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“Two” Many Optimalities

Òscar Vilarroya (24678ovo@comb.es)
Centre de Recerca en Ciència Cognitiva

Gran de Gràcia, 127, 2-1; 08012 Barcelona, Spain

Abstract

In evolutionary biology a trait is said to be optimal if it
maximizes the fitness of the organism, that is, if the trait
allows the organism to survive and reproduce better than
any other competing trait. In engineering, a design is said
to be optimal if it complies with its functional require-
ments as best as possible. Cognitive science is both a bio-
logical and engineering discipline and hence it uses both
notions of optimality. Unfortunately, the lack of a clear
methodological stance on this issue has made it common
for researchers to conflate these two kinds of optimality.
In this paper I argue that a strict distinction must be kept
in order to avoid inaccurate assumptions.

Cognitive Explanations
Contemporary biological explanations are teleonomic
explanations. Teleonomic explanations are those expla-
nations that treat biological traits as adaptations. Adap-
tations are innovations that make a difference between
alternative biological designs embodied in different indi-
viduals. Such designs are “chosen” from among alterna-
tive designs on the basis of how well they perform in a
given environment.

The phenotype of an organism is therefore understood
as a collection of functionalities that were added and
maintained (i.e., copied over generations) in the design
features of a given species because these functionalities
had the consequence of solving problems that promoted,
in some way or other, survival and reproduction (Mil-
likan, 1984). A complete teleonomic explanation would
then consist of a step-by-step process in which the scien-
tist must:

(A) Teleonomic Explanation

1. Identify the trait that is likely to be under selec-
tion.

2. Identify the adaptive problem that the trait is sup-
posed to solve.

3. Show:
(a) that the trait is specialized for solving the adap-

tive problem;
(b) that it is unlikely to have arisen by chance alone;

and
(c) that it is not better explained as the by-product

of mechanisms designed to solve some alterna-
tive adaptive problem.

4. Establish the fitness value of the trait in the pop-
ulation.1

This sort of story could be the general strategy for
any discipline which required teleonomic explanations.
However, cognitive science has certain particularities
that change this methodology. In explaining the cogni-
tive mechanisms of biological organisms, the cognitive
scientist may attempt to identify the adaptive problem
that the brain is supposed to solve. In reality, however,
this turns out to be quite difficult, because the trait—that
is, the specialized device within the brain that is respon-
sible for solving the adaptive problem—is not as self-
evident as, say, an eye, a liver or a wing. Specialized cog-
nitive mechanisms lie within the circuitry of the brain in
such a way that makes them not as obvious as one would
like (Barkow, Cosmides & Tooby, 1992).

In order to overcome this problem, cognitive scientists
usually invert the first and second steps of the algorithm
above:

(B) Cognitive Explanation

1. Identify the adaptive problem that the organism
is supposed to solve.

2. Presuppose the trait that is likely to be under se-
lection.

3. Show:

(a) that the trait is specialized for solving the adap-
tive problem;

(b) that it is unlikely to have arisen by chance alone;
and

(c) that it is not better explained as the by-product
of mechanisms designed to solve some alterna-
tive adaptive problem.

4. Establish the fitness value of the trait in the pop-
ulation.

Inverting the two first steps of algorithm (A) cannot be
without consequences. The most obvious is the fact
that identifying the function of a trait, such as a wing

1In other words, the theorist must establish that the distribu-
tion of the trait in the population contributes to the evolutionary
notion of fitness, which for present purposes means simply the
capacity to survive and reproduce.



or an eye, is much easier when the trait has been iden-
tified rather than presupposing the trait when we only
know its function. In the first case we can simply ob-
serve the trait at work or determine if it is rarely used,
etc., or perhaps we might test it under all imaginable cir-
cumstances just to see what it does. Cognitive scientists
face a much more difficult enterprise, however, since we
have to “imagine” the design features of the trait. This is
where the reverse-engineering strategy comes in.

Optimality in Reverse-Engineering
Dennett (1995) is perhaps one of the most adamant about
defending the reverse engineering strategy in cognitive
science. This strategy can be defined as the interpre-
tation of an already existing intelligent artifact or sys-
tem through an analysis of the design considerations that
must have governed its creation. Logically, this overide-
alizes the design problem, because it presupposes that
the trait is optimally executed by the cognitive machin-
ery. Thus, reverse-engineering takes cognitive systems to
be systems that are designed to solve the problem identi-
fied by the theorist; otherwise, the analysis could not get
off the ground. As Dennett observes, if cognitive scien-
tists cannot assume that there is a good rationale for the
features they observe in cognizers, they cannot even be-
gin their task. Optimality must be the default assumption
in cognitive explanations.

A standard way of advancing the reverse-engineering
strategy is to resort to Cummins’ notion (1983) of func-
tional analysis. Basically, a functional analysis amounts
to:

1. System S performs F
2. F can be broken down into f1, f2, f3 . . . fn

3. S implements f1, f2, f3 . . . fn

The first step is therefore to establish F, that is, what
the system does. The usual way in which one charac-
terizes F is to call upon the computational theory pro-
posed by Marr (1982). In this framework, the theorist
must provide an abstract formulation of the information-
processing task that defines a given cognitive ability.
Peacocke (1986), for example, describes such formula-
tions as characterizations of the information state that the
system draws upon.

Now, the notion of “information drawn upon” can be
spelled out as follows:

A state draws upon some information whenever
such state carries the information which is causally
influential in the operation of the algorithm or
mechanism. (Peacocke, 1989, p.102).

Given this definition, explanations based on Peacocke’s
notion can be seen as a fully causal. For instance,
facts about the meaning, syntactic structure, and phonetic
form of linguistic expressions are causally explained by
facts about the information drawn upon by algorithms or
mechanisms in the language-user (ibid., p.113). Thus,

if a system draws upon the correct information, then the
explanation of system is correct regardless of the detailed
algorithm that the system uses.

Be this as it may, the computational characterization
of a problem determines the specifications by which the
reverse-engineering must proceed. These specifications
are taken at face value and are considered sufficient to es-
tablish the design features of the mechanism. Cummins
(1983) further argues that such characterizations should
proceed by decomposing them into a set of simpler ca-
pacities that are to be explained by subsumption. The
overall capacity is thus explained in terms of the con-
tributing capacities of parts of the system, and the func-
tion of a given item is its contribution to the overall ca-
pacity. Such design theories of functions define the func-
tion of a mechanism or process in terms of the roles they
might play, that is, in terms of their contribution to some
capacity of the system to which the process or mecha-
nism belongs. In short, design theories relativize func-
tions to capacities of containing systems.

Optimality in Evolutionary Biology
The previous sense of optimality must be distinguished
from the notion of optimality that is used in evolution-
ary biology. To begin with, the biological notion of an
optimum does not imply an optimal design, as it does
in engineering. Rather, it refers to a solution to a given
adaptive problem that maximizes the fitness of the organ-
ism in the adaptive situation.

A biological optimum can be said to be the point at
which the difference between costs and benefits of en-
vironmental and genetic variables (e.g., amount of food,
energy requirements, distribution of the trait, alternative
phenotypes, etc.) is maximized (see Figure 1). Thus,
the role of a trait as an adaptation must be established by
considering the manner in which such a trait contributes
to the optimum. This makes the notion of optimality in
biology and engineering orthogonal to one another:

Biological optimality: Natural selection favors the
trait that maximizes the organism’s fitness.

Reverse-engineering optimality: A mechanism is
designed to comply with its function.

The fact of the matter is that a trait need not be op-
timally designed to be adaptive: what is optimal is the
fitness value of the trait, not its design characteristics.
Evolutionary solutions must, on this view, only be “se-
lectively efficient,” that is, they need only to comply with
adaptive requirements. It follows, then, that the notion of
optimal design should be detached from the notion of fit-
ness value.

That natural selection is only susceptible to the fitness-
value maximizations is anything but surprising: evo-
lution by natural selection only requires that biologi-
cal systems be minimally effective (stay alive and leave
offspring) with respect to their of adaptive problems.
Hence, rather than actively designing and building organ-
isms that are well-adapted to the world, nature eliminates
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Figure 1: The optimum for a given adaptive solution is the point
in which the benefit/cost relationship is maximized.

those that are too ill-suited for survival and reproduc-
tion. In other words, biological systems are simply not
designed by engineers. Design and evolution are differ-
ent precisely because they have different strategies open
to them. An engineer may build a system out of an anal-
ysis of the problem, and thus may go from the problem to
the solution. This is not a possibility for biological sys-
tems: biological systems are blind to the solution until
they have stumbled upon it.

The bottom line, then, is that we should explain how
cognitive systems are selected for and maintained by tak-
ing into account not only the adaptive problem itself, but
also their resources and the environment in which they
are evolving.

Conflating the Two Optimalities
The previous discussion makes it advisable to maintain
the engineering and the biological optimalities separate.
However, some cognitive scientists (e.g., Barkow, Cos-
mides & Tooby, 1992) seem to conflate both notions.
According to these theorists, what must guide the de-
sign specifications of cognitive mechanisms is a com-
putational characterization (Marr, 1982) of the adaptive
problems that these mechanisms were meant to solve.
These specifications are considered sufficient to establish
the design features of the mechanism:

In effect, knowledge of the adaptive problems hu-
mans faced, described in explicitly computational
terms, can function as a kind of Rosetta Stone:
It allows the bewildering array of contents effects
that cognitive psychologists routinely encounter—
and usually disregard—to be translated into mean-
ingful statements about the structure of the mind.
(Cosmides & Tooby, 1992, p.221)

In other words, these theorists take the brain to be the seat
of specialized mechanisms that are optimally designed,

in an engineering sense, to solve specific adaptive prob-
lems.

It is of course possible for engineering and biological
characterizations to coincide for a given trait and a given
organism. Nonetheless, counterexamples abound (e.g.,
Ullman, 1996; Steels, 1994; Dehaene, 1997; Cooper
& Munger, 1993;). Consider the well-known example
of the sight-strike-feed mechanism of the frog (Gilman,
1996). Frogs catch flies by way of a strike with their
tongue. It is assumed that mediating between the envi-
ronmental presence of a fly and the motor response of the
tongue strike there is some sort of mechanism that regis-
ters the fly’s presence in the vicinity of the frog. That is,
the presence of the fly causes the relevant mechanism to
go into state S, and its being in state S causes the tongue
to strike.

This story goes on to assume that the information
drawn upon by state S is that of “fly”, “fly, there,” or
“edible bug, there,” since this information can be de-
rived from that the fact that the function of the frog’s
sight-strike-feed mechanism mechanism is to detect the
presence of flies. Yet, an analysis of the frog’s cogni-
tive system indicates that the best account of the system’s
function is in fact detecting “little ambient black things.”
Specifically, the function of the mechanism is to mediate
between little ambient black things and the frog’s tongue
strike.

This means that the frog’s mechanism is functioning
optimally even when the frog strikes at a little ambient
black thing that is not a fly but a BB-gun pellet that hap-
pens to be in the vicinity. To be sure, from a reverse-
engineering point of view, the system is not optimally
designed to catch flies. However, from a biological point
of view, it might be the optimal system. The reason is
quite simple. The cost of “fly-detecting” mechanism may
outweigh the cost of eating, say, lead pellets. The guar-
antee that a frog with such an less-than-perfect mech-
anism could have survived and reproduced is provided



by the contingent fact that, during natural selection, a
sufficient number of little ambient black things in the
frog’s environment were flies (or edible bugs). The com-
bination of the benefits (which should include adequate
feeding) with the costs (which should include design-
building costs) shows that a better design need not mean
better fitness, which is what would be predicted if only
design were considered. Accordingly, in some situations
a better design can actually mean a drop in fitness.

It might be objected that the fact that frogs also flick
their tongues out at little black things that happen not to
be flies is an empirical discovery and, hence, either sense
of optimality could have been wrong about what frogs
would do when confronted with BB-gun pellets. For ex-
ample, an evolutionary biologist might predict that natu-
ral selection would favor the trait if the trait were specif-
ically tailored to fly catching, since this would maximize
fitness. Yet this prediction would have been wrong. A
reverse-engineering perspective, by contrast, might well
have made the correct prediction: striking at little black
things that are not flies might be seen as an acceptable
amount of noise, and not necessarily an unoptimally de-
signed fly-catching mechanism. Such being the case, the
problem, it might be argued, does not really have any-
thing to do with the two different notions of optimality,
but rather with the claims one is making about a partic-
ular trait and what sort of evidence should be used in
evaluating those claims.

It seems to me that such an objection would miss the
point of the argument, which is to uncover two differ-
ent methodological strategies, and not competence in hy-
pothesis formation. I will illustrate the problem with an-
other example. Peacocke (1993) has argued that the use
of particular kinds of physical principles is constitutive
of the capacity of normal mature subjects to reason about
and predict object motions. Such a constitutive basis is
held to underlie the remarkable precision of our percep-
tual systems in extracting and using the motion of objects
in space. Examples of this capacity include our ability to
anticipate the trajectories of objects in order to intercept,
follow, or avoid them.

As is well known, two general types of information
are used in classical physics to describe the behavior of
moving objects. On the one hand, kinematic informa-
tion describes the pure motion of bodies without regard
to mass (i.e., the position, velocity and acceleration of
an object). On the other, dynamics describes the forces
causing movement or acting on objects with mass. Ac-
cording to Peacocke (ibid.), in order to qualify as being
able to reason about objects, we must attribute to humans
the capacity to reason according to dynamic principles.
This would correspond to what I have described as the
task characterization, which is a normative description:
it is what the system must do in order for its behavior to
be selectively efficient (e.g., avoid falling stones).

If we employ a reverse-engineering strategy, the task
characterization of reasoning and predicting object mo-
tions (qua dynamic computation) will be all that we need
to analyze the system that accounts for such a capacity.

If, on the other hand, we employ an evolutionary strat-
egy, then we will have to develop a model of adapta-
tion (see, for example, Parker & Maynard Smith, 1990).
Such a model will have to consider competing alterna-
tives that exist in an adaptive scenario. For instance, we
can assume that we should evaluate the performance of
a system that predicts object motion according to kine-
matic variables, and another according to dynamic vari-
ables. This comparison should establish the performance
of each system, not in isolation but as a part of the whole
organism-environment interaction. Once this is done we
will be able to consider the costs of either system, in
terms of design and computation.

It is very conceivable that this model might yield
an outcome that is very different from the reverse-
engineering analysis. It could, for example, provide the
hypothesis that the kinematic system is the most adaptive
solution because it satisfies the task of predicting object
trajectories in a way that outweighs the cost of a much
more complex, yet more optimally designed, computa-
tional system that computes dynamic variables. Among
other things, the errors induced by a kinematic system
may not be unacceptably gross and may be easily com-
pensated by the continuous activation of the perceptual
system. This would be congruent with empirical research
such as Cooper and Munger (1993).

The point, then, is this: if we had relied the reverse-
engineering strategy we would not have reached the cor-
rect analysis. This is not because we would have as-
sumed an incorrect claim but because we simply would
have employed the wrong optimality strategy.

Having said this, it is no doubt true that the distinc-
tion between the engineering and biological optimalities
might not be an easy matter, at least not at first blush.
On the one hand, the functionality of the system (e.g.,
detecting flies) is amenable to both reverse-engineering
and ecological analyses; on the other, it is not always
clear how to establish the parameters of the fitness-
maximization process that constrains adaptive cognitive
traits. The latter might not be impossible to establish in
cognitive science (Vilarroya, 2001). The former requires
changes in algorithm (B).

Cognitive Explanation Revisited
In my opinion the explanatory strategy of cognitive sci-
ence cannot be simply an inversion of the first steps of the
teleonomic explanation. It is not enough to identify the
adaptive problem and then infer the mechanism. Rather,
we need to complement the assumption about a trait’s de-
sign with a characterization of how the adaptation might
have appeared over evolutionary time. Fortunately, we
have the elements to proceed to the different steps neces-
sary to complete a cognitive explanation. In order to do
that, we should divide the first step of algorithm (B) into
two substeps, namely:

(B′) Cognitive Explanation

1. Characterize:



(a) the adaptive problem that the organism is sup-
posed to solve; and

(b) the fitness-maximization process.
2. Presuppose the trait that is likely to be under se-

lection.
3. Show:
(a) that the trait is specialized for solving the adap-

tive problem;
(b) that it is unlikely to have arisen by chance alone;

and
(c) that it is not better explained as the by-product

of mechanisms designed to solve some alterna-
tive adaptive problem.

4. Establish the fitness value of the trait in the pop-
ulation.

The explanation should proceed as follows. The first
sub-step should yield the informational-theoretic char-
acterization (Marr, 1982) of the functional requirements
needed to satisfy the adaptive problem. Specifically, we
need to indicate the requirement imposed by the adaptive
problem that the system should satisfy in an idealized sit-
uation.

Once this characterization has been established, then
the theorist must proceed to characterize the fitness-
maximization process (including the adaptive require-
ments that are to be satisfied by the organism in such
a process). Then, the theorist should verify whether the
computational characterization of the adaptive problem
is compatible with the optimum established in the fitness-
maximization process. If both draw upon the same infor-
mation, then the characterization of the adaptive prob-
lem can be used in conjunction with reverse-engineering
methodology. This should yield the assumed design
specifications for the trait. If, on the other hand, the the
adaptive problem’s computational characterization is not
compatible with the fitness-maximization optimum, then
the functional requirements of the fitness-maximization
process should guide the design assumptions. As the
case of the frog has shown, the fitness-maximization ac-
count allowed the assumption that the trait should be de-
signed to detect “little ambient black things,” rather the
one offered by the adaptive problem which would have
been “fly-there.”

The characterization of the fitness-maximization pro-
cess in cognitive science is, unfortunately, not a straight-
forward operation, as I have shown elsewhere (Vilar-
roya, in press). It is actually a complex process because,
among other things, there is an essentially open-ended
set of factors that influence just where the cost-benefit
curve reaches its maximum. What allows an individ-
ual, or a group of individuals, to survive and leave off-
spring depends precisely on their biological constitution
and the exact characteristics of the surrounding environ-
ment with which they interact.

Nonetheless, the elements in this characterization are
objective. Therefore one can hope to make them ex-
plicit, and thus provide an adaptive characterization of

the trade-off between the costs as well as the benefits
of available solutions. This will (or should) eventually
yield a description of the functional account of the cog-
nitive system, if the analyst takes into account: (a) the
nature of the adaptive problem itself, (b) the analysis of
the system’s resources, (c) the environment and interac-
tion with competitors, as well as (d) the way in which all
these elements interact.

How can we apply this characterization in the case of
the frog? I believe that there is a way to account for
the paradox that the cognitive system of the frog accords
with a characterization of the adaptive problem, even
though it is not the characterization of the mechanisms
that accounts for the adaptive capacity. For one thing,
we already have an account of the adaptive problem that
the system has to solve: identify flies. This is a normative
description; it is what the system must do in order for its
behavior to be selectively efficient. For another, we have
the functional requirements that the fitness-maximization
process imposes: identify “little ambient black things.”
The evolutionary rationale behind this solution is con-
sistent with the assumption that the extra computational
cost of taking only flies into account (over and above
other small dark ambient things) arguably outweighs the
small increase in accuracy that would be gained from do-
ing so.

In sum, a system may seem to accord with a certain
functionality (e.g., identifying flies) that is, in actual-
ity, different from the description of the structure of the
cognitive system (e.g., identifying “little ambient black
things”). Accordingly, such a system may in fact take ad-
vantage of mechanisms that are not specifically designed
to deal the problem at hand. This does not mean that
the solution is somehow deficient. The fact that the fly-
catching mechanism of the frog is not sensitive only to
flies does not mean that it cannot identify flies. It can
and it does.

Conclusion
Cognitive science uses two distinct notions of optimality:
engineering optimality and biological optimality. In en-
gineering, optimality refers to design ideals whereas, in
biology, optimality refers to fitness maximization. While
conflation of the two concepts is understandable, neglect-
ing the distinction entails incurring risk of arriving at
a mistaken conclusion. Fitness value and designs are
therefore best analyzed separately.
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Vilarroya, Ò. (2001). From Functional “Mess” to
Bounded Functionality. Minds and Machines 11, in
press.




