca1 = −{ca1 , χ} −
1

2
{χ, {ca1 , χ}} , (1.3.39)

where in Eq. (1.3.39) we use the definitions

{p⊥, g} ≡ −∂g
∂b

, {ca1 , g} ≡ fabc
∂g

∂cb1
cc1 . (1.3.40)

The second term in the linear impulse doesn’t contribute because the tree color structure commutes with

itself but we leave it there to keep the suggestive structure. It is then straightforward to show that the

linear impulse will be reproduced here, the same way it was for the spinless QED case, simply by taking a

replacement of electric for color charges. We have compared both the impulse and the color impulse, to the

solution of the EOM, and the integrated result of the NLO color impulse finding full agreement.

Our calculation extends the conjecture of Ref. [59] to the domain of color. We may note that in this

setting the momentum and the color are separately conserved. This is unlike the case for spinning particles,

where only the sum J = L+S is conserved. Due to the mixing of spin and orbital angular momentum, it was

possible to define the object DSL (f, g) ≡ −S1 ·
(

∂f
∂S1

× ∂g
∂Lb

)
(where S1 is the spin vector and Lb ≡ b× p).

Such an object was necessary to add terms of the form DSL (χ, {o, χ}) and {o,DSL (χ, χ)}. In consequence,

the form of Eq. (1.3.39) is indeed simpler than its spin counterpart.

1.4 Conclusions
In this chapter we have used the KMOC formalism and a matching procedure with a non-relativistic

EFT to evaluate classical Yang-Mills observables. Using these approaches we have found that the eikonal

phase conjecture of Ref. [59] to the case of color is realized at NLO. On the KMOC side we have used the

integrands already computed in Ref. [7] and performed a direct integration, while on the EFT side we have

used unitarity adapting the formalism by Cheung-Rothstein-Solon [14] to the case of color charges.

16



The integration of the color and momentum impulses follows from a simple integral reduction and

techniques successfully applied in gravity, e.g., in Ref. [26]. We have found that, as in the case of gravity, the

integrals related only with the box and crossed box vanish. However those related with the cut box contribute

as expected. In order to expose the exponentiation of the NLO color impulse we have used a cut-off regulator

as in Ref. [7] to evaluate cut-box integrals.

Once the color decomposition has been performed and the classical relevant parts identified the matching

procedure follows essentially the QED case. The Hamiltonian thus constructed was used to solve the equations

of motion and obtain the classical linear impulse and color impulse by direct integration. The results were

in complete agreement to the evaluation using KMOC integrands. Finally, the eikonal phase construction

matches the result of the KMOC and of EOM in a rather elegant way giving more evidence of the observation

Ref. [59] that all physical observables are obtainable via simple manipulations of the scattering amplitude.

For the case of impulses it is also worth mentioning that the intricacies due to the mixing of color and

kinematics in the KMOC calculation are absent in the rather straightforward construction based on unitarity

and EFT. However, for the construction of the EFT it was crucial to employ coherent states to obtain the

classical limit, so this aspect is common to both approaches as is the use of the Lie algebra of the rescaled

color factors. Obtaining higher order corrections in the KMOC formalism for Yang-Mills observables would

be perhaps more efficient using unitarity from the beginning as done in Refs. [10, 11] (for the gravitational

case), benefiting from advances in relativistic integration.

Our results provide evidence in favor of the eikonal phase conjecture of Ref. [59], and so they call for the

calculation of the 2-loop color impulse as a toy example towards the gravitational spin. Besides being a toy

model for gravitational dynamics, the classical limit of Yang-Mills theory is useful to describe non-equilibrium

plasma through kinetic theory, where color is treated as a continuous classical variable. In Ref. [12] solutions

of kinetic equations were interpreted as classical limits of certain off-shell currents so it would be interesting

to explore a Hamiltonian perspective to this problem.
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Chapter 2

Quantum Field Theory, Worldline Theory, and Spin Magnitude

Change in Orbital Evolution

Zvi Berna, Dimitrios Kosmopoulosb, Andres Lunac, Radu Roiband, Trevor Scheopnera, Fei Tengd,

Justin Vinesa
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Pennsylvania State University, University Park, PA 16802, USA

A previous paper [101] identified a puzzle stemming from the amplitudes-based approach to spinning

bodies in general relativity: additional Wilson coefficients appear compared to current worldline approaches

to conservative dynamics of generic astrophysical objects, including neutron stars. In this chapter we clarify

the nature of analogous Wilson coefficients in the simpler theory of electrodynamics. We analyze the original

field-theory construction, identifying definite-spin states some of which have negative norms, and relating the

additional Wilson coefficients in the classical theory to transitions between different quantum spin states. We

produce a new version of the theory which also has additional Wilson coefficients, but no negative-norm states.

We match, through O(α2) and O(S2), the Compton amplitudes of these field theories with those of a modified

worldline theory with extra degrees of freedom introduced by releasing the spin supplementary condition.

We build an effective two-body Hamiltonian that matches the impulse and spin kick of the modified field

theory and of the worldline theory, displaying additional Wilson coefficients compared to standard worldline

approaches. The results are then compactly expressed in terms of an eikonal formula. Our key conclusion is

that, contrary to standard approaches, while the magnitude of the spin tensor is still conserved, the magnitude
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of the spin vector can change under conserved Hamiltonian dynamics and this change is governed by the

additional Wilson coefficients. For specific values of Wilson coefficients the results are equivalent to those

from a definite spin obeying the spin supplementary condition, but for generic values they are physically

inequivalent. These results warrant detailed studies of the corresponding issues in general relativity.

2.1 Introduction

2.1.1 General Overview

The landmark detection of gravitational waves by the LIGO/Virgo collaboration [102, 103] opened a new

era in astronomy, cosmology and perhaps even particle physics. As gravitational-wave detectors become more

sensitive [104, 105, 106], the spin of objects such as black holes and neutron stars will play an increasingly

important role in identifying and interpreting signals. Spin also leads to much richer three-dimensional

dynamics because of the exchange of angular momentum between bodies and their orbital motion. Its precise

definition leads to interesting and subtle theoretical questions, some of which we address here.

The study of the dynamics of spinning objects in general relativity [107, 108, 109, 110] has a long history,

in both the post-Newtonian (PN) framework [111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,

124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 51, 137, 138, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163], where observables

are simultaneously expanded in Newton’s constant G and in the velocity v, and the post-Minkowskian (PM)

framework [164, 165, 6, 57, 56, 52, 78, 21, 22, 58, 53, 54, 55, 59, 61, 60, 65, 62, 166, 167, 168, 169, 66, 170,

171, 172, 173, 174, 101, 168, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184], where observables are expanded

only in Newton’s constant with exact velocity dependence. In both approaches the interaction of spinning

objects with the gravitational field is described in terms of a set of higher-dimension operators whose Wilson

coefficients encode the detailed properties of the objects. For the interesting case of black holes, the values of

these coefficients at O(G) are known [58], with proposals for the additional coefficients at O(G2) recently

given based on a shift symmetry [173, 101, 179, 180] already present at O(G).1 The electromagnetic case

is similar in structure [187, 188, 189, 5, 190, 191, 192] (see also Refs. [7, 1] for non-abelian generalisations),

with the post-Coulombian (PC) and post-Lorentzian (PL) expansions being the respective analogs of the

gravitational PN and PM expansions.

A primary purpose of this chapter is to explore puzzles identified in Ref. [101] regarding the description

of spinning bodies in general relativity. In that paper, results for the conservative two-body scattering angle
1Through O(S4) Refs. [185, 186] find that the Compton amplitude derived by solving the Teukolsky equation agrees with with

these previous results. However, the predictions based on shift symmetry at O(S5) are in tension with results from the Teukolsky

equation, though the latter involve a subtle analytic continuation between the black-hole and naked-singularity regimes.
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were obtained through fifth power in the spin using a scattering-amplitudes-based method. A rather striking

outcome, which follows from the fact that the field-theory Lagrangian is not directly expressed in terms of

particles’ spin tensor, is that the field-theory approach of Ref. [59] has a larger number of independent Wilson

coefficients for a given power of spin than standard (worldline) methods. While at 1PM (tree) level the

number of independent Wilson coefficients is identical in the two approaches, matching of physical observables

starting at 2PM (one loop) and third power of the spin can only be attained by setting some of the field-theory

Wilson coefficients to definite numerical values, so that they are no longer independent. This implies that the

field theory contains a larger number of physically-relevant independent Wilson coefficients. For the special

case of Kerr black holes it appears that the additional Wilson coefficients present in the field theory are not

needed [58, 167, 168, 173, 101]. In electrodynamics we find a similar situation for the root-Kerr solution [193],

related to the Kerr solution via the double copy [194, 195, 196, 92, 87, 80].

The connection between scattering amplitudes and effective two-body interactions has been known for

some time [197, 198, 199, 200, 201, 50, 13, 202, 203, 204, 96]. Recent years have seen the construction of

new systematic methods for extracting potentials and physical observables at high orders from scattering

amplitudes [14, 5, 16, 17, 19, 20, 205], which leverage modern methods for calculating scattering amplitudes,

including generalized unitarity [206, 207, 208, 209, 210, 211], the double copy [194, 195, 196, 80] and

advanced integration techniques [212, 213, 214, 215, 215, 216, 33]. The extraction of classical physics from

quantum scattering is greatly simplified by concepts from effective field theories (EFTs), systematized for

the gravitational-wave problem in Ref. [217] and applied to the PM framework in Ref. [14]. By manifestly

maintaining Lorentz invariance, the amplitudes approach fits naturally in the PM or PL frameworks,

and produced the first conservative spinless two-body Hamiltonian at O(G3) and O(G4) [16, 17, 30, 218]

(see also Refs. [18, 27, 28, 219, 220, 221, 222, 181]). Such methods also led to new perspectives on the

gravitational interactions of spinning particles [223, 54, 53, 57, 55, 78, 21, 59, 22, 167, 101] and on tidal

effects [224, 26, 47, 43, 46, 49, 48, 44].

Here we use both the amplitudes-based method and the more standard worldline approach [217, 140,

225, 145, 226, 227] to study the interactions of spinning particles. Since they describe the same physics, one

may expect that there is a (usually nontrivial) correspondence between the operators (as well as between their

Wilson coefficients) describing these interactions in the two approaches. Each type of object, whether a Kerr

black hole or neutron star, is described by particular values for the Wilson coefficients, which are determined

by an appropriate matching calculation. In the worldline approach one imposes a spin supplementary

condition (SSC) [228] that identifies the three physical spin degrees of freedom. This condition has been

interpreted in terms of a spin-gauge symmetry which formalizes the freedom to shift the worldline in the

ambient space [229, 145, 230] without changing the physics. An important aspect of an SSC is that it reduces

20



the number of possible independent operators—and consequently the number of Wilson coefficients—by

equating operators whose difference is proportional to the SSC. Here we use the dynamical mass function

formalism of Ref. [226] to explore the consequences of relaxing the SSC and to help interpret the additional

degrees of freedom.

An interesting subtlety in the amplitudes approach is whether the complete description of a spinning

compact body is provided by a single quantum spin s� 1 or by a suitable combination of multiple quantum

spins, with possible transitions between them. For the sake of simplicity, the field theory of Ref. [59]—meant

to be valid only in the classical limit—is based on the matter states forming an irreducible representation of

the Lorentz group but a reducible representation of the rotation group; some of its components have negative

norm. One might worry these negative-norm states might lead to some difficulties in the classical limit [231].

In addition, projecting onto the physical states of a quantum spin s [231, 179] appears to effectively remove

the additional Wilson coefficients, leaving only those included in the worldline framework, which we affirm

here. Field-theory approaches [167, 168, 173, 180] based on the massive-spinor-helicity amplitudes [193] are a

convenient means for restricting the propagation to a single irreducible quantum spin. Here we use physical

state projectors [232, 233] for the same purpose.

The results of Ref. [101] raises several questions:

1. What is a complete description of a spinning body in general relativity?

2. Can one construct a worldline theory that matches field-theory descriptions containing extra independent

Wilson coefficients? If so, what extra degrees of freedom are needed?

3. The field-theory construction of Ref. [101] uses propagating reducible representations of the rotation

group (spin representations), some with negative norm. In the context of this construction, what

happens if only a single quantum spin propagates?

4. Can one build a field theory based on positive-norm irreducible representations of the rotation group

that also contain extra independent Wilson coefficients?

5. Should a classical spin be modeled as a definite-spin field or as a superposition of fields with different

spins? A related question on the latter case is whether transitions between different spins are allowed

that change the magnitude of the spin vector even in the conservative sector.2

6. Can one build an effective two-body Hamiltonian with extra degrees of freedom whose physical

observables match field-theory results containing extra Wilson coefficients?
2With dissipation and absorption included the spin magnitude is, of course, not preserved (see e.g. Refs. [234, 235, 236] for

recent discussions).
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7. What is the physical interpretation of the operators associated with additional Wilson coefficients?

To address these questions we turn to electrodynamics, which has been useful as a toy model for

gravity [187, 188, 189, 5, 190, 191, 192]. While electrodynamics cannot answer all questions about gravity,

the overlap is more than sufficient to make this a useful test case. In addition to the absence of photon

self-interactions, electrodynamics is particularly helpful for our questions because the additional independent

operators and their Wilson coefficients affect observables already at the first order spin, rather than at third

order as for gravity, greatly simplifying the analysis.

We use various field theories, worldline theories and effective two-body Hamiltonians, comparing and

contrasting the results from each. In particular, to help identify the origin of the extra Wilson coefficients

we evaluate Compton amplitudes and scattering angles for three related but distinct field theories of

electrodynamics coupled with higher-spin fields:

FT1: The setup from Refs. [59, 101], except for electrodynamics instead of general relativity. The matter states

of this theory form an irreducible representation of the Lorentz group and a reducible representation

of the rotation group, thereby as a quantum theory it carries more degrees of freedom than those of

a fixed-spin particle, including negative-norm states. In this theory we consider FT1s with classical

asymptotic states having spin tensors obeying the covariant spin supplementary condition (SSC),

Sµνp
ν = 0, and FT1g with classical asymptotic states having unconstrained spin tensors. This is

equivalent to relaxing the covariant SSC, so that the resulting amplitudes explicitly contain factors of

Sµνp
ν . When we do not need to distinguish between FT1s and FT1g, we collectively refer to them as

FT1. The results of FT1s are obtained from those of FT1g simply by imposing the covariant SSC on

the initial and final spin tensors.

FT2: The higher-spin field is constrained to contain a single irreducible spin-s representation of the rotation

group [232]. The external massive states are traceless and transverse due to the equation of motion. In

contrast to FT1s and FT1g, only positive-norm states propagate, and as we shall see, the covariant

SSC is automatically imposed on the spin tensors.

FT3: The same construction as for FT2 except that two positive-norm irreducible representations of the

rotation group, one with spin-s and the other with spin-(s− 1), are considered. While this field content

allows us to reliably capture effects linear in spin, it is sufficient to demonstrate that such field theories

support more Wilson coefficients than FT2. We include suitable couplings between matter fields of

different spin. Similarly to FT1, we consider FT3s with asymptotic states having spin tensors obeying

the covariant SSC and FT3g with asymptotic states being a particular combination of the asymptotic
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states of the two fields. When we do not need to distinguish between FT3s and FT3g, we collectively

refer to them as FT3.

The above field-theory constructions do not exhaust the ways to adjust the spectrum of propagating states.

For example, one can use the chiral construction of Ref. [237], based on the representation (2s, 0) of the

Lorentz group leading to the same number (2s + 1) of propagating degrees as a quantum spin-s particle.

We note that FT1 are not fully consistent as quantum theories because of the appearance of propagating

negative-norm states. Because of this we use them only in the classical limit, as envisioned in Ref. [59].

We moreover see that there is a close relation between them and FT3, which is constructed using only

positive-norm states.

To address the question of what kind of worldline theory has the same observables as field theories with

extra Wilson coefficients we consider two worldline theories:

WL1: The standard worldline construction with the covariant SSC imposed. We use the formalism of Ref. [226].

WL2: A modified worldline construction with no SSC imposed and consequently with extra degrees of freedom.

In the absence of an SSC we can include additional operators and Wilson coefficients equivalent to the

additional ones that can be included in FT1g through the constructed orders.

Finally, we construct two two-body effective field-theory Hamiltonians by matching the amplitudes of

field theories with different number of internal and asymptotic degrees of freedom. This allows us to directly

construct observables for these field theories and compare them with worldline theories:

EFT1: The two-body Hamiltonian of the type in Ref. [59] containing only the spin vector S for each body. The

parameters of this Hamiltonian can be adjusted to match either FT2 or WL1. We may also match this

Hamiltonian to FT1, FT3, and WL2 when the additional Wilson coefficients are set to specific values.

EFT2: A two-body Hamiltonian containing both a spin vector S and a Lorentz boost vector K, interpreted

as a mass dipole and inducing an electric dipole. With suitable parameters this Hamiltonian matches

FT1g, FT3g and WL2.

2.1.2 Summary of Results

We compute and compare electrodynamics Compton amplitudes, impulses, spin kicks and scattering

angles in the theories outlined above. With α denoting the fine structure constant, the results of these

computations through O(α2S) for two-body observables and through O(αS2) for Compton amplitudes yield

the following findings:
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1. In electrodynamics with the massive propagating degrees of freedom of a single spin-s particle realized

as a symmetric traceless transverse s-index tensor, as in FT2 and following Ref. [232], the number of

Wilson coefficients agrees with the standard worldline construction [145], in accord with Refs. [231, 179].

2. By including additional degrees of freedom either by relaxing the transversality constraint of fields

or/and by replacing the s-index symmetric tensor by a more general (l, r) representation of the Lorentz

group, as in FT1, additional Wilson coefficients can appear in the classical limit. Thus, the additional

Wilson coefficients reflect the additional degrees of freedom present in nontransverse fields.

3. We demonstrate that additional propagating positive-norm degrees of freedom in the form of symmetric

traceless transverse lower-rank tensor, as in FT3, also lead to additional Wilson coefficients in the

classical limit. Thus, the additional Wilson coefficients are not tied specifically to nontransverse fields,

but are a manifestation of additional propagating degrees of freedom.

4. By relaxing the SSC constraint on the worldline, the Compton amplitudes as well as two-body physical

observables such as the impulse and spin kick, match the corresponding results of field theories FT1

and FT3.

5. To match the worldline and field-theory amplitudes with additional asymptotic degrees of freedom and

Wilson coefficients, a two-body EFT Hamiltonian with both spin and boost degrees of freedom are

required.

6. In the systems with additional degrees of freedom and additional Wilson coefficients, the magnitudes

of spin vectors are not preserved3 in the scattering process while the magnitudes of spin tensors are

preserved.

7. For specific choices of Wilson coefficients, such as the root-Kerr solution [193], the extra degrees of

freedom decouple and the system can be described by removing the boost degrees of freedom.

These results are rather striking. Dropping the SSC would seem to contradict the standard interpretation

of the worldline spin gauge symmetry, where local shifts in the worldline are interpreted as a symmetry [229,

145, 230]. Here we are reinterpreting this in terms of certain degrees of freedom of extended nonrigid objects,

in much the same way as the spin is interpreted as an internal degree of freedom. As we discuss in section

2.4, in the electromagnetic case there is a natural explanation in terms of an induced electric dipole moment

correlated to the mass dipole.
3We note that the non-conservation of the magnitude of the intrinsic angular momentum of subsystems of gravitationally-

interacting conservative many-body systems has been known for some time, see e.g. [238, 239, 240].
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This chapter is organized as follows: In section 2.2 we present the field-theory constructions FT1. FT2

and FT3 for electrodynamics, giving a nonminimal Lagrangian that contains additional Wilson coefficients

compared to the standard worldline approaches. We also describe the classical asymptotic states in terms

of coherent states and discuss the effect of using different Lorentz representations. The purpose of the

various field theories is to identify the source of the extra Wilson coefficients. section 2.3 then gives the

field-theory amplitudes associated with these theories, including the Compton tree amplitudes needed to

build the one-loop two-body amplitudes, which are also presented. To interpret these results in the context of

the more standard worldline framework, in section 2.4 we construct the two worldline theories WL1 and WL2

and compare their Compton amplitudes with the field-theory ones. In section 2.5 we construct two-body EFT

Hamiltonians so that the scattering amplitudes of the corresponding EFTs match those of the various field

theories. One Hamiltonian contains only the usual spin operator and the other also contains a boost operator.

The impulse and spin kick derived from the latter are the same as those following from the SSC-less worldline

theory. A remarkably compact form of physical observables is given in terms of an eikonal formula. Section

2.6 describes the link between extra Wilson coefficients and the degrees of freedom that propagate in the field

theory. In section 2.7 we summarize our conclusions.

2.2 Field Theory
In this section we construct the field theories FT1, FT2 and FT3 listed in section 2.1 that we use

to track the source of additional degrees of freedom and Wilson coefficients. We begin by discussing the

covariantization of the free matter Lagrangians, which we refer to as the “minimal” Lagrangians, first in the

framework of Refs. [59, 101] where the propagating states form a reducible representation of the rotation group,

and then in the framework of Ref. [232], in which the only propagating states are only the 2s+ 1 physical

states of a spin-s field. After summarizing the coherent-state description of the classical asymptotic states and

the propagators, we then discuss nonminimal interactions which are linear in the photon field strength and the

corresponding three-point amplitudes. The scaling of massive momenta p, massless transferred momentum q,

impact parameter b and spins S for obtaining the classical limit are [59]

p→ p, q → λq, b→ λ−1b, S → λ−1S , (2.2.1)

and the classical part of the L-loop two-body amplitude scales as λ−2+L while Compton amplitudes scale as

λ0.4 The connection of field theories FT1, FT2 and FT3 to worldline theories will be discussed in section 2.4.
4This scaling enforces the correspondence principle and the scaling parameter λ can be related to ~, see e.g. Ref. [241].
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2.2.1 Minimal Lagrangian in Electrodynamics

The extension of the construction of Refs. [59] to QED and thus the definition of the covariantization of

the free Lagrangians for FT1 is straightforward, with the main difference from the gravitational case being

that the fields must be complex. The minimal coupling involves only the standard two-derivative kinetic

term5
LEM = −1

4
FµνF

µν , Lmin = −(−1)sφs(D
2 +m2)φ̄s , (2.2.2)

where Fµν = ∂µAν − ∂νAµ, and the covariant derivative is defined as

Dµφs = ∂µφs − iQAµφs , Dµφ̄s = ∂µφ̄s + iQAµφ̄s . (2.2.3)

Without the loss of generality, we take all the massive bodies as carrying the same charge Q, and define the

effective “fine structure constant”6 as α = Q2/(4π). The PL framework expands observables in powers of α

keeping the exact velocity dependence. In Lmin, the fields φs and φ̄s can be in generic representations of the

Lorentz group as long as their product is a Lorentz-singlet. The most general choice is that both fields are in

the (l, r) representation, i.e. they are represented as

φs = φβ̇1β̇2...β̇r
α1α2...αl

, φ̄s = φ̄α1α2...αl

β̇1β̇2...β̇r
, (2.2.4)

where l+r = 2s and φs and φ̄s are symmetric in the αi and β̇i indices, which transform in the two-dimensional

representation of SU(2)L and SU(2)R, respectively. The covariantized free Lagrangian Lmin in (2.2.2) treats

uniformly all the representations of the rotation group that are part of φs. Thus, the propagator derived

from Lmin is proportional to the identity operator 1(l,r) in the (l, r) representation. For φs in the (s, s)

representation, it is

µ(s) ν(s)
=

(−1)si δ
ν(s)
µ(s)

p2 −m2
, δ

ν(s)
µ(s) ≡ δ(ν1

µ1
δν2
µ2
. . . δνs)

µs
≡ 1(s,s) . (2.2.5)

Consequently, there is no explicit dependence on the value of s in the amplitudes that follow from Lmin,

making the large-spin limit appropriate for classical physics convenient in this construction.

When evaluated on an (s, s) representation, the Lagrangian (2.2.2) contains propagating degrees of

freedom beyond the 2s+ 1 associated with a single massive spin-s particle and some of them have negative

norm in Minkowskian signature. While such a theory is not consistent as a quantum theory because of

difficulties with unitarity, we use this Langangian and its nonminimal extension described below to find only

classical observables, so that the issue is not directly relevant. One may nevertheless worry that the negative

norm states might cause some inconsistency even in the classical limit, and very likely they are the origin of
5We are using the mostly minus signature. The (−1)s factor makes the spin-s component physical.

6Note that this differs from the standard definition of the fine structure constant in terms of the electron charge. To simplify

subsequent formulae, we absorb in α the charge of macroscopic bodies.
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the additional Wilson coefficients [231]. As we will see in 2.6, the key to the additional Wilson coefficients

is the presence of propagating degrees of freedom beyond those of a single quantum spin-s particle. This

is independent of the sign of the norm of the extra states. Moreover, there is a direct simple map which

connects amplitudes in this theory with amplitudes in a theory in which all states have positive norm.

FT2 is designed to probe the relation between the extra Wilson coefficients and the presence of states

beyond those of a spin-s representation of the rotation group. To define it and to compare straightforwardly

with the Singh-Hagen Lagrangian [232] for a single spin-s particle it is convenient to choose φs in the (s, s)

representation, which is realized as a symmetric traceless rank-s tensor,7

φs ≡ φβ̇1β̇2...β̇s
α1α2...αs

∝ φ(µ1µ2...µs)(σµ1)(α1

(β̇1 . . . (σµs)αs)
β̇s) , (2.2.6)

where as usual the parenthesis on the indices signify that they are symmetrized. We primarily focus on this

representation in subsequent sections, especially when carrying out calculations at fixed values of the spin.

We ensure that only the 2s+1 states of a spin-s field are propagating by imposing the requisite constraints

with auxiliary fields, following the strategy of Ref. [232]. The net effect of imposing transversality is that the

minimal Lagrangian Lmin in Eq. (2.2.2) is modified to

Ls
min = −(−1)s

[
φs(D

2 +m2)φ̄s + s(Dφs)(Dφ̄s) + . . .
]
, (2.2.7)

where (Dφs) ≡ Dµφ
µµ2...µs and the ellipsis stand for terms that remove unwanted states, as explained below.

The coupling s(Dφs)(Dφ̄s) originates from integrating out an auxiliary φs−1 field that impose transver-

sality via the equation of motion. To see this, we add to free part of Lmin the term aφs−1∂φs as well as a

standard quadratic term for φs−1, where a is a normalization. The equations of motion are

(∂2 +m2)φµ1µ2...µs
s = a ∂(µ1φ

µ2...µs)
s−1 , (b ∂2 + cm2)φs−1 = (∂φs) , (2.2.8)

where we introduced two additional normalization constants b and c. A solution to the equation of motion is

φs−1 = ∂φs = 0. Requiring that this is the only solution gives b = 0 and a = scm2 such that

(∂2 +m2)φµ1µ2...µs
s = s ∂(µ1(∂φs)

µ2...µs) . (2.2.9)

Covariantization with respect to the photon gauge symmetry follows as usual, by replacing the partial

derivatives with the appropriate covariant derivatives, leading to the s(Dφs)(Dφ̄s) term in (2.2.7).

The process continues, as transversality of φs implies ∂∂φs = 0, which must also be imposed through

an equation of motion. More auxiliary fields are therefore needed, and this process can be carried out

recursively [232]. The resulting couplings involving traces, multiple-divergences like DµDνφ
µνµ3...µs , and

auxiliary fields with lower spins are collected in the ellipsis in (2.2.7). Up to s = 3, the Lagrangians generated
7Throughout the chapter, the symmetrization is defined as f(µ1µ2...µs) ≡ 1

s!
(fµ1µ2...µs + permutations).
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by this procedure are

Ls=1 = φµ1(D2 +m2)φ̄µ1
+ (Dµφ

µ)(Dν φ̄ν) , (2.2.10a)

Ls=2 = −φµ1µ2(D2 +m2)φ̄µ1µ2
− 2(Dµφ

µµ2)(Dν φ̄νµ2
) + φµ

µ(D2 +m2)φ̄νν

− φµ
µDρDλφ̄ρλ − φ̄µµDρDλφ

ρλ , (2.2.10b)

Ls=3 = φµ1µ2µ3(D2 +m2)φ̄µ1µ2µ3 + 3(Dµφ
µµ2µ3)(Dν φ̄νµ2µ3)

− 3φµ
µµ3(D2 +m2)φ̄ννµ3 + 3φµ

µµ3DρDλφ̄ρλµ3 + 3φ̄µµµ3DρDλφ
ρλµ3

+
3

2
(Dµφ

µρ
ρ)(Dν φ̄

νλ
λ) + 2ϕ(D2 + 4m2)ϕ̄+m(ϕDµφ̄

µλ
λ + ϕ̄Dµφ

µλ
λ) , (2.2.10c)

where ϕ and ϕ̄ in Ls=3 are ghost-like scalar auxiliary fields. The Ls=1 and Ls=2 here are the Proca [242] and

Fierz-Pauli Lagrangian [243], respectively, and Ls=3 was first obtained by Chang [244]. We note that the

construction in Ref. [232] uses only symmetric and traceless fields, and we have absorbed certain auxiliary

fields into the trace of φs. We use (2.2.7) — which is the arbitrary-spin generalization of Eq. (2.2.10) — as

the covariantization of the free Lagrangian of FT2.

FT3 is constructed to probe whether the extra Wilson coefficients in FT1 are due to the unphysical

nature of the extra states of this theory. Thus, we define the covariantization of the free part of FT3 as being

given, up to nonminimal terms, by the sum of Lagrangians for physical transverse fields with spins s, s− 1,

. . . , 0. For simplicity, here we consider a Lagrangian that involves only spin s and s− 1,

Ls,s−1
min = Ls

min + Ls−1
min = −(−1)s

[
φs(D

2 +m2)φ̄s + s(Dφs)(Dφ̄s) + . . .
]

(2.2.11)

− (−1)s−1
[
φs−1(D

2 +m2)φ̄s−1 + (s− 1)(Dφs−1)(Dφ̄s−1) + . . .
]
.

We show below that this Lagrangian is sufficient to describe classical physics at O(S1) up to the one-loop

order. We assume that φs and φs−1 have the same minimal coupling to the photon. Somewhat loosely, one

may interpret this Lagrangian as being obtained from Eq. (2.2.2) upon separating φs into fields obeying

transversality constraints and dropping the derivative factors that are responsible for the negative norms of

the s− (2k + 1) components.

The minimal Lagrangians of FT2 and FT3 make explicit reference to the value of s, as can be seen in

the explicit expressions in (2.2.10), and consequently the propagators (and vertices) have the same property.

The propagators for massive s = 1 and s = 2 fields can be easily derived from the quadratic part of Ls=1 and

Ls=2. They are

µ ν
=

−iPµ,ν

p2 −m2
=

−iΘµν

p2 −m2
=

−i
p2 −m2

(
ηµν − pµpν

m2

)
, (2.2.12)

µ1µ2 ν1ν2
=
iPµ1µ2,ν1ν2

p2 −m2
=

i

p2 −m2

1

2

[
Θµ1ν1Θµ2ν2 +Θµ1ν2Θµ2ν1 −

2

3
Θµ1µ2Θν1ν2

]
, (2.2.13)
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where Θµν = ηµν − pµpν

m2 . The numerators are instances of the spin-s state projector P ; its general closed-form

expression [232],

Pν(s)
µ(s) =

bs/2c∑
j=0

(−1)js!(2s− 2j − 1)!!

2jj!(s− 2j)!(2s− 1)!!
Θ(µ1µ2

Θ(ν1ν2 . . .Θµ2j−1µ2j
Θν2j−1ν2jΘν2j+1

µ2j+1
. . .Θ

νs)
µs)

, (2.2.14)

is manifestly symmetric, transverse and traceless on-shell.

Beyond s = 2 the off-diagonal nature of the quadratic terms in Ls
min makes the construction of propagators

more involved. For example, the Ls=3
min Lagrangian contains quadratic mixing between φµ1µ2µ3 and the auxiliary

scalar ϕ; thus to derive the propagators it is necessary to diagonalize the quadratic terms, effectively summing

over all possible insertions of such two-point vertices. We represent the resummed propagators by a cross in

the middle,

µ1µ2µ3 ν1ν2ν3
× =

−iPν1ν2ν3
µ1µ2µ3

p2 −m2
+
iQν1ν2ν3

µ1µ2µ3

40m6
, (2.2.15a)

µ1µ2µ3
× =

(p2 −m2)η(µ1µ2
pµ3) − 4pµ1

pµ2
pµ3

40m5
, (2.2.15b)

× =
i(p2 + 5m2)

40m4
. (2.2.15c)

Apart from the non-local term encoding the energy-momentum relation, the propagator for the physical s = 3

particle also has an additional local contribution, with tensor structure

Qν1ν2ν3
µ1µ2µ3

= η(µ1µ2
pµ3)η

(ν1ν2pν3)(p2 − 7m2)− 4pµ1
pµ2

pµ3
η(ν1ν2pν3) − 4η(µ1µ2

pµ3)p
ν1pν2pν3 . (2.2.16)

Meanwhile, the contribution from the auxiliary field is completely local, indicating that they carry no physical

(asymptotic) degrees of freedom, as expected.

2.2.2 Classical Asymptotic States and Coherent States

The standard description of the asymptotic states of (massive) spinning fields is in terms of Lorentz

tensors labeled by the (massive) little group. Extending Ref. [59], we first consider the asymptotic state E

and its conjugate Ē for general (l, r) representations of the Lorentz group with l + r = 2s. Subsequently,

we specialize to integer s and consider the (s, s) representation, in which we identify general consequences

of transversality. In the classical limit, these states are chosen to minimize the dispersion of the Lorentz

generators, E ·Mµν · Ē , where Mµν satisfies the Lorentz algebra

[Mµν ,Mρλ] = −i(ηµρMλν + ηνρMµλ − ηµλMρν − ηνλMµρ) . (2.2.17)
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In the rest frame, the state E generalizes the spin coherent states of SU(2) implicit in the construction of

Ref. [59] to those of SU(2)L × SU(2)R. We start by representing the states in terms of spinors such that8

E(p)α(l)β̇(r) = ξ(p)α1
. . . ξ(p)αl

χ(p)β̇1
. . . χ(p)β̇r

,

Ē(p)α(l)β̇(r) = ξ̃(p)α1 . . . ξ̃(p)αl χ̃(p)β̇1 . . . χ̃(p)β̇r . (2.2.18)

Here, we choose E to be null for convenience. We note that the final result does not rely on E being null. As

with the spin coherent states, the spinors ξ(p), χ(p), ξ̃(p) and χ̃(p) are constructed by boosting their rest

frame counterparts ξ0, χ0, ξ̃0 and χ̃0,

ξ(p)α = exp(iηp̂kK̂k
L)α

βξ0β , ξ̃(p)α = exp(iηp̂kK̂k
L)α

β ξ̃0β ,

χ(p)α̇ = exp(iηp̂kK̂k
R)

α̇
β̇χ

β̇
0 , χ̃(p)α̇ = exp(iηp̂kK̂k

R)
α̇
β̇χ̃

β̇
0 , (2.2.19)

where (K̂k
L)α

β = (i/2)(σk)α
β and (K̂k

R)
α̇
β̇ = (−i/2)(σk)α̇β̇ are the left/right-handed boost operators, η is the

rapidity and p̂k are the components of the unit vector along the spatial part of the momentum.

The rest frame coherent-state spinors are [245]

ξ0α = exp(zLN̂
L
+ − z∗LN̂

L
−)α

βξ+0β , ξ̃0α = exp(zLN̂
L
+ − z∗LN̂

L
−)α

βξ−0β ,

χα̇
0 = exp(zRN̂

R
+ − z∗RN̂

R
−)

α̇
β̇χ

+,β̇
0 , χ̃α̇

0 = exp(zRN̂
R
+ − z∗RN̂

R
−)

α̇
β̇χ

−,β̇
0 , (2.2.20)

where (N̂L
±)α

β = (1/2)(σ1 ± iσ2)α
β and (N̂R

± )α̇β̇ = (1/2)(σ1 ± iσ2)α̇β̇ are the generators of SU(2)L and

SU(2)R, ξ±0 and χ±
0 are the eigenvectors of σ3 with eigenvalues ±1, and

zL,R ≡ −(θL,R/2)e
−iφL,R , (2.2.21)

are coherent-state parameters. The rest frame spinors are normalized as ξα0 ξ̃0α = χα̇χ̃
α̇ = −1, such that

E(p) · Ē(p) = (−1)r. They are related to unit vectors via

niL = ξα0 (σ
i)α

β ξ̃0β ≡ ξ0σ
iξ̃0 , nnnL = (sin θL cosφL, sin θL sinφL, cos θL) ,

niR = χ0α̇(σ
i)α̇β̇χ̃

β̇
0 ≡ χ0σ

iχ̃0 , nnnR = (sin θR cosφR, sin θR sinφR, cos θR) . (2.2.22)

The rotation and boost generators in the (l, r) representation is given by

ŜSS = ŜSSL + ŜSSR , K̂KK = K̂KKL + K̂KKR ,

Ŝk
L =

1

2

l∑
m=1

1⊗ . . .1︸ ︷︷ ︸
m−1

⊗ σk ⊗ 1 · · · ⊗ 1 , Ŝk
R =

1

2

r∑
m=1

1⊗ . . .1︸ ︷︷ ︸
m−1

⊗ σk ⊗ 1 · · · ⊗ 1 , (2.2.23)

8We note that the SU(2) indices are raised and lowered by

εαβ = εα̇β̇ =

(
0 −1
1 0

)
εαβ = εα̇β̇ =

(
0 1
−1 0

)
.
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K̂k
L =

i

2

l∑
m=1

1⊗ . . .1︸ ︷︷ ︸
m−1

⊗ σk ⊗ 1 · · · ⊗ 1 , K̂k
R = − i

2

r∑
m=1

1⊗ . . .1︸ ︷︷ ︸
m−1

⊗ σk ⊗ 1 · · · ⊗ 1 ,

where the summation is over the position of σk. With these definitions, the expectation values of the rotation

and boost generator under the rest frame spin coherent states are

E0 · ŜSS · Ē0 =
1

2
(l nnnL + rnnnR) ≡ SSS , E0 · K̂KK · Ē0 =

i

2
(l nnnL − rnnnR) ≡ iKKK . (2.2.24)

We identify the former with the classical rest-frame spin vector Sµ
0 = (0,SSS) and the latter with the boost

vector Kµ
0 = (0,KKK). If E is not null, we view (2.2.24) as the definition for the classical spin and boost vector.

The classical rest-frame spin tensor given by

Sµν0 = E0 ·Mµν · Ē0 = Sµν
0 + iKµν

0 , (2.2.25)

does not obey the SSC, where

Sµν
0 =

1

m
εµνρλp0ρSλ , Kµν

0 =
1

m
(pµ0K

ν
0 − pν0K

µ
0 ) . (2.2.26)

It contains9 an SSC-obeying component Sµν
0 and an SSC-violating one Kµν

0 , where pµ0 = (m, 0) is the

rest-frame momentum. An important feature for generic (l, r) representations is that KKK no longer vanishes

identically, so that Sµν0 no longer satisfies the convariant SSC condition. By suitably choosing l and r, the

norm |KKK| can be subleading in the classical limit or commensurate with that of the spin vector. In this way,

the appearance of KKK in the classical limit appears natural, simply by adjusting the Lorentz representation

in the underlying quantum system. For generic values, the classical limit is independent of the details of

the representation. However, for the special case of the irreducible transverse (s, s) representation then KKK

vanishes, as noted in Appendix C of Ref. [55].

The next step is to restore the momentum dependence of various quantities by boosting the particle out

of the rest frame. It is somewhat tedious but straightforward to use (2.2.19) and the properties of the Pauli

matrices to boost products of polarization tensors and Lorentz generators for any (l, r) representation, as well

as (2.2.25) and its two components to arbitrary frames. To leading order in the classical limit, we find

E1 · {Mµ1ν1 , . . . ,Mµnνn} · Ē2 = S(p1)
µ1ν1 . . . S(pn)

µnνnE1 · Ē2 +O(q1−n) , (2.2.27)

where Ei ≡ E(pi), q = p2 − p1 is the momentum transfer and S(pi)
µν is the boost of (2.2.25) to the frame

moving with momentum pi. The spin tensor scales as S ∼ q−1, and we neglect all the subleading O(q1−n)

terms. The symmetric product of Lorentz generators {Mµ1ν1 , . . . ,Mµnνn} is defined as

{Mµ1ν1
,Mµ2ν2

} =
1

2
(Mµ1ν1

Mµ2ν2
+Mµ2ν2

Mµ1ν1
) ,

9Our convention for the Levi-Civita tensor is ε0123 = +1.
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{Mµ1ν1 ,Mµ2ν2 , . . . ,Mµnνn} =
1

n!
(Mµ1ν1Mµ2ν2 . . .Mµnνn + permutations) . (2.2.28)

They form a basis for arbitrary product of Lorentz generators under the Lorentz algebra. The factorization

(2.2.27) of the expectation value of the product of Lorentz generators into the product of individual expectation

values is a reflection of the classical nature of the asymptotic states E and Ē . In (2.2.27), the product of

polarization tensors is given by

(−1)rE1 · Ē2 = exp

[
− 1

m
qqq ·KKK

]
exp

[
−i εrijku

i
1q

jSk

m(1 +
√
1 + uuu21)

+O(q2)

]
+O(q) , (2.2.29)

where uki = pki /m, generalizing the corresponding expression in Ref. [59] to general KKK. Eq. (2.2.29) captures

the leading terms in the classical limit and, apart from the sign on the left-hand side, it is agnostic to the

(l, r) representation chosen for the fields.

2.2.3 The Transverse (s,s) Representation

We now consider the special case of the (s, s) representation, which corresponds to symmetric-traceless

fields. The coherent-state polarization tensors have an equal number of dotted and undotted indices; in the

rest frame, they can be written as

(E(s)
0 )α(s)β̇(s) = (E(s)

0 )µ1µ2...µs(σµ1)α1β̇1
. . . (σµs)αsβ̇s

= ξ0α1 . . . ξ0αsχ0β̇1
. . . χ0β̇s

. (2.2.30)

With this definition, we can explore the additional restrictions on the coherent states required by the

transversality of E(s)
0 . It suffices to analyze it in the rest frame, where it reads,10

p0µEµµ2...µs

0 = 0 ⇐⇒ (p0µσ
µ)αβ̇(E0)

β̇β̇2...β̇s
αα2...αs

= 0 . (2.2.31)

Using the explicit form of the rest-frame momentum, p0 = (m, 0, 0, 0), and that (σ0)αβ̇ is numerically equal

to the 2× 2 Levi-Civita, it follows that

0 = (p0µσ
µ)αβ̇(E0)

β̇β̇2...β̇s
αα2...αs

∝ ξ0αε
α
α̇χ

α̇
0 . (2.2.32)

The solution, accounting for normalization, is

ξ0α = χα̇
0 as column vectors, (2.2.33)

which in turn implies zL = zR and hence the equality of the left-handed and right-handed unit vectors nnnL

and nnnR in (2.2.22). Together with (2.2.24) this implies that

KKK = 0 ⇐⇒ Sµν0 = Sµν
0 , (2.2.34)

10In this form transversality can be imposed on the polarization tensor of a general (l 6= 0, r 6= 0) state.
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for the transverse (s, s) representation, and therefore, cf. (2.2.25), E(s)
0 ·Mµν · Ē(s)

0 becomes an SSC-satisfying

spin tensor. On the other hand, if we do not impose transversality, then the discussion for a generic (l, r)

representation also applies to (s, s), such that KKK does not vanish and hence that covariant SSC is not obeyed.

We thus see that the (s, s) transverse asymptotic states chosen in Ref. [59] can be replaced with more general

nontransverse ones. The polarization tensor for the transverse (s, s) representation can be written as a direct

product of transverse s = 1 coherent state vectors

E(s)(p)µ1µ2...µs = ε(p)µ1ε(p)µ2 . . . ε(p)µs , ε(p)µ(σµ)αβ̇ = ξα(p)χβ̇(p) , (2.2.35)

where the spinors are boosted from the rest frame ones that satisfy the condition (2.2.33), and we normalize

the polarization vectors as ε · ε̄ = −1. For such external states, the expectation value of (2.2.27) becomes

Kµν(p) = 0 ⇐⇒ Sµν(p) = Sµν(p) , (2.2.36)

which is simply the counterpart of the rest frame relation (2.2.34). The product (2.2.29) simplifies to

(−1)sE(s)
1 · Ē(s)

2 = (−ε1 · ε̄2)s = exp

[
−i εrsku

r
1q

sSk

m(1 +
√
1 + uuu21)

+O(q2)

]
+O(q) . (2.2.37)

The transverse (s, s) representation is used in FT2 and FT3. Because the Lagrangian depends explicitly

on s, we need to use the explicit form of the Lorentz generators,

(Mµν)α(s)
β(s) = −2iδ

[µ
(α1
ην](β1δβ2

α2
. . . δ

βs)
αs)

. (2.2.38)

Consequently, the results are given in terms of various symmetric and antisymmetric combinations of the

polarization vector ε and momenta. To convert them into spin tensors, we need to compute the left-hand side

of (2.2.27) and identify the resulting structures with spin tensors.

We first consider the transverse E(s). Starting with O(S1), we have

E(s)
1 ·Mµν · Ē(s)

2 = −2is(ε1 · ε̄2)s−1ε
[µ
1 ε̄

ν]
2 . (2.2.39)

According to (2.2.27), this combination should be identified with S(p1)
µν , such that

(ε1 · ε̄2)s−1ε
[µ
1 ε̄

ν]
2 =

iS(p1)
µν

2s
(ε1 · ε̄2)s +O(q0) . (2.2.40)

In amplitudes, we can use this relation to turn antisymmetric combination of polarization vectors into spin

tensors. The classical amplitude is obtained by further taking the s→ ∞ limit. Similarly, at O(S2), we can

use the following identity,

E(s)
1 · {Mµν ,Mρλ} · Ē(s)

4 = −4s(s− 1)(ε1 · ε̄4)s−2ε
[µ
1 ε̄

ν]
4 ε

[ρ
1 ε̄

λ]
4 (2.2.41)

− s(ε1 · ε̄4)s−1
(
ηµλε

(ν
1 ε̄

ρ)
4 + ηνρε

(µ
1 ε̄

λ)
4 − ηµρε

(ν
1 ε̄

λ)
4 − ηνλε

(µ
1 ε̄

ρ)
4

)
.
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In the large s limit, the second term is subleading, such that we have

(ε1 · ε̄2)s−2ε
[µ
1 ε̄

ν]
2 ε

[ρ
1 ε̄

λ]
2

large s−−−−−→ − (ε1 · ε̄2)s

4s2
S(p1)

µνS(p1)
ρλ +O(q−1) , (2.2.42)

which is equivalent to applying (2.2.40) twice. Contracting the Lorentz indices on the spin tensors once leads

to

(ε1 · ε̄2)s−1ε
(µ
1 ε̄

ν)
2

large s−−−−−→ − (ε1 · ε̄2)s

2s2
S(p1)

µρS(p1)ρ
ν +O(q−1) . (2.2.43)

Similar identities have been previously used in e.g. Refs. [246, 51]. They are sufficient for amplitudes up to

O(S2).

2.2.4 The Nontransverse (s,s) Representation

For a nontransverse field in the (s, s) representation we can use the general results obtained for an (l, r)

representation. In particular, it has KKK 6= 0. It is instructive to identify the origin of KKK, and thus the structures

governing its covariant version Kµν , in terms of the lower-spin (longitudinal) components of Eµ1...µs
. This

will be important when discussing FT3 which has physical lower-spin fields.

The coherent state in FT1 can be decomposed as

Eµ1...µs
= E(s)

µ1...µs
+
(
uE(s−1)

)
µ1...µs

+
(
u2E(s−2)

)
µ1...µs

+ . . . , (2.2.44)

where the spin-(s− k) component is represented by(
ukE(s−k)

)
µ1...µs

=

(
s

k

)1/2

u(µ1
. . . uµk

εµk+1
. . . εµs) . (2.2.45)

The states with even k have positive norm and those with odd k have negative norm. We may now compute

products involving these polarization tensors. We have

E(s)
1 ·

(
u2Ē(s−1)

2

)
= −

√
s(ε1 · ε̄2)s−1ε1 · q

m
+O(q2) . (2.2.46)

At O(S1), we plug (2.2.44) into (2.2.27) and find that

E(s)
1 ·Mµν ·

(
u2Ē(s−1)

2

)
= i

√
s (ε1 · ε̄2)s−1

(uµ2ε
ν
1 − uν2ε

µ
1 ) +O(q) , (2.2.47)(

u1E(s−1)
1

)
·Mµν · Ē(s)

2 = −i
√
s(ε1 · ε̄2)s−1 (uµ1 ε̄

ν
2 − uν1 ε̄

µ
2 ) +O(q) ,

while all the other E(s)
1 ·Mµν ·

(
uk2 Ē

(s−k)
2

)
vanish at the classical order. We note that contractions like(

uk1E
(s−k)
1

)
·Mµν ·

(
uk2 Ē

(s−k)
2

)
and

(
uk1E

(s−k)
1

)
·Mµν ·

(
uk2 Ē

(s−k−1)
2

)
give identical result as (2.2.39),(2.2.47)

in the limit s > k. They contribute an overall factor that can be absorbed in the normalization of the states.

In this sense, we can identify the above combination with Kµν or Kµ. More precisely, we have

−(ε1 · ε̄2)s−1
[
uµ1 (ε

ν
1 + ε̄ν2)− uν1 (ε

µ
1 + ε̄µ2 )

]
large s−−−−−→ E1 · Ē2√

s
K(p1)

µν ,

34



−(ε1 · ε̄2)s−1 (εµ1 + ε̄µ2 )
large s−−−−−→ E1 · Ē2√

s
K(p1)

µ , (2.2.48)

Using these two relations in the product E1 · Ē2, we find that

E1 · Ē2 = (ε1 · ε̄2)s +
√
s(ε1 · u2 + ε̄2 · u1)(ε1 · ε̄2)s−1 + . . .

= (ε1 · ε̄2)s +
q ·K
m

E1 · Ē2 + . . . (2.2.49)

where the first term comes from E(s)
1 ·

(
u2Ē(s−1)

2

)
+
(
u1E(s−1)

1

)
· Ē2 and the . . . contains the contraction

between E(s) and the states with spin less than s− 1. Again, similar contractions between lower-spin states

contribute an overall factor that can be normalized away. We thus get the relation between the transverse

E(s)
1 · Ē(s)

2 = (ε1 · ε̄2)s and the full result E1 · Ē2 up to the first order in q and K,

(ε1 · ε2)s =
(
1− q ·K

m

)
(E1 · Ē2) +O(q2,K2) , (2.2.50)

which is of course consistent with (2.2.29),(2.2.37). The relations (2.2.48) and (2.2.50) are used to extract

the O(K1) terms in FT3. More generally, the contractions

E(s)
1 ·

(
uk2 Ē

(s−k)
2

)
=

(
s

k

)1/2

(ε1 · ε̄2)s−k
(
−q · ε1

m

)k
, (2.2.51)

E(s)
1 · {Mµ1ν1 , . . . ,Mµkνk} ·

(
uk2 Ē

(s−k)
2

)
=

(
s

k

)1/2

(k!)(ε1 · ε̄2)s−k
k∏

j=1

(
2iu

[µi

2 ε
νi]
1

)

→ sk/2(ε1 · ε̄2)s−k
k∏

j=1

(
2iu

[µi

2 ε
νi]
1

)
, (2.2.52)

can be used to show that for the s to s− k amplitudes,

(q ·K)k → sk/2(ε1 · ε̄2)s−k
(q · ε1

m

)k
, (2.2.53)

E(s)
1 · {M, . . .M︸ ︷︷ ︸

m

} ·
(
uk2 Ē

(s−k)
2

)
∼ KkSm−k , (2.2.54)

which are necessary to identify the structures related to KkSm−k in the amplitudes. Recall that the notation

uk2 Ē
(s−k)
2 includes a factor sk/2, cf. Eq. (2.2.45). We leave for future work the detailed study of structures of

higher orders in spin.

Apart from states created by the operators11 E(s) · a†(s) and E(s−1) · a†(s−1) of the fields with definite spin,

in FT3 we may also choose asymptotic states with indefinite spin, which are a normalized linear combinations

of these definite-spin states (and, in general, also of lower-spin fields). In a quantum theory such a choice is

disfavored as it breaks the little-group symmetry. In the classical theory, effectively with a single asymptotic
11We denote by a†

(s)
the creation operators of the field φ(s) corresponding to the state labeled by the rest-frame polarization

tensors in Eqs. (2.2.18) and (2.2.19).

35



state, this is not an issue. We therefore also evaluate amplitudes in FT3 with asymptotic states

|g〉 = 1√
2

(
E(s) · a†(s) + E(s−1) · a†(s−1)

)
|0〉 . (2.2.55)

Similar states have also been considered in Refs. [65, 236]. We will refer to these amplitudes as AFT3g; in

terms of definite-spin states they are

AFT3g =
1

2

(
AFT3s

s→s +AFT3s
s−1→s−1 +AFT3s

s−1→s +AFT3s
s→s−1

)
. (2.2.56)

There is no simple polarization tensor that can be assigned to the state |g〉; the closest analog of the sandwich

of Lorentz generators and polarization tensors is the expectation value of the (field) generator of Lorentz

transformations in the state |g〉. While does not have a simple interpretation in terms of the S and K vectors,

the interaction (2.2.61) will supply the requisite factors of momenta for such an interpretation to be possible,

cf. (2.2.48).

2.2.5 Nonminimal Lagrangian

We are primarily interested in amplitudes in the classical limit, where the spin s is taken to be large.

We expect that the relevant interaction terms do not depend on a particular representation of the spin,

and thus are Lorentz singlets constructed from covariant derivatives, photon field strengths, φs and Lorentz

generators (2.2.17) in the same representation as φs. Moreover, we consider for the time being only those

interactions that survive in the classical limit. The close relation in Eq. (2.2.27) between Lorentz generators

and the spin tensor and the scaling of momenta in the classical limit imply that the number of derivatives on

the photons must be equal to the number of Lorentz generators. Under these guidelines, we can write down

the following nonminimal linear-in-Fµν interactions up to two powers of spins,

(−1)sLnon-min = QC1FµνφsM
µν φ̄s +

QD1

m2
Fµν(DρφsM

ρµDν φ̄s + c.c) (2.2.57)

− iQC2

2m2
∂(µFν)ρ(D

ρφsSµSν φ̄s − c.c)− iQD2

2m2
∂µFνρ(DαφsM

αµMνρφ̄s − c.c) ,

where for later convenience we choose12 to scale the Wilson coefficients by Q so that at each order amplitudes

display overall powers of α, and the Pauli-Lubanski spin operator Sµ is defined as

Sµ ≡ −i
2m

εµνρσMρσDν . (2.2.58)

We note that the Ci operators are the electrodynamics analogs of operators [140, 141, 145] of general relativity,

and the Di’s are the electrodynamics analogs of the typical examples of “extra Wilson coefficients” of Ref. [101].

From the effective-field-theory point of view, we can write down another operator that contributes classically
12Neutral particles can also have nonminimal couplings analogous to those in Eq. (2.2.57). The corresponding Lagrangian is

obtained by the double-scaling limit Q → 0, Ci, Di → ∞ with fixed products QCi and QDi.
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Field theory Lagrangian Amplitude External state

FT1 LEM + Lmin + Lnon-min
AFT1s spin-s
AFT1g generic

FT2 LEM + Ls
min + Lnon-min AFT2 spin-s

FT3 LEM + Ls,s−1
min + Ls,s−1

non-min
AFT3s spin-s
AFT3g indefinite spin

Table 2.1: Field-theory amplitudes, corresponding Lagrangians and external states. The Lagrangians are given in Eqs. (2.2.2),
(2.2.7), (2.2.11), (2.2.57) and (2.2.61).

at the second order in spin,

LD2b
=
iQD2b

2m4
∂(µFν)ρ(DλφsM

λµMν
σD

(σDρ)φ̄s − c.c) . (2.2.59)

While C2 and D2 give independent contribution to three-point amplitudes at O(S2) and O(S1K1), see 2.3.1,

the above D2b operator gives independent contribution at O(K2). Since the purpose of our current work is to

understand the existence of extra Wilson coefficients, for simplicity we will not consider this operator further.

2.1 collects the Lagrangians of the four effective field theories that are our focus noting also the notation

we use for their corresponding amplitudes. FT1 are described by the same Lagrangian, LEM +Lmin +Lnon-min.

To compute amplitudes in these two theories, we do not need to specify a particular value for s. As discussed

in 2.2.3, the representations of the rotation group with spin s− 2k that are part of the field φs have positive

norm and are therefore physical, while those with spin s− (2k + 1) have negative norm. In contrast, FT2 is

described by the Lagrangian LEM +Ls
min +Lnon-min, and contains only the physical spin-s degrees of freedom.

When computing the amplitude AFT1s, we restrict the external states to be the physical spin-s states, which

are transverse such that the resultant spin tensors satisfy the covariant SSC according to 2.2.3. Meanwhile, we

keep the external states generic in AFT1g. As a result, the amplitude AFT1g contains explicit SSC-violating

terms compared to AFT1s.

We show in 2.3 that despite having the same physical spin-s external states, AFT1s and AFT2 are different

for four-point Compton scattering in the classical limit. In particular, the Compton amplitudes from FT2

depend only on C1 and C2 while AFT1s also depend on D1 and D2, similar to the appearance of additional

nontrivial Wilson coefficients in general relativity [59]. The differences between these amplitudes vanish for

C1 = C2 = 1 D1 = D2 = 0 , (2.2.60)

and reproduce the root-Kerr amplitudes of Ref. [193], so that the additional Di operators do not contribute,

in much the same way that additional operators do not contribute to the Kerr black hole. The similarity of

the root-Kerr solution in electromagnetism and the Kerr solution in general relativity follows from the double

copy.

These results indicate that additional lower-spin degrees of freedom are the origin of the extra Wilson
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coefficients. We consider an interpolation between FT1 and FT2 in 2.6 to understand the effect of the state

projector. In FT1 these degrees of freedom have negative norm; a natural question is whether lower-spin

states with positive norm have similar consequences. FT3 explores this question. With some foresight which is

justified in 2.6, we choose the nonminimal interactions of φs and φs−1 in (2.2.11), valid through the quadratic

order in spin, to be

Ls,s−1
non-min = QC1FµνφsM

µν φ̄s −
2iQC̃1

√
s

m
Fµν

[
(φs)

µ
α2...αsD

ν φ̄α2...αs
s−1 − c.c

]
(2.2.61)

− iQC2

2m2
∂(µFν)ρ(D

ρφsSµSν φ̄s − c.c)− 2iQC̃2
√
s

m
Fµν

[
(φs)

µ
α2...αs

Dα2 φ̄να3...αs
s−1 − c.c

]
,

and the Lagrangian of FT3 is given by the third line of Table 2.1. We shall see in 2.3 that the Wilson

coefficients C̃1 and C̃2 appear at O(K1) and O(S1K1) order of the Compton amplitudes respectively, and

that there exists an effective map between the Di and C̃i coefficients. As discussed in 2.2.3, we need to

include couplings between φs and φs−2 to access the O(K2) interactions, which we omit for simplicity.

Similar to gravity, operators describing tidal deformations under the influence of external fields are

necessary to describe the electromagnetic interactions of generic spinning bodies. Simple counting of classical

scaling indicates that in QED they first appear O(S2). At this order in spin three independent operators are

(−1)sLF 2 =
Q2E1

m2
FµνFρσφsM

µνMρσφ̄s +
Q2E2

m2
FµνFρ

µφsM
νλMλ

ρφ̄s

+
Q2E3

m4
FµνFρσD

µφsM
νλMλ

ρDσφ̄s +O(M3) . (2.2.62)

Including them we find that all Ei Wilson coefficients vanish for the root-Kerr states in much the same way

as the Di coefficients vanish for these states in FT1.

2.3 Scattering Amplitudes
In this section we first compute the 1PL (tree) Compton amplitudes of the higher-spin effective

Lagrangians introduced in the previous section and summarized in 2.1. We then use them as the basic

building blocks of the O(α2) two-body amplitudes through generalized unitarity.13 In addition, classical

Compton amplitudes are also observables that can be directly compared with worldline computations along

the lines of Ref. [247]. The comparison will be given in 2.4.
13For simplicity, we suppress a factor of Q in the three-point Compton amplitudes, and a factor of Q2 in the four-point

Compton amplitudes, where Q is the electric charge of the massive body.
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2.3.1 Three-Point Amplitudes

We start with computing and comparing the three-point Compton amplitudes from the theories in 2.1.

Assuming that all the momenta are outgoing, the Feynman rules for FT1 are given by

A3


p1 p2

q3, ε3
 = (−1)sE1 ·M3(p1, p2, q3, ε3) · Ē2 , (2.3.1)

M3(p1, p2, q3, ε3) = 2ε3 · p11− 2iC1Mµνq
µ
3 ε

ν
3 − 2iD1

m2
ε3 · p1Mµνp

µ
1 q

ν
3

+
C2

m2
ε3 · p1{Mµν ,Mµ

ρ}qν3 q
ρ
3 − C2

m4
ε3 · p1{Mµν ,Mρλ}pµ1 qν3p

ρ
1q

λ
3

+
2D2

m2
{Mµν ,Mρλ}pµ1 qν3 q

ρ
3ε

λ
3 .

The symmetric product between Lorentz generators is defined in (2.2.28).

In the classical limit, the massive spinning particles are described by the spin coherent states (2.2.30).

We first consider FT1g with generic coherent states that do not satisfy the transversality. The expectation

values of Lorentz generators are given by (2.2.27), which lead to the classical spin tensor Sµν that do not

satisfy the covariant SSC. The three-point amplitude is

AFT1g
3 = (−1)sE1 · Ē2

[
2ε3 · p1 − 2iC1Sµνq

µ
3 ε

ν
3 +

C2

m2
ε3 · p1Sµνqν3Sµλq

λ
3

− Sµνp
µ
1 q

ν
3

(
2iD1

m2
ε3 · p1 +

C2

m4
ε3 · p1Sλσpλ1qσ3 − 2D2

m2
Sλσq

λ
3 ε

σ
3

)]
= 2(−1)sE1 · Ē2

[
ε3 · p1 − iC1Sµνq

µ
3 ε

ν
3 − (C1 −D1)ε3 · p1

q ·K
m

+
C2

2m2
ε3 · p1Sµνq

ν
3S

µ
λq

λ
3 + iD2Sµνq

µ
3 ε

ν
3

q ·K
m

+D2ε3 · p1
(
q ·K
m

)2
]
, (2.3.2)

where in the second equal sign we have used (2.2.25) to expose the SSC preserving S-part and the SSC

violating K-part in Sµν . As expected, the extra Wilson coefficients Di appear with the SSC-violating terms.

If we further restrict the external states to be transverse, the K-part becomes subleading in the classical limit

and thus drops out. This leads to the three-point amplitudes AFT1s
3 and AFT2

3

AFT1s
3 = AFT2

3 = 2(−ε1 · ε̄2)s
[
ε3 · p1 − iC1Sµνq

µ
3 ε

ν
3 +

C2

2m2
ε3 · p1Sµνq

ν
3S

µ
λq

λ
3

]
. (2.3.3)

This amplitude only depends on the Ci Wilson coefficients. The fact that AFT1s
3 does not contain any

additional Wilson coefficients is analogous to the three-point gravity amplitude of Ref. [59], which did not

contain any additional Wilson coefficients either, connected to restricting the external states to traceless and

transverse spin-s ones.

For FT3, we can similarly restrict the external states to be spin-s. The resulting amplitude AFT3s
3 is the
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q2, ε2 q3, ε3

p1 p4

q3, ε3 q2, ε2

p1 p4

q2, ε2 q3, ε3

Figure 2.1: The three Feynman diagrams describing lowest-order Compton scattering.

same as (2.3.3), i.e.

AFT1s
3 = AFT2

3 = AFT3s
3 . (2.3.4)

We may also choose the indefinite-spin states (2.2.55); the corresponding amplitude AFT3g
3 receives contribu-

tions from both the spin-s and spin-(s− 1) external states,

AFT3g
3 = AFT3s

3 +
2i
√
s

m
(−ε1 · ε̄2)s−1(ε1 · q3 + ε̄2 · q3)

[
C̃1(ε3 · p1) + C̃2(E1 · f3 · Ē4)

]
= 2(−1)sE1 · Ē2

[
ε3 · p1 − iC1Sµνq

µ
3 ε

ν
3 +

C2

2m2
ε3 · p1Sµνq

ν
3S

µ
λq

λ
3

+ (iC̃1 − 1)ε3 · p1
q ·K
m

+ (iC1 − C̃2)Sµνq
µ
3 ε

ν
3

q ·K
m

]
, (2.3.5)

where we have used (2.2.48),(2.2.50) to obtain the final expression in terms of the boost vector K. The

appearance of the Wilson coefficients C̃1 and C̃2 associated with SSC violation. We find that, up to O(K2)

terms, the additional Wilson coefficients in FT1g and FT3g are related as

AFT3g
3 = AFT1g

3 for iC̃1 = 1− C1 +D1 and iC̃2 = D2 − C1 . (2.3.6)

The extra factor of i in this map reflects the unphysical nature of the spin-(s− 1) states in FT1 vs. their

physical nature in FT3. While this map is not an equivalence of Lagrangians, it provides a simple relation

between the amplitudes of FT1 and FT3. A similar map also exists at O(K2) if we include such interactions

in both FT1 and FT3.

2.3.2 Four-Point Compton Amplitudes

At four points, the Compton amplitudes are given by the three Feynman diagrams in 2.1, with the

relevant propagators and three- and four-point vertices derived from our field theories. While the Lagrangian

of FT1 is independent of s and therefore general properties of Lorentz generators and coherent states are

sufficient for amplitude calculations, the explicit dependence on s of FT2 and FT3 Lagrangians requires that

for them we choose a particular representation. As noted in 2.2.3, we choose the (s, s) representation, for which

the coherent states are given by (2.2.35) and the Lorentz generators are listed in (2.2.38). Specifically for four-

point Compton amplitudes, the Feynman rules for FT2 and FT3 simplify considerably because every vertex

has at least one on-shell massive particle represented by the symmetric, traceless and transverse polarization

tensor. Thus, when deriving the three- and four-point vertex rules we can ignore all the interactions covered
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by the ellipsis in (2.2.7) because they only include traces or/and longitudinal modes of the external on-shell

particle. For the same reason, we can also ignore all the (resummed) propagators that involve lower-spin

auxiliary fields.

The spin-independent part of the Compton amplitude is common to FT1 though FT3,

AFT1,2,3
4, cl.

∣∣∣
S0

= (−1)sE1 · Ē4
2(p1 · f2 · f3 · p1)

(p1 · q2)2
, (2.3.7)

where fµνi ≡ εµi q
ν
i − ενi q

µ
i . For the (s, s) representation, we do not need to distinguish E1 · Ē4 and (ε1 · ε̄4)s

as their difference is higher order in S and K. Up to the overall factor E1 · Ē4, Eq. (2.3.7) reproduces the

classical limit of the scalar QED Compton amplitude given in, for example, Eq. (2.8) of Ref. [191].14

The Linear-in-Spin Compton Amplitudes

Consider now spin-dependent parts of amplitudes of the four field theories. For FT1, here and after we

choose φs to be in the (s, s) representation to streamline the comparison with FT2 and FT3. We first consider

AFT1s in which the external states are transverse. Evaluating the linear-in-spin part of the three Feynman

diagrams in Fig. 2.1 with the propagators and vertices following from the Lagrangian of FT1 leads to

AFT1s
4, cl.

∣∣∣
S1

= (−ε1 · ε̄4)sS(p1)µν
[

iC1

(p1 · q2)2
(fµν2 q2ρf

ρλ
3 + fµν3 q3ρf

ρλ
2 )p1λ +

2iC2
1

p1 · q2
fνρ2 f3ρ

µ

+
2iD1(2C1 −D1 − 2)

(p1 · q2)m2
p1ρf

ρµ
2 fνλ3 p1λ

]
. (2.3.8)

The amplitude AFT1
4, cl

∣∣∣
S1

depends on both the C1 and D1 Wilson coefficients.15 We note that D1 appears only

together with the combination p1ρf
ρµ
2 fνλ3 p1λ. Repeating the calculation while relaxing the transversality on

external states leads to the Compton amplitude,

AFT1g
4, cl.

∣∣∣
S1

= (−1)sE1 · Ē4
{
S(p1)µν

[
iC1

(p1 · q2)2
(fµν2 q2ρf

ρλ
3 + fµν3 q3ρf

ρλ
2 )p1λ +

2iC2
1

p1 · q2
fνρ2 f3ρ

µ

+
2iD1(2C1 −D1 − 2)

(p1 · q2)m2
p1ρf

ρµ
2 fνλ3 p1λ

]
+ S(p1)µνp

ν
1

[
2iD1(C1 + 1)

(p1 · q2)m2
p1ρ(f

ρλ
3 f2λ

µ − fρλ2 f3λ
µ)

+
2iD1

(p1 · q2)2m2
p1ρp1λ(f

ρµ
3 q3σf

σλ
2 + fρµ2 q2σf

σλ
3 )

]}
. (2.3.9)

We note that the first term is formally identical to (2.3.8) for FT1 except for the replacement S → S, while

the second term is proportional to the SSC condition Sµνp
ν
1 .

Proceeding to FT2 of a single transverse spin-s field, we extract the classical O(S1) Compton amplitude

from explicit calculations for s = 1, 2, 3 using the Lagrangian given in the third row of 2.1. Unlike FT1, the

amplitudes are now given in terms of explicit polarization vectors instead of spin tensors such that we need to
14In Ref. [191] higher order in qi terms are also included since they are needed when feeding the Compton amplitudes into

unitarity cuts for building higher PL two-body amplitudes.

15The gravitational analog of this amplitude is of O(S2).
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convert the former into the latter. Since the classical amplitudes in terms of spin tensors scale as O(q0) and

the spin tensors scale as O(q−1), in a fixed-spin calculation, the classical part of the O(S1) amplitude is among

the O(q) terms of the full quantum amplitude [59]. At this order, the massive polarization vectors appear in

two structures, (ε1 · ε̄4)s and (ε1 · ε̄4)s−1ε
[µ
1 ε̄

ν]
4 . The terms proportional to (ε1 · ε̄4)s belong to the quantum

spinless amplitude, which can be ignored here. We then use the relation (2.2.40) to convert the second

structure to spin tensors. The final classical amplitude is obtained by extrapolating the finite-spin results to

generic s and taking the s→ ∞ of that expression. At O(S1), the amplitude after the replacement (2.2.40)

is in fact independent of s, as we have explicitly checked for s 6 3. After identifying the classical part, the

final answer for the classical Compton amplitude is

AFT2
4, cl

∣∣∣
S1

= (−ε1 · ε̄4)sS(p1)µν
[

iC1

(p1 · q2)2
(fµν2 q2ρf

ρλ
3 + fµν3 q3ρf

ρλ
2 )p1λ +

2iC2
1

p1 · q2
fνρ2 f3ρ

µ

+
2i(C1 − 1)2

(p1 · q2)m2
p1ρf

ρµ
2 fνλ3 p1λ

]
. (2.3.10)

Notably, this amplitude is independent of D1, and it can be obtained from (2.3.8) by setting D1 to a special

value, AFT1s
4, cl

∣∣∣
S1

= AFT2
4, cl

∣∣∣
S1

for D1 = C1 − 1 . (2.3.11)

In other words, for this special value of D1, FT1 effectively propagates only the spin-s states. Moreover, the

special value C1 = 1 and D1 = 0 reproduces the root-Kerr Compton amplitudes [193]. The appearance of

additional Wilson coefficients in AFT1s compared with AFT2 can be attributed to the additional propagating

degrees of freedom.16

Finally, FT3 amplitudes also receive contributions from lower-spin states. We first restrict the lower

spins to only appear in the intermediate states. Repeating the same steps as for FT2 we find that spin-(s− 1)

intermediate states contribute as

AFT3s
4, cl

∣∣∣
S1

= AFT3
4, cl

∣∣∣
S1

+ (−ε1 · ε̄4)sS(p1)µν

[
2iC̃2

1

(p1 · q2)m2
p1ρf

ρµ
2 fνλ3 p1λ

]
. (2.3.12)

We note that the O(S1) amplitude does not change if we include intermediate states with spin less than s− 1.

Comparing with (2.3.8), we find that the two amplitudes are formally related by the same map as (2.3.6),

AFT3s
4, cl.

∣∣∣
S1

= AFT1s
4, cl.

∣∣∣
S1

for iC̃1 = 1− C1 +D1 . (2.3.13)

Furthermore, this map persists even for amplitudes with external lower-spin states. To see this, we first

rewrite (2.3.9) using (2.2.25),

AFT1g
4, cl.

∣∣∣
S1

= (−1)sE1 · Ē4
{
S(p1)µν

[
iC1

(p1 · q2)2
(fµν2 q2ρf

ρλ
3 + fµν3 q3ρf

ρλ
2 )p1λ +

2iC2
1

p1 · q2
fνρ2 f3ρ

µ

16In Ref. [231], a similar computation was carried out for s = 1 and observed a similar effect. Their amplitudes are equivalent

to our D1 = 0 case.

42



+
2iD1(2C1 −D1 − 2)

(p1 · q2)m2
p1ρf

ρµ
2 fνλ3 p1λ

]
+

2K(p1)µp1ν
m

[
D1 − C1

(p1 · q2)2
(qµ2 + qµ3 )f

νρ
2 f3ρλp

λ
1

− C1(1− C1 +D1)

p1 · q2
(fνρ2 f3ρ

µ − fνρ3 f2ρ
µ)

]}
. (2.3.14)

We then find AFT3g
4 , with external states in Eq. (2.2.55), from the Lagrangian of FT3. The momentum

dependence of vertices is essential to express the contributions with spin-(s− 1) external states in terms of

Kµ, using (2.2.48),(2.2.50). The result is

AFT3g
4

∣∣∣
S1

= (−1)sE1 · Ē4

{
S(p1)µν

[
iC1

(p1 · q2)2
(fµν2 q2ρf

ρλ
3 + fµν3 q3ρf

ρλ
2 )p1λ +

2iC2
1

p1 · q2
fνρ2 f3ρ

µ

+
2i[(C1 − 1)2 + C̃2

1 ]

(p1 · q2)m2
p1ρf

ρµ
2 fνλ3 p1λ

]
+

2K(p1)µp1ν
m

[
iC̃1 − 1

(p1 · q2)2
(qµ2 + qµ3 )f

νρ
2 f3ρλp

λ
1

− iC1C̃1

p1 · q2
(fνρ2 f3ρ

µ − fνρ3 f2ρ
µ)

]}
. (2.3.15)

Now comparing (2.3.14),(2.3.15), we find that

AFT3g
4, cl.

∣∣∣
S1

= AFT1g
4, cl.

∣∣∣
S1

for iC̃1 = 1− C1 +D1 . (2.3.16)

The robustness of this map demonstrates that the terms tagged by the extra Wilson coefficients present in

the amplitudes (and observables) of FT1 and FT3 carry new physical information compared to FT2.

The Quadratic-in-Spin Compton Amplitudes

Feynman-diagram calculations using the propagators and vertices of FT1 as well as properties of

transverse coherent states show that, at O(S2) the Compton amplitude depends on two distinct contractions

of spin tensors:

AFT1s
4, cl.

∣∣∣
S2

= (−ε1 · ε̄4)s
(
S(p1)µνS(p1)λσX µνλσ + S(p1)µλS(p1)

λ
νX µν

)
. (2.3.17)

Their kinematic coefficients are given by

X µνλσ =
C2

1 (q2 · q3)
2(p1 · q2)2

fµν2 fλσ3 +
C1D1 +D2(C1 −D1 − 1)

(p1 · q2)m2
p1ρ(f

ρµ
3 qν2f

λσ
2 − fρµ2 qν3f

λσ
3 ) , (2.3.18)

X µν =
C2

m2

[
p1ρp1α(f

ρµ
2 qν2f

αβ
3 q2β + fρµ3 qν3f

αβ
2 q3β)

(p1 · q2)2
+
p1ρ(f

ρσ
2 f3σ

µqν3 − fρσ3 f2σ
µqν2 )

(p1 · q2)
(2.3.19)

+
2C1 p1ρ(f

ρµ
3 fνσ2 q3σ − fρµ2 fνσ3 q2σ)

(p1 · q2)
+

2(C1 − 1)p1ρf
ρµ
2 fνσ3 p1σ

m2
+ 2C1f2ρ

µfνρ3

]
.

The dependence on Wilson coefficients indicates that both terms originate from both Lmin and Lnon-min,

and the Lorentz algebra was used to reduce a product of three Lorentz generators to a sum of irreducible

(symmetric) products. We also note that the D1 and D2 dependence only appear in X µνλσ.

Choosing general asymptotic states instead of transverse ones leads to the amplitude AFT1g. Apart

from the replacement S → S in AFT1s
4, cl

∣∣∣
S2

, the amplitude contains terms proportional to the covariant SSC
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conditions:

AFT1g
4, cl.

∣∣∣
S2

= (−1)sE1 · Ē4
[
S(p1)µνS(p1)λσX µνλσ + S(p1)µλS(p1)

λ
νX µν (2.3.20)

+ S(p1)µνp
ν
1S(p1)λσYµλσ + S(p1)µνp

ν
1S(p1)λσp

σ
1Yµλ + S(p1)µλS(p1)

λ
νp

ν
1Yµ

]
,

where the additional kinematic coefficients are given by

Yµλσ =
C1(D1 −D2)

(p1 · q2)m2
(q2ρf

ρµ
3 fλσ2 − q3ρf

ρµ
2 fλσ3 ) +

C1D1(q2 · q3)
(p1 · q2)2m2

p1ρ(f
ρµ
3 fλσ2 − fρµ2 fλσ3 )

+
2C1D2

(p1 · q2)m2
(q2 + q3)

µfσα2 f3α
λ +

2D2
1

(p1 · q2)m4
p1ρp1α(f

ρµ
2 fαλ3 qσ2 − fρµ3 fαλ2 qσ3 )

+
2D2

(p1 · q2)2m2
p1α(q

λ
2 f

σµ
2 fαβ3 q2β + qλ3 f

σµ
3 fαβ2 q3β)

+
2(C2(C1 −D1 − 1)−D1D2)

(p1 · q2)m4
(q2 + q3)

µp1ρf
ρλ
3 fσα2 p1α

+
C2(C1 −D1 − 1)

m4
(fµλ2 fσρ3 + fµλ3 fσρ2 )p1ρ +

D1D2

m4
p1ρ(f

ρµ
3 fλσ2 + fρµ2 fλσ3 ) , (2.3.21)

Yµλ =
2D2

1

(p1 · q2)m4
p1ρ(f

ρµ
2 q2αf

αλ
3 − fρµ3 q3αf

αλ
2 ) +

2D2
1(q2 · q3)

(p1 · q2)2m4
p1ρf

ρµ
2 p1αf

αλ
3

+
C2

(p1 · q2)2m4
p1ρ(q

µ
2 f

ρλ
2 p1αf

αβ
3 q2β + qµ3 f

ρλ
3 p1αf

αβ
2 q3β)

+
C2 − 2D1D2

(p1 · q2)m4
p1α(q

µ
3 f

αβ
2 f3β

λ − qµ2 f
αβ
3 f2β

λ) +
2C1C2

(p1 · q2)m4
p1α(q

µ
2 f

αβ
2 f3β

λ − qµ3 f
αβ
3 f2β

λ)

− 2C1C2

m4
fµα2 f3α

λ − 2C2D1

m6
p1ρp1α(f

ρµ
2 fαλ3 + ηµλfρβ2 f3β

α) , (2.3.22)

Yµ =
2C2D1

(p1 · q2)m4
p1ρp1α(f

ρµ
2 fαβ3 q2β − fρµ3 fαβ2 q3β)

− C2(C1 +D1 − 1)

m4
p1ρ(f

ρα
3 f2α

µ + fρα2 f3α
µ) . (2.3.23)

We proceed next to the O(S2) tree-level Compton amplitude of FT2. Repeating at this order the

classical scaling argument we described at O(S1) shows that, in a fixed-spin calculation, the classical tree-level

Compton amplitude is contained in the O(q2) terms of the quantum tree-level Compton amplitude. Thus, we

extract these terms from explicit s = 1, 2, 3 calculations, extrapolate them to large spin and keep only the

leading term. The massive polarization vectors now appear in four structures,

(ε1 · ε̄4)s , (ε1 · ε̄4)s−1ε
[µ
1 ε̄

ν]
4 , (ε1 · ε̄4)s−1ε

(µ
1 ε̄

ν)
4 , (ε1 · ε̄4)s−2ε

[µ
1 ε̄

ν]
4 ε

[ρ
1 ε̄

λ]
4 , (2.3.24)

where the first two correspond to the quantum spinless and O(S1) amplitudes that can be ignored here.

We use the replacement (2.2.42) and (2.2.43) for the last two structures. It turns that the dependence on

s is simple so that we can extrapolate it to obtain the general s dependence and take s → ∞ limit. The

kinematic coefficient of SµρSρ
ν can be accessed by any s > 1; in the large s limit, it exactly reproduces the

X µν shown in (2.3.18). The structure SµνSρλ appears for s > 2. A careful analysis with s = 2 and 3 gives
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identical results, so that we postulate that the coefficient of SµνSρλ is independent of s. Thus we find that

the tree-level Compton amplitude of FT2 is

AFT2
4, cl.

∣∣∣
S2

= (−ε1 · ε̄4)s
(
SµνSλσX̃ µνλσ + SµλS

λ
νX µν

)
, (2.3.25)

X̃ µνλσ =
C2

1 (q2 · q3)
2(p1 · q2)2

fµν2 fλσ3 +
C1(C1 − 1)

(p1 · q2)m2
p1ρ(f

ρµ
3 qν2f

λσ
2 − fρµ2 qν3f

λσ
3 ) ,

where X µν is defined in equation (2.3.19). These coefficients depend only on C1 and C2 and are independent

of D1 and D2. We again observe the same pattern as in the linear-in-spin case,

AFT1s
4, cl.

∣∣∣
S2

= AFT2
4, cl.

∣∣∣
S2

for D1 = C1 − 1 . (2.3.26)

We note that the special value of D1 also removes the dependence on D2.

Similar to O(S1), the O(S2) Compton amplitudes of FT3 receive contributions from lower-spin interme-

diate states. Keeping the external states transverse, we get

AFT3s
4, cl

∣∣∣
S2

= AFT2
4, cl

∣∣∣
S2

+ (−ε1 · ε̄4)sS(p1)µνS(p1)λσ

[
C̃1C̃2

(p1 · q2)m2
p1ρ(f

ρµ
3 qν2f

λσ
2 − fρµ2 qν3f

λσ
3 )

]
. (2.3.27)

Just like the previous cases, the same formal relations hold between the additional Wilson coefficients in FT1

and FT3. Indeed, comparing (2.3.27) and (2.3.17), it is easy to see that

AFT1s
4, cl

∣∣∣
S2

= AFT3s
4, cl

∣∣∣
S2

for iC̃1 = 1− C1 +D1 and iC̃2 = D2 − C1 , (2.3.28)

which is identical to (2.3.6). This demonstrates that the relation between extra Wilson coefficients and extra

propagating degrees of freedom holds also at O(S2). A comparison between AFT1g
4, cl. and AFT3g

4, cl. at O(S1K1)

and O(K2) requires that we include in the Lagrangian of FT3 a spin-(s − 2) field φs−2, and additional

operators that contribute independently at O(K2), for example (2.2.59) for FT1. This is because the effect

of O(K2) operators show up at O(S1K1) in the four-point Compton amplitudes due to the commutator

[K2,K] ∼ SK. Finally, we note that the spin-transition Compton amplitude As→s−1
4 under a fixed-spin

calculation may superficially contain a super-classical contribution that does not cancel between the two

matter channels. Consistency of the theory requires however that in the large-spin limit this term is subleading.

We will assume that this cancellation holds as s→ ∞. It is nontrivial to carry out explicit calculations to

demonstrate this, but would be worth investigating.

2.3.3 Two-Body Amplitudes

In previous subsections, we have explored and understood the effect of various types of interactions

between higher-spin fields and photons on Compton amplitudes, and the number of Wilson coefficients

necessary to describe such interactions. We found that, under suitable conditions like allowing spin magnitude

change, this number is indeed larger than that required to describe the interactions of SSC preserving spins.

45



The rationale of this exercise is to eventually understand their effects on two-body observables, such as the

momentum impulse and the spin kick. It was originally suggested in the context of gravity that a larger

number of Wilson coefficients may be required to describle more general interactions [101]. We therefore

proceed to expose the photon-mediated two-body amplitudes and, in later sections, the observables that

follow from them as well as their comparison with a wordline perspective. We use the generalized unitarity

method [206, 207, 209] to construct the relevant integrands, while taking advantage of the simplifications

introduced in Ref. [248]. To reduce the encountered loop integrals to known ones we make use of integration

by parts [212, 216] as implemented in FIRE [249, 250].

We use the momentum and mass variables

m̄1 = m2
1 − q2/4 , m̄2

2 = m2
2 − q2/4 , y =

p̄1 · p̄2
m̄1m̄2

,

p̄1 = p1 + q/2 = −p4 − q/2 , p̄2 = p2 − q/2 = −p3 + q/2 , (2.3.29)

which are originally used for the expansion in the soft region of gravitational amplitudes in [33]. We primarily

focus on FT1 because this is what we compare with a worldline theory. Unitarity guarantees that the

two-body amplitudes of FT2 can be obtained from those of FT1 by setting D1 = C1 − 1 and imposing the

covariant SSC, while the two-body amplitudes of FT3 can be obtained using the map between the extra

Wilson coefficients proposed in the previous subsection.

Tree Level

The structure of the two-body amplitude at tree-level and in the classical limit is

iMtree
4,cl. = (4πα)(E1 · Ē4)(E2 · Ē3)

(
d

q2

)
, (2.3.30)

where q is the photon momentum, and the numerator d is a function of momenta and spin tensors which

scales as d ∼ q0 in the classical limit. Our results for FT1g through the quadratic order in spin are as

follows:

d
∣∣∣
spinless

= 4iym̄1m̄2 ,

d
∣∣∣FT1g

S1
1S

0
2

= −4m̄2S1µν
(
C1(1)ū

µ
2 q

ν −D1(1)yū
µ
1 q

ν
)
,

d
∣∣∣FT1g

S1
1S

1
2

= 4iC1(1)C1(2)S
µν
1 qνS2µρq

ρ (2.3.31)

− 4iSµν1 qνS
ρλ
2 qλ

(
C1(1)D1(2)ū2µū2ρ + C1(2)D1(1)ū1µū1ρ −D1(1)D1(2)yū1µū2ρ

)
,

d
∣∣∣FT1g

S2
1S

0
2

=
2im̄2

m̄1

[
yC2(1)S

µν
1 qνS1µρq

ρ − yC2(1)(S
µν
1 ū1µqν)

2 − 2D2(1)S
µν
1 ū1µqνS

ρλ
1 ū2ρqλ

]
,
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where the spinless case agrees with Ref. [246, 5, 191]. The notation Ci(j) and Di(j) refers to the Ci and Di

coefficients associated with body j. If the external states are transverse, (E1 · Ē4)(E2 · Ē3) = (ε1 · ε̄4)s(ε2 · ε̄3)s,

then the spin tensor obeys the covariant SSC, such that,

d
∣∣∣FT1s

S1
1S

0
2

= d
∣∣∣FT2

S1
1S

0
2

= d
∣∣∣FT3s

S1
1S

0
2

= −4C1(1)m̄2S
µν
1 ū2µq

ν ,

d
∣∣∣FT1s

S1
1S

1
2

= d
∣∣∣FT2

S1
1S

1
2

= d
∣∣∣FT3s

S1
1S

1
2

= 4iC1(1)C1(2)S
µν
1 qνS2µρq

ρ , (2.3.32)

d
∣∣∣FT1s

S2
1S

0
2

= d
∣∣∣FT2

S2
1S

0
2

= d
∣∣∣FT3s

S2
1S

0
2

=
2iC2(1)ym̄2

m̄1
Sµν
1 qνS1µρq

ρ .

The small velocity expansion of the first two expressions agrees with the results of Ref. [246]. They are related

to (2.3.31) through the replacement Si → Si and Siµν ū
ν
i = 0, which holds to all orders in spin at tree level.

We note that, to first order on Ki, the amplitudes of FT3g can also be obtained from (2.3.31) through the

Wilson coefficient map (2.3.6).

In 2.5 we compare observables from the amplitudes AFT1g of FT1 and those from worldline calculations

in the absence of an SSC. We find a perfect match both at O(α), which follow from the amplitudes above,

and at O(α2) which follow from the one-loop amplitudes we now summarize.

One Loop

While four-point Compton amplitudes are not relevant for the tree-level two-body scattering, they are

an integral part of two-body scattering at one loop. The generalized unitarity method [206, 207, 209] provides

a means to construct the classically-relevant parts of the latter in terms of the former. We should therefore

expect that the precise intermediate states contributing to Compton amplitudes have observable consequences

for the scattering of two matter particles. In particular, we note that intermediate states of spin different from

the external spin can be projected out either by using only transverse spin-s fields or by choosing particular

values for the extra Wilson coefficients, see (2.3.11). Since before loop integration, the part of the one-loop

two-body amplitude that is relevant in the classical limit is literally the product of two Compton amplitudes

summed over states, the latter observation must have hold at one loop as well. Thus, we may follow this

strategy to compute the one-loop two-body amplitude of FT1g.

The complete one-loop amplitude exhibits classically-singular, classical and quantum terms. The former

two are

iM(1)
4,cl. = (4πα)2

[
Cbox(I + I ) + iM +

]
, (2.3.33)

where the first one, given by the box and crossed-boxed integrals

I =

∫
dd`

(2π)d
1

`2(`− q)2(2p̄1 · `+ i0)(−2p̄2 · `+ i0)
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I =

∫
dd`

(2π)d
1

`2(`− q)2(2p̄1 · `+ i0)(2p̄2 · `+ i0)
, (2.3.34)

is the classically-singular part, while the second term, containing the triangle integral

I4 =

∫
dd`

(2π)d
1

`2(`− q)2(2p̄1 · `+ i0)
, (2.3.35)

is the classical part [96, 14].

The spin-independent part of the amplitude is

Cbox

∣∣∣
spinless

= −(E1 · Ē4)(E2 · Ē3)
(
d
∣∣∣
spinless

)2

,

iM +

∣∣∣
spinless

= (E1 · Ē4)(E2 · Ē3)
i(m̄1 + m̄2)

4
√
−q2

. (2.3.36)

As its tree-level counterpart, it agrees with Ref. [191, 251] and it is the same in all three field theories.

The linear in spin part of the classically singular term is

Cbox

∣∣∣FT1g

S1
1S

0
2

= −(E1 · Ē4)(E2 · Ē3)
(
d
∣∣∣
spinless

× d
∣∣∣FT1g

S1
1S

0
2

)
, (2.3.37)

As the spin-independent part (2.3.36), it is given by the product of tree-level amplitudes, in agreement with

the expected exponential structure of the amplitude in the classical limit [14, 16, 30]. The corresponding

expression at higher powers of the spins should be given by the IBP reduction of such products of trees

summed over all the possible ways of distributing the spins in the two factors.

The classical part of the one-loop two-body amplitude can be organized in terms of the various possible

contractions of spin tensors. As at tree level, we write explicitly the amplitude AFT1g for FT1 and obtain

the amplitudes in other theories via S → S and other limits on Wilson coefficients. The structure of

iM +

∣∣∣
S

n1
1 S

n2
2

is

iM +

∣∣∣
S

n1
1 S

n2
2

=
(ε1 · ε̄4)s(ε2 · ε̄3)s

4
√
−q2

∑
i

α(n1,n2,i)O(n1,n2,i) ; (2.3.38)

through second order in spin, the spin-tensor contractions are O(n1,n2,i) are:

• Linear in spin:

O(1,0,1) = Sµν1 ū2µqν , O(1,0,2) = Sµν1 ū1µqν (2.3.39)
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• Bilinear in spin:

O(1,1,1) = Sµν1 qνS2µρq
ρ , O(1,1,2) = Sµν1 ū2νS2µρū

ρ
1 , O(1,1,3) = Sµν1 ū2µqνS

λσ
2 ū1λqσ ,

O(1,1,4) = Sµν1 S2µν , O(1,1,5) = Sµν1 ū1νS2µρū
ρ
1 , O(1,1,6) = Sµν1 ū1νS2µρū

ρ
2 ,

O(1,1,7) = Sµν1 ū2νS2µρū
ρ
2 , O(1,1,8) = Sµν1 ū1µqνS

λσ
2 ū1λqσ , O(1,1,9) = Sµν1 ū1µqνS

λσ
2 ū2λqσ ,

O(1,1,10) = Sµν1 ū2µqνS
λσ
2 ū2λqσ , O(1,1,11) = Sµν1 ū1µū2νS

λσ
2 ū1λū2σ ,

(2.3.40)

• Quadratic in spin:

O(2,0,1) = Sµν1 qνS1µρq
ρ , O(2,0,2) = (Sµν1 ū2µqν)

2 , O(2,0,3) = Sµν1 S1µν ,

O(2,0,4) = Sµν1 ū1νS1µρū
ρ
1 , O(2,0,5) = Sµν1 ū1νS1µρū

ρ
2 , O(2,0,6) = Sµν1 ū2νS1µρū

ρ
2 ,

O(2,0,7) = (Sµν1 ū1µqν)
2 , O(2,0,8) = Sµν1 ū1µqνS

λσ
1 ū2λqσ , O(2,0,9) = (Sµν1 ū1µū2ν)

2 ,

(2.3.41)

All contractions that contain the covariant SSC constraints, Sµνi ūiµ, vanish for AFT1s, AFT2 and AFT3s. The

coefficients of O(n1,n2,i) at linear order in spin are:

α(1,0,1) = − y

(y2 − 1)m̄1

[
2C1(1)m̄1 + (C2

1(1) − 2C1(1)D1(1) +D2
1(1) + 2D1(1))m̄2

]
,

α(1,0,2) =
1

(y2 − 1)m̄1

{[
(y2 + 1)C1(1) + (y2 − 1)D1(1)

]
m̄1

+
[
C2

1(1) − (y2 + 1)C1(1)D1(1) + y2D2
1(1) + (3y2 − 1)D1(1)

]
m̄2

}
. (2.3.42)

As we reduce AFT1g to AFT1s, the coefficients of the surviving spin structures under the covariant SSC are

unchanged. To obtain the amplitude for FT2 we further impose D1 = C1 − 1, which also makes the D2

dependence vanish up to the quadratic order in spin as in the Compton amplitudes. Similarly, to obtain

the amplitudes AFT3s we use the relations (2.3.6) to replace the coefficients D1 and D2 by C̃1 and C̃2 after

imposing the covariant SSC. Last but not least, we can also obtain AFT3g up to linear order in K from AFT1g

by simply using the relations (2.3.6).

2.4 Worldline Theories
What worldline theory can reproduce the field-theory results of the previous sections? In the field

theories where multiple spin states propagate, the spin vectors magnitude is no longer conserved so to match

this one needs to introduce additional degrees of freedom on the worldline. Because these additional degrees

of freedom are constrained by the Lorentz generator algebra, the natural choice is to find these degrees of

freedom in the spin tensor itself. In section 2.5, we construct a two-body Hamiltonian that explicitly exhibits

these additional dynamical variables. In this section our task is to find a modified worldline that produces

the same results as the field theory.
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We start from a standard worldline construction [226] with the SSC corresponding to WL1, listed in

section 2.1. We see that the results we obtain for this theory then match the field theory containing only

a single massive quantum spin state [231, 179], which is related to the fact that both necessarily preserve

the spin-vector magnitude. To match field-theory results when multiple quantum spin states are present, we

introduce additional degrees of freedom on the worldline by releasing the SSC, corresponding to WL2. As in

general relativity this has no physical effect at first order in the coupling [101], but starting at second order

in the coupling, physical differences can appear; in general relativity physical effects start at cubic order in

the spin tensor, but in electrodynamics this occurs at linear order.

Specifically, we compute the tree-level Compton amplitude to quadratic order in spin and probe-limit

O(α2) two-body impulse and spin kicks to linear order in spin with a scalar source. We do so initially using

WL1 with the covariant SSC imposed via a Lagrange multiplier. Then, we switch to WL2 by removing the

Lagrange multiplier terms enforcing the SSC constraint. This Compton amplitude of the modified worldline

formalism has the same spin tensor dependence as found in the classical limit of the amplitude AFT1g of field

theory FT1 without a physical state projector limiting it to the states of a single quantum spin. We find that

not only do the equations of motion consistently evolve all the degrees of freedom, but that it is possible to

match the observables of the modified worldline with the field theory, with a direct correspondence between

the Wilson coefficients of the two formalisms. The key consequence is that both have a larger number of

independent Wilson coefficients than the conventional worldline approach in which the SSC is imposed. We

emphasize that the match is rather nontrivial.

2.4.1 Worldline Action with Dynamical Mass Function

We begin with a brief review of the worldline formalism, following Ref. [226]. The worldline formalism

seeks to describe the evolution of a body of matter in terms of its spacetime location and internal degrees

of freedom. We refer to the spacetime location of the body “center” in coordinates as zµ(λ) where λ is a

real parameter which parameterizes the worldline, called the worldline time. For now we denote the internal

degrees of freedom of the body as φa(λ) where a is an index running over all of those internal degrees of

freedom. Below we take these degrees of freedom to track the orientation of the body but for now the

particular structure of these degrees of freedom is not important. The body’s evolution is described by an

action which is reparameterization invariant under monotonic redefinitions of the worldline time λ′ = λ′(λ).

The reparametrization invariance can be imposed directly through the introduction of an einbein field e(λ).

The einbein is defined to transform under reparameterizations as:

e′(λ′) =
dλ

dλ′
e(λ) , (2.4.1)
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A generic reparameterization invariant action is then of the form:

S[e, z, φ] =

∫ ∞

−∞
L

(
z,
ż

e
, φ,

φ̇

e

)
e dλ , (2.4.2)

where dots indicate differentiation with respect to λ. Defining the conjugate momenta as usual:

pµ = −∂(Le)
∂żµ

, πa = −∂(Le)
∂φ̇a

, (2.4.3)

the Hamiltonian form of the action can be written as:

S[e, z, p, φ, π] =

∫ ∞

−∞

(
−πaφ̇a − pµż

µ − eH(z, p, φ, π)
)
dλ , (2.4.4)

and p, π, and H are reparameterization invariant. It is useful to introduce the notation:

|p| =
√
pµpµ, p̂µ =

pµ

|p|
. (2.4.5)

For a free particle, the Hamiltonian H = −|p| +m produces the geodesic equation of motion. In general,

H = −|p|+m+δH(z, p, φ, π) for some function δH containing all additional couplings. The on-shell constraint

imposed by the einbein’s equation of motion is always H = 0, which then determines |p| = m+ δH. So, it is

useful to introduce the dynamical mass function M(z, p̂, φ, π) as the solution for |p| imposed by the einbein

equation of motion: |p| = M(z, p̂, φ, π). Then, we can take the Hamiltonian:

H(z, p, φ, π) = −|p|+M(z, p̂, φ, π). (2.4.6)

Note that this is equivalent to taking H = p2 −M2 as in [226], up to a redefinition of the Lagrange multiplier

e.

In the context of electrodynamics it is possible to add the minimal coupling through the dynamical

mass function but then the conjugate momentum of the body is not gauge invariant. Instead, by taking pµ

to be the kinetic momentum (the conjugate momentum plus QAµ), we can have pµ and consequently M

be gauge invariant at the cost of shifting pµżµ to (pµ −QAµ)ż
µ. Thus, to couple the worldline particle to

electromagnetism it is simplest to use the action:

S[e, z, p, φ, π] =

∫ ∞

−∞

(
−pµżµ +QAµż

µ − πaφ̇
a + e

(√
pµpµ −M(z, p̂, φ, π)

))
dλ , (2.4.7)

with a gauge and reparameterization invariant Lorentz-scalar dynamical mass M.

2.4.2 Worldline Theory with SSC

Worldline Spin Degrees of Freedom

The standard worldline formulation incorporates spin in a way reminiscent of rigid bodies in classical

mechanics. For a moving body, there is some point defined as the “center” of that body, tracked by the

worldline, which moves in spacetime and we assume that other points of the body move along with that
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center in “quasirigid” motion, as defined in Ref. [252], requiring that the internal structure is essentially

unchanged.17 The orientation of the body is tracked by a tetrad eµA(λ) that represents the change of internal

body displacements undergone during the motion with respect to some arbitrary default frame. Capital Latin

indices are used for the body’s internal Lorentz indices while lowercase Greek indices are used as spacetime

indices. As usual, the tetrad satisfies:

eµAe
ν
Bη

AB = gµν , gµνe
µ
Ae

ν
B = ηAB . (2.4.8)

Internal body displacements are defined in the body’s center of momentum frame, so that p̂µ is instantaneously

taken as the time direction. Thus by definition we take:

eµ0 = p̂µ . (2.4.9)

Beyond this condition eµA may be any tetrad satisfying Eq. (2.4.8). Any such tetrad can be decomposed

into (1) a tetrad which is parallel transported along the worldine, then boosted by a standard boost so that

its timelike element is boosted to p̂µ, and (2) an arbitrary little-group element of p̂µ. The three little-group

parameters of p̂µ can then be taken to be the φa coordinates. The spin angular momentum of the body is the

generator of Lorentz transformations of the body orientation about the body center, and so is given by:

Sµν = −πa
dφa

dθµν

∣∣∣∣
θ=0

, (2.4.10)

with Lorentz transformation parameters θµν . A short computation with the above definitions reveals that

they enforce the covariant SSC:
Sµνp

ν = 0 . (2.4.11)

In addition: −1

2
SµνΩ

µν = πaφ̇
a , (2.4.12)

where the angular velocity tensor Ωµν is defined by:

Ωµν = ηABeµA
DeνB
Dλ

. (2.4.13)

Using the spin tensor and the arbitrariness of the default frame of the body, the action for a spinning

body takes the form:

S[e, ξ, χ, z, p, e, S] =

∫ ∞

−∞

(
−(pµ −QAµ)ż

µ +
1

2
SµνΩ

µν + e(|p| −M(z, p̂,S))

+ ξµS
µνpν + χµ(e

µ
0 − p̂µ)

)
dλ . (2.4.14)

Lagrange multipliers ξµ and χµ enforce Sµν p̂ν = 0 and eµ0 = p̂µ. This formulation of the action imposes the

covariant SSC Sµνp
ν = 0, corresponding to the WL1 theory.

17More precisely, quasirigidity is the requirement that the multipole moments of the body’s current density and stress tensor

evolve only by translating along the worldline and Lorentz transforming according to the orientation tracking tetrad.
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One can shift the definition of the worldline zµ and in doing so one finds that the definition of the spin

changes as does the constraint satisfied by the spin. Thus, one can change to a new SSC through a shift of

the worldline. In this formalism, the ability to locally shift the definition of the worldline in this way may be

thought of as a gauge transformation [229, 145, 230] and the Lagrange multipliers supplied to enforce the

covariant SSC and eµ0 = p̂µ correspond to a gauge fixing. Because the SSC removes the S0a components of

the spin tensor in the body’s center of momentum frame, these timelike components are not physical degrees

of freedom. (Even when an SSC other than the covariant SSC is considered, these timelike components are

determined by the other degrees of freedom using the appropriate SSC.)

Equations of Motion with SSC

The variation of Eq. (2.4.14) in Minkowski space gives an electromagnetic version of the Mathisson–Pa-

papetrou–Dixon (MPD) [253, 107, 108] equations:

żµ = p̂µ − 1

M
∂M
∂p̂µ

+
p̂σ
M

∂M
∂p̂σ

p̂µ + Sµν
∂M
∂zν − 2 ∂M

∂Sνρ p
ρ −QFνρ

(
p̂ρ − 1

M
∂M
∂p̂ρ

+ p̂σ

M
∂M
∂p̂σ

p̂ρ
)

M2 − Q
2 S

αβFαβ

,

ṗµ = −QFµν ż
ν +

∂M
∂zµ

,

Ṡµν = pµżν − pν żµ − 2Sµ
ρ ∂M
∂Sρν

+ 2Sν
ρ ∂M
∂Sρµ

− ∂M
∂p̂µ

p̂ν +
∂M
∂p̂ν

p̂µ . (2.4.15)

In varying to find these equations of motion we find that the equations of motion are consistent with simply

taking χµ = 0 and so if p̂µ = eµ0 is imposed as an initial condition then never adding the χµ term to the

action still preserves this condition for later times.

At linear order in spin the generic symmetry consistent dynamical mass function is:

M = m− QC1

2m
SµνFµν , (2.4.16)

for constant free mass m and Wilson coefficient C1. With this form of the dynamical mass function, the

equations of motion to linear in spin order are:

żµ =

(
1 +

QC1

2m2
SαβFαβ

)
pµ

m
+
Q(C1 − 1)

m3
SµνFνρp

ρ +O(S2) ,

ṗµ = −QFµν ż
ν − QC1

2m
Sρσ∂µFρσ +O(S2) ,

Ṡµν = pµżν − pν żµ +
QC1

m
(SµρF

ρ
ν − SνρF

ρ
µ) +O(S2) . (2.4.17)

These linear in spin equations of motion depend only on a single Wilson coefficient following from the fact that

with the SSC imposed, the only independent linear in spin operator is the one in equation (2.4.16). This is

similar to the situation in general relativity where the SSC allows only a single independent Wilson coefficient

at the linear in spin level [145]. The appearance of two Wilson coefficients in the field theory (cf. Eqs. (2.2.57),

(2.3.8) and (2.3.9)) and one coefficient in the worldline with the SSC imposed is the analog of the similar
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appearance of a different number of Wilson coefficients in general relativity between the field-theory and

worldline descriptions starting at the spin-squared level in the action [101].

2.4.3 Worldline Theory with no SSC

In Sect. 2.4.2 we reviewed that an SSC (and particularly the covariant SSC) is natural for the worldline

formalism for quasirigid bodies. Here we consider a modified version of the worldline formalism in which

we “remove” the SSC. This corresponds to our worldline theory WL2. It explicitly introduces additional

physical degrees of freedom into the theory. Remarkably we find that this modified worldline theory cleanly

matches the field-theory results of FT1g at 2PL O(S1), including its extra independent Wilson coefficients.

This then allows us to interpret the appearance of extra Wilson coefficients purely on the worldline, tying

them to additional dynamical degrees of freedom. A similar construction was described in Ref. [231]. We find

that these extra degrees of freedom allow for the magnitude of the spin vector to change.

Removing the SSC

Consider the worldline action,

S[e, ξ, χ, z, p, e, S] =

∫ ∞

−∞

(
−(pµ −QAµ)ż

µ +
1

2
SµνΩ

µν + e(|p| −M(z, p̂,S))

)
dλ , (2.4.18)

which is identical to equation (2.4.14), except that the Lagrange multiplier terms that enforce the SSC are

dropped. By not including these, the interdependence between the definition of the body center degrees of

freedom (z, p) and the body orientation degrees of freedom (e,S) is removed. As already noted, in equation

(2.4.14) the SSC implies that the S0a components of the spin tensor are not independent physical degrees of

freedom. In contrast, in equation (2.4.18) with no SSC imposed we are explicitly promoting these timelike

components to be treated as physical. As we shall see, this does not lead to inconsistencies in the equations

of motion, but instead adds dynamical degrees of freedom.

The variation of Eq. (2.4.18) with no SSC imposed results in equations of motion,

żµ = p̂µ − 1

M
∂M
∂p̂µ

+
p̂σ
M

∂M
∂p̂σ

p̂µ ,

ṗµ = −qFµν ż
ν +

∂M
∂zµ

,

Ṡµν = pµżν − pν żµ − 2Sµ
ρ ∂M
∂Sρν

+ 2Sν
ρ ∂M
∂Sρµ

− ∂M
∂p̂µ

p̂ν +
∂M
∂p̂ν

p̂µ . (2.4.19)

Comparing to Eq. (2.4.15) we see that only the equation of motion for the worldline trajectory zµ differs

from the case with the SSC imposed. Moreover, the absence of the SSC Lagrange multiplier term results in

this equation being simpler.
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At linear order in spin the generic symmetry consistent dynamical mass function is:

M = m− QC1

2m
SµνFµν − QD1

m
p̂µS

µνFνρp̂
ρ , (2.4.20)

for constants m,C1, D1. In this case, instead of the single Wilson coefficient C1 we have the additional

coefficient D1 analogous to the appearance of a second coefficient in the field theory FT2. To give a physical

meaning to D1 it is useful to define the spin vector Sµ and mass moment vector Kµ:

Sµ =
1

2
εµνρσ p̂νSρσ , Kµ = −Sµν p̂ν , (2.4.21)

where ε0123 = +1. The boost vector Kµ is precisely what is eliminated when the covariant SSC is imposed,

or equivalently what is algebraically constrained when a different SSC is used. The complete information in

the spin tensor is recovered from these two vectors by:

Sµν = p̂µKν −Kµp̂ν + εµνρσ p̂ρSσ . (2.4.22)

Directly, Kµ is the generator of “intrinsic” Lorentz boosts (where by “intrinsic” we mean acting only on

the internal degrees of freedom). As well, −Kµ

|p| can be interpreted as the displacement between the actual

worldline zµ(λ) being used and the worldline zµCOM(λ) that would trace out the center of mass of the body.

To see this, look at the total angular momentum Jµν :

Jµν = zµpν − pµzν + Sµν =

(
zµ − Kµ

|p|

)
pν − pµ

(
zν − Kν

|p|

)
+ εµνρσ p̂ρSσ . (2.4.23)

We can see that if the definition of the worldline is shifted by −Kµ

|p| to a new worldline z′µ = zµ− Kµ

|p| then the

resulting new spin tensor S′µν would satisfy the covariant SSC. In the conventional worldline formalism this

is considered as an allowed redefinition which should lead to a physically equivalent theory (in that whether

the spin and coupling expansions are performed about one or the other should not affect observables). Here

we do not require it to be so.

In the previous discussion, the bodies were treated as point-like. It is useful to remind ourselves of the

meaning K in the context of classical extended bodies. A familiar analysis of the spin vector can allow further

insight into the meaning of Kµ. Let J be the generator of rotations about the origin (not body centered)

acting on a matter distribution with energy density E(x) and linear momentum density ℘(x) in a region V of

space, J =

∫
V

x × ℘(x)d3x. (2.4.24)

When the center of the body is identified with the point z, the orbital generator of Lorentz boosts is of course,

L = z × p. (2.4.25)
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Thus, the “intrinsic” generator of rotations (the spin) of the body is given by a familiar formula,

S = J − L =

∫
V

(x − z)× ℘(x)d3x. (2.4.26)

Now performing the same analysis for the generator of Lorentz boosts, let Ktotal be the generator of Lorentz

boosts about the origin acting on the matter distribution,

Ktotal =

∫
V

(t℘(x)− xE(x))d3x. (2.4.27)

The “orbital” generator of Lorentz boosts is then,

Korbital = pt− Ez (2.4.28)

where E and p are the total energy and momentum of the body. Thus, the “intrinsic” generator of Lorentz

boosts of the body is: K = Ktotal − Korbital = Ez −
∫
V

xE(x)d3x (2.4.29)

Let zCOM be the center of momentum position of the body in the center of momentum frame (E = |p|). Then,

automatically: zCOM =
1

E

∫
V

xE(x)d3x =⇒ zCOM = z − K
|p|
. (2.4.30)

This precisely establishes the interpretation of −Kµ

|p| as a displacement between the worldline around which

the spin and coupling expansions are performed and the worldline which tracks the center of mass of the

body.

Note that we use a different convention in this section compared to section 2.2. In particular, the

worldline K and the field-theory KKK are related by an analytic continuation, iKKK 7→ K with both KKK and K

being real, while the rest-frame spin vectors are simply equal, SSS ↔ S. We comment further in section 2.5.8

on the rationale behind this analytic continuation.

Writing Kµ as a spatial integral moment of the energy-momentum tensor as above identifies it as a mass

dipole moment of the body about the worldine position zµ. This identification can be made directly from

Dixon’s formalism [253]. For a body with a charge density proportional to its mass density then − Q
|p|K

µ

would be the electric dipole moment of the body. However, for a generic object it is not necessarily the case

that these densities are proportional and so we need not assume that the electric dipole moment is − Q
|p|K

µ.

In particular, in the body’s center of momentum frame its energy is simply its dynamical mass function minus

QA0 and in that frame (2.4.20) becomes:

M = m+
Q(C1 −D1)

m
E · K − QC1

m
B · S +O(F 2) . (2.4.31)

Thus the induced electric dipole moment d and magnetic dipole moment µ relative to the worldline

center z: d = −Q(C1 −D1)

m
K, µ =

QC1

m
S . (2.4.32)
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Immediately, 2C1 is the gyromagnetic ratio of the body (which should take the value 1 for a classical

distribution of mass and charge which are proportional). For a distribution in which mass and charge are

proportional, C1 −D1 = 1. Here we consider the possibility that it takes a generic value different from 1.

The value of C1 −D1 = 1 is explicitly required by a worldline formalism which is assumed to have worldline

shift symmetry [229, 145, 230] because the definition of the electric dipole moment immediately implies a

shift of the dipole moment by − Q
|p|K

µ whenever the worldline is shifted by −Kµ

|p| . Thus, C1 −D1 6= 1 breaks

the worldline shift symmetry.

Of course, to have a proper description of extended bodies that fits into the WL2 framework one should

understand the constraints on the energy and momentum distributions arising from the Lorentz algebra. It

would also be very interesting to directly connect extended objects with appropriate distributions of energy

and momentum to the extra Wilson coefficient of WL2.

Equations of Motion with no SSC

With the dynamical mass function (2.4.20) we find equations of motion in WL2 to linear order in spin:

żµ =
pµ

m

(
1 +

QC1

2m2
SρσFρσ − QD1

m4
pνS

νρFρσp
σ

)
+
QD1

m3
pρSρσF

σµ +
QD1

m3
SµνFνρp

ρ +O(S2) ,

ṗµ =−QFµν ż
ν − QC1

2m
Sρσ∂µFρσ − QD1

m3
pρS

ρσ∂µFσαp
α +O(S2)

Ṡµν =− QC1

m
(Fµ

ρS
ρν − F ν

ρS
ρµ)− QD1

m3
(FµρpρS

νσpσ − F νρpρS
µσpσ)

+
QD1

m3
(pµSνρFρσp

σ − pνSµρFρσp
σ) +O(S2). (2.4.33)

If one begins the time evolution with initial conditions satisfying the covariant SSC and C1 −D1 = 1,

the covariant SSC is preserved dynamically. C1 −D1 6= 1 produces violations of the covariant SSC. In light of

this, notice that if C1 −D1 is set to 1 in (2.4.33) and covariant SSC satisfying initial conditions are chosen,

then the equations of motion (2.4.33) reduce to the equations of motion (2.4.17). Consequently, this modified

worldline formalism is strictly more general than the conventional WL1 as it contains the WL1 as a special

case when appropriate initial conditions and Wilson coefficient values are selected. In order to “turn on” the

SSC and reduce to the conventional worldline formalism we can set D1 to the special value D1 = C1 − 1 at

any stage of calculation and use initial conditions satisfying the covariant SSC.

Worldline Compton Amplitude

Using the WL2 equations of motion we compute the classical Compton amplitude to order O(αS2) for

general values of C1, D1 The classical Compton is computed by computing the coefficient of the outgoing

spherical electromagnetic wave produced by the response of the spinning body to in an incoming electro-

magnetic plane wave as in Appendix D of [5] or as is done for gravity in [247]. In particular, we consider an
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incoming plane wave vector potential in Lorenz gauge,

Ain
µ (X) = eik·xξµ (2.4.34)

and the response of a spinning particle to this potential using the equations of motion of WL2. The O(α)

perturbative solutions can be returned to the current,

Jµ(X) =
δS

δAµ
(2.4.35)

=

∫ ∞

−∞

(
Qżµδ(X − Z) +

eQ

m
(C1S

µν +D1 (p̂
µSµρp̂ρ − Sµρp̂ρp̂

ν)) ∂νδ(X − Z)

)
dλ.

Then, treating that current as a source we compute the perturbation of the vector potential. The large

distance behavior of the perturbed vector potential allows one to read off the Compton amplitude Aµν by:

Aµ(X) = eik·xξµ +
eikr−iωt

4πr
Aνµξν +O(

1

r2
). (2.4.36)

The Compton amplitude can then be extracted directly from the current by using the Lorenz gauge solution

to the wave equation at large distances. Doing so one finds:

J̃µ = 2πAνµξν (2.4.37)

where J̃µ is the Fourier transform of the current evaluated at the outgoing photon momentum.

Using the current computed from the worldline equations of motion, the resulting classical Compton

amplitude is found to fully agree with the AFT1g Compton amplitude in (2.3.7), (2.3.9), (2.3.20) (with the S2

terms matching up to contact terms, which we did not explicitly include either on the field theory or in the

worldline theory).

Worldline Impulses

For computing observables with these equations of motion we consider the probe limit of a spinning

particle of mass m scattering off of a stationary scalar source. For simplicity, we consider only the probe limit;

even so, the result is sufficiently complex to demonstrate a rather nontrivial comparison with the field-theory

calculations. The source – a point charge moving with four-velocity u2 – has vector potential,

Aµ(x) =
Qu2µ

4π
√

(x · u2)2 − x · x
. (2.4.38)

The solutions to the equations of motion of the probe in powers of α = Q2/(4π) are of the form:

zµ(λ) = bµ + uµ1λ+ αδzµ(1)(λ) + α2δzµ(2)(λ) +O(α3) (2.4.39)

pµ(λ) = muµ1 + αδpµ(1)(λ) + α2δpµ(2)(λ) +O(α3) (2.4.40)

Sµν(λ) = Sµν1 + αδSµν(1)(λ) + α2δSµν(2) +O(α3). (2.4.41)
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The impact parameter bµ is defined to be transverse on the initial momentum, b · p1 = 0. The initial

momentum muµ1 defines the initial four-velocity uµ1 . All perturbations of pµ and Sµν asymptotically vanish

for λ→ ±∞ while the trajectory perturbations are logarithmically divergent with the worldline time due to

the long range nature of the Coulomb potential. Due to this logarithmic divergence, in order to treat the

O(α2) and higher solutions correctly, all the perturbations may be set to 0 at an initial cutoff time λ = −T .

Impulse observables are then computed by taking the difference in observables at time T and −T and at

the end taking the limit T → ∞. Equivalently, the perturbations may be given representations in terms of

standard Feynman integrals and computed using dimensional regularization, such as in Ref. [26].

Computing the momentum impulse and spin kick to O(α2) and O(S1) in this way gives a perfect match

to the corresponding observables obtained from AFT1g when the worldline Wilson coefficients C1 and D1 are

identified with their field-theory counterparts, as detailed in Sec. 2.5.7 below. The results of WL1 can be

recovered from the more general results of WL2 by setting the special value D1 = C1 − 1. To express the

impulses, it is useful to define:

γ = u1 · u2, v =

√
γ2 − 1

γ
, (2.4.42)

ǔµ1 = uµ1 − γuµ2 , ǔµ2 = uµ2 − γuµ1 , (2.4.43)

and to decompose the impulses according to:

∆pµ1 = α∆pµ1(α1) + α2∆pµ1(α2) +O(S21) +O(α3), (2.4.44)

∆Sµν1 = α∆Sµν1(α1) + α2∆Sµν1(α2) +O(S21) +O(α3).

Then at order O(α) and with the notation |b| =
√

−bµbµ, we find the impulse

∆pµ1(α1) =
2bµ

v|b|2
+

2

m1γv|b|2

(
2
bµbν

|b|2
S1νρ + S1

µ
ρ

)(
D1γu

ρ
1 − C1u

ρ
2

)
(2.4.45)

− 2S1νρu
ν
1u

ρ
2

m1γ3v3|b|2
[
(C1 −D1γ

2)uµ1 + (D1 − C1)γu
µ
2

]
and the spin kick

∆Sµν1(α1) =
4

m1γv|b|2
(
S1

[µ
σδ

ν]
ρb

σ − S1
[µ

ρb
ν]
)(
D1γu

ρ
1 − C1u

ρ
2

)
. (2.4.46)

At order O(α2), we find the impulse,

∆pµ1(α2) =− πbµ

2m1γv|b|3
− 2ǔµ1
m1γ2v4|b|2

(2.4.47)

+ π
3bµbνS1νρ + |b|2S1µρ

2m2
1γ

3v3|b|5
[
(C2

1 − C1D1 −D1)ǔ
ρ
1 +D1(C1 −D1 − 3)γǔρ2

]
+ 2

C2
1 −D1(2C1 −D1 − 2)γ2

m2
1γ

2v2|b|4
bνS1νρ

[
ηρµ +

ǔρ1u
µ
1 + ǔρ2u

µ
2

γ2v2

]
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− 4
bνS1νρ

m2
1γ

6v6|b|4
[
(D1 − C1)γ

2ǔρ2ǔ
µ
1 + (D1γ

2 − C1)ǔ
ρ
1ǔ

µ
2

]
+ π

S1νρǔ
ν
1 ǔ

ρ
2

2m2
1γ

7v7|b|3
{[

(C1 −D1)
2 + 2D1

]
γǔµ1

+
[
C2

1 − C1D1 −D1 −D1(C1 −D1 − 3)γ
]
ǔµ2

}
and the spin kick,

∆Sµν1(α2) =
π

m2
1γ

3v3|b|3

[
(C2

1 − C1D1 −D1)
(
b[µS1ρ

ν]ǔρ1 − ǔ
[µ
1 S1ρ

ν]bρ
)

(2.4.48)

+D1(C1 −D1 − 3)γ
(
b[µS1ρ

ν]ǔρ2 − ǔ
[µ
2 S1ρ

ν]bρ
)]

+
4

m2
1γ

2v2|b|4

{
2
(
C1b

[µu
ν]
2 −D1γb

[µu
ν]
1

)
bρS1ρσ

(
C1u

σ
2 −D1γu

σ
1

)
−
[
C2

1 −D1(2C1 −D1)γ
2
]
b[µS1ρ

ν]bρ
}

+
4

m2
1γ

6v6|b|2

{
(C1 −D1)

2γ2ǔ
[µ
1 S1ρ

ν]ǔρ1 + (C1 −D1γ
2)2ǔ

[µ
2 S1ρ

ν]ǔρ2

+ (C1 −D1γ
2)γ
[
(C1 −D1 − 1)ǔ

[µ
2 S1ρ

ν]ǔρ1 + (C1 −D1 + 1)ǔ
[µ
1 S1ρ

ν]ǔρ2

]}
.

The nontrivial nature of the above results give us confidence that we have indeed identified a worldline

model whose results match those of the field theory. It would of course be useful to carry out further

comparisons to field theory, not only beyond the probe limit but also more importantly to higher orders in

the spin, especially for the case of general relativity. Given the rather different setups, a direct proof that the

field-theory and worldline descriptions will always yield equivalent results appears nontrivial.

2.5 Effective Hamiltonian Including Lower-Spin States
Refs. [59, 44, 61, 101] extend the spinless Hamiltonian of Ref. [14] to the case of spinning bodies. This

corresponds to the two-body effective description EFT1, which is composed of the collection of all independent

operators containing up to a given power of spin, each with arbitrary coefficients determined by matching to

either field-theory or worldline results. Here we explicitly consider operators up to linear in spin. We also

construct a second EFT Hamiltonian, referred to as EFT2, extending the degrees of freedom of Sµν to include

the intrinsic boost, Kµ. Interpreting the Hamiltonians as quantum operators allows us to obtain scattering

amplitudes, which we then match to the quantum-field-theory amplitudes found in section 2.3.3. This

determines the coefficients in the Hamiltonians. A suitable expectation value of the Hamiltonian operators

are then reinterpreted as classical Hamiltonians. The corresponding equations of motion can be solved to give

the impulse, spin and boost kick along a scattering trajectory, which we then compare to the corresponding

observables obtained from the worldlines WL1 and WL2, described in section 2.4. We find that the extra

Wilson coefficients that appear in WL2, FT1g and FT3g are naturally accounted for in EFT2. Finally, we
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find a compact eikonal formula [67, 254, 255, 70], extending the spin results of Ref. [59] to account for the

appearance of the intrinsic boost operator, that matches the results obtained from the equations of motion and

worldline. Eikonal representations are automatically compact because they encode the physical information

in a single scalar function.

2.5.1 Hamiltonian 1: Solely Spinning Degrees of Freedom

We consider an effective description of the binary containing only spin degrees of freedom, which leads to

equations of motion that preserve the magnitude of the spin vector. We refer to this effective description as

EFT1. This is the same treatment as the one of Refs. [59, 61, 101] except that here we consider electrodynamics

instead of general relativity. We briefly describe this Hamiltonian and then proceed with a more extensive

description of a modified Hamiltonian which contains a boost operator and allows for spin-magnitude change.

EFT1 contains the usual spin-vector degrees of freedom, along with the usual commutation or Poisson-

bracket relations for spin. In terms of the quantum-mechanical states that describe the bodies, this construction

implies that we may take them to belong to a single irreducible representation of the rotation group. In

particular, we choose the asymptotic scattering states to be spin coherent states [245], which are labeled by

an integer s and a direction given by a unit vector n̂ [59], as in the field-theory discussion in Sec. 2.2. To

build the most generic Hamiltonian that accommodates these spin degrees of freedom, we need only consider

the spin operator Ŝ. This is in accordance with the classical description of these particles, where one describes

such a spinning object in terms of the spin three-vector S.18

For simplicity, here we limit the discussion to a Hamiltonian for one scalar and one spinning particle valid

to linear order in spin. This center-of-mass (CoM) Hamiltonian is given by (see Ref. [59] for the corresponding

one in general relativity),

H1 =
√
p2 +m2

1 +
√
p2 +m2

2 + V (0)(r2,p2) + V (1)(r2,p2)
L · Ŝ1

r2
, (2.5.1)

where the potentials are

V (a)(r2,p2) =
α

|r|
c
(a)
1 (p2) +

(
α

|r|

)2

c
(a)
2 (p2) +O(α3) , (2.5.2)

and we have taken the particle 1 to carry spin S1, with the binary system carrying angular momentum

L = r × p. For these operators we have the commutation relations,

[Ŝ1,i, Ŝ1,j ] = iεijkŜ1,k , [ri, Ŝ1,j ] = [pi, Ŝ1,j ] = 0 , [ri, pj ] = iδij . (2.5.3)

For any operator that is a function solely of r, p, Ŝ1 the spin magnitude is preserved, since all such operators
18For compactness, for r and p we do not distinguish a quantum operator from the corresponding classical value by using a

different symbol, as in Refs. [59, 61].
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commute with the spin Casimir, i.e.,

[Ŝ
2

1,O] = 0 , O = {r, p, Ŝ1} . (2.5.4)

Similarly, at the level of the classical equations of motion the above implies that the spin magnitude is a

conserved quantity. Further details may be found in Ref. [59].

2.5.2 Hamiltonian 2: Inclusion of Boost Operator

In this subsection we expand the degrees of freedom so that we are able to properly describe the field

theories and worldline theories that also contain additional degrees of freedom, allowing the spin magnitudes

to vary by their interaction with the electromagnetic field. To this end, inspired by the worldline construction

in section 2.4.3, we extend the above Hamiltonian to include the generator of intrinsic boosts K̂. We start by

motivating this choice. We proceed to describe how does one build the most general two-body Hamiltonian

out of the available operators for the problem at hand. Finally, as an explicity illustration, we build the

Hamiltonian linear in the spin and boost of one of the particles.

In order to have a Hamiltonian whose amplitudes match those of FT1g and FT3 we are prompted to

consider additional operators. The natural choice is operators built out of the vector K1, already encountered

in Eq. (2.4.23). The operator K̂1 should act on the intrinsic degrees of freedom of the body, hence it commutes

with both r and p. Accordingly, the commutation relations are,

[Ŝ1,i, K̂1,j ] = iεijkK̂1,k , [ri, K̂1,j ] = [pi, K̂1,j ] = 0 . (2.5.5)

where the first relation simply implies that K̂1 is a vector operator. To fully characterize the operator K̂1 we

need to specify the commutation relations with itself. Motivated by the connection to the worldline we take:

[K̂1,i, K̂1,j ] = −iεijkŜ1,k , (2.5.6)

which identifies K̂1 with the generator of intrinsic boosts. The operator algebra is completed by the

commutators familiar from the case without the K̂1 operator given in Eq. (2.5.3).

Alternatively, the introduction of K̂1 may be motivated by the requirement that the spin magnitude

should change under time evolution via the constructed Hamiltonian. In the quantum-mechanical language,

this requires an operator that does not commute with Ŝ
2

1. It follows that it must also not commute with Ŝ1,

i.e. it must have tensor structure under intrinsic rotations. The simplest object that satisfies this criterion is

a vector under intrinsic rotations that commutes with both r and p. This reasoning leads to the introduction

of an operator obeying the commutation relations (2.5.5), while (2.5.6) still needs to be motivated by the

interpretation of K̂1 as the boost generator. We indeed find that inclusion of K̂1 leads to scattering amplitudes

between states of different spin magnitude, similar to our field-theory constructions above. Furthermore,

62



while in these scattering amplitudes the change in spin is minute, s → s − 1, the effect is resummed to a

finite change via Hamilton’s equations, as we see in section 2.5.5.

We proceed to construct the effective Hamiltonian. The first question is to find the complete set of

terms that can appear. We constrain these based on symmetry considerations: the Hamiltonian is invariant

under parity and time reversal (see, however, the discussion in section 2.5.8). To take advantage of these

constraints we list how our operators transform under the action of these symmetries:

Parity: P †rP = −r , P †pP = −p , P †Ŝ1P = Ŝ1 , P †K̂1P = −K̂1 ,

Time Reversal: T †rT = r , T †pT = −p , T †Ŝ1T = −Ŝ1 , T †K̂1T = K̂1 , (2.5.7)

see e.g. Sect. 2.6 of Ref. [256]. Furthermore, we construct terms that have classical scaling. The scaling of

our operators in the classical limit is

r ∼ 1

λ
r , p ∼ λ0 p , Ŝ1 ∼ 1

λ
Ŝ1 , K̂1 ∼ 1

λ
K̂1 , (2.5.8)

where λ is a small parameter that characterizes the classical limit (usually associated with ~).

Two additional properties that reduce the number of operators are on-shell conditions and Schouten

identities. The former capture the freedom of field redefinitions in the quantum-mechanical context or the

freedom of canonical transformations in the classical context. The latter stem from the fact that we work

with more than three three-dimensional vectors, hence there must be linear relations among them. While

these considerations are not important for the purposes of this chapter, they can significantly reduce the

number of terms one needs to consider when looking at higher orders in spin and boost (see e.g. Ref. [101]).

Using the above one may systematically construct independent terms in the Hamiltonian. At linear

order in spin and boost we have:

O1 =
L · Ŝ1

r2
, O2 =

r · K̂1

r2
. (2.5.9)

The Hamiltonian valid to linear order in spin and boost is then,

H2 =
√

p2 +m2
1 +

√
p2 +m2

2 + V (0)(r2,p2) + V (1)(r2,p2)
L · Ŝ1

r2
+ V (2)(r2,p2)

r · K̂1

r2
, (2.5.10)

where we used the operators in Eq. (2.5.9) and the potential coefficients given in Eq. (2.5.2). The Hamiltonian

has an additional operator containing K̂1 compared to the one in Eq. (2.5.1).

2.5.3 Amplitudes from the Effective Hamiltonian

Having identified the general form of the Hamiltonian that can capture the classical physics of our field

theories with additional degrees of freedom, Eq. (2.5.10), we proceed to determine its coefficient functions

V (i). We follow closely Refs. [59, 61, 101] where analogous calculations were carried out for Hamiltonians
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depending only on the spin operator. As in that case, we consider scattering of spin-coherent states [245].

These states may be superpositions of fixed-spin-magnitude states or more general superpositions that involve

states of different spin magnitude, similar to the field-theory construction in Eq. (2.2.44). For our purposes it

is sufficient to consider incoming and outgoing states whose spin parts are identical. However, we note that it

is possible to also consider different incoming and outgoing states. Since the incoming and outgoing states

are taken to be the same, the amplitudes are expressed in terms of diagonal matrix elements of Ŝ and K̂. A

coherent state |s〉 ≡ |s, n̂〉 with fixed spin magnitude s and direction n̂ is the state of highest weight along

the direction n̂. Similarly with the field-theory discussion in Sec. 2.2.2, for such a state we have,

〈s|Ŝ|s〉 = S = s n̂ , and 〈s|K̂|s〉 = 0 . (2.5.11)

We build a generalized coherent state |Ψ〉 by superimposing states |s〉 with different values of s, such that,

〈Ψ|Ŝ|Ψ〉 = S , and 〈Ψ|K̂|Ψ〉 = K , (2.5.12)

where on the right-hand side of the above equation we have the classical values of Ŝ and K̂. These classical

values depend on the details of the construction of |Ψ〉, but the exact dependence is not important for our

purposes. Finally, these states are built such that they obey the property

〈Ψ|{Ŝi1 . . . Ŝin}|Ψ〉 = Si1 . . . Sin , and 〈Ψ|{K̂i1 . . . K̂in}|Ψ〉 = Ki1 . . .Kin , (2.5.13)

up to terms that do not contribute in the classical limit, where the {} brackets signify symmetrization and

division by the number of terms (see also the discussion in section 2.2.2).

We may now proceed to compute the EFT amplitudes. For the details of such a computation we refer

the reader to Refs. [59, 61], where corresponding computations are carried out for the purely-spin case. We

give here the result for the amplitude obtained from H2. The corresponding amplitude from H1 follows by

setting the coefficients of any operators containing K̂ to zero. The EFT amplitude may be organized as

M = M1PL +M2PL + . . . , (2.5.14)

where we have explicitly written the first and second PL contributions and the ellipsis denote higher PL

orders. We have

M1PL =
4πα

q2

[
a
(0)
1 + a

(1)
1 Lq · S1 + a

(2)
1 iq · K1

]
, (2.5.15)

and

M2PL = M2PL
4 + (4πα)2 aiter

∫
dD−1`

(2π)D−1

2ξE

`2(`+ q)2(`2 + 2p · `)
,

M2PL
4 =

2π2α2

|q|

[
a
(0)
2 + a

(1)
2 Lq · S1 + a

(2)
2 iq · K1

]
, (2.5.16)
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where the triangle subscript in M2PL
4 indicates that the origin of the contribution is an one-loop triangle

integral. Here p and p− q are the incoming and outgoing spatial momenta of particle 1 in the CoM frame

respectively and Lq = ip× q. We also use

E = E1 + E2 , and ξ =
E1E2

E2
, (2.5.17)

where E1,2 are the energies of particles 1 and 2, which are conserved in the CoM frame (see also Eq. (2.5.21)).

The vectors S1 and K1 that appear in the above two equations are the classical values of the corresponding

quantum operators. They depend on whether one chooses to scatter the |s〉 or |Ψ〉 state as shown in

Eqs. (2.5.11) and (2.5.12). The 1PL amplitude coefficients take the form

a
(0)
1 = −c(0)1 , a

(1)
1 = c

(1)
1 , a

(2)
1 = −c(2)1 , (2.5.18)

while for the 2PL amplitude we have

a
(0)
2 = −c(0)2 + 2Eξc

(0)
1 Dc(0)1 +

(1− 3ξ)
(
c
(0)
1

)2
2Eξ

,

a
(1)
2 =

c
(1)
2

2
− Eξc

(1)
1 Dc(0)1 − Eξc

(0)
1 Dc(1)1 +

(3ξ − 1)c
(0)
1 c

(1)
1

2Eξ
+

Eξ

((
c
(2)
1

)2
− 2c

(0)
1 c

(1)
1

)
2p2

,

a
(2)
2 = −c

(2)
2

2
− 1

2
Eξc

(2)
1

(
c
(1)
1 − 2Dc(0)1

)
+ Eξc

(0)
1 Dc(2)1 +

(1− 3ξ)c
(0)
1 c

(2)
1

2Eξ
, (2.5.19)

and

aiter =
(
c
(0)
1

)2
− c

(0)
1 c

(1)
1 Lq · S1 + c

(0)
1 c

(2)
1 iq · K1 . (2.5.20)

In the above we have used the shorthands c(a)n ≡ c
(a)
n

(
p2
)

and D ≡ d
dp2 .

2.5.4 Hamiltonian Coefficients from Matching to Field Theory

We are now in position to determine the Hamiltonian coefficients that capture the same classical physics

as the field theories discussed in section 2.2; we do so by matching the corresponding scattering amplitudes

including their full mass dependence. We start by specializing the field-theory amplitudes to the CoM frame.

We then match each field-theory construction to an appropriate Hamiltonian and we discuss our findings.

The CoM frame is defined by the kinematics

p1 = −(E1, p) , p2 = −(E2, −p) , q = (0, q) , p · q = q2/2 , (2.5.21)

together with q = p2 + p3 and p1 + p2 + p3 + p4 = 0. To align with the field-theory construction, we express

the barred variables defined in Eq. (2.3.29) in this frame,

p̄1 = −(E1, p̄) , p̄2 = −(E2, −p̄) , p̄ = p− q/2 , p̄ · q = 0 . (2.5.22)
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For the asymptotic spin variables we have

Sµν1 =
1

m1

(
εµνρλp̄1ρS1λ + p̄µ1K

ν
1 − p̄ν1K

µ
1

)
, (2.5.23)

with

Sµ
1 =

(
p̄ · S1

m1
,S1 +

p̄ · S1

m1(E1 +m1)
p̄

)
, Kµ

1 =

(
p̄ · K1

m1
,K1 +

p̄ · K1

m1(E1 +m1)
p̄

)
, (2.5.24)

where S1 and K1 correspond to the values in the rest frame of particle 1. Finally, we may use Eq. (2.2.29) to

express the wave-function products E1 · Ē4 and E2 · Ē3 as

E1 · Ē4 = exp

[
− Lq · S1

m1(E1 +m1)

]
exp

[
iq · K1

m1

]
, and E2 · Ē3 = 1 , (2.5.25)

up to terms that do not contribute to the classical limit. The second product in the above equation follows

from the fact that we take the corresponding particle to be a scalar. Note that the K1 used here agrees with

that from the worldline (2.4.21).

Using the above relations we express the field-theory amplitudes in terms of the same variables as the

EFT ones. Then, we may match them and extract the Hamiltonian coefficients. In particular, we have

M1PL =
Mtree

4,cl.

4E1E2
, and M2PL =

M(1)
4,cl.

4E1E2
. (2.5.26)

We use the above equations to match to the field theories as follows:

EFT1 ↔ FT2 , and EFT2 ↔ FT1g . (2.5.27)

Our first EFT Hamiltonian EFT1 contains only operators that preserve the spin magnitude. Hence, it can

describe the field theory that contains a single particle of spin s (FT2). Our second Hamiltonian allows for

transitions between particles of different spin magnitude, and hence can describe a field theory that contains

particles of different spin magnitude (FT1g). Regarding FT3, the amplitudes we have computed may be

mapped to those of FT1g via appropriate relabeling. We expect this to be true for all amplitudes that may

be computed in the two theories, in which case the same should be true for the Hamiltonian coefficients.

Finally, FT1s may be thought of as a restriction of FT1g where we only allow for spin-s external states. We

discuss the possible matching of FT1s to our two Hamiltonians separately.

For the 1PL matching of EFT2 to FT1g we find

c
(0)
1 =

m1m2γ

4E1E2
, c

(1)
1 =

m1m2γ − EC1 (m1 + E1)

4E1E2m1 (m1 + E1)
, c

(2)
1 =

m2γ (−C1 +D1 + 1)

4E1E2
, (2.5.28)

where γ is defined in Eq. (2.4.42). Importantly, we find c
(2)
1 = c

(2)
2 = 0 if D1 = C1 − 1, such that all K1

dependence in the Hamiltonian vanishes for this choice. For this reason, both the 1PL and 2PL coefficients

related to the matching of EFT1 and FT2 follows from the above by setting D1 = C1 − 1, hence we do not
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report them separately.

We conclude this subsection by commenting on FT1s. Given that FT1s is defined as a collection of

amplitudes that are a subset of the ones of FT1g, the most appropriate matching procedure is to extend to

FT1g and follow the analysis given above to match to EFT2. Alternatively, one can also match EFT1 to

FT1s as was carried out in Ref. [101] following similar steps. In this case, the effects of the lower-spin states

propagating in the field-theory amplitude are captured by the vertices of the Hamiltonian. By examining

the resulting Hamiltonian, we find that some of the coefficients (in particular c(1)2 (p2)) admit only a Laurent

series around p2 = 0. This is a familiar phenomenon in QFT where one integrates out a state that may go

on-shell in the processes of interest, and, borrowing the terminology of that context, we refer to it as a non

locality.19 A non-local quantum description may be consistent as long as one always considers amplitudes

with appropriate external states. However, we find that the observables computed from this Hamiltonian

match the corresponding ones from WL1 or those from WL2 only for the choice D1 = C1 − 1, for which the

non-locality vanishes.

2.5.5 Observables from the Equations of Motion

Having analyzed the implications of interpreting our Hamiltonians as quantum operators, we proceed to

consider them as generating functions of the classical evolution of the system. In particular, given a classical

Hamiltonian H2(r(t),p(t),S1(t),K1(t)) of the form (2.5.10), the classical time evolution of any quantity

f(r(t),p(t),S1(t),K1(t)) is determined by ḟ = df/dt = {f,H2}, where the classical Poisson brackets {f, g}

are given directly by the quantum-operator algebra of Eqs. (2.5.3), (2.5.5) and (2.5.6) with f̂ → f and

[f̂ , ĝ] → i{f, g}. This leads to the explicit equations of motion

ṙ =
∂H2

∂p
, Ṡ1 =

∂H2

∂S1
× S1 +

∂H2

∂K1
× K1 ,

ṗ = −∂H2

∂r
, K̇1 =

∂H2

∂S1
× K1 −

∂H2

∂K1
× S1 . (2.5.29)

The addition of K1 as a dynamical quantity changes basic properties of the equations. Specifically, the

magnitude of the spin S1 is no longer conserved.

We solve the equations of motion order by order in α. Given that H2 = E1 +E2 +O(α) at zeroth order

in the coupling, with E1,2 =
√
m2

1,2 + p2, we see that perturbative solutions to these equations take the form

r(t) = b(0) +
E1 + E2

E1E2
p(0)t+ αr(1)(t) + α2r(2)(t) + . . . ,

19We stress that not every Hamiltonian which contains some coefficient that does not admit a Taylor expansion around p2 = 0

is non local in the sense described here. Indeed, it is certainly possible to alter the Hamiltonian coefficients by performing a field

redefinition in the quantum-mechanical context or a canonical transformation in the classical context, which may potentially

remove such a behavior. In addition, when dealing with more than three three-dimensional vectors there exist Schouten identities

that might cause the coefficients of the Hamiltonian to have apparent singularities in the p2 → 0 limit.
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p(t) = p(0) + αp(1)(t) + α2p(2)(t) + . . . ,

S1(t) = S(0)
1 + αS(1)

1 (t) + α2S(2)
1 (t) + . . . ,

K1(t) = K(0)
1 + αK(1)

1 (t) + α2K(2)
1 (t) + . . . , (2.5.30)

where b(0), p(0), S(0)
1 , and K(0)

1 are constants determined from the initial conditions. The constant b(0) is

the usual impact parameter for the scattering process. Substituting these expansions into the equations of

motion, using the explicit Hamiltonian (2.5.10) and separating orders in α, we obtain integral expressions for

O(n)(t) =
{
r(n)(t),p(n)(t),S(n)

1 (t),K(n)
1 (t)

}
. (2.5.31)

These depend on lower-order solutions O(ñ)(t), with 0 ≤ ñ < n, as well as the Hamiltonian coefficients

c
(a)
n (p2) and their derivatives evaluated at p2 =

(
p(0)

)2. Working iteratively, we obtain explicit expressions

for O(n)(t) by performing simple one-dimensional integrals with respect to t. We choose the integration

constants by enforcing O(n)(t) → {0, 0, 0, 0} as t→ −∞ for all n ≥ 1, ensuring that b(0), p(0), S(0)
1 , and K(0)

1

characterize the initial conditions. Without loss of generality, we can choose b(0) · p(0) = 0 and identify b(0)

as the incoming impact parameter vector. In particular, we choose

b(0) = (−b, 0, 0) , p(0) = (0, 0, p∞) , S(0)
1 = (S

(0)
1x , S

(0)
1y , S

(0)
1z ) , K(0)

1 = (K
(0)
1x ,K

(0)
1y ,K

(0)
1z ) . (2.5.32)

Following the above procedure, we finally obtain (p,S1,K1) in the outgoing state from the limit t→ +∞,

given as functions of the incoming
{
b(0),p(0),S(0)

1 ,K(0)
1

}
.

As we emphasized, a key consequence of including K1 in the Hamiltonian is that the magnitude of S1 is

not conserved under time evolution. Indeed, it is a straightforward consequence of the equations of motion

that

d

dt

(
S2
1 − K2

1

)
= 0 , (2.5.33)

which reduces to the equation for spin-magnitude conservation only if K1 is constant throughout the trajectory,

as would hold for a rigid object with no internal degrees of freedom other than the spin. Explicitly, solving

the equations of motion we find that the spin magnitude does indeed change. We define the change of the

spin and boost magnitude as

∆S2
1 ≡ S2

1(t = ∞)− S2
1(t = −∞) , ∆K2

1 ≡ K2
1(t = ∞)− K2

1(t = −∞) . (2.5.34)

We have that through 1PL they are given by

∆S2
1 = ∆K2

1 =
4αE1E2

(
K

(0)
1z S

(0)
1y −K

(0)
1y S

(0)
1z

)
c
(2)
1 (p2∞)

b p∞(E1 + E2)
+O(α2) , (2.5.35)

in accordance with Eq. (2.5.33). Thus the spin magnitude is conserved to 1PL order if we choose the initial
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condition K(0)
1 = 0. Similarly, the boost magnitude is also conserved if S(0)

1 = 0. However, starting at 2PL

order, this is no longer true. In particular,

∆S2
1

∣∣∣
K(0)

1 →0
= ∆K2

1

∣∣∣
K(0)

1 →0
=

4α2E2
1E

2
2

((
S
(0)
1y

)2
+
(
S
(0)
1z

)2)(
c
(2)
1 (p2∞)

)2
b2 p2∞(E1 + E2)2

+O(α3) . (2.5.36)

As expected, the spin magnitude is conserved if we choose D1 = C1 − 1, as can be seen by combining the

above equations with Eq. (2.5.28).

The above equations further imply that for an object with D1 6= C1 − 1 the intrinsic boost, and hence

the induced electric dipole moment (see Eq. (2.4.32)), is not a constant of motion. In particular, even if a

body has K1 = 0 at some moment in time, time evolution induces non-zero values for K1. In other words, a

body which satisfies the covariant SSC at the initial time violates it at later times.

It is interesting to ask whether we could instead remove S1 and have a system that is described only by

K1. Up to 1PL order it is consistent to have S1 = 0 with K1 6= 0, as can be seen in Eq. (2.5.35). However, at

2PL order we find

∆S2
1

∣∣∣
S(0)

1 →0
= ∆K2

1

∣∣∣
S(0)

1 →0
=

4α2E2
1E

2
2

((
K

(0)
1y

)2
+
(
K

(0)
1z

)2)(
c
(2)
1 (p2∞)

)2
b2 p2∞(E1 + E2)2

+O(α3) . (2.5.37)

As for Eq. (2.5.36), this only vanishes for the special value D1 = C1 − 1. Hence, without the special choice, a

non-rotating body starts spinning via the electromagnetic interaction if it starts with non-zero intrinsic boost

K1.

The dynamics that we consider here are an extension of those that satisfy an SSC along their evolution.

Indeed, at any step of the calculation one is free to set D1 = C1 − 1 and retrieve the evolution of an SSC-

satisfying body. Such a restriction would remove all K1 dependence from the Hamiltonian as we mentioned

below Eq. (2.5.28) and render K1 to be a constant of motion that does not affect the dynamics.

The complete results of solving the equations of motion through O(α2) as outlined above are quite

lengthy. A much more compact way to represent the amplitude is through an eikonal formula, which we give

below.

2.5.6 Observables from an Eikonal Formula

Analyzing the results of the perturbative integration of Hamilton’s equations as described in the previous

section, we find that the outgoing-state observables can be simply expressed in terms of derivatives of an

eikonal phase, which is a scalar function of the incoming-state variables. This is motivated by the analagous

eikonal formula found in Ref. [59] for the pure spin case, except now there are additional degrees of freedom

from the intrinsic boost. At the order to which we are working here, the eikonal phase coincidences with a

two-dimensional Fourier transform of the EFT amplitude.
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For convenience we rename the incoming-state quantities, called
{
b(0),p(0),S(0)

1 ,K(0)
1

}
above, now

simply as {b,p,S1,K1}. Then we denote the outgoing-state observables by {p+∆p,S1 +∆S1,K1 +∆K1}.

We find empirically that the changes in the observables p, S1, and K1 are given in terms of an eikonal

phase χ(b,p,S1,K1) as follows: The impulse is given by

∆p =
∂χ

∂b
+

1

2
{χ, ∂χ

∂b
}+DL(χ,

∂χ

∂b
)− 1

2

∂

∂b
DL(χ, χ)−

p

2p2

(
∂χ

∂b

)2

+O
(
χ3
)
, (2.5.38)

which simultaneously gives contributions orthogonal and along p. In this formula p · b = 0 so all the

b-derivatives are projected orthogonal to the incoming momentum p. The spin and boost kicks are given by

∆S1 = {χ,S1}+
1

2
{χ, {χ,S1}}+DL(χ, {χ,S1})−

1

2
{DL(χ, χ),S1}+O

(
χ3
)
, (2.5.39)

∆K1 = {χ,K1}+
1

2
{χ, {χ,K1}}+DL(χ, {χ,K1})−

1

2
{DL(χ, χ),K1}+O

(
χ3
)
.

The brackets here are given by the Lorentz algebra,

{S1i, S1j} = εijkS1k , {S1i,K1j} = εijkK1k , {K1i,K1j} = −εijkS1k , (2.5.40)

with all others vanishing. We also define

DL(f, g) ≡ −εijk
(
S1i

∂f

∂S1j
+K1i

∂f

∂K1j

)
∂g

∂Lk
, (2.5.41)

which is a K-dependent extension of the operator DSL of Ref. [59]. The angular momentum L and the incoming

impact parameter b are related by L = b× p and b = p×L/p2, implying (∂/∂Li) = εijk(pk/p
2)(∂/∂bj) in

Eq. (2.5.41). An all-orders generalization may follow along the lines of Eq. (7.21) of Ref. [59] by including K,

although at higher orders in α the radial action may be more natural than the eikonal phase [30].

The appropriate eikonal function is proportional to the two-dimensional Fourier transform (from q space

to b space) of the EFT amplitude as given in Eqs. (2.5.15) and (2.5.16), while keeping only the triangle

contribution in Eq. (2.5.16) [59],

χ =
1

4E|p|

∫
d2q

(2π)2
e−iq·b(M1PL +M2PL

4 ) +O(α3) ; (2.5.42)

the box contribution to the amplitude is effectively included in the exponentiation of the tree-level amplitude

M1PL. Explicitly, we have

χ = α
ξE

|p|

[
−a(0)1 log |b|2 − 2a

(1)
1

|b|2
b× p · S1 +

2a
(2)
1

|b|2
b · K1

]
(2.5.43)

+ πα2 ξE

|p|

[
a
(0)
2

|b|
− a

(1)
2

|b|3
b× p · S1 +

a
(2)
2

|b|3
b · K1

]
+O(α3) ,

where the amplitude coefficients a(m)
n (p2) are given in terms of the Hamiltonian coefficients c(m)

n (p2) via

the same relations (2.5.18) and (2.5.19) found from the EFT matching, here all evaluated at the incoming

momentum p. The above relations hold for general values of the Hamiltonian coefficients c(m)
n (p2).
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2.5.7 Comparison to Observables from the Worldline Theory

Having in hand the observables ∆p, ∆S1, and ∆K1 obtained from Hamilton’s equations resulting from

an EFT matching to a QFT amplitude, we are in a position to ask how these compare to equivalent observables

obtained from a worldline theory as in Sec. 2.4. We find that the observables of the spinning-probe worldline

theory without an SSC match precisely onto those from the probe limit of FT1g via the transformations of

variables detailed bellow — these are in one-to-one correspondence with the transformations used to relate

the EFT amplitudes to the covariant forms of the field-theory amplitudes in section 2.5.4. As discussed in

section 2.4.3, the probe limit provides a nontrivial check.

In the worldline theory, we considered a probe/test particle with mass m1, initial momentum pµ1 = m1u
µ
1 ,

and initial spin tensor Sµν1 , scattering off the field of a background Coulomb source with velocity uµ2 . The

changes ∆pµ1 and ∆Sµν1 from the initial to the final state were expressed in terms of these quantities and the

initial impact parameter bµ.

Using three-dimensional vectors in the rest frame of the background source, we identify

uµ2 = (1, 0, 0, 0) , pµ1 = m1u
µ
1 = (m1γ,p) , (2.5.44)

so p here is the spatial momentum of the probe in the background frame, with p2 = m2
1(γ

2 − 1), and m1γ is

its energy, where γ = u1 · u2 is the relative Lorentz factor. For the spin tensor in the probe limit, just as in

(2.5.23) and (2.5.24), we decompose it into components Sµ
1 and Kµ

1 in the probe’s rest frame,

Sµν1 = εµνρλu1ρS1λ + uµ1K
ν
1 − uν1K

µ
1 , (2.5.45)

and we then relate these, respectively, to three-dimensional vectors S and K in the background frame by the

standard boost taking uµ2 into uµ1 ,

Sµ
1 =

(
p · S1

m1
,S1 +

p · S1

m2
1(γ + 1)

p

)
, Kµ

1 =

(
p · K1

m1
,K1 +

p · K1

m2
1(γ + 1)

p

)
. (2.5.46)

Note that for the complete translation of the observables, we must consider all of (2.5.44)–(2.5.46) applied to

both the initial state quantities and to the final state quantities. Finally, for the impact parameter, we have

bµ = (0, bcov), where this should be related to the vector b appearing in the solution of Hamilton’s equations

by
b = bcov +

p× S1

m2
1(γ + 1)

+
1

m1

(
K1 −

p · K1

p2
p

)
, (2.5.47)

which is the Fourier conjugate, under (2.5.42), of multiplication by the factor E1 · Ē4 in Eq. (2.5.25), in the

probe limit.

Taking the solutions for ∆pµ1 and ∆Sµν1 from solving the worldline equations of motion, given in (2.4.44),

and converting them into 3-vector forms using the translations given in the previous paragraph (again, being

careful to apply (2.5.45) and (2.5.46) separately to both the initial and final states, using the initial and final
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momenta), we find expressions for ∆p, ∆S1, and ∆K1 which precisely match those coming from solving the

equations of motion coming from the Hamiltonian matched to FT1g, given by (2.5.38) and (2.5.39) with

(2.5.43), (2.5.28), and [257].

2.5.8 On the Reality of K

We conclude this section by commenting on the reality properties of K1. In the quantum theory K̂1 is an

antihermitian operator for any finite-dimensional representation20 of the Lorentz group, which implies that its

expectation value K1 in any such state is imaginary. On the other hand, if we allow for an infinite-dimensional

representation, K̂1 may be taken to be hermitian, which would result in K1 being real (see e.g. Sect. 10.3 of

Ref. [258]).

We first consider the implications of choosing a finite-dimensional representation, given that these are the

representations employed by our field-theory constructions. In this case, for the Hamiltonian to be a hermitian

operator, we need the coefficients of all Hamiltonian terms that contain an odd number of factors of the boost

operator to be imaginary. This is indeed so for FT3g, while for FT1g the coefficients are real. For the 1PL

coefficients, this can be seen by combining Eqs. (2.3.13) and (2.5.28). In this way, the unphysical nature of the

lower-spin states in FT1g results into a non-hermitian Hamiltonian. Interestingly, the hermitian Hamiltonian

corresponding to FT3g breaks time-reversal symmetry, which can be seen by combining Eq. (2.5.7) with the

fact that time-reversal is an antiunitary operator (see e.g. Sect. 2.6 of Ref. [256]).

Secondly, we examine the case of infinite-dimensional representations. For these, all Hamiltonian

coefficients may be taken to be real. This implies that time-reversal symmetry is satisfied. Furthermore, this

case meshes well with the classical interpretation of K1 as a mass moment, which implies that K1 is real.

While the above seem to suggest the use of a field theory for an infinite-dimensional representation, we

do not attempt such a construction in the present chapter. Instead, we find that the analytical continuation

below Eq. (2.4.30) is sufficient for our purposes. In particular, such an analytical continuation allows for

the matching between our field-theory and worldline constructions, and also results in a hermitian and

time-reversal-symmetric Hamiltonian. We defer further analysis of this issue to the future.

2.6 Wilson coefficients and propagating degrees of freedom
We have seen in the previous section that the Compton amplitudes computed in FT1s depend on

additional Wilson coefficients compared to those of FT2 (see 2.1 for the Lagrangians for these field theories).

In 2.4 we showed that the number of Wilson coefficients of FT2 matches the usual worldline formulation
20Here we refer to the size of the spin space available to the particle (e.g. the states |1/2,±1/2〉 for a spin-1/2 particle), in

other words the size of the little-group representation. In contrast, the complete Hilbert space of a particle is always infinite due

to the momentum assuming continuous values.
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WL1 with an SSC imposed. We also found a modified worldline theory, WL2, containing the same number of

additional Wilson coefficients as found in FT1s, FT1g and FT3. Thus, additional Wilson coefficients (relative

to e.g. FT2 or WL1) are a reflection of additional degrees of freedom in the short-distance theory. In FT1

some of these extra states are unphysical, having negative norm, see Sec. 2.2.4. In this section we elaborate

on the rationale behind FT3, which may be thought of as a rewriting of FT1 such that all states have positive

norm, and demonstrate that the same outcome—physically-relevant extra Wilson coefficients—can also result

when all states have positive norm.

As in previous discussions of FT3, we focus on fields in the (s, s) representation. We begin by separating

such a field into components with definite spin. While the external states of the amplitudes AFT1s are

transverse and thus spin s, the intermediate states may contain lower-spin components, some of which are

unphysical. We use factorization and gauge invariance to study the exchanges of lower-spin particles in

amplitudes with spin-s external states in FT1. We find that the map given in Eq. (2.3.13) yields the results

of FT3s from those of FT1s; the imaginary unit in Eq. (2.3.13) is indicative of the negative-norm nature of

the exchanged states of FT1. We also discuss from a general perspective the intermediate-state spins that can

contribute in the classical limit and construct their contribution to the Compton amplitude. This analysis

sets on firm footing the field content we chose for the Lagrangian of FT3. Because of the structure of the

Lorentz generators in the (s, s) representation (2.2.38), the trace part of intermediate states can be projected

out by simply choosing traceless external states, such as the coherent states in Eq. (2.2.30). We therefore

focus on the consequences of transversality or lack thereof.

2.6.1 Resolution of the Identity and Amplitudes with Lower-Spin States

As reviewed earlier, a field in the representation (s, s) of the Lorentz group contains states of all spins

between 0 and s. To develop a general picture of the interplay and couplings of these states it is useful

to formally expose them in the Lagrangian of FT1. We use the resolution of the identity operator in this

representation,

δ
ν(s)
µ(s) =

s∑
n=0

(
s

n

)
u(µ1

. . . uµnu
(ν1 . . . uνnP

νn+1...νs)
µn+1...µs)

, (2.6.1)

with the on-shell transverse projectors Pν1ν2...νs
µ1µ2...µs

= Θν1

(µ1
Θν2

µ2
. . .Θνs

µs)
, which is the j = 0 term in the

summation of (2.2.14) and the symmetrization follows the definition in footnote 7. For example, for the

two-index and three-index-symmetric representations this becomes

δ(ν1
µ1
δν2)
µ2

= Pν1ν2
µ1µ2

+ 2u(µ1
u(ν1P

ν2)
µ2)

+ uµ1
uµ2

uν1uν2 , (2.6.2)

δ(ν1
µ1
δν2
µ2
δν3)
µ3

= Pν1ν2ν3
µ1µ2µ3

+ 3u(µ1
u(ν1P

ν2ν3)
µ2µ3)

+ 3u(µ1
uµ2

u(ν1uν2P
ν3)
µ3)

+ uµ1
uµ2

uµ3
uν1uν2uν3 .

73



The projectors used here single out the longitudinal components of fields but not traces. We ignore trace

states; while they are propagating, in four-point Compton amplitudes they can be projected out from all

diagrams that do not include loops of higher-spin states by choosing traceless external states.

By inserting the resolution of the identity (2.6.1) into the nonminimal interaction Lnon-min of FT1, we

can expose and identify the couplings of all the definite-spin components of φs.21 For example, in the O(S1)

interaction FµνφsM
µν φ̄s, by using uµ → i∂µ/m, we get

φsM
µν φ̄s =

s∑
n=0

(−1)n

m2n
φρ1...ρs
s (Mµν)µ1...µs

ρ1...ρs
∂(µ1

. . . ∂µn
P

νn+1...νs

µn+1...µs)
(∂nφ̄s)νn+1...νs

+ c.c , (2.6.3)

where (∂nφ̄s)νn+1...νs
= ∂ν1 . . . ∂νn φ̄sν1...νs

is a field in the (s− n, s− n) representation of the Lorentz group,

and the projector P
νn+1...νs
µn+1...µs singles out its spin-(s− n) component. In (2.6.3) each term in the summation

is given by partial derivatives and is thus not invariant under the photon gauge transformation. We only

use this equation as a guide to construct an effective field theory in which an s-index tensor nonminimally

couples to an (s− n)-index tensor.

Schematically, we identify P
νn+1...νs
µn+1...µs(∂

nφ̄s)νn+1...νs
≡ (φs−n)µn+1...µs

as an off-shell spin-(s − n) field

and assign to it the kinetic term is given by Ls−n
min defined in (2.2.7). We further replace all the remaining

partial derivatives by their covariant version. For the coupling FµνφsM
µν φ̄s at the linear order in spin, this

prescription leads to the following interaction between φs and φs−1,

1

m
Fµν

[
φα1...αs
s Mµν

α1...αs,β1...βsD
(β1 φ̄

β2...βs)
s−1 + c.c

]
. (2.6.4)

This interaction agrees with the one included in FT3 for C̃1 = C̃2 (see (2.2.61)). If we further relax the

requirement that the interaction has to be mediated by the Lorentz generator, we get one more gauge invariant

structures and thus arrive exactly at (2.2.61).

Having identified the off-shell component fields that exist within the off-shell field φs, we may explore

how does the amplitude change if we restrict both the on-shell and the off-shell states to (2s + 1) states

of a spin-s particles. We study this by building the four-point Compton amplitude involving only massive

spin-s degrees of freedom with on-shell methods. On general grounds, we should find AFT2; to carry out this

calculation, we need to find products of spin-s polarization tensors and the projector, similarly to the products

involving Lorentz generators we computed in 2.2.3. We then subtract it from the corresponding amplitude

AFT1s to obtain the contribution from the lower-spin degrees of freedom, i.e. the difference between AFT1s

and AFT2. In 2.3, the Compton amplitudes of FT2 are computed from fixed value of s and then extrapolated

to the generic case. Here, we will keep s arbitrary, but only consider the linear order of spin; this will be

sufficient to illustrate the main points of our discussion .
21The projectors may be replaced with their off-shell-transverse version, constructed from (ηµν − pµpν/p2). However, this

yields a nonlocal Lagrangian. Moreover, transversality needs to be only an on-shell property, so using Eq. (2.6.1) is sufficient.
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Figure 2.2: The three-point amplitude involving a massive spin-s particle (thin line), a massive spin-(s− n) particle (thick line)
and a photon (wiggly line).

We evaluate the products in question explicitly starting from low and fixed values of the spin, extrapolating

to arbitrary s and then taking the classical limit. We find,

E(s)
1 · P(s)(p1 + q2) · Ē(s)

4 = E(s)
1 · Ē(s)

4

(
1 +

sε1 · q2ε̄4 · q3
ε1 · ε̄4m2

+ . . .

)
, (2.6.5)

E(s)
1 · P(s)(p1 + q2) ·Mµν · Ē(s)

4 = E(s)
1 ·Mµν · Ē(s)

4 +
is(pµ1 ε̄

ν
4 − pν1 ε̄

µ
4 )ε1 · q2

ε1 · ε̄4m2
E(s)
1 · Ē(s)

4 + . . . ,

where we used the on-shell conditions and transversality and q2 and q3 are the momenta of the Compton

amplitude photons. We have omitted terms that do not contribute in the classical limit of the Compton

amplitude at O(S1).

Using Eqs. (2.6.5) it is straightforward to compute the pole part of the Compton amplitude. To complete

the amplitude we construct an ansatz for the missing contact term and fix it by demanding gauge invariance

for the two photon external lines. We find that the difference Aδ
4,cl between the amplitude without the spin-s

projector, AFT1s
4,cl , and the amplitude with the spin-s projector, which is indeed AFT2, is given by

Aδ
4,cl = AFT1s

4,cl −AFT2
4,cl = −(−1)s

E(s)
1 · Ē(s)

4

m2

2i(1− C1 +D1)
2

p1 · q2
p1 · f2 · S(p1) · f3 · p1 . (2.6.6)

This is exactly the difference between (2.3.8) and (2.3.10). The sign difference compared to Eq. (2.3.12)

reflects the negative norm of the spin-(s− 1) states that are part of φs compared to the positive norm of the

analogous states in FT3. Eq. (2.6.6) also manifests that choosing D1 = C1 − 1 for AFT1s is equivalent to

consistently inserting the spin-s physical-state projector.

2.6.2 Lower-Spin States and their Scaling in the Classical Limit

Having identified the relevance of the lower-spin states for Compton amplitudes, we now proceed to

examine the processes whose classical limit receives contributions from such states. While, as already noted,

in FT1 such states have negative norm, we may either construct field theories such as FT3 in which their

norm is positive so they are physical, or we may simply use maps such as (2.3.13) or (2.3.28) to modify the

amplitudes of FT1 to agree with amplitudes with physical intermediate states.

We wish to characterize the classical scaling of the transitions from the spin-s to the spin-(s− n) state

via the emission of a photon. There are several distinct structures that can appear in such an amplitude, as
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Figure 2.3: Representative diagram of the contribution of the spin-(s− n) exchanges in the Compton amplitude. Legs 1 and 4
are massive spin-s particles, legs 2 and 3 are photons, and the intermediate thick line corresponds to the spin-(s− n) particle for
some n > 0.

illustrated for example in Eq. (2.3.1). For illustrative purposes we focus on the first term in that equation

which arises from the covariant derivative in the quadratic Lagrangian Lmin of FT1; other interactions may

be treated similarly with similar expected conclusions. We moreover interpret the lower-spin field as the

longitudinal components of a higher-spin field, as discussed in Sec. 2.2.4. Thus, the three-point amplitude we

consider here and illustrated in 2.2 is

As→s−n
3,min = iε3 · p1 E(s)

1 ·
(
un2 Ē

(s−n)
2

)
, (2.6.7)

where all momenta are outgoing, the matter momenta are p1 and p2, ui = pi/m and the photon momentum

is q. Using the explicit form of the polarization tensors in Eq. (2.2.45), this three-point amplitude becomes

As→s−n
3,min = iε3 · p1 (ε1 · ε̄2)s−n

(
s

n

)1/2 (q · ε1
m

)n
, (2.6.8)

where we used the on-shell conditions p2 = −p1− q and ε1 ·p1 = 0. For n� s and 1 � s we may approximate(
s
n

)
≈ sn

n! . We may use the scaling of polarization tensors implied by their embedding in a nontransverse

(s, s) representation of their Lorentz group to obtain the scaling of the transition amplitude. Together with

(2.2.46),(2.2.47),(2.2.54), (2.6.8) implies that the transition three-point amplitude As→s−n
3,min depends on q and

K as As→s−n
3,min ∼ qnKn ∼ q0 . (2.6.9)

Thus, the transition three-point amplitudes scale as q0 in the classical limit, so they are classical.

We now discuss the contribution of three-point amplitudes to the residue of four-point amplitudes. Since

in Eq. (2.6.9) the polarization tensors have already been used to generate the factors of K, the expression

of the amplitudes that is useful for residue computation is Eq. (2.6.8) together with the fact that the sum

of a product of spin-(s − k) polarization tensors over all the physical states yields the projector onto the

spin-(s−k) states. It is then straightforward to see that the pole part of diagonal amplitudes, whose diagrams

are illustrated in 2.3, is

As→s
4

∣∣∣exchange

spin-(s−n)
=

∑
(s−n) states

[
As→s−n

3:p1,q2,P
As−n→s

3:−P,q3,p4

2p1 · q2
+

As→s−n
3:p1,q3,P

As−n→s
3:−P,q2,p4

2p1 · q3

]

∼ sn

2p1 · q2
(ε1 · ε̄4)s−n

[(q2 · ε1
m

)n (q3 · ε̄4
m

)n
−
(q3 · ε1

m

)n (q2 · ε̄4
m

)n]
, (2.6.10)
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where we assumed that the relevant higher-spin theory has standard factorization properties. The second

term in (2.6.10) follows by interchanging q2 and q3. In the large s limit, (2.2.40),(2.2.42),(2.2.43) imply that(q2 · ε1
m

q3 · ε̄4
m

)n
→ (ε1 · ε̄4)n

(2ms)n

[
iq2 · S(p1) · q3 −

1

ms
q2 · S(p1) · S(p1) · q3

]n
→ (ε1 · ε̄4)n

(2ms)n

[
iq2 · S(p1) · q3

]n
. (2.6.11)

We observe that for any n the explicit factors of s cancel in Eq. (2.6.10), i.e. the various factors combine

such that the only spin dependence is through (ε1 · ε̄4)s and Sµν . However, since the square parenthesis in

Eq. (2.6.11) scales as qn and the propagator in Eq. (2.6.10) scales as 1/q, only for n = 1 the exchange term

has a classical contribution. Heuristically, the existence of one matter propagator allows for transitions to

spin states that differ from the external by one unit (i.e. s→ s− 1 → s).

A similar argument reveals the contribution of transition three-point amplitudes to off-diagonal s→ s−m

two-photon amplitudes. It is intuitive that intermediate spin-(s− n) states can contribute if 0 ≤ n ≤ m. For

n > m, we find that the existence of one matter propagator in the four-point amplitude allows for the state

n = m+ 1 to also contribute. Indeed, factorization together with Eq. (2.6.8) imply that

As→s−m
4

∣∣∣exchange

spin-(s−n)
=

∑
(s−n) states

[
As→s−n

3:p1,q2,P
As−n→s−m

3:−P,q3,p4

2p1 · q2
+

As→s−n
3:p1,q3,P

As−n→s−m
3:−P,q2,p4

2p1 · q3

]

∼ sn−m/2

2p1 · q2
(ε1 · ε̄4)s−n

[(q2 · ε1
m

)n (q3 · ε̄4
m

)n−m

−
(q3 · ε1

m

)n (q2 · ε̄4
m

)n−m
]
, (2.6.12)

where we assumed that n ≥ m and that, as before, the relevant higher-spin theory has standard factorization

properties.22 Eqs. (2.2.40), (2.2.42) and (2.2.43) imply that, as in the diagonal amplitude, the factors with

an equal number of ε1 and ε̄4 can be effectively written in the large s limit as(q2 · ε1
m

q3 · ε̄4
m

)n−m

→ (ε1 · ε̄4)n−m

(2ms)n−m

[
iq2 · S(p1) · q3 −

1

ms
q2 · S(p1) · S(p1) · q3

]n−m

, (2.6.13)

and similarly for q2 ↔ q3. Eqs. (2.2.52) and (2.2.53) can be used to write the remaining unbalanced dependence

on ε1 and ε̄4 as a linear combination of K and S vectors of degree larger or equal to m, which contains at

least one term with m factors of K and has an overall factor of s−m/2 (see for e.g. Eq. (2.2.53)). The overall

factors of s cancel out, as in the case of diagonal amplitudes. The terms with m factors of K and one power of

S if n > m and the terms with m factors of K and no power of S if n = m exhibit classical scaling. In other

words, suppressing factors of q and S, we have As→s−m
4 ∼ Km as its three-point counterpart in Eq. (2.6.9).

This dependence prompted us to restrict our analysis of FT3 to a single power of K or an arbitrary power of
22An expression analogous with Eq. (2.6.12) can be written for m > n. Both in that expression and in Eq. (2.6.12) the sum

over intermediate states yields an on-shell transverse projector. Transversality of external states implies, however, that the

momentum-dependent terms in that projector are subleading in the classical limit, which justifies why no projector is included in

Eq. (2.6.12).
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S and no K, i.e. m ≤ 1, since these are the terms we may probe by considering a spin-s and a spin-(s− 1)

field. It would be interesting to extend FT3 with further lower-spin fields and access nonlinear dependence on

S and K. Consistency of the theory should lead to the cancellation of possible superclassical terms.

The arguments above can be repeated to analyze the possible intermediate states that can contribute to

higher-point tree-level amplitudes. For example, starting with Eq. (2.6.9), the two-pole part of a diagonal

s→ s three-photon amplitude can receive contributions from suitable combinations of intermediate states

of spin different from s. Further contributions from single-pole terms depend on the scaling of four-point

contact terms; for example, if it is the same as for the three-point amplitude, As→s−n
4 ∼ (q ·K/m)n, then

such four-point amplitudes contribute to single-pole terms of the five-point amplitude. Such higher-point

amplitudes are some of the ingredients of higher-PL spin-dependent calculations, so it would be interesting to

investigate them further.

2.6.3 Lower-Spin States in the Compton Amplitude

With the information we acquired from the analysis of the soft-region scaling of amplitudes with states

of different large spin we may construct Compton amplitudes using a standard on-shell approach: We start

with three-point amplitudes with the appropriate scaling and use them to construct the O(S) exchange part

of the Compton amplitude. We then fix the contact terms by demanding gauge invariance and that their

dimension is the same as that of contact terms arising from the Lagrangians of FT1, FT2 and FT3.

The three-point amplitude is shown diagrammatically in Fig. 2.2. With n = 1 and all-outgoing momenta,

its expression that follows from a Lagrangian such as that of FT1 is

As→s−1
3 = (−1)sE(s)

1 ·M3(p1, p2, q3, ε3) ·
(
u2Ē(s−1)

2

)
, (2.6.14)

where M3 is given in Eq. (2.3.1). Using Eqs. (2.2.46) and (2.2.47), the linear-in-S or K part of the three-point

amplitude to leading order in s can be written as

As→s−1
3 = (−1)s

2
√
s(C1 −D1 − 1)(p1 · ε3)(ε1 · q)(ε1 · ε̄2)s−1

m
+ . . . . (2.6.15)

where the ellipsis stands for terms of higher order in s and q.

Next, we sew together two of these three-point amplitudes to obtain the residues of the two matter-

exchange poles of the Compton amplitude corresponding to the two diagrams in Fig. 2.3. Focusing solely on

the spin-(s− 1) exchange, we have

Res
(
A4,cl

∣∣∣
spin-(s−1)

)∣∣∣
2p1·q2=0

= (−1)s
4s(C1 −D1 − 1)2(p1 · ε2)(ε1 · q2)(p4 · ε3)(ε̄4 · q3)

m2

×
∑

phys. ε` states

(ε1 · ε̄`)s−1(ε` · ε̄4)s−1 , (2.6.16)
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where ε2 and ε3 are photon polarization vectors. The physical state sum is evaluated using∑
phys. ε` states

(ε1 · ε̄`)s−1(ε` · ε̄4)s−1 = ε1µ1
. . . ε1µs−1

(
P(s−1)(`)

)
µ(s−1)
ν(s−1) ε̄

ν1
4 . . . ε̄

νs−1

4 , (2.6.17)

and Eq. (2.6.5). Given that the residue scales as q, we may replace the projector with the identity, as all the

other terms are subleading in small q. The residue becomes

Res
(
A4,cl

∣∣∣
spin-(s−1)

)∣∣∣
2p1·q2=0

= (2.6.18)

(−1)s
4s(C1 −D1 − 1)2(p1 · ε2)(ε1 · q2)(p4 · ε3)(ε̄4 · q3)

m2
(ε1 · ε̄4)s−1 .

To complete the amplitude we need to add the other exchange channel, with a pole at p1 · q3 = 0, and to

find the contact term so that the result is invariant under photon gauge transformations, εi → εi + λqi with

i = 2 and separately i = 3. Allowing for at most two powers of momenta in the contact term, its effect is

only the replacements

(p1 · ε2)(ε1 · q2) → pµ1f2,µνε
ν
1 , (p4 · ε3)(ε̄4 · q3) → pα4 f3,αβ ε̄

β
4 , (2.6.19)

with fi,µν defined below Eq. (2.3.7). Thus, the classical Compton amplitude of two spin-s particles due to an

intermediate spin-(s− 1) exchange is

As→s
4,cl

∣∣∣
spin-(s−1)

= (−1)s
(ε1 · ε̄4)s−1

m2

4s(C1 −D1 − 1)2

2p1 · q2
p1 · f2 · ε1 p4 · f3 · ε̄4 + (2 ↔ 3) . (2.6.20)

Finally, replacing the polarization vectors ε1 and ε̄4 in terms of the spin tensor as in Eq. (2.2.40) and keeping

only the classical terms leads to

As→s
4,cl

∣∣∣
spin-(s−1)

= Aδ
4,cl = AFT1s

4,cl −AFT2
4,cl , (2.6.21)

where for the second equality we used Eq. (2.6.6). Thus, we explicitly identify the difference between AFT1s
4,cl

and AFT2
4,cl as due to the propagation of an intermediate (s− 1)-spin state.

2.7 Discussion and Conclusion
In this chapter we addressed a puzzle regarding the description and dynamical evolution of spinning

bodies in Lorentz invariant theories, with an eye towards applications to the two-body problem in general

relativity. Their gravitational or electromagnetic interactions are described via an effective field theory of

point particles in terms of a set of higher-dimension operators each with a free Wilson coefficient. Ref. [101]

found that the amplitudes-based framework of Ref. [59] leads to additional independent Wilson coefficients

in observables compared to the usual worldline description. These additional Wilson coefficients appear to

vanish identically for black holes, but seem to contribute to scattering observables for more general spinning

objects starting at the second order in Newton’s constant and at cubic order in the spin.
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To identify the origin and the physics described by the extra Wilson coefficients we analyzed the simpler

case of electromagnetic interactions of charged spinning bodies. This theory is inherently simpler than general

relativity because it has no photon self-interactions and more importantly the analogous effects are already

present at linear order in spin. We constructed several such electromagnetic field theories: one with two

physical propagating higher-spin fields, another with multiple physical and unphysical propagating higher-spin

states packaged in a single higher-spin field, and finally one with a single quantum spin. When available,

we also considered several possible classical asymptotic states. In the classical limit we found that simple

maps connect the amplitudes of the various cases and reached the conclusion that the presence of states

beyond those of a spin-s particle leads to additional Wilson coefficients. These Wilson coefficients govern

transitions between states of different spin which in turn lead to changes in the magnitude of the classical

spin vector even for conservative dynamics. While the magnitude of the spin vector can change in theories

with additional propagating states, the magnitude of the spin tensor is conserved.

We found that these results have an interpretation in a more conventional worldline framework and

exposed it by analyzing two distinct worldline theories. The first one corresponds to the standard construc-

tion [140, 226] where a spin supplementary condition is imposed. The second theory relaxes this constraint,

introducing additional degrees of freedom. As for field theories with transitions between states with different

spin, the dynamics of this theory allows for changes in the magnitude of the spin vector along classical

trajectories.

While the results of all of our field theories can be obtained as limits of results of these two worldline

theories, we did not find a worldline theory that reproduces observables obtained from AFT1s whose asymptotic

states are limited to a single quantum spin. It would be interesting to pursue the construction of such a

theory; to this end it may be profitable to interpret AFT1s as a sequence of absorption amplitudes and match

them with a worldline theory with additional non-asymptotic states, along the lines of Ref. [234]. Another

interesting direction would be to generalize FT3, which was constructed using spin s and (s− 1) states, to

include spin (s− k) state with k ≥ 2, in order to describe interactions beyond the spin-orbit case.

We evaluated tree-level Compton amplitudes to provide a direct comparison between the various field

and worldline theories. We carried out this comparison to second order in the spin tensor. Field theories

restricted to propagate only the states of a spin-s particle preserve the magnitude of the classical spin vector,

and the results match those of the worldline with a spin supplementary condition imposed, compatible with

Refs. [231, 179]. In contrast, if states of different spin propagate and transitions are allowed between them,

the field-theory Compton amplitudes contain additional Wilson coefficients and match those of the worldline

with no spin supplementary condition. The results of the theory with propagating states of a single spin-s

particle are reproduced for special values of the Wilson coefficients; thus, for these values, the SSC condition
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is effectively imposed (albeit not actively), and the spin gauge symmetry is restored. This holds true both

for the field theory where some of the additional spin states were negative norm [59] and for the alternative

construction with all positive-norm states.

To establish a closer connection between the extra degrees of freedom present in the various field-theory

descriptions of spinning bodies and classical observables, we constructed a pair of two-body Hamiltonians

where the obtained amplitudes match the field-theory amplitudes [59]. The first of these Hamiltonians is the

standard two-body one including the standard spin-orbit terms. The second incorporates the mass moment

as a new (boost) degree of freedom, and is the one that can match both the field theories with transitions

between states of different spins and the worldline with no spin supplementary condition imposed. We carried

out detailed comparisons of the impulse, and spin and mass-moment kicks through O(α2S) between the

predictions of these two-body Hamiltonians and the corresponding worldline approaches and found agreement

to this order. It would be interesting to generalize our field theory with two propagating fields to contain

multiple propagating fields and in this way verify the connection to the worldline through O(α2Sk≥2).

We also succeeded in finding a compact way to express scattering observables via an eikonal formula. The

spin eikonal formula of Ref. [59] provides a direct connection between amplitudes and scattering observables

and bypasses explicit use of the Hamiltonian. We found a generalization of this formula, which is valid

through O(α2S), compactly contains the intricate results of Hamilton’s equations for scattering observables

and includes extra degrees of freedom (in the form of the rest-frame boost vector) and all Wilson coefficients.

It would be interesting to extent this comparison to higher powers of the spin and boost vectors. While this

eikonal formula was not derived from first principles, its existence strongly suggests that a first-principles

derivation should exist.

Our primary conclusion is that, whether using a four-dimensional field-theory or a worldline description

of spinning bodies, the extra Wilson coefficients are directly associated with additional propagating degrees of

freedom. These extra coefficients induce a dynamical change in the magnitude of the rest-frame spin vector

even for conservative dynamics. This change in spin magnitude is necessarily associated with a change in the

mass moment, which in turn induces a change in the electric dipole moment. It would be very interesting

to identify physical systems where these additional degrees of freedom lead to observable effects whether in

electrodynamics or general relativity.

We expect that carrying out similar field theory, worldline and effective two-body Hamiltonian construc-

tions and comparisons for general relativity should be straightforward. We look forward to studying the

phenomena described here in detail for the case of general relativity where they were originally observed.
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Chapter 3

Dynamical Implications of the Kerr Multipole Moments for

Spinning Black Holes

Trevor Scheopner, Justin Vines

Mani L. Bhaumik Institute for Theoretical Physics,

University of California at Los Angeles, Los Angeles, CA 90095, USA

Previously the linearized stress tensor of a stationary Kerr black hole has been used to determine some

of the values of gravitational couplings for a spinning black hole to linear order in the Riemann tensor in the

action (worldline or quantum field theory). In particular, the couplings on operators containing derivative

structures of the form (S · ∇)n acting on the Riemann tensor were fixed, with Sµ the spin vector of the

black hole. In this chapter we find that the Kerr solution determines all of the multipole moments in the

sense of Dixon of a stationary spinning black hole and that these multipole moments determine all linear

in R couplings. For example, additional couplings beyond the previously mentioned are fixed on operators

containing derivative structures of the form S2n(p ·∇)2n acting on the Riemann tensor with pµ the momentum

vector of the black hole. These additional operators do not contribute to the three-point amplitude, and so

do not contribute to the linearized stress tensor for a stationary black hole. However, we find that they do

contribute to the Compton amplitude. Additionally, we derive formal expressions for the electromagnetic and

gravitational Compton amplitudes of generic spinning bodies to all orders in spin in the worldline formalism

and evaluated expressions for these amplitudes to O(S3) in electromagnetism and O(S5) in gravity.

3.1 Introduction

3.1.1 General Overview

The observation of gravitational waves by the LIGO/Virgo collaboration [102, 103] began a new era of

gravitational physics, with implications for astronomy, cosmology, and possibly particle physics. Physical

black holes and neutron stars generically carry significant spin angular momentum which affects their
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dynamics during mergers in binary systems and the gravitational wave signals they emit. These spin effects

will play an increasingly important role in signal analysis as gravitational wave detectors become more

sensitive [104, 105, 106] and also lead to rich theoretical structure for generic bodies, but especially so for

black holes.

The study of the dynamics of generic spinning bodies in general relativity has a long history [107, 108,

109, 110, 253, 259, 260]. Multiple successful field theoretic and worldline based approaches exist for the study

of spinning bodies in both the post-Newtonian (PN) approximation [111, 112, 113, 114, 115, 116, 117, 118, 119,

120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 51, 137, 138, 139, 140, 141, 142,

143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163] and the

post-Minkowskian (PM) approximation [164, 165, 6, 57, 56, 52, 78, 21, 22, 58, 53, 54, 55, 59, 61, 60, 65, 62, 166,

167, 168, 169, 66, 170, 171, 172, 173, 174, 101, 168, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 2, 261, 262].

The electromagnetic [187, 188, 189, 5, 190, 191, 192] and non-abelian gauge theory [7, 1] cases are very similar

in structure to gravity and can be used to develop helpful insights for the harder gravitational problem.

In both the field theoretic and worldline approaches when considering only the minimal Poincaré degrees

of freedom, the interaction of the body with gravity is characterized by a tower of effective field theory

operators in the action, each carrying a Wilson coefficient, some number of powers of the spin of the body,

and some number of powers of the Riemann tensor and its derivatives. For generic bodies these Wilson

coefficients take arbitrary values. We will specialize our interest in this chapter exclusively to spinning black

holes. This restriction in principle determines the values of all such Wilson coefficients. However, presently

the values for these Wilson coefficients on linear and quadratic in Riemann tensor are only partly known.

The coefficients for operators of the form (S · ∇)nR···· were fixed in Ref. [145]. Such operators are

precisely those which contribute to the three point amplitude. There are possible operators which are linear in

the Riemann tensor but not of this form, such as those of the form S2n(p ·∇)2nR····, whose Wilson coefficients

cannot be determined from the three point amplitude. Using the equations of motion in the action, one can see

that such operators contribute at order R2 for scattering processes. We find that for a black hole the coefficients

for all operators which are linear in the Riemann curvature can be fixed by matching against the multipole

moments of the Kerr solution. Several proposals [173, 101, 179, 180] have appeared in the literature to fix the

coefficients on quadratic in Riemann operators based on a shift-symmetry principle which is already true of the

linear in Riemann results. Refs. [185, 186] find that the Compton amplitude derived by solving the Teukolsky

equation agrees with the shift-symmetry principle through O(S4) but that tension with the shift-symmetry

begins at O(S5) (though the results from the Teukolsky equation involve a subtle analytic continuation

between the black-hole and naked-singularity regimes). The couplings we find based on consideration of

multipole moments can be made consistent with spin-exponentiation, shift-symmetry, or the Teukolsky results
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through O(S5). As well, they can be made simultaneously consistent with spin-exponentiation and the

Teukolsky results through O(S5). (Beginning at O(S5) one helicity combination develops a spurious pole

in the the spin-exponentiated amplitude; when we say that we can match spin-exponentiation at O(S5) or

beyond we only mean that we match to the helicity combination without a spurious pole after O(S4).)

3.1.2 Summary of Method and Results

In Dixon’s landmark papers Ref. [259, 260] on the worldline formalism, among other results, he proves

that there is a unique way to define the multipole moments of the current density or stress tensor for an

extended body in general relativity so that those multipole moments can be made into a generating function

for the current density/stress tensor in the usual way and so that those multipole moments are fully reduced

(i.e. contain no interdependencies between moments of different orders). The definitions of these moments

are highly nontrivial and only coincide with the “naive” moments (from integrating powers of displacement

against the current density/stress tensor over a spatial slice) for a body in uniform motion in flat spacetime.

From the Kerr solution, following Israel’s analysis [263], we compute the stress tensor which acts as its source

(in the maximally causally extended spacetime) and from that source we compute the multipole moments of

a spinning black hole using Dixon’s definitions of the multipole moments. Those multipole moments can then

be used to determine a stress tensor, which in turn can be used to determine an action for the spinning black

hole, up to couplings to operators which are quadratic in the Riemann tensor. The action we find is put in

dynamical mass function form in (3.6.1) and the specific dynamical mass function we find for spinning black

holes is given in (3.7.43).

The dynamical mass function we find contains all of the equivalent black hole couplings identified in

Ref. [145], which can be found by comparison to the three-point amplitude (the stationary stress tensor), as

well as many new terms. Dixon’s formalism specifies the unique way to lift those naive moments to proper

multipole moments, and that lifting fixes the additional couplings in (3.7.43) relative to Ref. [145]. This

lifting is only able to fix linear in Riemann couplings in the action because no information about higher order

in Riemann operators is contained in the stationary moments. We find that the dynamical mass function

in (3.7.43) can be made consistent with the spin-exponentiation proposed by Ref. [53] and shift-symmetry

proposed by Refs. [173, 101, 179, 180] through O(S4) for the appropriate choice of quadratic in Riemann

couplings. As well, it can be made consistent with any one of the three principles of spin-exponentiation,

shift-symmetry, or the Teukolsky equation results found in Ref [185] through O(S5) and made consistent

with any pair of them except the combination of shift-symmetry and the Teukolsky equation, which are

incompatible. To facilitate this analysis, we find a formal expression for the gravitational Compton amplitude

for a generic spinning body to all orders in spin and explicitly compute that amplitude in terms of all possible
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Wilson coefficients in the action through O(S5). We find that there is one linearly independent structure in

the amplitude at O(S2), with one more appearing at O(S3), seven more at O(S4), and eleven more at O(S5).

In order to understand these gravitational results, it is instructive to first follow all of the same steps of

analysis for a
√

Kerr particle in electromagnetism. In section 3.2 we review the worldline formalism with

a dynamical mass function for electromagnetism. In section 3.3 we review the basics of Dixon’s theory of

multipole moments and specialize his results to the current-density in flat spacetime. In section 3.4 we

use Dixon’s formalism to compute the multipole moments of a
√

Kerr particle and from those moments we

compute the necessary dynamical mass function for such a particle, up to corrections which are quadratic

in the field strength. Our electromagnetic analysis culminates in section 3.5 in which we compute the

electromagnetic Compton amplitude for a generic spinning body to all orders in spin in terms of its dynamical

mass function. We then specialize that all orders result to cubic order in spin by enumerating all possible

operators in the action and study the spin-exponentiation and shift-symmetry properties of the resultant

amplitude. We find that for electromagnetism, it is possible to simultaneously demand spin-exponentiation,

shift-symmetry, and consistency with the
√

Kerr multipole moment based dynamical mass function through

O(S3).

In the second half of the chapter, we perform the same analysis for gravity. We begin in 3.6 by reviewing

the worldline formalism with a dynamical mass function in general relativity. In section 3.7 we use Dixon’s

formalism to compute the multipole moments of a Kerr particle and from those moments we compute the

necessary dynamical mass function for such a particle, up to corrections which are quadratic in the Riemann

tensor. Then in 3.8 we derive a formal expression for the gravitational Compton amplitude for a generic

spinning body to all orders in spin, which is unfortunately much more complex than the corresponding

electromagnetic formula. We then specialize that all orders result to quintic order in spin by enumerating all

possible operators in the action and study the requirements imposed on that amplitude by spin-exponentiation,

shift-symmetry, and matches to the Teukolsky equation. We find that for gravity, the multipole moment

based dynamical mass function is consistent with the combination of spin-exponentiation and the Teukolsky

equation at O(S5) and that requiring these fixes all available coefficients in the dynamical mass function at

this order.

3.1.3 Notation

We call the spacetime manifold T. Beginning alphabet Greek letter indices α, β, γ, δ, ... are used for

spacetime indices at a generic event X ∈ T. The tangent space to T at X is written TX(T). Late alphabet

Greek letter indices µ, ν, ρ, κ, ... are used for spacetime indices at a particular event of interest Z ∈ T. Indices

are symmetrized using parentheses and antisymmetrized with brackets, both with the typical symmetry
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factors:
M (αβ) =

Mαβ +Mβα

2
, M [αβ] =

Mαβ −Mβα

2
. (3.1.1)

For a generic vector vα, we define:

|v| =
√
|gαβvαvβ |, v̂α =

vα

|v|
. (3.1.2)

Let ζ(s, Z, v) be a geodesic with affine parameter s so that ζµ(0, Z, v) = zµ and dζµ

ds (0, Z, v) = vµ. Then,

the exponential map is defined by the event:

expZ(v) = ζ(1, Z, v). (3.1.3)

Consider the geodesic ζ(s) with affine parameter s so that ζµ(0) = zµ and ζα(1) = xα (for Z and X sufficiently

close for one only such geodesic to exist). Then, Synge’s worldfunction σ(Z,X) is defined by:

σ(Z,X) =
1

2

∫ 1

0

gαβ(ζ)
dζα

ds

dζβ

ds
ds. (3.1.4)

Instead viewing σ as a functional or the path, under variation with respect to the path ζ, we find:

δσ =
dζα
ds

(1)δxα − dζµ
ds

(0)δzµ. (3.1.5)

We place indices on σ to indicate covariant derivatives with α, β, ... indices for x and µ, ν, ... indices for z:

σα = ∇ασ =
∂σ

∂xα
=
dζα
ds

(1), σµ = ∇µσ =
∂σ

∂zµ
= −dζµ

ds
(0). (3.1.6)

If more that two indices of the same type were to be placed on σ the order would be important due to the

noncommutativity of covariant derivatives, however we will have no need to do this. As well, we introduce

the inverse matrix σ−1:
σ−α

µσ
µ
β = δαβ . (3.1.7)

We will describe the motion of the spinning body so that the worldline zµ(λ) tracks the center of

momentum of the body with λ the worldline time parameter. uµ(λ) will be a smooth one parameter family

of future oriented timelike unit vectors which later will be specialized to be p̂µ(λ), the unit vector in the

direction of the linear momentum pµ(λ) of the body. We let Σ(λ) be the Cauchy slice formed by shooting out

geodesics based at zµ(λ) which are orthogonal to uµ(λ). Explicitly:

Σ(λ) = {X ∈ T : uµ(λ)σµ(Z(λ), X) = 0}. (3.1.8)

Let τ(X) be the value of λ so that X ∈ Σ(λ). Let wα
1 (X) be any vector field satisfying:

λ = τ(X) =⇒ λ+ δλ = τ(expX(w1δλ)) +O(δλ2). (3.1.9)

That is, if each point of Σ(λ) is displaced by wα
1 δλ then it produces a point in Σ(λ+ δλ) for sufficiently small

δλ. Automatically:
wα

1∇ατ = 1. (3.1.10)
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Let D4x be the invariant spacetime volume measure:

D4x =
√
−det gd4x. (3.1.11)

Let dΣα be the future oriented invariant volume measure on Σ. For any scalar function f(X) then:∫
T
f(X)D4x =

∫ ∞

−∞

∫
Σ(λ)

f(X)wα
1 dΣαdλ. (3.1.12)

Because λ is an arbitrary parameter for the worldline, it is useful to introduce the einbein e(λ) to help

manage reparameterization invariance manifestly. The einbein is an arbitrary function defined so that under

a smooth monotone increasing reparameterization λ′ = λ′(λ):

e′(λ′) =
dλ

dλ′
e(λ). (3.1.13)

The reparameterization invariant worldline measure Dλ is then defined by:

Dλ = e(λ)dλ. (3.1.14)

We also define the reparameterization invariant version of the vector field wα
1 (X):

wα(X) =
wα

1 (X)

e(τ(X))
. (3.1.15)

Then, we have:
∫
T
f(X)dT =

∫ ∞

−∞

∫
Σ(λ)

f(X)wαdΣαDλ. (3.1.16)

Selection of a worldline parameter then amounts to choosing e(λ) as an arbitrary function.

3.2 Electromagnetic MPD Equations
We begin with an analysis of the

√
Kerr electromagnetic particle in flat spacetime to develop a road-map

for the gravitational analysis which follows. The motion of a generic spinning body under the influence of

electromagnetism in Minkowski space is described by the electromagnetic flat space Mathisson Papapetrou

Dixon (MPD) equations [260]. It is well established [260, 252, 264, 58, 226, 261] that the electromagnetic

MPD equations can be derived from a variational principle through an action S of the form:

S[z, p,Λ, S, α, β] =
∫ ∞

−∞

(
pµż

µ + qAµż
µ +

1

2
εµνρσu

µSνΩρσ − α

2
(p2 +M2) + βp · S

)
dλ. (3.2.1)

In this action, zµ(λ) is the center of momentum worldline of the body, its conjugate is the linear momentum

carried by the body pµ(λ), q is the charge of the body, Aµ is the vector potential, uµ = p̂µ, α = e
M is a

Lagrange multiplier which reinforces reparameterization invariance, and Sµ is the spin vector of the body.

The spin vector is defined so that it becomes the angular momentum vector of the body in its center of

momentum frame. Automatically, then S · p = 0 and so β is a Lagrange multiplier included to enforce this
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constraint. Also appearing is Λµ
A(λ), a tetrad tracking the orientation of the body, which satisfies:

ηµν = Λµ
AΛ

ν
Bη

AB , ηAB = ηµνΛ
µ
AΛ

ν
B . (3.2.2)

Without loss of generality, we take:

Λµ
0(λ) = uµ(λ), Λµ

3(λ) = Ŝµ(λ). (3.2.3)

(If these are set as initial conditions, they are maintained dynamically automatically.) Capital Latin indices

A,B,C,D, ... are always used for Lorentz indices in the default frame of the body so that Λµ
A represents the

Lorentz transformation the body has undergone in its motion relative to an arbitrary default orientation.

The angular velocity tensor of the body is defined by:

Ωµν = ηABΛµ
A
dΛν

B

dλ
. (3.2.4)

Finally, M(z, u, S), called the dynamical mass function of the body, encodes the free mass of the body and

all of its nonminimal couplings to electromagnetism. In particular, it takes the form:

M2(z, u, S) = m2 +O(qF) (3.2.5)

where m is the mass of the body in vacuum.

For variations of the action it is useful to define the antisymmetric tensor:

δθµν = ηABΛµ
AδΛ

ν
B . (3.2.6)

Then, the variation of the above action gives:

δS =

∫ ∞

−∞

(
δzµ

(
−ṗµ + qFµν ż

ν − e
∂M
∂zµ

)
+δpµ

(
żµ − euµ − e

|p|
∂M
∂uν

(ηµν + uµuν) + βSµ +
1

2|p|
(δµα + uµuα)ε

ανρσSνΩρσ

)
+
1

2
δθρσ

(
− d

dλ
(εµνρσu

µSν) + εµνραu
µSνΩα

σ − εµνσαu
µSνΩα

ρ

)
+δSµ

(
−1

2
εµνρσu

νΩρσ − e
∂M
∂Sµ

+ βpµ

)
− δα

2

(
p2 +M2

)
+ δβp · S

)
dλ. (3.2.7)

Using the δSµ variation to solve for the angular velocity tensor, one can then determine the value of β. That

value of β can then be used to simplify the spin and trajectory equations of motion. Explicitly, these give:

Ωµν = u̇µuν − uµu̇ν + eεµνρσuρ
∂M
∂Sσ

(3.2.8)

β = − e

M
uµ
∂M
∂Sµ

(3.2.9)

Ṡµ = uµu̇ · S + eεµνρσuνSρ
∂M
∂Sσ

(3.2.10)

żµ = euµ +
e

M
∂M
∂uµ

+
e

M
uµuν

∂M
∂uν

+
e

M
Sµuν

∂M
∂Sν

+
1

M2
εµνρσSνuρṗσ. (3.2.11)
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In order to determine the trajectory evolution explicitly we must insert the momentum equation of motion

into (3.2.11). To simplify, it is useful to introduce the dual field strength:

?Fµν =
1

2
εµνρσFρσ =⇒ Fµν = −1

2
εµνρσ

?Fρσ. (3.2.12)

Simplifying finally gives the electromagnetic MPD equations of motion for the spinning body:(
1− q

M2
?FαβuαSβ

) żµ
e

= uµ +
1

M
∂M
∂uµ

+ uµ
uν

M
∂M
∂uν

+ Sµ u
ν

M
∂M
∂Sν

+
1

M2
εµνρσuνSρ

∂M
∂zσ

+
q

M2
?FµνSν +

q

M3

(
Sρ ∂M

∂uρ
+ S2uρ

∂M
∂Sρ

)
?Fµνuν (3.2.13)

ṗµ = qFµν ż
ν − e

∂M
∂zµ

(3.2.14)

Ṡµ = uµu̇ · S + eεµνρσuνSρ
∂M
∂Sσ

. (3.2.15)

For solving these equations of motion we will always choose λ so that e = 1.

To understand how the dynamical mass function relates to the multipole moments of the body, we will

need to study the current produced by our action. Define the Qn moments:

Qρ1...ρnµν
n = Q(ρ1...ρn)[µν]

n =
∂M

∂∂nρ1...ρn
Fµν

(3.2.16)

Then, our action produces a formal distributional expression for Jµ:

Jµ(X) =
δS
∂Aµ

=

∫ ∞

−∞

(
qżµδ(X − Z)− 2e

∞∑
n=0

(−1)nQρ1...ρnµν
n ∂n+1

ρ1...ρnνδ(X − Z)

)
dλ (3.2.17)

3.3 Dixon’s Multipole Moments
In this section we summarize some of the ingredients and results of Dixon’s definition of multipole

moments [259]. The multipole moments of the current density (in the case of electromagnetism) and of

the energy-momentum tensor (in the case of gravity) directly enter the equations of motion of the body

and can be computed from the stationary fields produced by the body when isolated. We find that these

multipole moments determine all linear in F (for electromagnetism) or linear in R (for gravity) operators

in the dynamical mass function. The necessary matching is similar to the three-point amplitude matching

performed in Ref. [58] in the worldline or in Ref. [59] in the field theory. However, using Dixon’s multipole

construction we are able to extract more physical information from the stationary
√

Kerr or Kerr solutions

than is contained in the three-point amplitude, which allows the determination of an increased number of

Wilson coefficients.

Following Dixon’s discussion, we first consider how multipole moments are defined for a generic scalar

field, then a generic tensor field. Then, we see how the general multipole moments of a vector field are

constrained in complicated ways if that vector field satisfies the continuity equation. This leads to Dixon’s
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definition of the reduced multipole moments of a conserved vector field which we apply to the current density.

In this section, in all but the final subsection, we keep the spacetime generic in anticipation of applying our

analysis to gravity. In the final subsection, we specialize to Minkowski space in preparation for electromagnetic

calculations.

3.3.1 Moments of a scalar field

Using the exponential map we can take functions on T and turn them into functions on Tz(T). For a

scalar field φ(X) (X ∈ T) we may define the function φ′(Z, v) (v ∈ TZ(T)) by:

φ′(Z, v) = φ(expZ(v)). (3.3.1)

Because φ′(Z, v) is a function on the flat tangent space TZ(T), it is simple to define the Fourier transform

φ̃(Z, k) and inverse Fourier transform:

φ̃(Z, k) =

∫
e−ik·vφ′(Z, v)

D4v

(2π)2
, φ′(Z, v) =

∫
eik·vφ̃(Z, k)

D4k

(2π)2
(3.3.2)

where the invariant tangent space measure and Fourier space measure are defined as:

D4v =
√
−det g(Z)d4v, D4k =

d4k√
− det g(Z)

. (3.3.3)

Using that vµ = −σµ(Z,X) we can express the inverse Fourier transform for our original scalar function as:

φ(X) =

∫
e−ikµσ

µ(Z,X)φ̃(Z, k)
D4k

(2π)2
(3.3.4)

It immediately follows that for scalar functions φ(X) and ψ(X) and their associated φ′(Z, v), ψ′(Z, v):∫
Σ(λ)

ψ∗(X)φ(X)wαdΣα =

∫ ∞∑
n=0

in

n!
kµ1 ...kµn ψ̃

∗(Z, k)

∫
Σ

σµ1 ...σµnφ(X)wαdΣα
D4k

(2π)2
. (3.3.5)

Define then the moments Fµ1...µn
n and the moment generating function F associated to the scalar function φ:

Fµ1...µn
n [φ](λ) =

∫
Σ

(−σµ1)...(−σµn)φ(X)wαdΣα (3.3.6)

F [φ](λ, k) =

∞∑
n=0

(−i)n

n!
Fµ1...µn
n kµ1

...kµn
. (3.3.7)

Automatically the moments of φ satisfy the conditions:

Fµ1...µn
n = F (µ1...µn)

n , uµ1
Fµ1...µn
n = 0 (3.3.8)

where for this last condition it is useful to remember equation (3.1.8). The moment generating function

determines how φ(X) behaves against test functions and thus determines φ(X) completely according to:∫
Σ(λ)

ψ∗(X)φ(X)wαdΣα =

∫
ψ̃∗(Z, k)F (λ, k)

D4k

(2π)2
. (3.3.9)
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3.3.2 Moments of a general tensor field

Suppose we now consider a tensor field φα1...αm
β1...βn(X). Using Synge’s world function and the

exponential map we can translate this to a tensor function on the tangent space at z by:

φ′µ1...µm
ν1...νn(Z, v) = (−σµ1

α1)...(−σµm
αm)(−σ−β1

ν1)...(−σ−βn
νn)φ

α1...αm
β1...βn(expZ(v)). (3.3.10)

The Fourier transform and its inverse may now be defined as:

φ̃µ1...µm
ν1...νn(Z, k) =

∫
e−ik·v

(2π)2
φ′µ1...µm

ν1...νn(Z, v)D
4v (3.3.11)

φ′µ1...µm
ν1...νn

(Z, v) =

∫
eik·v

(2π)2
φ̃µ1...µm

ν1...νn
(Z, k)D4k (3.3.12)

For a given φ, suppose we define the lower rank tensor ϕ by contracting two indices:

ϕα1...αm−1
β1...βn−1

= φα1...αm−1αm
β1...βn−1αm

=⇒ ϕ′µ1...µm−1
ν1...νn−1

= φ′µ1...µm−1µm
ν1...νn−1µm

. (3.3.13)

This property only holds because the upper index bitensor propagator in (3.3.10) (−σµ
α) is the matrix inverse

of the lower index bitensor propagator (−σ−β
ν). Alternatively, suppose we consider the moments of a vector

field φβ which is itself the gradient of a scalar field ϕ:

φβ = ∇βϕ =⇒ φ̃ν = ikνϕ̃. (3.3.14)

This property only holds if the lower index bitensor propagator is −σ−β
ν . Therefore while one could have

imagined other bitensor propagators to use for transporting the components of φ, such as parallel transport,

the choice in (3.3.10) is unique in satisfying both (3.3.13) and (3.3.14). Unfortunately, the expression given

in (3.3.10) has the property that translation to a tensor function on tangent space does not commute with

raising/lowering indices of the original tensor field. This causes no real inconvenience for our calculations but

one should be aware that φ′µ 6= gµν(Z)φ′ν if φ′µ is defined as above from φµ and φ′µ is defined as above from

φµ.

For a generic φ, the moments and moment generating function of φ are defined by:

Fµ1...µNρ1...ρm

N ν1...νn
[φ](λ) =

∫
Σ

(−σµ1)....(−σµN )φ′ρ1...ρm
ν1...νn

wαdΣα (3.3.15)

F ρ1...ρm
ν1...νn [φ](λ, k) =

∞∑
N=0

(−i)N

N !
Fµ1...µNρ1...ρm

N ν1...νnkµ1 ...kµN
. (3.3.16)

Automatically the moments of φ satisfy the conditions:

Fµ1...µNρ1...ρm

N ν1...νn = F
(µ1...µN )ρ1...ρm

N ν1...νn , uµ1F
µ1...µNρ1...ρm

N ν1...νn = 0. (3.3.17)
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As well, φ’s behavior against test functions is determined by:∫
Σ

ψ∗β1...βn
α1...αm

φα1...αm
β1...βn

wγdΣγ =

∫
ψ̃∗ν1...νn

µ1...µm
Fµ1...µm

ν1...νn
(λ, k)

D4k

(2π)2
. (3.3.18)

Thus, just as in the scalar case the moment generating function determines the original tensor field.

3.3.3 Moments of a conserved vector field

If we consider a vector field φα(X) with moments as defined above then a brief calculation reveals:∫
T
ψ∗∇αφ

αdT = −
∫ ∞

−∞

∫
ψ̃∗(z, k)

∞∑
n=1

(−i)n

(n− 1)!
kµ1

...kµn
F

(µ1...µn)
n−1

D4k

(2π)2
Dλ (3.3.19)

If φα is a conserved vector field so that ∇αφ
α = 0, then the left hand side is 0 for all ψ. One may then wish

based on this to conclude that F (µ1...µn)
n−1 is 0 for each n ≥ 1. However, this is not a valid deduction. ψ̃∗(Z, k)

at each fixed λ determines the function ψ(X) through the inverse Fourier transform and so ψ̃∗(Z(λ1), k) and

ψ̃∗(Z(λ2), k) for λ1 6= λ2 are not independent of each other. Because of this, one cannot conclude that the

integrand above at each λ must be individually 0 as they may conspire to cancel at different λ for arbitrary

ψ∗(X). Consequently, it is difficult to conclude anything explicit about the moments of φα from the condition

∇αφ
α = 0.

Because of the mentioned difficulty, Dixon helpfully introduced an alternate set of reduced moments for

a conserved vector field. For us the vector field of interest will always be Jα. The goal of this reduced set

of moments is precisely to produce a set which does not have the entanglements of the naive moments for

a conserved vector field. Due to the absence of entanglements between the moments, when using Dixon’s

moments the it is valid to equate integrands moment-by-moment. To arrive at Dixon’s reduced multipole

moments, which for a conserved vector field are written mλ1...λnµ
n , we first need to introduce a few building

blocks. Define:

Θκλ
n (Z,X) = (n+ 1)

∫ 1

0

σκ
α(Z, ζ(t))σ

αλ(Z, ζ(t))tndt (3.3.20)

qλ1...λnµν
n = (−1)n

∫
Σ

σλ1 ...σλnΘµν
n−1J

αdΣα (n ≥ 1) (3.3.21)

jλ1...λnµ
n = (−1)n

∫
Σ

σλ1 ...σλnσµ
αJ

αwβdΣβ (3.3.22)

Qλ1...λnµν
n = j

λ1...λn[µν]
n+1 +

1

n+ 1
q
λ1...λn[µν]κ
n+1

żκ

e
(3.3.23)

mλ1...λnµ
n =

2n

n+ 1
Q

(λ1...λn)µ
n−1 (n ≥ 1). (3.3.24)

The mλ1...λnµ
n moments (called the reduced moments) will be the actual moments of interest. The other

quantities defined are useful intermediate pieces for calculation. The reduced moments automatically satisfy:

mλ1...λnµ
n = m(λ1...λn)µ

n , m(λ1...λnµ)
n = 0, (3.3.25)
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uλ1m
λ1...λn−1[λnµ]
n = 0 (n ≥ 2). (3.3.26)

Dixon finds that beyond these conditions, the reduced moments are not restricted by the conservation of Jα

and that they are independent of each other for different values of n. It is useful to define the 0th moment:

mµ
0 = q

żµ

e
(3.3.27)

where q is the total charge of the body defined by:

q =

∫
Σ

JαdΣα. (3.3.28)

Due to the conservation of Jα, q is independent of λ. Dixon finds also that the reduced moments are

independent of this 0th moment. Then, define the reduced moment generating function:

Mµ(λ, k) =

∞∑
n=0

(−i)n

n!
mλ1...λnµ

n kλ1
...kλn

. (3.3.29)

Like the naive moments, the reduced moment generating functions determine the behavior of Jα against test

functions. In particular, for an arbitrary vector field Aα(X):∫
Σ

A∗
α(X)Jα(X)wβdΣβ =

∫
Ã∗

µ(Z, k)M
µ(λ, k)

D4k

(2π)2
. (3.3.30)

The moment generating function automatically satisfies:

Mµkµ =
q

e
ż · k. (3.3.31)

This implies that for the gradient of a scalar function, using the definition of the reduced moment generating

function:
∫
Σ

Jα∇αfw
βdΣβ =

q

e

d

dλ
f(Z). (3.3.32)

For f which decay sufficiently quickly for no boundary term to be necessary under integration by parts we

immediately have:
0 =

∫
T
f∇αJ

αdT = −q f(Z)|λ→∞
λ→−∞ (3.3.33)

which is true without placing any restrictions on the reduced moments of Jα beyond mµ
0 . Dixon proved [259]

that these reduced moments are the unique set of moments which are independent of each other for different

n, have only mµ
0 restricted by the conservation law, and satisfy the index symmetry conditions in equations

(3.3.25) and (3.3.26).

Through (3.3.30), the current density is determined in terms of the reduced multipole moments. Explicitly

comparing that behavior against test functions to (3.2.17) and using crucially that the reduced multipole

moments are unique and contain no interdependencies, we can identify:

mρ1...ρnµ
n = −2n!Q(ρ1...ρn)µ

n−1 (3.3.34)

which gives the reduced multipole moments from the couplings in the action. Alternatively, this can be nicely
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inverted using the index symmetry conditions of both quantities to find:

Qρ1...ρnµν
n = − 1

n!

1

n+ 2
m

ρ1...ρn[µν]
n+1 . (3.3.35)

This allows the direct determination of the coupling of the body to the field strength in the action from its

exact reduced multipole moments.

3.3.4 Moments of the current density in Minkowski space

We now specialize our calculations to Minkowski space. We can represent an arbitrary element vµ of

Tz(T) by a vector Y = yA~ιA = yAΛµ
A~eµ where ~ιA are local Minkowskian basis vectors (~ιA ·~ιB = ηAB) and

~eµ are coordinate basis vectors. Thus:
vµ = Λµ

Ay
A. (3.3.36)

Just as in section 3.2 we continue to always choose the tetrad so that Λµ
0 = uµ. In flat space:

σ(Z,X) =
1

2
(x− z)2, σµ = −(xµ − zµ), σµ

α = −δµα =⇒ Θµν
n = ηµν (3.3.37)

We always use lowercase beginning Latin alphabet indices a, b, c, ... for values 1, 2, 3 on the tangent space.

Then, we have:
X ∈ Σ(λ) =⇒ ∃ ya ∈ R3 : xµ = zµ + Λµ

ay
a. (3.3.38)

Using the ya coordinates and the definition of τ(X) we may identify explicit flat space expressions for wα

and dΣα:

λ = τ(z + λu) =⇒ 1 = (żα + Λ̇α
ay

a)∇ατ (3.3.39)

wα =
żα + Λ̇α

ay
a

e
, dΣα = −uαd3y. (3.3.40)

With these the qn and jn moments become:

qλ1...λnµν
n = ηµνΛλ1

A1 ...Λ
λn

An

∫
Σ

yA1 ...yAn(−J · u)d3y (3.3.41)

jλ1...λnµ
n = Λλ1

A1 ...Λ
λn

AnΛ
µ
B

∫
Σ

yA1 ...yAnΛν
BJν −u · ż − u · Λ̇ · y

e
d3y. (3.3.42)

Using the explicit formula for the worldline velocity żµ in (3.2.13), u · ż = −e. As well, due to (3.2.8),

Λ̇ = O(F). Therefore:

jλ1...λnµ
n = Λλ1

A1 ...Λ
λn

AnΛ
µ
B

∫
Σ

yA1 ...yAnΛν
BJνd3y +O(F). (3.3.43)

It is useful to define one last class of moments:

Ka1...anB
n =

∫
Σ

ya1 ...yanΛν
BJνd3y (3.3.44)

=⇒ qλ1...λnµν
n = ηµνΛλ1

a1 ...Λ
λn

anK
a1...an0
n (3.3.45)

=⇒ jλ1...λnµ
n = Λλ1

a1 ...Λ
λn

anΛ
µ
BK

a1...anB
n +O(F). (3.3.46)
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For a stationary body in its center of momentum frame, the Kn moments coincide with the naive moments

of the stationary current density. By following the chain of definitions from (3.3.20) to (3.3.24) these Kn

moments determine the full reduced moments mn. Therefore, computing the naive moments of a stationary

body allows the determination of the (coupling independent part of the) full set of reduced moments.

3.4 Root-Kerr Multipole Moments
In this section we determine the linear in F couplings in the dynamical mass function to all orders in

spin for a
√

Kerr particle. We begin by reviewing how the vector potential which defines the
√

Kerr particle

arises from the Kerr-Newman solution and computing some basic mechanical properties of the
√

Kerr fields.

Then, we use the
√

Kerr fields to determine the charge and current densities which are the source of the
√

Kerr solution using analysis which parallels the calculation of the source of the Kerr metric performed in

Ref. [263]. From these charge and current densities we are then able to determine the Kn moments for
√

Kerr

and consequently determine the mn reduced multipole moments up to corrections of O(F). Comparing these

reduced moments to those produced by the current density produced by (3.2.17) fully determines all linear in

F terms in the dynamical mass function for a
√

Kerr particle.

3.4.1 From Kerr-Newman to Root-Kerr

The Kerr-Newman solution for a stationary charged spinning black hole is defined by the line element

and vector potential:

−dτ2 = −
r2 − 2Gmr + a2 + q2G

4π

r2 + a2 cos2 θ
(dt− a sin2 θdϕ)2 +

sin2 θ

r2 + a2 cos2 θ
((r2 + a2)dϕ− adt)2

+ (r2 + a2 cos2 θ)

(
dr2

r2 − 2Gmr + a2 + q2G
4π

+ dθ2

)
(3.4.1)

Aµdx
µ =

q

4π

−rdt+ ar sin2 θdϕ

r2 + a2 cos2 θ
. (3.4.2)

The G→ 0 limit of the Kerr-Newman metric produces the line element:

−dτ2 = −dt2 + r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdϕ2. (3.4.3)

This is just the Minkowski line element in a particular choice of coordinates. The associated spatial metric

g
(3)
ab implied by this line element is the natural metric of oblate-spheroidal coordinates, related to Cartesian

coordinates by:

x =
√
r2 + a2 sin θ cosϕ, y =

√
r2 + a2 sin θ sinϕ, z = r cos θ (3.4.4)
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and with corresponding coordinate basis vectors:

~er =
∂~x

∂r
, ~eθ =

∂~x

∂θ
, ~eϕ =

∂~x

∂ϕ
, g

(3)
ab = ~ea · ~eb. (3.4.5)

The vector potential of this system defines the vector potential of a stationary
√

Kerr particle:

φ = −A0 =
q

4π

r

r2 + a2 cos2 θ
(3.4.6)

~A = g(3)abAa~eb =
q

4π

ar

(r2 + a2)(r2 + a2 cos2 θ)
~eϕ. (3.4.7)

These potentials the produce the electric and magnetic fields:

~E =
q

4π

(r2 + a2)(r2 − a2 cos2 θ)

(r2 + a2 cos2 θ)3
~er −

q

4π

2ra2 sin θ cos θ

(r2 + a2 cos2 θ)3
~eθ (3.4.8)

~B =
q

4π

2ar(r2 + a2) cos θ

(r2 + a2 cos2 θ)3
~er +

q

4π

a(r2 − a2 cos2 θ) sin θ

(r2 + a2 cos2 θ)3
~eθ. (3.4.9)

Away from any singularities, this magnetic field satisfies ∇× ~B = 0 and so can be expressed in terms

of a magnetic scalar potential ~B = −∇ψ. In general coordinates in Minkowski space, the condition that

the magnetic field (away from any current sources) be given by both a magnetic scalar potential and vector

potential is: −
√
det g(3)g(3)ab

∂ψ

∂xb
= εabc

∂Ac

∂xb
. (3.4.10)

Using the stationary
√

Kerr vector potential, one may use this to explicitly compute the associated magnetic

scalar potential. Doing so gives:
ψ =

q

4π

a cos θ

r2 + a2 cos2 θ
. (3.4.11)

Defining ~a = a~ez, in oblate-spheroidal coordinates we have the identity:

|~x− i~a| = r − ia cos θ. (3.4.12)

Consequently, the stationary
√

Kerr particle is equivalently defined [265] by producing the electric and

magnetic scalar potentials or electric and magnetic fields given by:

φ+ iψ =
q

4π|~x− i~a|
=⇒ ~E + i ~B = −∇

(
q

4π|~x− i~a|

)
. (3.4.13)

3.4.2 Mechanical Properties of the Stationary Root-Kerr Solution

Consider a surface of constant r = R for integration. If we take R → ∞ this becomes the spatial

boundary. The surface area element is:

d~A = (r2 + a2) sin θ~erdθdϕ. (3.4.14)

Then, by Gauss’ law the total charge of the
√

Kerr particle is given by:∫
S
ρd3~x =

∫
∂S
~E · d~A = lim

R→∞

∫ π

0

∫ 2π

0

q

4π

R2 − a2 cos2 θ

(R2 + a2 cos2 θ)2
(R2 + a2) sin θdϕdθ = q (3.4.15)

confirming our consistent use of the symbol q for the total charge of the distribution.
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The magnetic dipole moment of a charge distribution is by definition:

~µ =
1

2

∫
S
~x× ~Jd3~x. (3.4.16)

Because the distribution is stationary, rewriting ~J = ∇× ~B and integrating by parts sufficiently many times

this is equivalently:
~µ = −3

2

∫
∂S
~A× d~A. (3.4.17)

With the same surface of constant r = R:

~µ = −3

2
lim

R→∞

∫ π

0

∫ 2π

0

qa

4π

R

R2 + a2 cos2 θ2
~eϕ × ~er sin θdϕdθ = q~a. (3.4.18)

So, ~a is the magnetic dipole moment per unit charge.

Like for a point charge, the total energy in the electromagnetic field for this system is divergent. To

regulate this instead of integrating all the way down to r = 0 for the total energy, we integrate down to a

cutoff r = ε. Then, the total energy is:

E =

∫
S

| ~E|2 + | ~B|2

2
d3~x =

q2

16πε

(
1 +

a

ε
arctan

(a
ε

)
+
ε

a
arctan

(a
ε

))
. (3.4.19)

The Poynting vector for the particle is:

~℘ = ~E × ~B =
q2

16π2

a~eϕ
(r2 + a2 cos2 θ)3

. (3.4.20)

This leads to the total linear momentum:

~p =

∫
S
~℘d3~x = 0. (3.4.21)

So, the stationary
√

Kerr fields given are in fact in the center of momentum frame. Consequently, the energy

found before is the invariant mass of the distribution:

m =
q2

16πε

(
1 +

a

ε
arctan

(a
ε

)
+
ε

a
arctan

(a
ε

))
. (3.4.22)

The Poynting vector we found leads to the total angular momentum (which because we are in the center

of momentum frame is the spin angular momentum):

~S =

∫
S
~x× ~℘d3~x =

q2

16πε

(
1 +

a

ε
arctan

(a
ε

)
+

2ε

a
arctan

(a
ε

)
− ε2

a2
+
ε3

a3
arctan

(a
ε

))
~a. (3.4.23)

While both the spin and the mass of the solution are divergent in ε, their ratio has a finite ε to 0 limit.

Therefore, the physical value of the ratio of the spin to the mass is:

~S

m
= ~a. (3.4.24)

Immediately it follows that for this distribution:

~µ =
q

m
~S. (3.4.25)
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Thus, the
√

Kerr particle has a gyromagnetic ratio of exactly 2.

3.4.3 Charge and Current density

The electric and magnetic fields as well as scalar and vector potential given diverge whenever r2 +

a2 cos2 θ = 0 and nowhere else. For r > 0 the potentials and their derivatives are continuous and so there are

no surface charges or currents for r > 0. Because the divergence of the right hand side in (3.4.8) is 0 away

from any poles, there is no charge density for r > 0. Because the curl of the right hand side in (3.4.9) is 0

away from any poles, there is no current density for r > 0. Consequently, the source for the
√

Kerr particle

must only have support for r = 0. For r = 0 the oblate spheroidal coordinates reduce to the disk in the

xy plane with center at the origin and radius a. In order to approach this disk from above we must take

r → 0 with θ < π
2 and in order to approach from below we must take r → 0 with θ > π

2 . It is useful to define

the coordinate χ = θ for z > 0 and χ = π − θ for z < 0. This way, two points approaching the disk, one

from above and one from below, will limit to the same point in space when their limiting values of χ and ϕ

coincide. The disk is then parameterized by the coordinates χ and ϕ by:

x = a sinχ cosϕ, y = a sinχ sinϕ, z = 0. (3.4.26)

We can also use the cylindrical radial coordinate r =
√
x2 + y2 = a sinχ.

The surface charge density inside the disk is given by:

σdisk = ~ez · ( ~E(0, χ, ϕ)− ~E(0, π − χ, ϕ)) = − qa

2π(a2 − r2)
3
2

. (3.4.27)

We can integrate this from χ = 0 to χ = π
2 − ε to get the total charge inside the disk:

Qdisk =

∫
disk

σdiskdA = q

(
1− 1

sin ε

)
. (3.4.28)

The surface charge density cannot be extended all the way to the ring at χ = π
2 as it has a nonintegrable

divergence. We know from before that the total charge of the distribution is q and so there must be a charged

ring at χ = π
2 so that the total charge between this ring and the disk is q. This ring is precisely the ring on

which r2 + a2 cos2 θ = 0 and so where the potentials and fields are divergent. The charge density on the ring

must be azimuthally symmetric because the fields are. So:

q = Qdisk +Qring = q − q

sin ε
+

∫ 2π

0

λringadϕ =⇒ λring =
q

2πa sin ε
. (3.4.29)

Thus the total charge density of the stationary
√

Kerr particle is:

ρ = − qa

2π(a2 − r2)
3
2

δ(z)ϑ(a cos ε− r) +
q

2πa sin ε
δ(z)δ(r− a). (3.4.30)
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The surface current density inside the disk is:

~Kdisk = ~ez × ( ~B(0, χ, ϕ)− ~B(0, π − χ, ϕ)) = σdisk
r
a
~ιϕ (3.4.31)

where ~ιϕ is the unit vector in the direction of ~eϕ. This is precisely the surface current density produced by

rigidly rotating the surface charge density of the disk with angular velocity ~ω given by:

~ω =
1

a
~ez. (3.4.32)

Rotating the ring with this same angular velocity produces a current in the ring of:

~Iring = λring~ιϕ =
q

2πa sin ε
~ιϕ. (3.4.33)

These currents produce a magnetic dipole moment:

~µ =
1

2

∫
disk

~x× ~KdiskdA+
1

2

∫
ring

~x× ~Iringds = q~a

(
1− 1

2
sin ε

)
. (3.4.34)

In the ε→ 0 limit this produces exactly the magnetic dipole moment we found before. Therefore, the current

density for the stationary
√

Kerr distribution is:

~J = ρ
~a× ~x

a2
(3.4.35)

and the stationary
√

Kerr particle is exactly a charged disk and ring with the charge distribution given by

equation (3.4.30) and rotating with the angular velocity 1
a about the central axis of the disk. These charge

and current densities are precisely analogous to the mass density and energy-momentum tensor found in

Ref. [263] for a stationary Kerr black hole.

3.4.4 Stationary Multipole Moments

We can now compute the Kn moments explicitly for a stationary
√

Kerr particle:

Ka1...an0
n =

∫
S
xa1 ...xanρ(~x)d3~x, Ka1...anb

n =

∫
S
xa1 ...xanJb(~x)d3~x. (3.4.36)

By using (3.4.35), we find immediately:

Ka1...anb
n =

1

a2
εbcda

cKda1...an0
n+1 (3.4.37)

and so only the multipole moments of ρ need to be computed in order to determine the moments of the full

distribution. Further, due to the full symmetrization of Ka1...an0
n , for an arbitrary 3-vector ka:

Ka1...an0
n =

1

n!

∂n

∂ka1 ...∂kan

(
Kb1...bn0

n kb1 ...kbn
)
. (3.4.38)

The charge density of the
√

Kerr particle is localized to the xy plane and is rotationally symmetric about

the z axis. So, it can be written as:
ρ(~x) = σ(r)δ(z) (3.4.39)
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where in particular for
√

Kerr :

σ(r) = − qa

2π(a2 − r2)
3
2

ϑ(a cos ε− r) +
q

2πa sin ε
δ(r− a). (3.4.40)

Then:
Ka1...an0

n ka1 ...kan = (k2x + k2y)
n
2

∫ 2π

0

cosn ϕdϕ

∫ ∞

0

σ(r)rn+1dr. (3.4.41)

If n is odd the azimuthal integral gives 0, so we only need to consider even n. For even n the azimuthal

integral is:
∫ 2π

0

cos2n ϕdϕ = 2π
(2n)!

4nn!2
. (3.4.42)

With the integration variable x = 1
a

√
a2 − r2 the radial integral becomes:∫ ∞

0

σ(r)r2n+1dr =
qa2n

2π

(
1 +

∫ 1

sin ε

1− (1− x2)n

x2
dx

)
. (3.4.43)

Here it is safe to take the ε→ 0 limit to give:∫ ∞

0

σ(r)r2n+1dr =
qa2n

2π

4nn!2

(2n)!
. (3.4.44)

Thus the nonzero Kn moments become:

Ka1...a2n0
2n va1

...va2n
= q|~a× ~v|2n (3.4.45)

K
a1...a2n+1b
2n+1 va1 ...va2n+1 = q|~a× ~v|2n(~a× ~v)b. (3.4.46)

3.4.5 Dynamical Multipole Moments

Now we return the Kn moments to the definition of the reduced multipole moments. For a generic body

allowed to respond to external fields, the multipole moments will in general depend on those external fields

and so the general moments in external fields cannot be fully determined from the stationary moments. It is

unclear at this time what is the appropriate response for a
√

Kerr body to external fields. So, for an exact

dynamical
√

Kerr body:
Ka1...anb

n = Ka1...anb
n stat +O(F) (3.4.47)

where Ka1...anb
n stat are the Kn moments we found for a stationary

√
Kerr particle. To express the reduced

moments it is useful to define the projector ⊥µ
ν which projects 4-vectors into the plane of the disk:

⊥µ
ν = δµν + uµuν − âµâν . (3.4.48)

We also write kµ⊥ as a shorthand for kµ⊥ =⊥µ
νk

ν and k⊥ without an index as a shorthand for
√

|kµ ⊥µ
νkν |.

Using the definition of the reduced multipole moments for arbitrary 4-vectors kµ and vµ we find:

kλ1
...kλ2n

vµm
λ1...λ2nµ
2n = qa2nk2n⊥ u · v − qa2nk2n−2

⊥ (u · k)(k⊥ · v) +O(F) (3.4.49)

kλ1 ...kλ2n+1vµm
λ1...λ2n+1µ
2n+1 = qa2nk2n⊥ εµνρσu

µaνkρvσ +O(F). (3.4.50)
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Returning these to (3.3.35), we find:

Qρ1...ρ2nµν
2n ∂2nρ1...ρ2n

Fµν =
q

(2n+ 1)!
a2n∂2n⊥

?Fµνa
µuν +O(F2) (3.4.51)

Qρ1...ρ2n+1µν
2n+1 ∂2n+1

ρ1...ρ2n+1
Fµν = − q

(2n+ 2)!
a2n+2∂2n⊥ ∂µ⊥Fµνu

ν +O(F2). (3.4.52)

With the definition of Qn, these produce the dynamical mass function:

M = m+ q
sinh(a∂⊥)

a∂⊥
?Fµνa

µuν + q
1− cosh(a∂⊥)

∂2⊥
∂µ⊥Fµνu

ν +O(F2). (3.4.53)

There is no subtlety in defining the square root or inverse of the differential operator here because once the

trigonometric functions are series expanded only positive even powers of ∂⊥ survive. We will see later that for
√

Kerr particles, at least at low orders in spin, the squared dynamical mass function M2 may be a simpler

object when O(F)2 operators are considered. So, going forward we will express the dynamical mass function

as: M2 = m2 + 2mq
sinh(a∂⊥)

a∂⊥
?Fµνa

µuν + 2mq
1− cosh(a∂⊥)

∂2⊥
∂µ⊥Fµνu

ν +O(F2). (3.4.54)

This
√

Kerr dynamical mass function is our primary result for electromagnetism. When acting on a field

strength which in the neighborhood of the body is a vacuum solution (∂νFµν = 0) of Maxwell’s equations,

this reduces to:

M2 = m2 + 2mq
sin(a∆)

a∆
?Fµνa

µuν + 2mq
1− cos(a∆)

(a∆)2
(a · ∂)Fµνa

µuν +O(F2) (3.4.55)

where the ∆ differential operator is defined by:

a∆ =
√
(a · ∂)2 − a2(u · ∂)2. (3.4.56)

Again there is no subtlety in defining the square root or inverse of the differential operator. In general

(3.4.55) and (3.4.54) are not equivalent, however we show that for computing Compton amplitudes they are

interchangeable.

The dynamical mass function in (3.4.55) very nearly matches the couplings in Ref. [145] (if the analysis

done there for gravity is done for electromagnetism). In particular, phrased as a dynamical mass function,

the couplings in Ref. [145] determine:

M2 = m2 + 2mq
sin(a · ∂)
a · ∂

?Fµνa
µuν + 2mq

1− cos(a · ∂)
a · ∂

Fµνa
µuν +O(F2) (3.4.57)

Equation (3.4.55) becomes this result with the replacement:

a∆ → a · ∂. (3.4.58)

The (u · ∂) terms present in a∆ do not contribute to the three point amplitude and so a∆ and a · ∂ are

indistinguishable in a three point matching calculation. For this reason, the analyses of Refs. [58, 59] were

insensitive to the couplings on terms of the form S2n(u · ∂)2nF··. The first of such terms is present in Ref. [79]
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with an undetermined Wilson coefficient. Similarly, in Ref. [145] (u · ∂) are not considered because if one uses

the equations of motion in the action, they can be shuffled into order F2 terms. One can see this quickly on

the lowest order such term, for example:

ea2(u · ∂)2?Fµνa
µuν = a2aµuνuρżσ∂σ∂ρ

?Fµν +O(F2) (3.4.59)

=
d

dλ

(
a2aµuνuρ∂ρ

?Fµν

)
− d

dλ
(a2aµuνuρ)∂ρ

?Fµν +O(F2) (3.4.60)

=
d

dλ

(
a2aµuνuρ∂ρ

?Fµν

)
+O(F2). (3.4.61)

For three-point amplitudes, (3.4.54), (3.4.55), and (3.4.57) are interchangeable. For Compton amplitudes,

(3.4.54) and (3.4.55) are interchangeable but distinct from (3.4.57). The worldline evolution of all three are

distinct. Importantly, by the definition of Dixon’s moments (3.3.30) holds for any test function vector field

Aα(X), not only the physically relevant vector potential and that it holds without using the solution to

the equations of motion. We have shown that for a
√

Kerr particle the only dynamical mass function for

which (3.3.30) holds without using the electromagnetic MPD equations is (3.4.54). If one shuffles away (u · ∂)

operators in favor of F2 so that the linear in F dynamical mass function is given by (3.4.57), then (3.3.30)

will not be true identically. In this sense, the advantage of (3.4.54) is that it uniquely provides at each λ the

physically correct multipole moments for
√

Kerr .

3.5 Electromagnetic Compton Amplitude
In this section we formally compute the

√
Kerr Compton amplitude to all orders in spin up to contact

terms. Those contact terms are determined by F2 operators in the dynamical mass function which the

multipole analysis is insensitive to. We begin by computing a formal expression for the all orders in spin

Compton amplitude for a generic charged spinning body in terms of the dynamical mass function. Next we

consider that generic Compton amplitude explicitly to order S3. At O(S1) there is a single Wilson coefficient

in the action and it can be determined by matching the O(S1) three-point amplitude or Compton amplitude.

At O(S2) there are 5 new Wilson coefficients in the action. One of them can be determined by matching the

O(S2) three-point amplitude while the other 4 can be determined uniquely by matching the O(S2) Compton

amplitude. At O(S3) there are 8 new Wilson coefficients in the action. One of them can be determined by

matching the O(S3) three-point amplitude while the other 7 appear only as contact terms in the Compton

amplitude. Among those 7, there are only 6 linearly independent structures appearing in the O(S3) Compton

amplitude, and so there is one linear combination of Wilson coefficients that the Compton amplitude is

independent of at this order in spin.

Once we have the results for a generic body through O(S3), we specialize our interest to
√

Kerr .

Requiring the exponentiation of spin structure as found in Ref. [53] through O(S2) for the helicity-preserving
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amplitude (which develops a spurious pole starting at O(S3)) and through O(S3) for the helicity-reversing

amplitude (which has no such spurious pole) fixes all Wilson coefficients through O(S2) and 4 of the 8 new

operators at O(S3). Alternatively, requiring the helicity-preserving amplitude to have the shift-symmetry

described in Refs. [173, 101, 179, 180] through O(S3) fixes 3 of the 8 new operators at O(S3). The spin-

exponentiation and shift-symmetry are consistent with each other, and together fix 6 of the 8 new operators

at O(S3) (as they share one redundant condition). The dynamical mass function (3.4.55) determines 2

Wilson coefficients at O(S3), one of which is fixed by the three-point amplitude and the other of which is

independent of and consistent with both spin-exponentiation and shift-symmetry. Together then Dixon’s

multipole moments, spin-exponentiation, and shift-symmetry fix 7 of the 8 Wilson coefficients at O(S3),

which is the maximum amount possible by using the Compton amplitude (due to the presence of a linearly

independent combination of Wilson coefficients that the amplitude is independent of).

3.5.1 Formal Classical Compton

We consider Compton scattering of an incoming photon with polarization E1 and momentum k1 off of

a massive spinning charged body with initial momentum mv (v · v = −1) and initial spin s to an outgoing

photon with polarization E2 and momentum k2 and perturbed massive body. For a plane wave vector potential

with strength ε:

Aµ(X) = εEµeik·x, Fµν(X) = εfµνe
ik·x, fµν = ikµEν − ikνEµ. (3.5.1)

Because the tree level Compton amplitude is O(q2), it depends only on the O(q) and O(q2) pieces of

the dynamical mass function. Consequently, we will only be concerned with operators in M which are linear

or quadratic in F and so we consider an M of the form:

M2(z, u, S) = m2 + qδM2
1(z, u, S) + q2δM2

2(z, u, S) +O(q3F3) (3.5.2)

where δM2
1 is of the form:

δM2
1(z, u, S) =

∞∑
n=0

T ρ1...ρnµν
n (u, S)∂nρ1...ρn

Fµν(z) (3.5.3)

for some functions T ρ1...ρnµν
n (u, S) satisfying:

T ρ1...ρnµν
n = T (ρ1...ρn)[µν]

n (3.5.4)

and δM2
2 is of the form:

δM2
2(z, u, S) =

∞∑
n=0

∞∑
l=0

V
ρ1...ρnµν|κ1...κlτω
nl (u, S)∂nρ1...ρn

Fµν(z)∂
l
κ1...κl

Fτω(z) (3.5.5)
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for some functions V ...
nl (u, S) satisfying:

V
ρ1...ρnµν|κ1...κlτω
nl = V

(ρ1...ρn)[µν]|(κ1...κl)[τω]
nl (3.5.6)

V
ρ1...ρnµν|κ1...κlτω
nl = V

κ1...κlτω|ρ1...ρnµν
ln (3.5.7)

Maxwell’s equations together with the flat space electromagnetic MPD equations with the described

initial conditions will produce solutions of the form:

zµ(λ) = vµλ+ qεδzµ(λ) +O(q2) (3.5.8)

pµ(λ) = mvµ + qεδpµ(λ) +O(q2) (3.5.9)

Sµ(λ) = sµ + qεδSµ(λ) +O(q2) (3.5.10)

Jµ(X) = qJµ
stat(X) + q2εδJ(X) +O(q3) (3.5.11)

Aµ(X) = εE1µeik·x + qAstat
µ (X) + q2εδAµ(X) +O(q3) (3.5.12)

where qJµ
stat is the current density produced by the stationary spinning body in the absence of the incoming

photon (ε → 0) and qAstat
µ is the (Lorenz gauge) vector potential produced by that current density. The

equation of motion perturbations will be oscillatory from solving the electromagnetic MPD equations. In

particular, their solutions take the form:

δzµ = δz̃µeik1·vλ, δuµ = δũµeik1·vλ, δSµ = δS̃µeik1·vλ (3.5.13)

for constant vectors δz̃, δũ, δS̃. (δp is determined from δu and δM2
1 because pµ = Muµ.)

The O(q2ε) piece of the vector potential, δAµ, determines the linear in ε outgoing electromagnetic field

and thus determines the tree level Compton amplitude. From the Lorenz-gauge Maxwell equation, δAµ

satisfies: −∂2δAµ = δJµ (3.5.14)

and limits to 0 in the asymptotic past (when the appropriate iε is used for the oscillatory solutions). Therefore,

it is determined by the delayed Green’s function solution to the wave equation and given by:

δAµ(X) =

∫
S

δJµ(t− |~x− ~x ′|, ~x ′)

4π|~x− ~x ′|
d3~x ′ (3.5.15)

where:
t = −v · x, ~xµ = xµ + vµv · x. (3.5.16)

Thus, δA is determined by δJ . The current perturbation is determined by the equation of motion perturbations

δz, δp, δS. From (3.2.16) we may identify:

Qρ1...ρnµν
n =

q

2m

(
1− qδM2

1

2m2

)
T ρ1...ρnµν
n +

q2

m

∞∑
l=0

V
ρ1...ρnµν|κ1...κlτω
nl ∂lκ1...κl

Fτω +O(F2). (3.5.17)
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Define the Fourier transform of the current:

J̃µ(k) =

∫
e−ik·x

(2π)2
Jµ(X)d4X. (3.5.18)

In terms of the Qn the exact Fourier transform of Jµ(X) is:

J̃µ(k2) =

∫ ∞

−∞

(
qżµ + 2

∞∑
n=0

(−i)n+1Qρ1...ρnµν
n k2ρ1

...k2ρn
k2ν

)
e−ik2·z

(2π)2
dλ (3.5.19)

For a plane wave vector potential it is useful to introduce the function:

N (u, S, k, E) =
∞∑

n=0

in

2m
T ρ1...ρnµν
n (u, S)kρ1

...kρn
fµν (3.5.20)

so that if we evaluate δM2
1 on a plane wave vector potential:

δM2
1

∣∣
plane wave = 2mεN (u, S, k, E)eik·z. (3.5.21)

Similarly, for a pair of plane waves it is useful to introduce the function:

P(u, S, k, E , k′, E ′) =

∞∑
n=0

∞∑
l=0

il−n

m
V

ρ1...ρnµν|κ1...κlτω
nl (u, S)k′ρ1

...k′ρn
f ′∗µνkκ1

...kκl
fτω. (3.5.22)

As a shorthand, we write:

N1 = N (v, s, k1, E1), N2 = N (v, s, k2, E2), P12 = P(v, s, k1, E1, k2, E2). (3.5.23)

Expanding the definition of the Qn moments and returning the result to the Fourier transform of the current

produces:
δJ̃µ(k2) = Hµ(k2)

δ(k1 · v − k2 · v)
2π

(3.5.24)

where:

Hµ(k2) =− ik2 · δz̃vµ + ik2 · vδz̃µ + 2

∞∑
n=0

(−i)n+1δQ̃ρ1...ρnµν
n k2ρ1

...k2ρn
k2ν (3.5.25)

δQ̃ρ1...ρnµν
n =

1

2m

(
−N1

m
+ δũσ

∂

∂vσ
+ δS̃σ ∂

∂sσ

)
T ρ1...ρnµν
n (v, s)

+

∞∑
l=0

il

m
V

ρ1...ρnµν|κ1...κlτω
nl k1κ1

...k1κl
f1τω. (3.5.26)

Returning our current perturbation to δA produces:

δAµ =
eiω(r−t)

4πr
Hµ(k2) +O

(
1

r2

)
(3.5.27)

where

r =
√
x2 + (x · v)2, nµ = vµ +

xµ + (x · v)vµ

r
, ω = −k1 · v, kµ2 = ωnν . (3.5.28)

Therefore, the canonically normalized Compton amplitude is:

Acanonical = E∗
2µH

µ(k2). (3.5.29)
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The covariant (Feynman) normalized Compton amplitude can be obtained by multiplying by the usual factor

of
√
(2E1)(2E2). Because the calculation is performed in the classical limit and in a frame in which the initial

body is at rest, this normalization factor simply becomes 2m. Thus:

A = 2mE∗
2µH

µ(k2). (3.5.30)

Expanding the electromagnetic MPD equations to linear order in ε produces the solutions:

δũµ =
−ifµν1 vν
mk1 · v

− N1

m

(
vµ +

kµ1
k1 · v

)
(3.5.31)

δS̃µ =vµδũ · s− i

k1 · v
εµνρσvνsρ

∂N1

∂sσ
(3.5.32)

δz̃µ =
−i
k1 · v

(
δũµ +

δµα + vµvα
m2

?fαβ1 sβ +
ηµν + vµvν

m

∂N1

∂vν

+
sµ

m
vν
∂N1

∂sν
+

i

m2
N1ε

µνρσvνsρk1σ

)
. (3.5.33)

Simplifying the Compton amplitude allows it to be expressed in terms of these solutions as:

A = 2m

(
f∗2µνδz̃

µvν + ik2 · δz̃N ∗
2 − δũσ

∂N ∗
2

∂vσ
− δS̃σ ∂N ∗

2

∂sσ
+

N1N ∗
2

m
− P12

)
. (3.5.34)

This gives the formal tree-level electromagnetic Compton amplitude for an arbitrary dynamical mass function.

Using either the dynamical mass function in (3.4.54) or in (3.4.55) determines the N function to be:

N (u, S, k, E) =
sin
(

1
m

√
S2(u · k)2 − (S · k)2

)
√
S2(u · k)2 − (S · k)2

?fµνS
µuν

+ ik · S
1− cos

(
1
m

√
S2(u · k)2 − (S · k)2

)
S2(u · k)2 − (S · k)2

fµνS
µuν (3.5.35)

however the multipole analysis is unable to determine the P function. Thus, this determines the Compton

amplitude through equations (3.5.31)-(3.5.34) up to contact terms. Because the electromagnetic Compton

amplitude only depends on the linear in F dynamical mass function through the N function and (3.4.54)

and (3.4.55) determine the same N function, they are interchangeable for Compton amplitudes.

3.5.2 Compton Amplitude through Spin Cubed

In this subsection we explicitly compute the Compton amplitude for a generic dynamical mass function

through order O(S3). Requiring a match to the spin-exponentiated result for a
√

Kerr particle fixes all

Wilson coefficients on F1 and F2 operators through O(S2). The implied values of the Wilson coefficients

on F1 operators match those determined by (3.4.55). For the helicity-conserving Compton amplitude, the

spin-exponentiation cannot be continued past O(S2) due to spurious poles. However, the helicity-reversing

Compton amplitude has a perfectly healthy exponentiation at O(S3). The helicity-conserving amplitude can

instead be required to satisfy the shift symmetry at O(S3) (which is automatic for lower orders which satisfy
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spin-exponentiation). We find that at O(S3) requiring spin-exponentiation for the helicity-reversing Compton

and shift symmetry for the helicity-conserving Compton are consistent with each other and consistent with

(3.4.55). However, we find that these three requirements still leave one remaining free parameter in the

O(F2S3) piece of the dynamical mass function.

We consider only effects in the dynamical mass function which introduce no additional length scales

beyond S
m . Consequently, we only consider terms for which the number of powers of spin equals the number

of derivatives on the vector potential(s). As well, we only consider terms which are parity symmetric and not

proportional to the field equations (no ∂νFµν or ∂2Fµν terms). (Terms proportional to ∂νFµν or ∂2Fµν do

not contribute to the electromagnetic Compton amplitude because they evaluate to 0 in the N function.)

The most general such δM2
1 to order S3 is:

δM2
1 = 2C1

?FµνS
µuν +

C2

m
(S · ∂)FµνS

µuν

− C3

3m2
(S · ∂)2?FµνS

µuν +
E3

3m2
S2(u · ∂)2?FµνS

µuν +O(S4) (3.5.36)

for some Wilson coefficients C1, C2, C3, E3. The most general such δM2
2 to order S3 is:

δM2
2 =

D2a

m2
(FµνS

µuν)2 +
D2b

m2
(?FµνS

µuν)2 +
D2c

m2
S2FµνFµν +

D2d

m2
S2uµFµνFνρuρ

+
D3a

m3
?FµνS

µuν(S · ∂)FρσS
ρuσ +

D3b

m3
S2?Fµνuµ∂νFρσS

ρuσ

+
D3c

m3
S2?Fµνuµ(S · ∂)Fνρu

ρ +
D3d

m3
S2?FµνSµ(u · ∂)Fνρu

ρ

+
D3e

m3
?FµνSµ(S · ∂)FνρS

ρ +
D3f

m3
S2?Fµν(S · ∂)Fµν +O(S4) (3.5.37)

for some Wilson coefficients D2a, D2b, D2c, D2d for quadratic-in-spin terms and D3a, D3b, D3c, D3d, D3e,

D3f for cubic in spin. These lead to the N and P functions:

N =
C1

m
?fµνS

µuν +
iC2

2m2
k · SfµνSµuν +

C3

6m3
(k · S)2?fµνSµuν − E3

6m3
S2(k · u)2?fµνSµuν , (3.5.38)

P =
D2a

m3
f ′∗µνS

µuνfρσS
ρuσ +

D2b

m3
?f ′∗µνS

µuν?fρσS
ρuσ +

D2c

m3
S2f ′∗µνf

µν +
D2d

m3
S2uµf ′∗µνf

νρuρ

+
iD3a

2m4
?f ′∗µνS

µuν(S · k)fρσSρuσ − iD3a

2m4
?fµνS

µuν(S · k′)f ′∗ρσSρuσ

+
iD3b

2m4
S2?f ′∗µνu

µkνfρσS
ρuσ − iD3b

2m4
S2?fµνu

µk′νf ′∗ρσS
ρuσ

+
iD3c

2m4
S2?f ′∗µνuµ(S · k)fνρuρ −

iD3c

2m4
S2?fµνuµ(S · k′)f ′∗νρuρ

+
iD3d

2m4
S2?f ′∗µνSµ(u · k)fνρuρ −

iD3d

2m4
S2?fµνSµ(u · k′)f ′∗νρuρ

+
iD3e

2m4
?f ′∗µνSµ(S · k)fνρSρ − iD3e

2m4
?fµνSµ(S · k′)f ′∗νρSρ

+
iD3f

2m4
S2?f ′∗µν(S · k)fµν − iD3f

2m4
S2?fµν(S · k′)f ′∗µν . (3.5.39)

We find it advantageous to express our results for the Compton amplitude in a basis of definite-
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helicity/circularly polarized/(anti-)self-dual states for the incoming and outgoing electromagnetic waves, or

“photons,” while manifesting special covariance and gauge invariance (ultimately). For concreteness (initially),

we can work in a particular Lorentz frame, associated to inertial Cartesian coordinates xµ = (t, x, y, z), such

that the charged massive spinning particle’s initial velocity v and the two photon wavevectors, k1 incoming

and k2 outgoing (both future-pointing), are given by

vµ = (1, 0, 0, 0), kµ1 = ω(1, 0, 0, 1), kµ2 = ω(1, sin θ, 0, cos θ). (3.5.40)

Then θ is the photon scattering angle in the z-x-plane, and ω = −v · k1 = −v · k2 is the waves’ angular

frequency. The “momentum transfer” (per ~) q = k2 − k1 squares to

q2 = (k2 − k1)
2 = −2k1 · k2 = 2ω2(1− cos θ) = 4ω2 sin2

θ

2
, (3.5.41)

vanishing at forward scattering, θ = 0. In choosing a particular basis of definite-helicity (complex null)

polarization vectors, E1± incoming, E2± outgoing, with kn · En± = 0 = E2
n±, it is natural to fix the gauge

freedom En → En+αkn by imposing v ·E = 0. Up to little group transformations (E → e2iϕE), this determines

Eµ
1σ1

=
1√
2
(0, 1, iσ1, 0) , Eµ

2σ2
=

1√
2
(0, cos θ, iσ2,− sin θ) , (3.5.42)

for helicities σ1 = ±1 and σ2 = ±1, with complex conjugates E∗µ
n± = Eµ

n∓, normalized as Enσn
· E∗

nσn
= 1.

This frame (3.5.40) and polarization basis (or gauge) (3.5.42) are just as in [247] and in [185]. The spinless

Compton amplitude is given simply by the contraction of the ingoing and conjugate-outgoing polarization

vectors (only) in this v · E = 0 gauge:

A(0)
σ1σ2

= −2E1σ1 · E∗
2σ2

= −σ1σ2 − cos θ. (3.5.43)

In analyzing the helicity-preserving amplitudes A±± ∝ Eµ
1±E∗ν

2±, it is useful to define as in [22]1 a complex

null vector w orthogonal to both k1 and k2. The conditions w2 = k1 · w = k2 · w = 0 determine w up to an

overall normalization, which we fix by setting v · w = −ω, and up to a binary choice of branch (w ∝ |1〉[2|

or w ∝ |2〉[1|) to be correlated with the photons’ helicities. For our ++ (or −−) case, the appropriate w is

given by

wµ =
ω

4ω2 − q2

(
2ω(kµ1 + kµ2 )− q2vµ − 2iεµνρσv

νkρ1k
σ
2

)
(3.5.44)

(or the complex conjugate w∗µ). In the frame of (3.5.40),

wµ = ω
(
1, tan

θ

2
, i tan

θ

2
, 1
)
, (3.5.45)

noting 4ω2 − q2 = 4ω2 cos2 θ
2 along with (3.5.41). The complex null direction ∝ w provides an alternative

1In [22] as in most Amplitudes literature, our helicity-preserving amplitudes A±± ∝ Eµ
1+E±ν

2+ are called “opposite-helicity
amplitudes A±∓”, while our helicity-reversing amplitudes A±∓ ∝ Eµ

1±E∗ν
2∓ are called “same-helicity amplitudes A±±”, due to

differing conventions (essentially kn ↔ −kn entailing σn ↔ −σn).
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(+)-helicity polarization direction for the incoming k1 photon, as well as an alternative conjugate (+)-helicity

polarization direction for the outgoing k2 photon. We see that we can recover the normalized orthogonal-to-v

polarization vectors E1+ and E∗
2+ of (3.5.42) from w via En → En + αkn shifts and rescalings:

Eµ
1+ =

wµ − kµ1√
2ω tan θ

2

, E∗µ
2+ =

kµ2 − wµ

√
2ω tan θ

2

, (3.5.46)

As in [179] (modulo conventions), let us define the vectors

ǩµ1 = kµ1 − wµ, ǩµ2 = kµ2 − wµ, (3.5.47)

proportional to those in (3.5.46), which, along with w as in (3.5.44), provide a relatively compact way to

express the ++ Compton amplitude.

The complex field-strength amplitudes f±µν = 2ik[µE
±
ν] are invariant under E → E + αk, they transform

under the little groups like the Es, and they are self-dual (or anti-self-dual),

?f±µν =
1

2
εµν

κλf±κλ = ±if±µν , (3.5.48)

for states of helicity +1 (or −1), while the complex conjugates are reversed: ?f±∗
µν = ∓if±∗

µν . For one way to

see this, we can construct f+1µν from the E+
1µ of (3.5.42), using (3.5.46) with (3.5.44),

f+1µν = 2ik1[µE
+
1ν] =

√
2i

ω tan θ
2

k1[µwν] (3.5.49)

=

√
2i

ω2 sin θ
k1[µ

(
vν](k1 · k2) + ωk2ν] − iεν]ραβv

ρkα1 k
β
2

)
=

√
2i

ω2 sin θ

(
δ[µ

αδν]
β − i

2
εµν

αβ
)
k1α
(
vβ(k1 · k2) + ωk2β

)
=

√
2i

ω2 sin θ
2+Gµν

αβk1α2v[βk2γ]k
γ
1 ,

where we have used 0 = 5k1[µενραβ]v
ρkα1 k

β
2 = 2k1[µεν]ραβv

ρkα1 k
β
2 −εµναβkα1 (vβ(k1 ·k2)+ωk

β
2 ) = 2k1[µεν]vk1k2

−

εµναβk
α
1 2v[βk

γ]
2 k1γ and 2 tan θ

2 cos
2 θ

2 = sin θ, and where we recognize the (anti-)self-dual ((A)SD) projector,

±Gµν
κλ =

1

2
δ[µ

κδν]
λ ∓ i

4
εµν

κλ = ±Gµν
αβ±Gαβ

κλ = ∓i ?±Gµν
κλ, (3.5.50)

which maps a 2-form (or any tensor) Aµν onto its (A)SD part ±Aµν :

±Aµν = ±Gµν
κλAκλ =

1

2

(
A[µν] ∓ i ?A[µν]

)
, ?±Aµν = ±i±Aµν . (3.5.51)

Note the useful identity ±Gµν
(α

ρ
±Gκλ

β)ρ =
1

4
±Gµνκλg

αβ , (3.5.52)

or ±Gµν(α
γ ±Aβ)γ = 1

4
±Aµνgαβ and thus ±Gµν

ρσpσ
±Aρτp

τ = 1
4p

2 ±Aµν , following from the double Levi-Civita

identity εαβγδε
µνρσ = −24δα

[µδβ
νδγ

ρδδ
σ] and δω

[λδα
µδβ

νδγ
ρδδ

σ] = 0. Collecting (3.5.49) along with its
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conjugate outgoing versions, also following from (3.5.44) and (3.5.46), we have

f+1µν = +2ik1[µE
+
1ν] =

4
√
2i

ω2 sin θ
+Gµν

αβk1αv[βk2γ]k
γ
1 =

√
2i

ω tan θ
2

k1[µwν] ,

f+∗
2µν = −2ik2[µE

+∗
2ν] =

4
√
2i

ω2 sin θ
−Gµν

αβk2αv[βk1γ]k
γ
2 =

√
2i

ω tan θ
2

k2[µwν] ,

f−∗
2µν = −2ik2[µE

−∗
2ν] =

4
√
2i

ω2 sin θ
+Gµν

αβk2αv[βk1γ]k
γ
2 =

√
2i

ω tan θ
2

k2[µw
∗
ν] , (3.5.53)

noting w∗µ = −wµ + ω
2ω(k1 + k2)

µ − q2vµ

4ω2 − q2
and

ω2 sin θ =

√
4ω4 sin2

θ

2
cos2

θ

2
=
q2

4
(4ω2 − q2) = −εµvk1k2εµ

vk1k2 ∝ [12]〈12〉[2|v|1〉[1|v|2〉. (3.5.54)

In simplifying the helicity-basis Compton amplitudes A+± ∝ f+1µνf
±∗
2αβ , the (A)SD properties ?f+1µν =

+if1µν and ?f±∗
2µν = ∓if±∗

2µν can be used immediately within (before differentiation of) the N (f) and P(f, f ′)

functions in (3.5.38). These functions completely determine the amplitudes via (3.5.31)–(3.5.34). They can

finally be evaluated directly in terms of the complex null wµ(k1, k2, v) by using the extreme equalities of

(3.5.53), noting e.g. εvak1w = iωǩ1 · a, εvak2w = −iωǩ2 · a, εvk1k2w = iωq2/2 following from (3.5.44), recalling

ǩ1 = k1 − w and ǩ2 = k2 − w; they otherwise depend only on kµ1 , kµ2 , vµ and the initial spin sµ = maµ.

For the ++ amplitudes A(n)
++ ∝ f+1 f

+∗
2 an at nth order in spin, we find

A(0)
++ = −4ω2 − q2

2ω2
, (3.5.55a)

A(1)
++ = −4ω2 − q2

2ω2

{
C1(ǩ1 + ǩ2) · a− (C1 − 1)2w · a

}
, (3.5.55b)

A(2)
++ = −4ω2 − q2

2ω2

{
C2

2
[(ǩ1 + ǩ2) · a]2 −

(
(C1 − 1)C2 +D2d

)
(w · a)2 (3.5.55c)

+ (C1 − 1)(C1 − C2)w · a (ǩ1 + ǩ2) · a

+

[(
(C1 − 1)(2C1 − C2) + 2D2d −D2a −D2b

)2ω2

q2
+ C2

1 − C2

]
ǩ1 · a ǩ2 · a

}
,

A(3)
++ = −4ω2 − q2

2ω2

{
C3

6
[(ǩ1 + ǩ2) · a]3 + Â(3)(C2−1,C1−1)

++

+

(
4

3
+ 2Fi −

Fii

4
+
Fiii

2

)
(w · a)3 +

(
Fi −

C3 − 1

6

)
(w · a)2(ǩ1 + ǩ2) · a

+

[
Fii
ω2

q2
w · a+

(
Fiii

ω2

q2
− C3 − 1

2

)
(ǩ1 + ǩ2) · a

]
ǩ1 · a ǩ2 · a

}
, (3.5.55d)

where

Fi =
E3 − 1

6
− D3b +D3c +D3e

2
, Fii = 3− 2D3a + 4D3c + 4D3d,
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Fiii = −1− 2

3
E3 −D3a + 2D3b + 2D3c, (3.5.55e)

and Â(3)(C2−1,C1−1)
++ vanishes when C2 = C1 = 1 (which for

√
Kerr are fixed by lower-order-in-spin pieces of

the Compton amplitude, or by the three-point amplitude). Here we have used

ω2a2 = (w · a)2 − 4ω2

q2
ǩ1 · a ǩ2 · a, (3.5.56)

resulting from 0 = (u[λkµ1 k
ν
2w

ρaσ])2, to eliminate a2 in favor of (w · a)2. This leads to the relatively compact

expressions (3.5.55) —– paralleling the parametrization (3.8.85) of the black hole–graviton ++ Compton

amplitude at fifth order in spin as formulated in [185] —– but it makes the amplitude appear to have (in addition

to the physical poles at v · k1 = v · k2 = −ω = 0) unphysical poles: firstly, explicitly, at q2 = 4ω2 sin2 θ
2 = 0 —

at forward scattering, θ = 0 — the would-be physical pole corresponding to an internal photon of momentum

q = k2−k1 going on shell, but on which the residue must be zero because the three-photon amplitude vanishes;

and secondly, hidden inside w (and ǩ1 and ǩ2) in (3.5.44), at 4ω2 − q2 = 4ω2 cos2 θ
2 = 0 — at back-scattering,

θ = π — “the spurious pole.” However, no unphysical poles are actually present, for arbitrary values of the

Wilson coefficients, as can be made manifest by using (3.5.56) to eliminate factors of (w · a)2 in favor of a2.

The helicity-preserving amplitude A++ is well expressed in terms of the spin component w · a along the

complex null wµ(k1, k2, u) of (3.5.44) because of its symmetry w ↔ w∗ under k1 ↔ k2 [with −2ω = (k1+k2)·v].

Turning to the helicity-reversing amplitude A+−, the appropriate symmetry is reflected by a vector

xµ(k1, k2, v) with x↔ −x under k1 ↔ k2 (modulo any component along v). An apt choice is x(k1, k2, v) · a ∝

w(k2,−k1, v) · a:

w · a =
(
ω(k1 + k2) · a+ iεµνρσv

µkν1k
ρ
2a

σ
) 2ω

4ω2 − q2
,

x · a =
(
ω(k2 − k1) · a+ iεµνρσv

µkν1k
ρ
2a

σ
) 2ω

q2
= w · a+ 4ω2

q2
(k1 − w) · a

=
2ω

q2

(
ω q · a+ ik1 × k2 · a

)
, (3.5.57)

coinciding with “wO ·a” from [247] or ∝ “w++ ·a” from [179], with x ·a ∝ 〈1|av|1〉, in contrast to w ·a ∝ [2|a|1〉.

The identity (3.5.56) for (w · a)2 translates into

q2

4ω2

(
(x · a)2 − ω2a2

)
=

−q2

4ω2 − q2
(k1 · a− x · a)(k2 · a+ x · a) (3.5.58)

= (k1 · a)(k2 · a)− (x · a)(q · a)− ω2a2 = (aya)

for (x · a)2 and defines a convenient quadratic (aya) in the spin. With this, we find

A+− =
q2

2ω2

{
1− C1 q · a+ (C2

1 − 1)x · a (3.5.59)

+
C2

2
(q · a)2 − (C1 − 1)(C1 + C2)k1 · a k2 · a
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+

[(
D2b −D2a − (C1 − 1)(2C1 + C2)

)2ω2

q2
+ (C2 − 1)C1

]
(aya)

−
(
4D2c +D2d + (C1 − 1)C1

)
ω2a2

− C3

6
(q · a)3 + (C3 − 1)x · a k1 · a k2 · a+ Â(3)(C2−1,C1−1)

+−

−
(
(1 +D3a)

ω2

q2
+
C3 − 1

2

)
(aya)q · a−

(
3

4
+ E3 +D3b +D3d

)
ω2a2x · a

−
(
1 + E3

6
+
D3b +D3c −D3e

2
+ 2D3f +

C3 − 1

6

)
ω2a2q · a+O(a4)

}
,

where again Â(3)(C2−1,C1−1)
+− vanishes when C2 = C1 = 1.

At linear order in spin, C1 is determined by the O(S1) amplitude. At O(S2), all 5 new operators,

C2, D2a,b,c,d contribute linearly independent structures to the amplitude. At O(S3) there are 8 new operators

C3, D3a,b,c,d,e,f , E3 but only 7 linearly independent structures in the Compton. In particular, the Compton

amplitude is independent of the value of the linear combination:

Z = −6E3 +D3f + 2C1D3b − 2(1 + C1)D3c + 4D3d (3.5.60)

These amplitudes produce the spin-exponentiation of Ref. [53] through order O(S2) if and only if:

C1 = C2 = 1, D2a = D2b = D2c = D2d = 0. (3.5.61)

For these values of the Wilson coefficients, we recover the spin-exponentiated amplitudes:

A++ = A(0)
++ exp

(
a · (ǩ1 + ǩ2)

)
+O(S3) (3.5.62)

A+− = A(0)
+− exp (a · (k1 − k2)) +O(S3) (3.5.63)

For the equal helicity amplitude the spin-exponentiation cannot continue past O(S2) due to the spurious

pole in cos(θ/2). There is no such trouble for the opposite helicity amplitude. If one demands the continuance

of the spin-exponentiation for the opposite helicity amplitude through O(S3), it fixes C3 and 3 of the

D3a,b,c,d,e,f coefficients. In particular it determines:

C3 = 1, D3a = −1, D3d = −D3b − E3 −
3

4
,

D3f = − 1

12
− E3

12
− D3b

4
− D3c

4
+
D3e

4
. (3.5.64)

The value C3 = 1 is consistent with (3.4.55). Equation (3.4.55) fixes the value of E3 = 1 which is possible

while continuing the spin-exponentiation but not demanded by it.

It is also interesting to study the shift symmetry condition identified in Refs. [173, 101, 179, 180]. In

order for the same helicity Compton amplitude to maintain shift symmetry through O(S3) according to the
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criteria of Ref. [173], some of the C3, E3, D3a,b,c,d,e,f are fixed. In particular:

C3 = 1, D3c =
E3

3
+

1 +D3a

2
−D3b, D3d = D3b −

E3

3
− 5

4
. (3.5.65)

Thus, at this order the shift symmetry is also consistent with (3.4.55).

The conditions necessary to maintain opposite helicity spin-exponentiation, shift symmetry, and match

(3.4.55) are consistent with each other at O(S3) and lead to the combined set of conditions:

C3 = 1, E3 = 1, D3a = −1, D3b = − 1

12

D3c =
5

12
, D3d = −5

3
, D3f =

D3e − 1

4
. (3.5.66)

Thus, at O(S3) there is a one parameter family of dynamical mass functions (as D3e is fully undetermined)

satisfying all of these constraints.

Following the decomposition of Ref. [173], the same helicity amplitude in terms of D3e through O(S3)

may be written as:
A++ = ea·(k1+k2)

3∑
n=0

Īn
n!

+O(S4) (3.5.67)

with:

Ī0 = −2 cos2
θ

2
, Ī1 = −2a · wĪ0,

Ī2 = (2a · w)2 Ī0, Ī3 = −(3D3e + 1)(a · w)2a · (k1 + k2)Ī0. (3.5.68)

Thus we can identify c(3)0 in equation (3.9b) of Ref. [173] with −2− 6D3e.

We can also compare to the recent work of [266] on
√

Kerr amplitudes from higher-spin gauge interactions.

To that end, following the lead of [266], instead of using (3.5.56) to eliminate a2ω2 leaving (w · a)2 as we did

in (3.5.55), we can express the ++ amplitude in terms of both (w · a)2 and ω2a2 while eliminating q2/ω2

using (3.5.56). Defining k± = k2 ± k1,

k+ = k1 + k2 , ǩ1 + ǩ2 = k+− 2w , (3.5.69)

q = k− = k2 − k1 = ǩ2 − ǩ1 , [(k+− 2w) · a]2 − (q · a)2 = 4 ǩ1 · a ǩ2 · a ,

and replacing ω2/q2 with [(w · a)2 − ω2a2]/(4 ǩ1 · a ǩ2 · a), our amplitude (3.5.55) becomes

A++

A(0)
++

= 1 + C1(k+− 2w) · a− (C1 − 1)2w · a

+
1

2
[(k+− 2w) · a]2C

2
1 + C2

2
+
C2 − C2

1

4
(q · a)2

+ (C1 − 1)

[
(C1 − C2)k+ · aw · a+ C2 − 2C1

2

(
ω2a2 + (w · a)2

)]
− D2a +D2b

2
(w · a)2 + D2a +D2b − 2D2d

2
ω2a2

+
1

6
(k+− 2w) · a

[
(k+− 4w) · a k+ · a3 + C3

4
+ 3

C3 − 1

4
(q · a)2

]
+ Â(3)(C2−1,C1−1)

++
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+
1−D3a − 2D3e

4
(w · a)2k+ · a+ −15 + 12(D3b −D3d)− 4E3

12
ω2a2w · a

+
3 + 3D3a − 6(D3b +D3c) + 2E3

12
ω2a2k+ · a+O(a4). (3.5.70)

Similarly, using (3.5.59),

A+−

A(0)
+−

= 1− C1 q · a+ (C2
1 − 1)x · a

+
1

2
(q · a)2C

2
1 + C2

2
+
C2 − C2

1

4
(k+ · a)2 − (C2 − 1)C1 q · a x · a

+
1

2

(
(1− C1)(C2 + 2C1)−D2a +D2b

)
(x · a)2

+
1

2

(
2C1 − C2 − C1C2 +D2a −D2b − 8D2c − 2D2d

)
ω2a2

− 1

6
(q · a)3 3 + C3

4
+
C3 − 1

4

[
(q · a)2x · a− 1

2
(k+ · a)2(q − 2x) · a+ 4

3
ω2a2q · a

]
− 1 +D3a

4
(x · a)2q · a− 3 + 4(D3b +D3d + E3)

4
ω2a2x · a+ Â(3)(C2−1,C1−1)

+−

+
1 + 3D3a − 6(D3b +D3c −D3e)− 24D3f − 2E3

12
ω2a2q · a+O(a4). (3.5.71)

With C1 = C2 = C3 = 1,

A++

A(0)
++

= 1 + (k+− 2w) · a+ 1

2
[(k+− 2w) · a]2 + D2a +D2b

2

[
ω2a2 − (w · a)2

]
−D2dω

2a2

+
1

6
(k+− 4w) · a (k+− 2w) · a k+ · a+ 1−D3a − 2D3e

4
(w · a)2k+ · a

+
−15 + 12(D3b −D3d)− 4E3

12
ω2a2w · a+ 3 + 3D3a − 6(D3b +D3c) + 2E3

12
ω2a2k+ · a

+O(a4), (3.5.72)

and

A+−

A(0)
+−

= 1− q · a+ 1

2
(q · a)2 + D2a −D2b

2

[
ω2a2 − (x · a)2

]
+ (4D2c +D2d)ω

2a2

− 1

6
(q · a)3 − 1 +D3a

4
(x · a)2q · a− 3 + 4(D3b +D3d + E3)

4
ω2a2x · a

+
1 + 3D3a − 6(D3b +D3c −D3e)− 24D3f − 2E3

12
ω2a2q · a+O(a4). (3.5.73)

This matches (6.76) of [266],

A++

A(0)
++

= 1 + (k+− 2w) · a+ 1

2
[(k+− 2w) · a]2 + 2δ

[
ω2a2 − (w · a)2

]
(3.5.74)

+
1

6
(k+− 2w) · a

[
(k+− 4w) · a k+ · a+ 4ω2a2

]
+

4

3
δ
[
ω2a2 − (w · a)2

]
k+ · a+O(a4),

and A+−/A(0)
+− = e−q·a +O(a4) if

D2a = D2b = 2δ, D2c = D2d = 0, (3.5.75)

114



D3a = −1, D3b = −5 + 4E3

12
, D3c =

−11 + 8E3 − 32δ

12
,

D3d = −1 + 2E3

3
, D3e = 1 +

8

3
δ, D3f =

3− E3 + 8δ

6
.

3.6 Gravitational MPD Equations
We now turn our attention to gravity. We find that the line of analysis is directly analogous to that

of electromagnetism and the resulting dynamical mass function is very similar. The motion of a generic

spinning body in general relativity is described by the MPD equations [107, 108, 110, 253, 259, 260]. It is well

established [260, 252, 264, 58, 230, 226, 267, 145] that the MPD equations can be derived from a variational

principle through an action S of the form:

S[z, p,Λ, S, α, β] =
∫ ∞

−∞

(
pµż

µ +
1

2
ε̃µνρσu

µSνΩρσ − α

2
(p2 +M2) + βp · S

)
dλ (3.6.1)

where the pseudotensor Levi-Civita symbol is defined by:

ε̃µνρσ = εµνρσ
√

−det g (3.6.2)

in terms of the purely numerical antisymmetric Levi-Civita symbol εµνρσ which has ε0123 = 1. In curved

spacetime, the Λµ
A(λ) tetrad satisfies:

gµν(Z) = Λµ
AΛ

ν
Bη

AB , ηAB = gµν(Z)Λ
µ
AΛ

ν
B . (3.6.3)

Just as in the case of electromagnetism, we take:

Λµ
0(λ) = uµ(λ), Λµ

3(λ) = Ŝµ(λ). (3.6.4)

The angular velocity tensor of the body is defined by:

Ωµν = ηABΛµ
A
DΛν

B

Dλ
(3.6.5)

where D
Dλ indicates covariant λ differentiation:

DΛµ
A

Dλ
=
dΛµ

A

dλ
+ Γµ

ρσ ż
ρΛσ

A. (3.6.6)

The dynamical mass function M(z, u, S) now encodes the mass of the body and all of its nonminimal couplings

to gravity and in particular takes the form:

M2(z, u, S) = m2 +O(R) (3.6.7)

where m is the mass of the body in vacuum and Rµνρσ is the Riemann tensor.

For variations of the action, it is useful to define the covariant variations:

∆pµ = δpµ − Γρ
σµpρδz

σ (3.6.8)
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∆Sµ = δSµ + Γµ
ρσS

ρδzσ (3.6.9)

∆Λµ
A = δΛµ

A + Γµ
ρσδz

ρΛσ
A (3.6.10)

and the antisymmetric tensor:
∆θµν = ηABΛ[µ

A∆Λν]
B . (3.6.11)

This definition leads to the identity:

∆Ωµν =
D

Dλ
∆θµν +Ωµ

ρ∆θ
ρν − Ων

ρ∆θ
ρµ +Rµν

ρσ ż
ρδzσ. (3.6.12)

Then, the variation of the above action gives:

δS =

∫ ∞

−∞

(
δzµ

(
−Dpµ
Dλ

−R?
µνρσ ż

νuρSσ − e∇µM
)

+∆pµ

(
żµ − euµ − e

|p|
∂M
∂uν

(gµν + uµuν) + βSµ

+
1

2|p|
ε̃µνρσSνΩρσ +

uµ

2|p|
ε̃αβρσu

αSβΩρσ

)
+

1

2
∆θρσ

(
− D

Dλ
(ε̃µνρσu

µSν) + ε̃µνραu
µSνΩα

σ − ε̃µνσαu
µSνΩα

ρ

)
+∆Sµ

(
−1

2
ε̃µνρσu

νΩρσ − e
∂M
∂Sµ

+ βpµ

)
− δα

2

(
p2 +M2

)
+ δβp · S

)
dλ (3.6.13)

where the right-dual of the Riemann tensor is defined by:

R?
µνρσ =

1

2
ε̃ρσ

αβRµναβ . (3.6.14)

Using the δSµ variation to solve for the angular velocity tensor, one can then determine the value of β. That

value of β can then be used to simplify the spin and trajectory equations of motion. Explicitly, these give:

Ωµν =
Duµ

Dλ
uν − uµ

Duν

Dλ
+ eε̃µνρσuρ

∂M
∂Sσ

(3.6.15)

β = − e

M
uµ
∂M
∂Sµ

(3.6.16)

DSµ

Dλ
= uµ

Duν

Dλ
Sν + eεµνρσuνSρ

∂M
∂Sσ

(3.6.17)

żµ = euµ +
e

M
(gµν + uµuν)

∂M
∂uν

+
e

M
Sµuν

∂M
∂Sν

+
1

M2
ε̃µνρσSνuρ

Dpσ
Dλ

. (3.6.18)

In order to determine the trajectory evolution explicitly we must insert the momentum equation of motion

into (3.6.18). To simplify, it is useful to introduce the two sided dual Riemann tensor:

?R?
µνρσ =

1

2
ε̃µναβR

?αβ
ρσ (3.6.19)

Simplifying finally gives the gravitational MPD equations of motion for the spinning body:(
1 +

?R?
uSuS

M2

)
żµ

e
= uµ +

gµν + uµuν

M
∂M
∂uν

+ Sµ u
ν

M
∂M
∂Sν

+
1

M2
ε̃µνρσuνSρ∇σM

−
?R?µSuS

M2
− 1

M3

(
Sν ∂M

∂uν
+ S2uν

∂M
∂Sν

)
?R?µuuS (3.6.20)
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Dpµ
Dλ

= −R?
µνρσ ż

νuρSσ − e∇µM (3.6.21)

DSµ

Dλ
= uµSν

Duν

Dλ
+ eε̃µνρσuνSρ

∂M
∂Sσ

. (3.6.22)

Vectors such as u and S are used as indices to indicate contractions with them (?R?µuuS = ?R?µνρσuνuρSσ).

For solving these equations of motion we will always choose λ so that e = 1.

To understand how the dynamical mass function relates to the multipole moments of the body, we will

need to study the energy-momentum tensor produced by our action. The energy-momentum tensor will be

given by:
Tµν = − 2√

−det g

δS
δgµν

. (3.6.23)

In varying the metric, we have δzµ = 0, δpµ = 0, δSµ = 0, and ∆θµν = 0. δΛµ
A cannot be made 0 as

its variation is related to the metric variation on the worldline. It is useful to introduce the DeWitt index

shuffling operator [226] Ĝα
β , which acts on tensors according to:

Ĝα
βF

µ1...µm
ν1...νn

=δµ1

β Fαµ2...µm
ν1...νn

+ ...+ δµm

β Fµ1...µm−1α
ν1...νn

− δαν1
Fµ1...µm

βν2...νn
− ...− δανn

Fµ1...µm
ν1...νn−1β (3.6.24)

so that: ∇ρF
µ1...µm

ν1...νn = ∂ρF
µ1...µm

ν1...νn + Γβ
αρĜ

α
βF

µ1...µm
ν1...νn . (3.6.25)

For expressing the energy-momentum tensor simply it is important to use the scalarity of the dynamical

mass function. In particular, requiring it to be a scalar function of uµ, Sµ, gµν , and symmetric covariant

derivatives of Rµνρσ implies it is invariant under a small diffeomorphism. This is only true if:

∂M
∂gαβ

=
1

2

∂M
∂uα

uβ − 1

2
Sα

∂M
∂Sβ

− 1

2

∞∑
n=0

∂M
∂∇n

(λ1...λn)
Rµνρσ

Ĝαβ∇n
(λ1...λn)

Rµνρσ. (3.6.26)

With these ingredients, the variation of the action with respect to the metric becomes:

δS =

∫ ∞

−∞

(
−1

2
pµżνδg

µν +
1

2
ε̃µνρσu

µSν żα∇σδgρα

+e

∞∑
n=0

∂M
∂∇n

(λ1...λn)
Rµνρσ

(
1

2
δgαβĜαβ∇n

(λ1...λn)
Rµνρσ − δ(∇n

(λ1...λn)
Rµνρσ)

))
dλ (3.6.27)

For computing variations of derivatives of the Riemann curvature, a strategy from Ref. [268] is helpful.

Consider a tensor field Fλ1...λnµνρσ with the same index symmetries as ∇n
(λ1...λn)

Rµνρσ which decays to 0

sufficiently quickly at infinity for no surface terms to be necessary upon the relevant integrations by parts we

will perform. Then, a short calculation gives:∫
T
Fλ1...λnµνρσδ(∇n

λ1...λn
Rµνρσ)D

4x

=

∫
T

(
Fλ1...λnµνρσδΓβ

αλn
Ĝα

β∇n−1
λ1...λn−1

Rµνρσ −∇λn
Fλ1...λnµνρσδ(∇n−1

λ1...λn−1
Rµνρσ)

)
D4x. (3.6.28)

The final term is now in the same form as the initial variational problem, but of a lower rank. Applying this
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formula iteratively allows all derivatives on the Riemann tensor to eventually be pushed past the variation,

resulting in: ∫
T
Fλ1...λnµνρσδ(∇n

λ1...λn
Rµνρσ)D

4x

=

∫
T

(
n−1∑
k=0

(−1)k∇k
λn...λn−k+1

Fλ1...λnµνρσδΓβ
αλn−k

Ĝα
β∇n−k−1

λ1...λn−k−1
Rµνρσ

+(−1)n∇n
λ1...λn

Fλ1...λnµνρσδRµνρσ

)
D4x. (3.6.29)

Now using:

δΓρ
µν =

1

2
gµαgνβ∇ρδgαβ − 1

2
gµσ∇νδg

ρσ − 1

2
gνσ∇µδg

ρσ (3.6.30)

δRρ
µσν = ∇σδΓ

ρ
νµ −∇νδΓ

ρ
σµ (3.6.31)

we are able to arrive at:∫
Fλ1...λnµνρσδ(∇n

(λ1...λn)
Rµνρσ)D

4x

=

∫ (n−1∑
k=0

(−1)kδgαβgαλn−k
∇γ∇k

(λn−k+1...λn)
Fλ1...λnµνρσĜ[γβ](∇n−k−1

(λ1...λn−k−1)
Rµνρσ)

+

n−1∑
k=0

(−1)kδgαβgαλn−k
∇k

(λn−k+1...λn)
Fλ1...λnµνρσgγτ Ĝ[τβ](∇γ∇n−k−1

(λ1...λn−k−1)
Rµνρσ)

+

n−1∑
k=0

2(−1)kδgαβgαλn−k
∇k

(λn−k+1...λn)
Fλ1...λnµνρσ∇β∇n−k−1

(λ1...λn−k−1)
Rµνρσ

+ (−1)nδgαβ∇n
(λ1...λn)

Fλ1...λnµνρσgαµRβνρσ + 2(−1)n∇2
(µν)∇

n
(λ1...λn)

Fλ1...λnµ
α
ν
βδg

αβ

+
1

2
δgαβFλ1...λnµνρσĜαβ(∇n

λ1...λn
Rµνρσ)

)
D4x. (3.6.32)

Define the gravitational Qn moments:

Qλ1...λnµνρσ
n =

∂M
∂∇n

(λ1...λn)
Rµνρσ

. (3.6.33)

As well, define the scalar Dirac delta distribution:

δ(X,Z) =
δ(x− z)√
− det g

(3.6.34)

and the Φn fields:
Φλ1...λnµνρσ

n (X) =

∫ ∞

−∞
Qλ1...λnµνρσ

n δ(X,Z)Dλ. (3.6.35)

Then, formally as a distributional expression the energy-momentum tensor becomes:

Tαβ =

∫ ∞

−∞

(
ż(αpβ)δ(X,Z) +∇γ(ż(αε̃β)γρσu

ρSσδ(X,Z))
)
dλ+

∞∑
n=0

Ψ
(n)
αβ (3.6.36)
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with:

Ψ
(n)
αβ =

n−1∑
k=0

(−1)k∇k
λn−k+1...λn

Φλ1...λnµνρσ
n gλn−k(α∇β)∇n−k−1

λ1...λn−k−1
Rµνρσ

+

n−1∑
k=0

2(−1)k∇γ

(
∇k

λn−k+1...λn
Φλ1...λnµνρσ

n gλn−k(αgβ)δĜ
[γδ](∇n−k−1

λ1...λn−k−1
Rµνρσ)

)
+ 2(−1)n∇n

λ1...λn
Φλ1...λnµνρσ

n gµ(αRβ)νρσ + 4(−1)n∇2
µν∇n

λ1...λn
Φλ1...λn

n
µ
(α

ν
β). (3.6.37)

3.7 Kerr Multipole Moments
In this section we perform the analysis of sections 3.3 and 3.4 but for the Kerr metric in gravity instead

of the
√

Kerr solution in electromagnetism. We begin by describing Dixon’s definition of the multipoles

of the energy-momentum tensor. Then, following analysis done by Israel in Ref. [263] we identify the

energy-momentum tensor which acts as the source of the Kerr metric in the causally maximal extension of

the Kerr spacetime.

3.7.1 Moments of the Energy Momentum Tensor

For precisely the same reasons that cause the naive moments of the current density to be interdependent

due to the continuity equation, the naive moments of the energy-momentum tensor are interdependent due to

its covariant conservation. Define the quantities:

Θκλµν
n (Z,X) = (n− 1)

∫ 1

0

σκασ(µ
ασ

ν)
βσ

λβtn−2dt, (n ≥ 2) (3.7.1)

pκ1...κnλµν
n = 2(−1)n

∫
Σ

σκ1 ...σκnΘρνλµ
n (−σ−1

αρ )T
αβdΣβ , (n ≥ 2) (3.7.2)

tκ1...κnλµ
n = (−1)n

∫
Σ

σκ1 ...σκnσλ
ασ

µ
βT

αβwγdΣγ , (n ≥ 2) (3.7.3)

J κ1...κnλµνρ
n = tκ1...κn[λ[

′νµ]ρ]′

n+2 +
1

n+ 1
pκ1...κn[λ[

′νµ]ρ]′τ
n+2

żτ
e

(3.7.4)

Iλ1...λnµν
n =

4(n− 1)

n+ 1
J (λ1...λn−1|µ|λn)ν
n−2 , (n ≥ 2). (3.7.5)

These definitions are precisely analogous to equations (3.3.20) through (3.3.24) for electromagnetism, in

precisely the same order. The In moments will serve as the interdependence-free reduced multipole moments

of the energy-momentum tensor. The other quantities defined are useful intermediate pieces for calculation.

For the necessary index symmetrizations, we use the notation that [] brackets antisymmetrize together and

[′]′ brackets antrisymmetrize together but that the two ignore each other. For example:

I
[λ[′νµ]ρ]′

2 =
1

4

(
Iλνµρ2 − Iµνλρ2 − Iλρµν2 + Iµρλν2

)
. (3.7.6)
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As well, the inclusion of vertical bars |µ| around indices in the midst of an (anti)symmetrization indicates

that those indices should be skipped over when performing the (anti)symmetrization. For example:

I
(λ|µ|ν)
1 =

1

2
(Iλµν1 + Iνµλ1 ). (3.7.7)

Dixon’s reduced moments automatically satisfy:

Iλ1...λnµν
n = I(λ1...λn)(µν)

n , I(λ1...λnµ)ν
n = 0, (3.7.8)

uλ1I
λ1...λn−2[λn−1[

′λnµ]ν]
′

n = 0, (n ≥ 3). (3.7.9)

Dixon finds that beyond these conditions, the reduced moments are not restricted by the covariant conservation

of Tαβ and that they are independent of each other for different values of n. It is useful to define the 0th and

1st moments:
Iλµ0 =

p(λżµ)

e
, Iκλµ1 =

Sκ(λżµ)

e
(3.7.10)

where pλ is the total linear momentum of the body defined by:

pκ =

∫
Σ

(−σ−1
αλ)σ

λκTαβdΣβ (3.7.11)

and Sλµ is the total spin tensor of the body defined by:

Sκλ = 2

∫
Σ

σ[κ(σ−1)λ]αT
αβdΣβ . (3.7.12)

We will always choose our definition of the worldline and Cauchy slicing so that pµ(λ) is orthogonal to all

tangent vectors to Σ(λ). With this choice we can require:

pµ = |p|uµ, Sµνpν = 0 (3.7.13)

and thus we can introduce the spin vector Sµ defined so that:

Sµ = −1

2
ε̃µνρσuνSρσ =⇒ Sµν = ε̃µνρσu

ρSσ. (3.7.14)

The conservation of Tαβ determines the time evolution of pµ and Sµ (through the MPD equations) but

determines nothing about the time evolution of the higher moments. Dixon finds also that the reduced

moments are independent of the 0th and 1st moments. Then, define the reduced moment generating function:

Iµν(λ, k) =

∞∑
n=0

(−i)n

n!
Iλ1...λnµν
n kλ1

...kλn
. (3.7.15)

Like the naive moments, the reduced moment generating functions determine the behavior of Tαβ against

test functions. In particular, for an arbitrary symmetric tensor field hαβ(X):∫
Σ

h∗αβ(X)Tαβ(X)wγdΣγ =

∫
h̃∗µν(Z, k)I

µν(λ, k)
D4k

(2π)2
. (3.7.16)
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The moment generating function automatically satisfies:

Iλµkλ = Iλµ0 kλ − ikκkλI
κλµ
1 . (3.7.17)

Dixon proved [259] that these reduced moments are the unique set of moments which are independent of each

other for different n, have only I0 and I1 restricted by the conservation law, and satisfy the index symmetry

conditions in equations (3.7.8) and (3.7.9).

Through (3.7.16), the energy-momentum tensor is determined in terms of the reduced multipole moments.

Explicitly comparing that behavior against test functions to (3.6.36) and using crucially that the reduced

multipole moments are unique and contain no interdependencies, we can identify:

Iρ1...ρnµν
n = 4n!Q(ρ1...ρn−1|µ|ρn)ν

n−2 +O(R) (3.7.18)

which gives the reduced multipole moments from the couplings in the action. Alternatively, this can be nicely

inverted using the index symmetry conditions of both quantities to find:

Qλ1...λnρµσν
n =

n+ 1

(n+ 3)!
I
λ1...λn[ρ[

′σµ]ν]′

n+2 +O(R) (3.7.19)

This allows the direct determination of the coupling of the body to the Riemann tensor in the action from its

reduced multipole moments.

3.7.2 Source of the Kerr Metric

Here we summarize the analysis of Ref. [263] to identify the energy-momentum tensor which produces

the Kerr metric. The Kerr metric has no intrinsic singularities away from r = 0 and everywhere away from

r = 0 it is a solution to the vacuum Einstein equations. Therefore, the source of the Kerr metric can only

have support on the surface r = 0. This surface is a disk and we introduce the same coordinate χ = θ above

the disk and χ = π − θ below the disk as we did for
√

Kerr so that t, χ, ϕ provide an intrinsic coordinate

system. Restricting the Kerr solution to the surface r = 0 produces the flat metric γij on the disk:

γtt = −1, γtχ = 0, γtϕ = 0,

γχχ = a2 cos2 χ, γχϕ = 0, γϕϕ = a2 sin2 χ. (3.7.20)

The extrinsic curvature Kij of the disk, when approached from above toward r = 0, is determined by the first

r derivative of the Kerr solution and produces:

Ktt =
Gm

a2 cos3 χ
, Ktχ = 0, Ktϕ = −Gm

a

sin2 χ

cos3 χ
,

Kχχ = 0, Kχϕ = 0, Kϕϕ = Gm
sin4 χ

cos3 χ
. (3.7.21)
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The extrinsic curvature tensor of the disk when approached from below is simply the negative of the extrinsic

curvature when approached from above. We may now use Israel’s junction conditions to determine the surface

energy-momentum tensor on the disk Sdisk
ij :

Sdisk
ij = − 1

8πG
(Kij −Kγij)|above

below . (3.7.22)

The resulting surface energy-momentum tensor is:

Sdisk
ij =

σdisk

2
(ζiζj + ξiξj) (3.7.23)

where:

σdisk = − m

2πa2 cos3 χ
(3.7.24)

ζt = 0, ζχ = a cos2 χ, ζϕ = 0 (3.7.25)

ξt = − sinχ, ξχ = 0, ξϕ = a sinχ. (3.7.26)

As a distribution the disk energy-momentum tensor is:

T disk
µν =

σdisk

2
(ζµζν + ξµξν)δ(r cosχ). (3.7.27)

Taking the worldline which passes through the center of the disk as the worldline of the metric, we can

use equations (3.7.11) and (3.7.12) to compute the total momentum and spin of the Kerr solution. With

only the given surface energy-momentum tensor, the resultant linear momentum and spin are not muµ and

mεµνρσu
ρaσ. Instead, the integrals diverge as χ→ π

2 in precisely the same way as occurred for
√

Kerr . In

order to produce the correct total momentum and spin it is necessary to have a linear energy-momentum

tensor density on the ring singularity at r = 0, χ = π
2 . In particular, the necessary effective mass density is:

ρ = − m

2πa2 cos4 χ
δ(r)ϑ

(π
2
− ε− χ

)
+

m

2πa2 sin ε cos2 χ
δ(r)δ

(
χ− π

2

)
(3.7.28)

which is the same density as the
√

Kerr solution. The resulting energy-momentum tensor is:

Tµν =
ρ

2
(ζµζν + ξµξν). (3.7.29)

With this energy-momentum tensor using (3.7.11) and (3.7.12) we have precisely:

pµ = muµ, Sµ = maµ. (3.7.30)
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3.7.3 Stationary Multipole Moments of Kerr

We now consider the Minkowski space limit of Dixon’s moments for the energy-momentum tensor. Using

the same ya coordinates as before, we find:

pκ1...κnλµν
n = 2Λκ1

A1 ...Λ
κn

Anη
ν(µ

∫
Σ

(−Tλ)ρuρ)y
A1 ...yAnd3y +O(R) (3.7.31)

tκ1...κnλµ
n = Λκ1

A1
...Λκn

An

∫
Σ

yA1 ...yAnTλµd3y +O(R). (3.7.32)

Just like with the current density, we now define the naive K moments:

Ka1...anBC
n =

∫
Σ

ya1 ...yanΛα
BΛβ

CTαβd3y. (3.7.33)

In terms of these moments, we have:

pκ1...κnλµν
n = 2Λκ1

a1
...Λκn

an
ην(µΛλ)

BK
a1...anB0
n +O(R) (3.7.34)

tκ1...κnλµ
n = Λκ1

a1
...Λκn

an
Λλ

BΛ
µ
CK

a1...anBC
n +O(R). (3.7.35)

For arbitrary vectors on the internal Lorentz indices, kA and vA we have:

Ka1...anBC
n ka1

...kan
vBvC =

∫
Σ

(xaka)
nσ(r)

2
δ(z)((ζAvA)

2 + (ξAvA)
2)d3x. (3.7.36)

Following the same integrations as for
√

Kerr allows these moments to be computed with no additional

complications giving:

Ka1...a2nBC
2n ka1 ...ka2nvBvC = m

n+ 1

2n+ 1
|~k × ~a|2nv20 +m

n

2n+ 1
|~k × ~a|2n−2(~a · (~k × ~v))2 (3.7.37)

K
a1...a2n+1BC
2n+1 ka1

...ka2n+1
vBvC = mv0|~a× ~k|2n~a · (~k × ~v). (3.7.38)

3.7.4 Dynamical Multipole Moments of Kerr

Now that we have the stationary moments of the Kerr solution, we can use these to compute the

dynamical moments of a spinning black hole, up to corrections of order of the Riemann tensor, exactly

analogously to the calculation for
√

Kerr . We can compute the reduced moments of the energy-momentum

tensor by returning the stationary results through the chain of definitions defining Iρ1...ρnµν
n . Using the same

notation as for electromagnetism, we find:

Iρ1...ρ2nµν
2n kρ1

...kρ2n
vµvν =

n+ 1

2n+ 1
ma2nk2n−4

⊥

(
k4⊥v

2
0 − 2k2⊥(k⊥ · v)k0v0 +

k2⊥v
2
⊥

2n− 1
k20

+2
n− 1

2n− 1
(k⊥ · v)2k20 +

n

n+ 1
k2⊥ (εµνρσu

µâνkρvσ)
2

)
+O(R) (3.7.39)

I
ρ1...ρ2n+1µν
2n+1 kρ1

...kρ2n+1
vµvν = ma2n+1k2n−2

⊥ εµνρσu
µâνkρvσ(k2⊥v0 − (k⊥ · v)k0) +O(R). (3.7.40)
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By returning these to (3.7.19), we find that:

Qλ1...λ2nρµσν
2n ∇2n

(λ1...λ2n)
Rρµσν =

ma2n+2∇2n−2
⊥

(2n+ 3)!

(
(n+ 2)∇2

⊥ ⊥ρσ Rρuσu

+
n+ 1

2
∇2

⊥ ⊥ρσ⊥µν Rρµσν

−n(n+ 2)

2n+ 1
(u · ∇)2 ⊥ρσ⊥µν Rρµσν

)
(3.7.41)

Qλ1...λ2n+1ρµσν
2n+1 ∇2n+1

(λ1...λ2n+1)
Rρµσν =

ma2n+2

(2n+ 3)!
∇2n

⊥ R?
∇⊥uua (3.7.42)

(up to terms which are quadratic in the Riemann tensor). ∇⊥ is consistent with our use of the ⊥ symbol:

∇ρ
⊥ =⊥ρσ ∇σ and is used as an index to indicate contraction just as with u and a. Now returning these to

the dynamical mass function produces:

M2 = m2 + 2m2a2F1(a∇⊥) ⊥ρσ Rρuσu + 2m2a2F2(a∇⊥) ⊥ρσ⊥µν Rρµσν

+ 2m2a4F3(a∇⊥)(u · ∇)2 ⊥ρσ⊥µν Rρµσν + 2m2a2F4(a∇⊥)R
?
∇⊥uua +O(R2) (3.7.43)

where:

F1(x) =
coshx

2x2
+

sinhx

2x3
− 1

x2
(3.7.44)

F2(x) =
coshx

4x2
− sinhx

4x3
(3.7.45)

F3(x) =
1

x4
− 5

8

coshx

x4
− 3

8

sinhx

x5
+

3

8x3

∫ x

0

sinh t

t
dt (3.7.46)

F4(x) =
sinhx− x

x3
. (3.7.47)

The dynamical mass function in (3.7.43) is our principal result for spinning black holes, analogous to

(3.4.54). If we neglect u · ∇ terms and consider only contributions to the dynamical mass function which are

nonzero for a local vacuum solution of Einstein’s equations (Rµν = 0), then (3.7.43) simplifies to:

M2 = m2 − 2m2 1− cos(a · ∇)

(a · ∇)2
Ruaua + 2m2 (a · ∇)− sin(a · ∇)

(a · ∇)2
R?

uaua +O(R2) (3.7.48)

which are the equivalent couplings of Ref. [145]. While (3.7.43) and (3.7.48) produce the same three point

amplitude (and so the same stationary energy-momentum tensor), they do not produce the same Compton

amplitudes. Only (3.7.43) satisfies (3.7.16) as an off-shell statement for black holes. In this way, (3.7.43)

uniquely captures the physical multipole moments for a spinning black hole independent of its motion.
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3.8 Gravitational Compton Amplitude

3.8.1 Formal Classical Compton

To write Einstein’s equations explicitly for the metric perturbation, it is useful to introduce a shorthand

for the volume form Jacobian:
V =

1√
−det g

. (3.8.1)

and to define the inverse metric tensor density gµν :

gµν = gµν
√
− det g. (3.8.2)

Then, derivatives of the metric can be expressed as:

∂ρg
µν = V

(
∂ρg

µν − 1

2
gµνgαβ∂ρg

αβ

)
, ∂ρV = −V

2

2
gµν∂ρg

µν . (3.8.3)

With these definitions, we find that:

2

V 2

(
Rµν − 1

2
Rgµν

)
= gρσ∂2ρσg

µν + gµν∂2ρσg
ρσ − gµσ∂2ρσg

ρν − gνσ∂2ρσg
ρµ

− ∂σg
µρ∂ρg

νσ + ∂ρg
ρσ∂σg

µν − gαβg
ρσ∂ρg

µα∂σg
νβ

+ gµβgρα∂σg
να∂βg

ρσ + gνβgρα∂σg
µα∂βg

ρσ − 1

2
gµνgαβ∂σg

αβ∂βg
ρσ

− 1

8
(2gµτgνω − gµνgτω)(2gαρgβσ − gαβgρσ)∂τg

αβ∂ωg
ρσ. (3.8.4)

This expression is true in any coordinates. Going forward we will only use de Donder gauge, defined so that

the coordinates are harmonic functions when viewed as scalars:

∇2xµ = −gαβΓµ
αβ = V ∂νg

µν !
= 0. (3.8.5)

Using this gauge, Einstein’s equations can be written exactly in Landau-Lifshitz form as:

−gρσ∂2ρσg
µν = − 16πGTµν |det g| − ∂σg

µρ∂ρg
νσ − gαβg

ρσ∂ρg
µα∂σg

νβ

+ gµβgρα∂σg
να∂βg

ρσ + gνβgρα∂σg
µα∂βg

ρσ − 1

2
gµνgαρ∂σg

αβ∂βg
ρσ

− 1

8
(2gµτgνω − gµνgτω)(2gαρgβσ − gαβgρσ)∂τg

αβ∂ωg
ρσ (3.8.6)

For studying gravitational waves we perturb about Minkowski space:

gµν = ηµν + κhµν , κ =
√
32πG. (3.8.7)

For this choice of coupling constant, the Einstein-Hilbert action is canonically normalized as a functional of

the perturbation hµν . When considering perturbations of Minkowski space, we raise and lower indices by
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using the Minkowski metric. In terms of hµν , de Donder gauge is the requirement:

∂νh
µν = 0. (3.8.8)

In terms of hµν , Einstein’s equations are exactly:

−∂2hµν = κ

(
−T

µν

2
|det g|+ hρσ∂2ρσh

µν − ∂σh
µρ∂ρh

νσ − gαβg
ρσ∂ρh

µα∂σh
νβ

+gµβgρα∂σh
να∂βh

ρσ + gνβgρα∂σh
µα∂βh

ρσ − 1

2
gµνgαρ∂σh

αβ∂βh
ρσ

− 1

8
(2gµτgνω − gµνgτω)(2gαρgβσ − gαβgρσ)∂τh

αβ∂ωh
ρσ

)
(3.8.9)

With κ acting as the coupling constant, hµν and Tµν will have solutions in powers of κ:

hµν = hµν(0) + κhµν(1) + κ2hµν(2) +O(κ3)

Tµν = Tµν
(0) + κTµν

(1) +O(κ2) (3.8.10)

The κ0 piece then satisfies the homogeneous wave equation from Einstein’s equations:

∂2hµν(0) = 0. (3.8.11)

For Compton scattering, we will consider the incoming gravitational field to be a plane wave:

hµν(0) = Eµν
1 eik1·x (3.8.12)

for some polarization tensor Eµν
1 . We will further gauge fix within de Donder gauge so that Eµν

1 is traceless,

transverse to k1µ and orthogonal to a vector vµ. Using the helicity polarization vectors from electromagnetism,

the most general such tensor may be written as a linear combination:

Eµν
1 = c+Eµ

1+Eν
1+ + c−Eµ

1−Eν
1−. (3.8.13)

Therefore for considering Compton scattering in the helicity basis we will take the incoming plane wave to be

of the form:
hµν(0) = εEµ

1 Eν
1 e

ik1·x. (3.8.14)

From Einstein’s equations, the κ1 piece hµν(1) then satisfies:

−∂2hµν(1) = −
Tµν
(0)

2
+ hρσ(0)∂

2
ρσh

µν
(0) − ∂σh

µρ
(0)∂ρh

νσ
(0) − ηαβη

ρσ∂ρh
µα
(0)∂σh

νβ
(0)

+ ηµβηρα∂σh
να
(0)∂βh

ρσ
(0) + ηνβηρα∂σh

µα
(0)∂βh

ρσ
(0) −

1

2
ηµνηαρ∂σh

αβ
(0)∂βh

ρσ
(0)

− 1

8
(2ηµτηνω − ηµνητω)(2ηαρηβσ − ηαβηρσ)∂τh

αβ
(0)∂ωh

ρσ
(0). (3.8.15)

For Compton scattering we are only concerned with the response of the system to linear order in the incoming

field strength ε and so it is useful to define hµνstat as the stationary response of the metric perturbation to the

unperturbed energy-momentum tensor. In the equation of motion for hµν(1), all of the contributions from hµν(0)
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are of order ε2 and so:
hµν(1) = hµνstat +O(ε2), −∂2hµνstat = −

Tµν
(0)

2
. (3.8.16)

The κ1 correction to the metric perturbation can be decomposted into a statioanry piece from iterating

corrections from hµνstat, which is ε independent, a piece which is linear in ε, and pieces which are of at least

O(ε2):
hµν(2) = hµνstat,2 + εδhµν +O(ε2). (3.8.17)

Because the lowest order stationary correction to the actual metric gµν is O(κ2), the κ1 correction to the

energy-momentum tensor has no ε0 piece and so may be written:

Tµν
(1) = εδTµν +O(ε2). (3.8.18)

The quantity δhµν thus encodes the linearized response of gravity to the interaction of an incoming

plane wave with the massive body and so determines the Compton amplitude. Returning these definitions to

Einstein’s equations, we find that δhµν satisfies:

−ε∂2δhµν = − ε

2
δTµν + hρσstat∂

2
ρσh

µν
(0) + hρσ(0)∂

2
ρσh

µν
stat − ∂σh

µρ
stat∂ρh

νσ
(0) − ∂σh

µρ
(0)∂ρh

νσ
stat

− ∂ρhµσstat∂ρh
ν
(0)σ − ∂ρhµσ(0)∂ρh

ν
statσ + ∂µhρσstat∂ρh

ν
(0)σ + ∂µhρσ(0)∂ρh

ν
statσ

+ ∂νhρσstat∂ρh
µ
(0)σ + ∂νhρσ(0)∂ρh

µ
statσ − ηµν∂λh

ρσ
stat∂ρh

λ
(0)σ

− 1

4
(ηµτηνω + ηντηµω − ηµνητω) (2ηαρηβσ − ηαβηρσ) ∂τh

αβ
stat∂ωh

ρσ
(0). (3.8.19)

Define the source fluctuation δτµν so that:

−∂2δhµν = −δτ
µν

2
. (3.8.20)

Because the tree level Compton is O(κ2), it only depends on linear and quadratic in R terms in the

dynamical mass function. Consequently, we will consider the dynamical mass function to be of the form:

M2 = m2 + δM2
1 + δM2

2 +O(R3) (3.8.21)

where δM2
1 is of the form:

δM2
1 =

∞∑
n=0

Tλ1...λnρµσν
n (g, u, S)∇n

(λ1...λn)
Rρµσν (3.8.22)

for some functions T ...
n with the same index symmetries as ∇n

(λ1...λn)
Rρµσν and where δM2

2 is of the form:

δM2
2 =

∞∑
n=0

∞∑
l=0

V
λ1...λnρµσν|κ1...κlγαδβ
nl (g, u, S)∇n

(λ1...λn)
Rρµσν∇l

(κ1...κl)
Rγαδβ (3.8.23)

for some functions V ...
nl with the same index symmetries as ∇n

(λ1...λn)
Rρµσν∇l

(κ1...κl)
Rγαδβ .

Einstein’s equations together with the MPD equations with the described initial conditions will produce
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solutions of the form:

zµ(λ) = vµλ+ κεδzµ(λ) +O(κ2) (3.8.24)

uµ(λ) = vµ + κεδuµ(λ) +O(κ2) (3.8.25)

Sµ(λ) = sµ + κεδSµ(λ) +O(κ2) (3.8.26)

Tµν(X) = Tµν
(0)(X) + κεδTµν +O(κ2, ε2) (3.8.27)

hµν(X) = εEµ
1 Eν

1 e
ik1·x + κhµνstat(X) + κ2hµνstat,2(X) + κ2εδhµν(X) +O(κ3, ε2). (3.8.28)

The equation of motion perturbations will be oscillatory from solving the MPD equations. In particular, their

solutions take the form:

δzµ = δz̃µeik1·vλ, δuµ = δũµe
ik1·vλ, δSµ = δS̃µeik1·vλ (3.8.29)

for constant vectors δz̃, δũ, δS̃.

It is useful to define the function N (u, S, k, E):

N (u, S, k, E) = −
∞∑

n=0

in

m
Tλ1...λnρµσν
n (η, u, S)kλ1

...kλn
EρkµEσkν (3.8.30)

so that for a plane-wave:

δM2
1

∣∣
plane-wave = 2mκεN (u, S, k, E)eik·z +O(κ2). (3.8.31)

Similarly, we define the function P(u, S, k, E , k′, E ′):

P(u, S, k, E , k′, E ′) =

∞∑
n=0

∞∑
l=0

4il−n

m
V

λ1...λnρµσν|κ1...κlγαδβ
nl k′λ1

...k′λn
k′ρE ′∗

µ k
′
σE ′∗

ν kκ1
...kκl

kγEαkδEβ (3.8.32)

and adopt the shorthand:

N1 = N (v, s, k1, E1), N2 = N (v, s, k2, E2), P12 = P(v, s, k1, E1, k2, E2). (3.8.33)

Using the delayed Green’s function solution to the wave equation to solve Einstein’s equations for δhµν ,

we find:
δhµν(X) = −

∫
S

δτµν(t− |~x− ~x ′|, ~x ′)

8π|~x− ~x ′|
d3~x ′ (3.8.34)

where t and ~x retain their definitions from electromagnetism. The source perturbation is determined by the

equation of motion perturbations δz, δu, δS. Define the flat-space Fourier transform of the energy-momentum

tensor:
T̃µν(k) =

∫
e−ik·x

(2π)2
Tµν(X)d4X. (3.8.35)

From (3.6.36) we can identify that the Fourier transform of the stationary stress tensor of the unperturbed

body is:
T̃αβ
(0) (k) =Mαβ(k)

δ(k · v)
2π

(3.8.36)
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where:

Mαβ(k) = mvαvβ + iv(αεβ)γρσkγvρsσ − 2

m

∞∑
n=0

(−i)nTλ1...λnµανβ
n (η, v, s)kλ1

...kλn
kµkν . (3.8.37)

The resulting Fourier transform of the stationary metric perturbation is:

h̃αβstat(k) = −M
αβ(k)

2k2
δ(k · v)
2π

. (3.8.38)

In terms of this solution, (3.8.19) produces:

δτ̃µν(k2) = δT̃µν(k2) + 2Eµ
1 Eν

1 (h̃
ρσ
statk1ρk1σ) + 2(E1 · k2)2h̃µνstat − 4(E1 · k2)E(µ

1 h̃
ν)ρ
statk1ρ

− 4(k1 · k2)E(µ
1 h̃

ν)ρ
statE1ρ + 4E(µ

1 (k2 − k1)
ν)(h̃ρσstatk1ρE1σ) + 4(E1 · k2)k(µ1 h̃

ν)ρ
statE1ρ

− 2ηµν(E1 · k2)h̃ρσstatk1ρE1σ − 2k
(µ
1 (k2 − k1)

ν)h̃αβstatE1αE1β + ηµνk1 · k2h̃αβstatE1αE1β (3.8.39)

where everywhere it appears in the above equation, h̃ρσstat is evaluated at k2 − k1.

From the definition of Qn, we find:

Qλ1...λnρµσν
n =

(
1− δM2

1

2m2

)
Tλ1...λnρµσν
n

2m
+

1

m

∞∑
l=0

V
λ1...λnρµσν|κ1...κlγαδβ
nl ∇l

(κ1...κl)
Rγαδβ +O(R2). (3.8.40)

In terms of the solutions to the equations of motion:

Qλ1...λnρµσν
n =

Tλ1...λnρµσν
n (η, v, s)

2m
+ κεδQ̃λ1...λnρµσν

n eik1·vλ +O(κ2) (3.8.41)

where:

δQ̃λ1...λnρµσν
n =

1

4m
E1αE1βĜαβTλ1...λnρµσν

n +
1

2m

∂Tλ1...λnρµσν
n

∂vα
δũα

+
1

2m

∂Tλ1...λnρµσν
n

∂sα

(
δS̃α − 1

2
s · E1Eα

1

)
− N1

2m2
Tλ1...λnρµσν
n

− 2

m

∞∑
l=0

ilV
λ1...λnρµσν|κ1...κlγαδβ
nl k1κ1

...k1κl
k1γk1δE1αE1β . (3.8.42)

Returning these to δτ , we find that in Fourier space it takes the form:

δτ̃µν(k2) = Hµν(k2)
δ(k2 · v − k1 · v)

2π
(3.8.43)

and that at large distances, recycling the notation from electromagnetism. The metric perturbation becomes:

δhµν(X) = −e
iω(r−t)

8πr
Hµν(k2) +O

(
1

r2

)
. (3.8.44)

Therefore, the covariantly normalized Compton amplitude is given by:

A = −mE∗
2µE∗

2νH
µν(k2). (3.8.45)

The solutions to the equations of motion are:

δũµ =
i

2m
Eµ
1 ε

vsk1E1 − N1

m

(
vµ +

kµ1
k1 · v

)
(3.8.46)
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δS̃µ =
1

2
(E1 · s)Eµ

1 + vµs · δũ− i

k1 · v
εµνρσvνsρ

∂N1

∂sσ
(3.8.47)

δz̃µ =
−i
k1 · v

(
δũµ +

εvsk1E1

2m2
(δµν + vµvν) ε

νsk1E1 +
ηµν + vµvν

m

∂N1

∂vν

+
sµvν

m

∂N1

∂sν
+

i

m2
N1ε

µνρσvνsρk1σ

)
. (3.8.48)

Expressed in terms of these solutions, the gravitational Compton amplitude to all orders in spin is:

A = 2m

(
1

2
(k2 · v)(E∗

2 · δz̃)εE
∗
2 k2vs − i

4
(k2 · v)(E1 · E∗

2 )ε
E1E∗

2 vs

+i(k2 · δz̃)N ∗
2 − δũα

∂N ∗
2

∂vα
−
(
δS̃α − 1

2
(s · E1)Eα

1

)
∂N ∗

2

∂sα
+

N1N ∗
2

m
− P12

)
− m(E1 · E∗

2 )
2

2(k1 · k2)
(Mµνk

µ
1 k

ν
1 )−

m(E1 · k2)2

2(k1 · k2)
(MµνE∗µ

2 E∗ν
2 ) +

m(E1 · k2)(E1 · E∗
2 )

(k1 · k2)
(Mµνk

µ
1 E∗ν

2 )

+m(E1 · E∗
2 )(MµνEµ

1 E∗ν
2 ) +

m(E1 · E∗
2 )(k1 · E∗

2 )

(k1 · k2)
(Mµνk

µ
1 Eν

1 )

− m(E1 · k2)(E∗
2 · k1)

(k1 · k2)
(MµνEµ

1 E∗ν
2 )− m(E∗

2 · k1)2

2(k1 · k2)
(MµνEµ

1 Eν
1 ) +

∞∑
n=0

δAn (3.8.49)

where:

δAn = − 1

2

n−1∑
l=0

in(−1)l(k1 · E∗
2 )T

λ1...λnρµσν
n k1λ1

...k1λn−l−1
E∗
2λn−l

qλn−l+1
...qλn

δR̃ρµσν

+

n−1∑
l=0

in(−1)lTλ1...λnρµσν
n E∗[τ

2 k
ω]
2 Ĝτω(k1λ1

...k1λn−l−1
δR̃ρµσν)E∗

2λn−l
qλn−l+1

...qλn

− (−i)nTλ1...λnρµσν
n qλ1

...qλn
E∗
2ρE∗α

2 δR̃αµσν

+ 2(−1)n
n−1∑
l=0

in−1E∗
2αE∗

2βk2µk2νk2λn−l+1
...k2λn

δΓ̃σ
ρλn−l

Ĝρ
σ(T

λ1...λnµανβ
n qλ1

...qλn−l−1
)

− 2i(−i)nE∗
2αE∗

2βk2µδΓ̃
σ
ρνĜ

ρ
σ(T

λ1...λnµανβ
n qλ1 ...qλn)

− 2i(−i)nE∗
2αE∗

2βδΓ̃
σ
ρµĜ

ρ
σ(T

λ1...λnµανβ
n qνqλ1 ...qλn)

+ (−i)nk2λ1
...k2λn

k2ρE∗
2µk2σE∗

2νEα
1 E

β
1 Ĝαβ(T

λ1...λnρµσν
n ) (3.8.50)

and where:

qµ = kµ2 − kµ1 (3.8.51)

δΓ̃ρ
µν =

i

2
(kρ1E1µE1ν − Eρ

1k1µE1ν − Eρ
1k1νE1µ) (3.8.52)

δR̃ρµσν = −1

2
(k1ρE1µ − k1µE1ρ)(k1σE1ν − k1νE1σ). (3.8.53)

3.8.2 Compton Amplitude through Spin to the Fifth

Similarly to electromagnetism, we consider only operators which have the same number of powers of

spin as they do number of derivatives acting on the metric, so as not to include any length scales beyond
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S
m . For enumerating linear in Riemann operators, it is not safe to use Einstein’s equations to simplify the

possible terms when considering the Compton amplitude as the linear in Riemann piece of the dynamical

mass function does not contribute solely in a perfectly on-shell way to the Compton amplitude in the way the

linear in field strength piece did for electromagnetism (only through the N function). We find explicitly that

some Ricci operators make independent contributions to the Compton amplitude. Through O(S5), the most

general possible dynamical mass function with only length scale S
m is:

δM2
1 = δM2

1S2 + δM2
1S3 + δM2

1S4 + δM2
1S5 +O(S6) (3.8.54)

δM2
1S2 = − C2RuSuS − E2a

3
RSS + E2bS

2Ruu +
E2c

6
S2R, (3.8.55)

δM2
1S3 =

C3

3m
(S · ∇)R?

uSuS +
E3

3m
S2∇ρR?

ρuuS , (3.8.56)

δM2
1S4 =

C4

12m2
(S · ∇)2RuSuS − E4a

20m2
S2(u · ∇)2RuSuS − E4b

12m2
S2∇2RuSuS

+
E4c

30m2
(S · ∇)2RSS − E4d

30m2
S2(u · ∇)2RSS − E4e

30m2
S2∇2RSS

− E4f

12m2
S2(S · ∇)2Ruu +

E4g

20m2
S4(u · ∇)2Ruu +

E4h

12m2
S4∇2Ruu

− E4i

60m2
S2(S · ∇)2R− E4j

60m2
S4(u · ∇)2R+

E4k

60m2
S4∇2R, (3.8.57)

δM2
1S5 = − C5

60m3
(S · ∇)3R?

uSuS +
E5a

60m3
S2(u · ∇)2(S · ∇)R?

uSuS +
E5b

60m3
(S · ∇)∇2R?

uSuS

− E5c

60m3
S2(S · ∇)2∇ρR?

ρuuS +
E5d

60m3
S4(u · ∇)2∇ρR?

ρuuS +
E5e

60m3
S4∇2∇ρR?

ρuuS . (3.8.58)

Expanding (3.7.43) through order S5 we find that it implies that all of these Wilson coefficients should be 1

except E4d and E4j which should both be 0:

C2 = C3 = C4 = C5 = E2a = E2b = E2c = E3

= E4a = E4b = E4c = E4e = E4f = E4g = E4h

= E4i = E4k = E5a = E5b = E5c = E5d = E5e = 1

E4d = E4j = 0. (3.8.59)

While it is not valid to use Einstein’s equations to simplify the linear in Riemann piece of the dynamical

mass function when computing the Compton amplitude, because the quadratic in Riemann piece of the

dynamical mass function only contributes to the Compton amplitude by being evaluated fully on-shell

(through the P function) we are perfectly safe to only consider terms within it which are nonzero for vacuum

solutions of Einstein’s equations. If we assume vacuum, Rρ
µρν = 0, then the left and right duals of the

Riemann tensor are equal, ?R = R?, ?R? = −R, and its (A)SD part can be obtained by projecting with
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(3.5.50) from either side, and it commutes through to the other,

±Rρµσν =
1

2
(R∓ i ?R)ρµσν = ±Gρµ

αβRαβσν = Rρµγδ
±Gγδ

σν = ±Gρµ
αβRαβγδ

±Gγδ
σν , (3.8.60)

satisfying ? ±R = ±R? = ±i±R and ±R∗ = ∓R. Defining the quadrupolar gravito-electric and -magnetic

“tidal” curvature tensors with respect to a unit timelike direction u,

Eµν ∓ iBµν = (Rρµσν ∓ i ?Rρµσν)u
ρuσ = 2±Rρµσνu

ρuσ, (3.8.61)

we see that the identities (3.5.50)–(3.5.52) allow us to reconstruct Rρµσν from its components Eµν and Bµν

(and uρ), as the real part of

2±Rρµσν = (R∓ i ?R)ρµσν = 16±Gρµ
γα ±Gσν

δβ(Eαβ ∓ iBαβ)uγuδ. (3.8.62)

The tidal tensors Eµν and Bµν are symmetric and trace-free (STF) in vacuum, and orthogonal to uµ, forming

irreducible representations of the SO(3) rotation little group of uµ. Moving on to the first derivative ∇λRρµσν ,

the irreducible pieces w.r.t. uµ are the fully STF-(⊥u) octupolar tidal tensors

Eλµν ∓ iBλµν = 2∇κ
±Rρ

(λ
σ
µ

(
δν)

κ + uν)u
κ
)
uρuσ, (3.8.63)

and the ‘time derivatives’ of the quadrupolar curvature components,

Ėµν ∓ iḂµν = 2uλ∇λ
±Rρµσνu

ρuσ. (3.8.64)

In terms of the tidal tensors, the most general dynamical mass function through S5 which is quadratic

in the Riemann tensor and contains only pieces which are nonzero in vacuum is:

δM2
2 = δM2

2S4 + δM2
2S5 +O(S6), (3.8.65)

δM2
2S4 =

D4a

m2
(ESS)

2 +
D4b

m2
S2Eµ

SEµS +
D4c

m2
S4EµνEµν

+
D4d

m2
(BSS)

2 +
D4e

m2
S2Bµ

SBµS +
D4f

m2
S4BµνBµν , (3.8.66)

δM2
2S5 =

D5a

m3
BSSESSS +

D5b

m3
S2Bµ

SEµSS +
D5c

m3
S4BµνEµνS

+
D5d

m3
ESSBSSS +

D5e

m3
S2Eµ

SBµSS +
D5f

m3
S4EµνBµνS (3.8.67)

+

(
D5g

m3
ESµĖSν +

D5h

m3
S2Eλ

µĖλν +
D5i

m3
BSµḂSν +

D5j

m3
S2Bλ

µḂλν

)
εµνρσu

ρSσS2.

The spinless and linear in spin pieces of the amplitudes are universal (independent of the values of

any Wilson coefficients). At quadratic order in spin, there are 4 Wilson coefficients in the dynamical mass

function, C2, E2a,b,c. The amplitude for a given body at O(S2) determines C2 and is independent of E2a,b,c.

In fact, the amplitude is independent of E2a,b,c to all orders in spin. At cubic order in spin, there are 2

Wilson coefficients in the dynamical mass function, C3 and E3. The amplitude for a given body at O(S3)
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determines C3 and is independent of E3. In fact, the amplitude is independent of E3 to all orders in spin.

At quartic order in spin, there are 18 Wilson coefficients in the dynamical mass function, C4, D4a,b,c,d,e,f ,

E4a,b,c,d,e,f,g,h,i,j,k. The amplitude for a given body at O(S4) is independent of E4c,d,e,f,g,h,i,j,k and remains

so at all orders in spin. Of the 9 remaining coefficients C4, D4a,b,c,d,e,f , E4a,b, only 7 linear combinations can

be determined from the O(S4) Compton amplitude. In particular, the S4 amplitude is independent of the

value of E4a (though the S5 amplitude does depend on E4a) and of the linear combination:

Z4 = E4b +
D4b

2
− D4c

6
− D4e

2
+
D4f

6
. (3.8.68)

We find agreement with the Compton amplitude computed by Ben-Shahar in Ref [262] to quartic order in

spin.

At quintic order in spin, there are 16 Wilson coefficients in the dynamical mass function, C5, D5a−j ,

E5a,b,c,d,e. As well, E4a contributes to the S5 amplitude. Of these 17 coefficients, 11 linearly combinations

can be determined from the Compton amplitude. The amplitude is independent of the values of the 6 linear

combinations:

Z5a = E5a +
D5e

180
+
D5g

60
− D5i

90
(3.8.69)

Z5b = E5b −
4

15
D5b +

D5c

10
− 4

15
D5e +

D5f

10
+
D5h

30
− D5j

30
(3.8.70)

Z5c = E5c −
D5b

12
+
D5c

36
− 17

180
D5e +

D5f

30
− D5g

180
+
D5h

180
− D5i

180
(3.8.71)

Z5d = E5d −
D5f

180
− D5h

90
+
D5j

180
(3.8.72)

Z5e = E5e +
D5c

60
+
D5f

60
+
D5h

20
− D5j

20
(3.8.73)

Z5f = E4a −
D5b

20
− C2

10
D5g +

3

20
D5i. (3.8.74)

There are precisely as many Z combinations which the Compton amplitude is independent of as there are E

coefficients in the amplitude at this order, so if the amplitude is fully determined by some matching conditions

those conditions can be expressed so that all of the D coefficients are parameterized by the matched values

and the undetermined E coefficients. If (3.8.59) is used, all of these E coefficients are set to 1, which then

fully determines the D coefficients and hence the dynamical mass function through this order. Because of

these null Z combinations, the values of the any values of E coefficients can be made consistent with any

matching conditions on the Compton amplitude.

In order to match the spin-exponentiated amplitude of Ref. [53] through O(S4), we must have:

C2 = C3 = C4 = 1, D4a = D4d = 0,

D4b =
E4b

2
, D4c = −E4b

6
, D4e = −E4b

2
, D4f =

E4b

6
. (3.8.75)
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These conditions are consistent with (3.8.59). For the opposite-helicity amplitude, it is possible to continue

the spin-exponentiation through S5. Doing so requires:

C5 = 1,

D5d =
1

6
−D5a,

D5e = − 1

15
−D5b −

E4a

20
+
E5a

180
− 8

15
E5b −

8

45
E5c,

D5f = −D5c +
E5b

5
+

11

180
E5c −

E5d

180
+
E5e

30
,

D5i =
2

9
+D5g +

E4a

4
− E5a

36

D5j = D5h − E5b

15
− E5c

180
+
E5d

60
− E5e

10
(3.8.76)

which are completely consistent with (3.8.59) (which simply sets E4a = E5a,b,c,d,e = 1 in these expressions).

Therefore, if the dynamical mass function in (3.7.43) is used, opposite-helicity spin exponentiation can be

maintained at O(S5).

It is also interesting to see what is required by shift-symmetry. In order for the same-helicity Compton

amplitude to have shift-symmetry through O(S4) we find that it requires:

C4 = 1, D4e = −D4a −D4b −D4d, D4f =
D4a

4
−D4c +

D4d

4
(3.8.77)

which are consistent with both (3.8.59) and (3.8.75). It is possible to demand shift-symmetry at S5 as well.

Doing so requires:

C5 = 1,

D5e =
4

5
+D5a +D5b −D5d +

E4a

20
+
E5a

180
− E5c

90
,

D5f = − 43

120
− D5a

4
+D5c +

D5d

4
+
E5c

180
− E5d

180
,

D5i =
5

18
−D5g +

E4a

20
+
E5a

180
− E5c

90

D5j = −D5h +
E5c

180
− E5d

180
(3.8.78)

which are completely consistent with (3.8.59). Therefore, if the dynamical mass function in (3.7.43) is used,

shift-symmetry will may be continued at O(S5). The spin-exponentiation conditions and shift-symmetry

conditions can be demanded simultaneously through O(S5).

A final interesting case of comparison is to results from the Teukolsky equation. Following the analysis of

Ref [185], a match to the analytically continued results of the Teukolsky equation depends on the combinations:

c
(0)
2 = D5f −D5c +

E5d − E5c

180
, c

(0)
3 = −2D5h − 2D5j +

E5c − E5d

90
,

c
(1)
2 =

1

20
+ 2c

(0)
2 +

D5e −D5b

2
− 9E4a + E5a − 2E5c

360
,
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c
(1)
3 =

1

90
+ 2c

(0)
3 −D5g −D5i +

9E4a + E5a − 2E5c

180
,

c
(2)
2 = − 11

120
+
D5d −D5a

4
+ c

(1)
2 − c

(0)
2 , c

(2)
3 =

4

15
+ c

(1)
3 − c

(0)
3 . (3.8.79)

Matching Teukolsky at O(S5) requires:

c
(0)
2 = c

(1)
2 = c

(2)
2 = 0, c

(0)
3 =

64

15
α, c

(1)
3 =

16

3
α, c

(2)
3 =

4

15
(1 + 4α), (3.8.80)

where α = 1 if contributions from analytically continued digamma functions are to be kept or α = 0 if such

contributions are to be dropped. Matching to Teukolsky is inconsistent with shift-symmetry but consistent

with continuing spin-exponentiation for the same helicity amplitude and with (3.7.43). The combination of

Teukolsky, spin-exponentiation, and (3.8.59) are consistent with each other and fully determine the D type

Wilson coefficients to be:

D5a = − 1

10
, D5b = −23

60
, D5c =

13

90
, D5d =

4

15
,

D5e = − 79

180
, D5f =

13

90
, D5g = − 7

36
+

8

5
α, D5h =

7

90
− 16

15
α,

D5i =
1

4
+

8

5
α, D5j = − 7

90
− 16

15
α. (3.8.81)

For expressing the full amplitudes, recall ǩ1 = k1 − w, ǩ2 = k2 − w. Then, for the helicity-preserving

amplitude we find:

A++ =
(4ω2 − q2)2

16q2ω2

{
1 + ǩ1 · a+ ǩ2 · a

+
1

2
(ǩ1 · a+ ǩ2 · a)2 +

C2 − 1

2

(
(ǩ1 · a)2 + (ǩ2 · a)2

)
+

1

6
(ǩ1 · a+ ǩ2 · a)3 +

C3 − 1

2

(
(ǩ1 · a)3 + (ǩ2 · a)3

)
+
C2 − 1

2
(k1 + k2 − 2C2w) · a ǩ1 · a ǩ2 · a

+ Â(4)
++ + Â(5)

++ +O(a6)

}
, (3.8.82)

with

Â(4)
++ =

1

24
(ǩ1 · a+ ǩ2 · a)4 +

C4 − 1

24

(
(ǩ1 · a)4 + (ǩ2 · a)4

)
+
C3 − 1

6

(
(ǩ1 · a)2 + (ǩ2 · a)2

)
ǩ1 · a ǩ2 · a+ Â(4)(C2−1)

++

− (D4a +D4d)
2ω2

q2
(ǩ1 · a)2(ǩ2 · a)2

+ (D4b +D4e)ω
2a2ǩ1 · a ǩ2 · a−

D4c +D4f

2
q2ω2a4, (3.8.83)

noting
ω2a2 = (w · a)2 − 4ω2

q2
ǩ1 · a ǩ2 · a, (3.8.84)
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and with

Â(5)
++ =

1

120
(ǩ1 · a+ ǩ2 · a)5 + Â(5)(Cn−1)

++

+
(
c
(0)
2 (k1 + k2) · a+ c

(0)
3 w · a

)
(w · a)4 q2

4ω2

−
(
c
(1)
2 (k1 + k2) · a+ c

(1)
3 w · a

)
(w · a)2ǩ1 · a ǩ2 · a

+
(
c
(2)
2 (k1 + k2) · a+ c

(2)
3 w · a

)4ω2

q2
(ǩ1 · a)2(ǩ2 · a)2, (3.8.85)

using the previous definitions of the c(j)i coefficients in (3.8.79), and where

Â(5)(Cn−1)
++ =

C5 − 1

120

[
(ǩ1 · a)5 + (ǩ2 · a)5 − (w · a)2(ǩ1 · a+ ǩ2 · a)ǩ1 · a ǩ2 · a

]
(3.8.86)

+
C4 − 1

24

[
(ǩ1 · a)3 + (ǩ2 · a)3 − (w · a)2(ǩ1 · a+ ǩ2 · a)

]
ǩ1 · a ǩ2 · a+ Â(5)(C3−1,C2−1)

++ ,

with Â(4)(C2−1)
++ vanishing when C2 = 1 and Â(5)(C3−1,C2−1)

++ vanishing when C3 = C2 = 1. Because the C

coefficients are all determined by the three-point amplitude, for black holes they are all known to take the

value 1.

For the helicity reversing amplitude, it is useful to recall:

(aya) := (k1 · a)(k2 · a)− (x · a)(q · a)− ω2a2

=
−q2

4ω2 − q2
(k1 · a− x · a)(k2 · a+ x · a) = q2

4ω2

(
(x · a)2 − ω2a2

)
. (3.8.87)

With this, we find:

A+− =
q2

16ω2

{
1− q · a+ (q · a)2

2
C2 + (C2 − 1)(aya)

− (q · a)3

6
C3 + (aya)

(
(1− C2 − C2

2 + C3)x+
C2 − C3

2
q
)
· a

+ Â(4)
+− + Â(5)

+− +O(a6)

}
, (3.8.88)

with

Â(4)
+− =

(q · a)4

24
C4 + (aya)2

3− 4C3 + C4

12
+
C4 − C3

6
(aya)q · a(q − 2x) · a

+ (C2 − 1)(aya)

[
C3 + 3C2

3

(
2(aya)

ω2

q2
+ ω2a2

)
+
C3 + C2

2
q · a x · a

]
+ (aya)2

ω2

q2
2(D4d −D4a) + q2ω2a4

(
D4f −D4c

2
− E4b

6

)
+ (aya)ω2a2(D4b −D4e − E4b), (3.8.89)

and

Â(5)
+− = − (q · a)5

120
C5 +

C4 − C5

24
(aya)(q · a)2(q − 2x) · a+ 1− C4

12
(aya)2q · a+ Â(5)(C3−1,C2−1)

+−
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+
5C4 − C5 − 4

120
(aya)

[
5(aya)

(
(q − 2x) · a− 8

ω2

q2
q · a

)
+ ω2a2(9q + 10x) · a

]
+ q · a (aya)2ω

2

q2

(
1

6
− (D5a +D5d)

)
+ q · a (aya)ω2a2

(
1

30
+
D5b +D5e

2
+

4

15
E5b +

4E5c

45
+

9E4a − E5a

360

)
+ x · a (aya)ω2a2

(
2

9
+D5g −D5i +

9E4a − E5a

36

)
+ q · a q2ω2a4

(
−D5c +D5f

4
+
E5b

20
+

11E5c

720
+

6E5e − E5d

720

)
+ x · a q2ω2a4

(
D5j −D5h

2
+
E5b

30
+
E5c

360
+

6E5e − E5d

120

)
, (3.8.90)

where similarly Â(5)(C3−1,C2−1)
+− vanishes when C3 = C2 = 1.

3.9 Conclusion
Using the dynamical mass function worldline formalism, we derived formal expressions for the electro-

magnetic/gravitational Compton amplitudes of a generic spinning body to all orders in spin, with precise

parameterized expressions in terms of Wilson coefficients for the amplitudes to order S3 in electromagnetism

and S5 in gravity for bodies which match the
√

Kerr /Kerr three-point amplitude. In electromagnetism we

found 1 Wilson coefficient and 1 independent structure in the Compton at S1, 5 new Wilson coefficients and

5 independent structures at S2, and 8 new Wilson coefficients but only 7 independent structures at S3. In

gravity we found 4 Wilson coefficients and 1 independent structure in the Compton at S2, 2 new Wilson

coefficients and 1 independent structure at S3, 18 new Wilson coefficients and 7 independent structures at S4,

and 16 new Wilson coefficients and 11 independent structures at S5. As well, one of the Wilson coefficients

on an S4 operator in gravity (E4a) does not contribute to S4 piece of the Compton but does contribute to the

S5 piece (whereas the other operator contributions which do not contribute at the order they are introduced

actually do not contribute at all through S5).

Dixon’s multipole moment formalism provides additional physical constraints on the dynamical mass

function beyond those required by naive multipole moments which are determined by the three-point amplitude.

Many of the additional terms induced by Dixon’s formalism (the operators with E coefficients), especially at

low orders in spin, happen to not affect the Compton amplitude. However, at sufficiently high orders in spin

(S5 and beyond in gravity) at least some of these additional terms do contribute to the Compton amplitude.

Through O(S5) these combinations are linearly redundant in the Compton amplitude to contributions from

Riemann squared operators. It would be interesting to see if these additional coefficients begin to contribute

in linearly independent ways in the Compton at higher orders in spin or in higher-point processes, such as

the five-point amplitude (with three graviton lines).
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In electromagnetism, using Dixon’s multipole moments for
√

Kerr determines the dynamical mass

function to be given by (3.4.54) with no room for additional operators which are linear in the field strength.

Because the stationary
√

Kerr solution only determines its multipole moments up to corrections which are

linear in the field strength, they only determine the couplings in the action up to corrections which are

quadratic in the field strength. Without some additional physical principle which specifies how the multipole

moments of the
√

Kerr particle deform in the presence of a background field (which would determine its

electromagnetic susceptibility tensors), it is not possible to determine the quadratic in field strength couplings

using the multipole moment formalism. The couplings in (3.4.54) contain all of the couplings of (3.4.57)

(in that the coefficients of operators which are present in both agree). The story is very similar in gravity.

Dixon’s multipole moment formalism applied to the Kerr solution determines the dynamical mass function to

be given by (3.7.43) with no room for additional operators which are linear in the Riemann tensor. Because

the stationary Kerr solution only determines its multipole moments up to corrections which are linear in the

Riemann tensor, they only determine the couplings in the action up to corrections which are quaratic in the

Riemann tensor. Without some further knowledge of the gravitational susceptibility tensors of a spinning

black hole, it is not possible to determine the quadratic in Riemann couplings using the multipole moment

formalism. The couplings in (3.7.43) contain all of the couplings of (3.7.48).

It is uncertain what precise physical principles determine the correction couplings in the action for

a spinning black hole in general. Through O(S4), spin-exponentiation, shift-symmetry, the results of the

Teukolsky equation, and the results from the multipole moment formalism can all be maintained simultaneously

by appropriately choosing the values of Wilson coefficients for quadratic in Riemann tensor operators. However,

beginning at O(S5) these different principles cannot all be maintained. Spin-exponentiation is only possible to

maintain for one of the two independent helicity combinations and is consistent with shift-symmetry at O(S5).

However, shift-symmetry and the Teukolsky results are inconsistent with each other at O(S5). The couplings

fixed by the multipole moment formalism are the unique values for the couplings so that the stress tensor

they produce behaves correctly against test functions (meaning satisfies (3.7.16) with the multipole moments

of the Kerr solution used to form the generating function on the right hand side). In this way, only those

couplings produce the Kerr multipole moments (up to corrections which are linear in the Riemann tensor)

for a black hole which is in arbitrary nonuniform motion. Such couplings are consistent with maintaining a

match to spin-exponentiation and the Teukolsky equation at O(S5).
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Chapter 4

Spin Magnitude Change in Orbital Evolution in General Relativity
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We show that physical scattering observables for compact spinning objects in general relativity can

depend on additional degrees of freedom in the spin tensor beyond those described by the spin vector alone.

The impulse, spin kick and leading order waveforms exhibit such a nontrivial dependence. A clear signal of

this additional structure is the change of the magnitude of the spin vector under conservative Hamiltonian

evolution, similar to our previous studies in electrodynamics. These additional degrees of freedom describe

dynamical mass multipoles of compact objects and decouple for black holes.

4.1 Introduction
The detection of gravitational waves by the LIGO/Virgo collaboration [102, 103] has opened a new era

in astronomy, cosmology, and perhaps even particle physics. As the sensitivity of gravitational-wave detectors

will continue to improve [104, 105, 106], the spin of compact astrophysical objects will become increasingly

important for signal identification and interpretation. Spin introduces rich three-dimensional dynamics due

to the angular momentum exchange between the objects and their orbital motion. For further details, see

reviews [269, 225, 227, 241] and references therein.

139



The study of spinning compact objects brings to the forefront interesting and subtle theoretical questions

regarding the number of physical degrees of freedom and independent effective operators describing their

interactions and their Wilson coefficients [101, 2]. Here, we discuss these issues along the lines of Ref. [2],

which dealt with the case of electrodynamics.

In traditional worldline approaches (see e.g. [117, 229, 145, 60]) as well as in WQFT [166], a spin

supplementary condition (SSC) [228] identifies the three physical spin degrees of freedom and restricts their

interactions 1. While a consequence of the SSC is the invariance of the spin magnitude under conservative

time evolution, rotation and Lorentz invariance generally guarantee only the conservation of the magnitude

of the total angular momentum.

Ref. [2] studied the effective operators and associated Wilson coefficients [101] in the simpler case of

electrodynamics. It does so from the amplitudes-based field theory, worldline, and two-body Hamiltonian

perspectives by relaxing the SSC, and found all approaches consistent. Additional Wilson coefficients vis-à-vis

worldline approaches reflect the presence of additional dynamical degrees of freedom. In the field theory

approach, this is connected to the description of the classical spin as a combination of quantum spins with

allowed transitions. To match the field theory results, the worldline formulation of Ref. [226] was modified by

relaxing the SSC, identifying the additional degrees of freedom denoted below by Kµ with components of the

spin tensor
Sµν =

1

m
εµνρσpρSσ +

i

m
(pµKν − pνKµ) . (4.1.1)

Here Sµ is the usual spin vector and Kµ can be interpreted as a mass dipole. They satisfy pµSµ = pµKµ = 0.

Finally, the two-body Hamiltonian that reproduces the field theory and worldline results with the extra

degrees of freedom necessarily should include both S and K [2].

Similar considerations apply just as well to gravity. Indeed, the self-consistency and physical inequivalence

of the worldline approach with a dynamical mass dipole (i.e., with no SSC imposed) was understood a while

ago [270, 271, 272] in this context.

Here, we show that the conclusions of Ref. [2] for electrodynamics carry over to gravity, including that the

spin magnitude can evolve under conservative Hamiltonian dynamics, contrary to the usual approaches. While

the linear-in-spin (dipole) interactions are not altered by the presence of K in accordance with the principles

of general relativity, physical observables such as scattering angles and waveforms reflect the presence of

additional degrees of freedom at O(GS2) and O(G2S2), where S is the spin tensor of one of the objects 2.

Interestingly, starting at O(G2S3), artificially excluding the extra degrees of freedom in the external states
1The SSC was interpreted in Ref. [229, 145, 230] in terms of a spin-gauge symmetry encoding the freedom to locally shift the

worldline in the ambient space.

2This contrasts with electrodynamics, where the first effect is linear in the spin tensor, and reflects the lack of universality of
electromagnetic interactions at linear order in spin.
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does not remove the additional Wilson coefficients [101]. Moreover, for special values of Wilson coefficients

the extra degrees of freedom decouple from the spin and position dynamics, indicating the emergence of a

local symmetry, possibly related to the spin gauge symmetry [145]. This interpretation is compatibile with

the Kerr stress tensor [58], the results of Teukolsky equations [247, 185, 186] and with earlier results for black

hole scattering through O(G2S4) [59, 60, 61, 167, 173, 101]3.

4.2 Field Theory
We begin by outlining our amplitude-based field theory approach of Refs. [59, 61, 101, 2], which describes

a spinning body by a symmetric and traceless tensor field φs. In the local frame defined by the vierbein eaµ,

the minimal interaction with Einstein gravity is,

L0 = −1

2
φs(∇2 +m2)φs +

H

8
RabcdφsM

abM cdφs , (4.2.1)

where Mab is the Lorentz generator acting in the space of φs. For generic bodies, such as neutron stars, we

can write down additional interactions starting at O(M2),

Lnon-min = − C2

2m2
Raf1bf2∇aφsS(f1Sf2)∇bφs +

D2

2m2
Rabcd∇iφs{MaiM cd}∇bφs (4.2.2)

+
E2 − 2D2

2m4
Rabcd∇(a∇i)φs{M biMdj}∇(c∇j)φs .

where Sa = −iεabcdMbc∇d/(2m). The C2 term corresponds to a standard interaction included on the worldline.

It is the unique interaction at this order compatible with an internal SO(3) symmetry in the body-fixed frame

and an imposed worldline spin gauge symmetry [145]. In contrast, in the field-theory formalism, it is natural

to include all interactions that can be relevant to classical physics. The Wilson coefficients (H,C2, D2, E2)

are not independent, allowing us to fix H = 1. Note that we introduce a certain mixing of E2 and D2 to

align the spin structures in amplitudes and observables.

Analogous interactions are not included in the usual worldline formulations because the SSC, which

effectively removes three dynamical degrees of freedom from the spin tensor, sets them to zero. As discussed

in some detail for the case of electrodynamics [2] through quadratic order in spin, demanding that only states

of fixed definite spin propagates in the field theory formulation enforces the conservation of the magnitude

of the spin vector during the interactions and is equivalent to enforcing the SSC. In contrast, when states

of different spins propagate, transitions between them are allowed, the additional interactions in Eq. (4.2.2)

contribute to physical observables. While negative norm states can appear in the analog of Eq. (4.2.2), using

a more involved Lagrangian with only positive norm states does not change the conclusion that additional
3Through O(S4) Refs. [247, 185, 186] find that the black hole Compton amplitude obtained via the Teukolsky equation agrees

with these previous results, but beyond this, the situation is less clear. See Refs. [273, 274] for recent discussions on reconciling
the approaches based on scattering amplitudes and the Teukolsky equation.
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Wilson coefficients contribute in the classical limit if transitions between different spin states are allowed.

Furthermore, physical observables obtained in the two cases are related by a simple mapping of parameters.

The same conclusions hold for gravity. Since the appearance of negative norm states does not change the

classical limit, we find it more practical to use Eq. (4.2.2).

We define the classical spin tensor Sab as the expectation value of a Lorentz generator Mab in the boosted

spin-coherent states of the massive spinning particles (see Eq. (2.27) of Ref. [2]). Due to the presence of

degrees of freedom beyond those of a single fixed spin and of the ensuing absence of an SSC, the product of

massive polarization tensors also depends on the mass dipole K [2],

E1 · E2 = exp

[
q ·K
m

]
E(s)
1 · E(s)

2 +O(q) , (4.2.3)

where q = p2 − p1 and E(s) is the transverse traceless component of E , corresponding to the coherent state of

a fixed spin s. The product E(s)
1 · E(s)

2 only depends on the spin vector. It provides the transition between the

covariant and canonical impact parameter [59] and between the covariant spin variable used in field-theory

amplitudes and the canonical spin used in the effective Hamiltonian.

We construct the three-point and four-point Compton amplitudes, schematically shown in Fig. 4.1,

using the Feynman rules from the Lagrangian L0 + Lnon-min. We separate the mass dipole K from the spin

tensor using Eq. (4.1.1) and expose in the classical amplitudes both the K-dependence coming from both

the interactions and from Eq. (4.2.3), but suppress the spin vector dependent factor E(s)
1 · E(s)

2 . With this

understanding, the classical Compton amplitudes up to O(S2) are

M3pt
C = − (ε1 · p)2 +

(ε1 · p)f̃1(p, S)
m

− (1 + C2)(ε1 · p)2(k1 · S)2

2m2

− D2(k1 ·K)(ε1 · p)f̃1(p, S)
m2

− E2(k1 ·K)2(ε1 · p)2

2m2
,

M4pt
C =

4

ŝtû

[
α2 − αO(1) +

1

2
O2

(1) + C2 αO(2) +D2 α

(
O(1)

(k1 + k2) ·K
m

−K(1,1)

)
+ E2

(
αO(2)

∣∣∣
S→K

)]
,

(4.2.4)

where α = p · f1 · f2 · p, and fµνi = kµi ε
ν
i − kνi ε

µ
i is the linearized field strength. The kinematic variables here

are defined as ŝ = 2p · k1, t = 2k1 · k2 and û = 2p · k2. The operators O and K are given by

O(1) =
1

m

[
f2(p, k1)f̃1(p, S) +

ŝ

2
f̃12(p, S) + (1 ↔ 2)

]
,

O(2) =
1

2m2

[
tf1(p,S)f2(p, S) + α(k1 · S + k2 · S)2

]
,

K(1,1) =
t

2m2

[
f2(p,K)f̃1(p, S) + f1(p,K)f̃2(p, S)

]
, (4.2.5)

where fi(a, b) = fµνi aµbν , and (f̃µνi , f̃µν12 ) are respectively the Hodge duals 4 of (fµνi , fµρ1 f2,ρ
ν).

This result reveals interesting correlations between the additional degrees of freedom in φs and Wilson
4We define the Hodge dual as f̃µν = i

2
εµναβfαβ
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(p, S,K)

k1, ε1

(p, S,K)

k2, ε2k1, ε1

Figure 4.1: Three-point and four-point Compton amplitudes

coefficients. Firstly, the appearance of K is due to L0 not enforcing transversality on φs. However, the

spin-orbit terms are unchanged and there are no linear-in-K contributions at this order, in line with the

absence of interactions of mass dipoles in general relativity. At O(S2) level, K appears in the form of SK and

K2. Note that the K2 dependence is identical to the S2 dependence with Wilson coefficient C2. The Compton

amplitude (4.2.4) is independent of K if D2 = E2 = 0, as the mass dipoles originating from interactions

exactly cancel the contribution of the exponential factor in Eq. (4.2.3). With these choices, the results

agree with the conventional formalism for neutron stars or other compact astrophysical objects considered in

Ref. [145]. Finally, the Kerr black hole corresponds to setting C2 = 0, in close analogy with the root-Kerr

solution in electrodynamics [2].

Starting from the Compton amplitudes in Fig. 4.1, two-body scattering amplitudes at O(G2) can be

found using generalized unitarity [206, 207, 248]. We construct tree-level and one-loop four-point two-body

amplitudes, from which we may obtain the classical two-body effective Hamiltonian and observables through

a matching process [14, 59].

4.3 Worldline
The standard approach to spinning particles using worldline formalisms, an SSC, e.g., pµSµν = 0, is

imposed via a Lagrange multiplier, which has the effect of eliminating Kµ in Eq. (4.1.1) as a dynamical

degree of freedom. This implies that the magnitude of the spin vector, SµSµ, is conserved and it eliminates

various operators and their associated Wilson coefficients. A basic result of the field-theory analysis above

and in Refs. [101, 2] is that even for conservative systems, SµSµ can change under conservative time evolution

and that additional Wilson coefficients appear compared to the standard worldline framework. In Ref. [2],

these features matched to a worldline description of electrodynamics with no imposed SSC, rediscovering

the observation of Refs. [270, 271, 272] that the worldline with no SSC is distinct and consistent. Here we

construct the analogous gravitational worldline theory and show that the Compton amplitudes match those

of the abovementioned field theory.

To this end, we follow the same steps as for electrodynamics, which in turn is based on the dynamical

mass formalism of Ref. [226], except that the SSC-imposing terms are dropped. In this approach, a spinning

body is described by a timelike worldline zµ(λ), its conjugate momentum pµ(λ), a body tetrad ΛA
µ(λ),
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and the body spin tensor Sµν(λ), where λ is a parameter describing the position along the worldline. The

Lagrangian is
L = −pµżµ +

1

2
SµνΛAµ

DΛA
ν

Dλ
+
ξ

2
(p2 − M2) (4.3.1)

where ξ(λ) is a Lagrange multiplier that enforces the on-shell constraint p2 = M2 and M(z, p, S) is the

dynamical mass function of the body, which contains the body’s free mass and all its non-minimal couplings

to gravity. The stationary variation of the corresponding action describes the body dynamics. In terms of the

4-velocity uµ = pµ/
√
p2 and to second order in the vectors Sµ and Kµ, the dynamical mass function can be

written as:

M2 = m2 +
1− C2

4
RuSuS +

1−D2

2
RuSuK +

1− E2

4
RuKuK ,

with RuSuK = Rµνρσu
µSνuρKσ. This worldline Lagrangian is equivalent to the one of Ref. [226] except that

no Lagrange multiplier term that imposes an SSC is included.

The classical Compton is computed [247] as the coefficient of the outgoing spherical wave produced by

the response of the spinning body to in an incoming plane wave. The metric perturbation,

hµν = eik·xεµν +
ei(kr−ωt)

4πr
Mµν,ρσ

C ερσ +O
(

1

r2

)
, (4.3.2)

and the Compton amplitude Mµν,ρσ
C is extracted directly from the stress tensor Tµν = δ

δhµν

∫
dλL using the

solution to the wave equation at large distances in de Donder gauge. With the Wilson coefficients assigned as

in Eq. (4.3.2), the result exactly matches Eq. (4.2.4), pointing to the equivalence of this worldline theory and

the field theory described above.

As discussed, the description of spinning particles in the presence of the covariant SSC can be obtained

from the unconstrained one by simply setting D2 = 0 = E2. Fur such special values of the Wilson coefficients,

initial data satisfying the covariant SSC (i.e. with Kµ = 0) is preserved under time evolution, similarly to

the case of electrodynamics [2]. This feature implies that, from a practical standpoint, it is convenient not to

impose the SSC but instead to make appropriate choices of Wilson coefficients that reduce the system to the

one without mass dipole K.

4.4 Scattering waveform at leading order
To explore the physical relevance of the mass dipole K and of the additional Wilson coefficients, we

study their effect on the scattering waveform. To this end, we assume that we are given a waveform signal

that can be fitted by a K = 0 system and study whether it is possible to accurately describe the same signal

by turning on K and readjusting Wilson coefficients. Since our spin-dependent amplitudes are to a fixed

(second) order in spin, we carry out this comparison at each order separately.

Since K does not enter at linear order, S should remain fixed as K is turned on. Thus, we may only
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adjust the Wilson coefficients. We will find that, to the order we are working and unless D2 = 0, the waveform

at a fixed observation angle can discern a nonvanishing mass dipole. The leading order waveform for the

scattering Kerr black hole off a spinless body was computed in [275, 276, 277]. We have verified that our

results at K = 0 exactly agrees with Ref. [275].

The metric perturbation at infinity is given by

h∞µν =
1

κ
lim

|x|→∞
4π|x|(gµν − ηµν)

= κM

[
κ2M

|b|
ĥ(1)µν +O(κ4)

]
, (4.4.1)

where M = m1 + m2 and κ2 = 32πG. Ref. [8] established the connection between h∞µν and scattering

amplitudes. At leading order, the waveform W ≡ εµνh∞µν takes the simple form

WLO(t) =
κ3M2

|b|
εµν ĥ(1)µν

= −2

∫ +∞

−∞

dω

2π

∫
dµMtree

5 e−iq1·be−iωt , (4.4.2)

where Mtree
5 ≡ Mtree

5 (p1, p2, q1, k, ε) is the classical five-point amplitude with an outgoing graviton of

momentum k and physical polarization ε. The measure dµ is

dµ =
d4q1
(2π)4

δ̂(2p1 · q1)δ̂
(
2p2 · (k − q1)

)
, (4.4.3)

with δ̂(x) = 2πδ(x) and δ̂d(x) = (2π)dδd(x), and q1 is the momenta lost by particle p1.

Using generalized unitarity, the classical tree-level five-point amplitude necessary for WLO can be

computed by sewing together three- and four-point Compton amplitudes. Schematically, it is given by

M5 ∼

1

2

k
+

1

2

k
−

1

2

k
, (4.4.4)

where the dashed lines indicate on-shell conditions and summation over physical states. We ignore the local

terms as they do not contribute in the classical regime.

The gravitational-wave memory, which is given by the soft limit of this amplitude, provides clues into

the structure of the complete waveform. Interestingly, explicit calculation reveals that it follows the same

pattern as for the scattering of spinless particles, i.e. [278, 279] that in the frequency domain, kµ = ωnµ,

εµνh∞µν(ω) =
i

ω

4∑
i=1

ηi(ε · pi)2

n · pi
+O(ω0) , (4.4.5)

where η1,2 = 1, η3,4 = −1 and εµν = εµεν for on-shell gravitons. Momentum conservation requires p4 = p1+∆p

and p3 = p2 −∆p, where ∆p is the leading order covariant impulse.
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Figure 4.2: Plots showing the waveforms for S = (cosπ/4, sinπ/4, 0), C2 = 1, denoted by h
(1)
+ (. . . ,K = 0), and their difference

from a K-dependent waveform as follows. Left two figures: the + and × polarizations observed at angles (θ1, φ1) = (7, 4)π/10,
(θ2, φ2) = (1, 4)π/10 for particles with COM velocity v = (0, 0, 1/5) and impact parameter bcov = (5, 0, 0). We choose
K = S, C2 = 1/3, D2 ' 0.286 so that the memory difference for the + polarization at observation angle (θ2, φ1) vanishes,
∆̂̂h

(1)
+ (θ1, φ1) = 0. Right two figures: dashed lines: the + and × polarizations observed at (θ, φ) = (5, 10)π/10 for COM

velocities v1 = (0, 0, 1/14), v2 = (0, 0, 1/7) impact parameter bcov = (5, 0, 0); solid lines: the difference from K = S, C2 = 1/3,
D2 ' 0.431; D2 is chosen so that the memory difference for the + polarization and velocity v1 vanishes, ∆ĥ

(1)
+ (v1) = 0. The

three-vector S and K are related to the four-vector Sµ and Kµ as Sµ = (0,S), Kµ = (0,K). We note that the spin Sµ here is
the covariant spin, and the impact parameter bµcov = (0, bcov) is defined accordingly [59].

It is not difficult to see that the third term in Eq. (4.4.4) is subleading as kµ → 0, and thus the soft limit

of the classical five-point tree amplitude is determined by the soft limit of the four-point tree-level Compton

amplitude. As discussed below Eq. (4.2.5), in this amplitude, the terms bilinear in the spin vector originating

from Wilson coefficient C2 are the same (up to S → K) as the terms bilinear in K originating from E2. We

may, therefore, expect a similar property for the entire five-point amplitude, which indeed turns out to be the

case:

M5

∣∣∣
E2K2

= M5

∣∣∣S→K,C2→E2

C2S2
. (4.4.6)

Namely, if we turn on Kµ parallel (‖) to Sµ, we can compensate the effect by adjusting C2. Thus, for special

systems with D2 = 0, such mass dipoles are degenerate with the spin. In the following we consider only

D2 6= 0 and Kµ ‖ Sµ. To streamline the comparison, we keep E2 = 0 and interpret E2 6= 0 as a change in C2.

Exploring the memory contribution of the O(SK) terms, we find that it is possible to choose the

Wilson coefficients C2 (or equivalently E2) and D2 so that K is not distinguishable at late times in a fixed

observation direction specified by the polar angles (θ, φ) and for a center-of-mass (COM) velocity v in one,

say +, polarization. At finite times, however, and for the second polarization at all times, the difference

between waveforms with and without K is nontrivial, as illustrated at fixed velocity and several observation

angles in the left two plots of Fig. 4.2. Depending on the observation angle, we note that the difference can

be as large as about 50% of the K-independent waveform.

A similar conclusion can be drawn by inspecting the waveform at a fixed observation angle as a function

of the relative velocity of the particles in the COM. Examples are shown in the right two plots in Fig. 4.2. We

choose to align the gravitational wave memory for the + polarization and for the lower of the two velocities.
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1 ((r × p) · S) /r2 (r · K) /r2

(r · S)2 /r4 (r · K) ((r × p) · S) /r4 (r · K)
2
/r4

S2/r2 (K · (p× S)) /r2 K2/r2

(p · S)2 /r2 (r · S) ((r × K) · p) /r4 (p · K)
2
/r2

Table 4.1: The operators up to terms quadratic in S and K appearing in the Hamiltonian for a single spinning body.

Interestingly, the maximum waveform difference for the + polarization appears to exhibit a very weak velocity

dependence. The variation of the width of the curves can be traced to a similar variation in the waveform

itself, which is due to the fact that, at fixed impact parameter, lower-velocity particles experience a longer

period of stronger acceleration, leading to a broader waveform. As before, the differences shown in the two

right plots of Fig. 4.2 can be as large as 50% of the K-independent waveform.

4.5 Effective Hamiltonian
Using the two-body elastic amplitudes obtained in our field-theory analysis, we match to a Hamiltonian

that describes the conservative evolution of the two bodies in general relativity. This Hamiltonian can serve as

an input to EOB models for gravitational waveforms, connecting theoretical computations and experimental

observations (see e.g. Refs. [280, 281, 282, 283, 164]).

The steps to construct a two-body Hamiltonian from our amplitudes are described in detail in our

earlier paper [2], which builds on effective Hamiltonians used for the non-spinning [14] and spinning cases

without K [59]. We start with an ansatz for the most general Hamiltonian with a set of to-be-determined

coefficients of spin structures that include the S and K degrees of freedom and determine these coefficients

by matching the two-to-two scattering amplitudes from this Hamiltonian and the ones obtained from field

theory calculations.

A one-loop consistency is that all IR divergences of the amplitude (i.e. the coefficients of box integrals)

are completely determined in terms of tree-level Hamiltonian coefficients.

We organize our Hamiltonian in terms of spin structures Σa and corresponding coefficients can(p2) as

H =
√
p2 +m2

1 +
√

p2 +m2
2 + V , (4.5.1)

V =
∑
a

V aΣa , V a =

∞∑
n=1

(
G

|r|

)n

can(p
2) ,

where m1 and m2 are the masses of the two objects, r and p is the relative distance and the relative momentum

in the COM, respectively. We give the spin structures for the case of one spinning body in Table 4.1. For

choices of Wilson coefficients that match the worldline with SSC, the resulting scattering angles reproduce in

the overlap with those of Refs. [78, 21, 22, 167, 163].

The earlier two-body Hamiltonian in Ref. [101] was constructed with K = 0 and cannot be used to
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match the field theory or worldline where K is nonvanishing since the Hamiltonian must contain all the

dynamical degrees of freedom.

An important prediction of general relativity is that the mass dipole of compact objects does not partake

on its own in gravitational interactions. A non-trivial consistency check is that the introduction of K does

not contradict this basic result. Indeed, our Hamiltonian allows multiple interactions that are linear in the

mass dipole of one of the objects, e.g.

Σ(1,3) =
r · K1

r2
, Σ(2,13) =

(r · K1) ((r × p) · S2)

r4
. (4.5.2)

We expect this property to hold to all orders in the spin and G, as the vanishing of these coefficients

may be traced back to the fact that at linear order in the spin tensor, the only possible gravitational coupling

is the minimal one. Since there is no freedom in adjusting the minimal coupling with additional Wilson

coefficients, at linear order in the spin the gravitational interactions do not differentiate between black holes,

conventional neutron stars and generic astrophysical objects considered here. In this way, the vanishing of

the gravitational mass-dipole interaction in our formalism follows from general coordinate invariance.

Having obtained a Hamiltonian that captures the conservative evolution of our binary in general relativity,

we demonstrate that including the additional degrees of freedom leads to spin-magnitude change. Indeed, by

solving Hamilton’s equations, we find at O(G):

∆S2
1 = GD2

8σm2

(
m2

1 + 2σm1m2 +m2
2

) (
K

(0)
1z

(
S
(0)
1x − S

(0)
1y

)(
S
(0)
1x + S

(0)
1y

)
− S

(0)
1z

(
K

(0)
1x S

(0)
1x −K

(0)
1y S

(0)
1y

))
|b|2
(√

p2∞ +m2
1 +

√
p2∞ +m2

2

)2
m1

(4.5.3)

+GE2

4
(
2σ2 − 1

)
m2

2

(
m2

1 + 2σm1m2 +m2
2

) (
K

(0)
1y K

(0)
1z S

(0)
1x +K

(0)
1x K

(0)
1z S

(0)
1y − 2K

(0)
1x K

(0)
1y S

(0)
1z

)
|b|2
(√

p2∞ +m2
1 +

√
p2∞ +m2

2

)3
p∞

,

where S(0)
1 and K(0)

1 are respectively the initial value of the spin and mass dipole. The impact pa-

rameter b points in the x direction and the incoming momenta are p1 = (
√
p2∞ +m2

1, 0, 0, p∞) and

p2 = (
√
p2∞ +m2

2, 0, 0,−p∞), with σ = p1·p2

m1m2
(see Ref. [2] for more details). As noted there, while nei-

ther S2
1 nor K2

1 are conserved, the difference S2
1 − K2

1 is, so we have ∆K2
1 = ∆S2

1.

4.6 Eikonal Phase
Remarkably, the spin-dependent scattering observables can be encoded in a single scalar function—the

eikonal phase [59, 284, 285], which to O(G2) is given by the two-dimensional Fourier transform (from q space

to b space) of the classical part of the EFT amplitude. Ref. [2] gave a generalization of the construction

of [59], including the effects of K and applied it to electrodynamics. Here we explicitly confirm that this
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construction gives the correct results through O(G2S2). From Ref. [2] we have

∆p =
∂χ

∂b
+

1

2
{χ, ∂χ

∂b
}+DL(χ,

∂χ

∂b
)− 1

2

∂

∂b
DL(χ, χ)−

p

2p2

(
∂χ

∂b

)2

+O
(
χ3
)
, (4.6.1)

which simultaneously gives contributions orthogonal and along p. Here, p · b = 0, so all the b-derivatives are

projected orthogonal to the incoming momentum p. The spin and mass dipole change are

∆O = {χ,O}+ 1

2

{
χ, {χ,O}

}
+DL

(
χ, {χ,O}

)
− 1

2

{
DL(χ, χ),O

}
, (4.6.2)

where O = (S,K) and DL(f, g) ≡ −εijk
(
S1i

∂f

∂S1j
+K1i

∂f

∂K1j

)
∂g

∂Lk
. (4.6.3)

with an obvious generalization when both particles are spinning. The Lorentz algebra gives the brackets

involving S and K (see Eq. (5.40) of Ref. [2]).

We have explicitly checked that Eqs. (4.6.1) and (4.6.2) indeed reproduce the impulse, spin kick and

mass dipole change given by Hamilton’s equations.

4.7 Conclusions and Outlook
The body-fixed tetrad has six degrees of freedom. Demanding the minimal EFT description of the body

causes only three of them to be dynamical and requires an SSC to fix the other three [286]. The spin gauge

symmetry then guarantees independence of this constraint. Relaxing minimality removes the need of an SSC

and promotes the additional tetrad components to dynamical variables in the form of a mass dipole.

We demonstrated that the traditional description of gravitating spinning compact objects can be naturally

extended to include such additional degrees of freedom describing properties of their mass distribution. The

mass dipole K yields to new interaction terms with associated free Wilson coefficients in the field-theory,

worldline, and two-body-Hamiltonian descriptions, which are all in physical agreement. This mirrors the

conclusions of Ref. [2] obtained in electrodynamics. The distinct dynamics and self-consistency of worldline

theories with no SSC imposed were also appreciated a while ago [270, 271, 272]. An unconstrained description

of spinning particles is technically simpler and, if desired, the SSC can be imposed by choosing Wilson

coefficients leading to the cancellation of all K-dependent contributions. Notably, the known Wilson coefficients

for fixed-spin compact objects have this property.

An important feature is that in agreement with the principles of general relativity, interactions linear

in the mass dipole do not affect physical observables. We explicitly demonstrated in general relativity that

multilinears in the mass dipole and spin and their associated Wilson coefficients not only affect the impulse

and spin kick at O(G) and O(G2) but also directly modify the waveform in ways that cannot be replicated

by merely readjusting the Wilson coefficients in the absence of a mass dipole. We also explicitly showed that

a K-dependent generalization [2] of the spinning eikonal formula [59] yields the correct impulse, spin and
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boost kick. It would be interesting to understand whether this agreement continues to higher orders.

While we have demonstrated that a mass dipole affects physical observables, it remains an interesting

question whether this could lead to measurable effects for any compact astrophysical bodies in our Universe 5.

The Wilson coefficients governing their interactions could be determined by matching them onto suitable

models or comparing theoretical waveforms to numerical relativity simulations or gravitational-wave data.

While we focused here on the scattering regime, the absence of the tail effect at these low orders makes it

straightforward to use the Hamiltonian we derived in the bound regime. It would be very interesting to

contrast the K 6= 0 and K = 0 bound-orbit waveforms. Defining black holes in purely field-theoretic terms

remains an interesting problem. Here, we observed, to low orders, that a suitable criterion is the decoupling

of the mass dipole. An all-order proof is desirable.

5See Refs. [287, 240] for a discussion of the hierarchical three-body system in which the inner body may be interpreted as
exhibiting a mass dipole.
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