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MODAL CORRESPONDENCE THEORY FOR POSSIBILITY SEMANTICS

KENTARÔ YAMAMOTO

1. INTRODUCTION

Possibility semantics [12] (based on [13]) is a generalization of standard Kripke se-
mantics that makes use of a concept of possibility frames.1 Like Kripke frames, possibility
frames have a set of states and binary accessibility relations for modalities. In addition,
possibility frames have a refinement relation, which is a partial order between states.
Some states in a possibility model may only partially determine the atomic proposi-
tions, in contrast to worlds in Kripke models, which completely determine each atomic
proposition. Consequently, possibility frames have a close connection with intuitionistic
modal frames, but the former yield classical modal logic. As is the case for intuitionistic
modal semantics, a key issue for possibility semantics is the interaction between the
refinement and accessibility relations. In this setting, modal axioms express properties
not only of the accessibility relation but also of the interaction between accessibility
and refinement.

While standard Kripke frames are semantically equivalent to complete, atomic and
completely additive Boolean algebras with operators (BAOs), possibility frames are se-
mantically equivalent to complete and completely additive, but not necessarily atomic,
BAOs. As shown in [12], for any complete and completely additive BAO, there exists
a possibility frame that validates the same modal formulae as the BAO does, and vice
versa, just as there exists such a modally equivalent Kripke frame for any complete,
atomic and completely additive BAO. It follows from this and other results [14] that
more normal modal logics are sound and complete with respect to some class of possi-
bility frames than with respect to some class of Kripke frames. For other recent results
on possibility semantics and related work, see [3, 4, 10, 11].

In the present paper, we show how correspondence theory, as studied for standard
Kripke semantics [2], can be extended to the more general setting of possibility se-
mantics. In Section 2, we introduce possibility semantics briefly, referring to [12] for
a more detailed account of the semantics. We define key concepts such as possibility
frames, possibility models and the standard translation. In Section 3, we study syntac-
tic sufficient conditions for local correspondence. In particular, we prove the analogue
of Sahlqvist’s Theorem for possibility semantics, namely, that every Sahlqvist formula
locally corresponds to a first-order formula with respect to possibility frames. This ex-
tends a result in [12] which states that Lemmon-Scott formulae ◊ā�b̄ p→ �c̄◊d̄ p have
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2 KENTARÔ YAMAMOTO

first-order correspondents over possibility frames. In Section 4, we study more model-
theoretic aspects of correspondence theory. We prove a counterpart of van Benthem’s
characterization [1] of first-order definable modal formulae in terms of preservation by
ultrapowers. Finally, in Section 5 we state an open problem for future research.

2. POSSIBILITY SEMANTICS

2.1. Introduction to the semantics. Fix an enumeration Φ = {pi | i ∈ κ} (κ = |Φ|) of
propositional variables (whose indices we sometimes identify with the variables them-
selves) and a nonempty set I of modal operator indices. Then the modal language
L (Φ, I) is generated by the following grammar:

φ ::= p | φ ∧φ | ¬φ | φ→ φ | �aφ,

where φ ∈ L (Φ, I), p ∈ Φ and a ∈ I . We assume that φ1 ∨φ2 and ◊aφ are shorthand
for ¬(¬φ1 ∧¬φ2) and ¬�a¬φ, respectively.

We view a partially ordered set P as a topological space whose open sets are the
downward closed sets. This is an Alexandrov topology. We denote by X and X ◦ the
closure and the interior of a set X ⊆ P, so X = {x ∈ P | ∃x ′ v x x ′ ∈ X } and X ◦ = {x ∈
P | ∀x ′ v x x ′ ∈ X }, where v is the partial order of P. We write RO(P) for the set of
regular open subsets of P, i.e., those subsets X ⊆ P such that X

◦
= X . For X ⊆ P, the

least regular open set containing X is (⇓X )
◦
, where ⇓X denotes the least downward

closed set containing X . We write X ro for (⇓X )
◦
. For x , y ∈ P, we also write x Ç y

to indicate that x and y are compatible, i.e., ∃z (z v x ∧ z v y). We write x ⊥ y to
indicate that it is not the case that x Ç y .

We give a definition of possibility frames in the following. Note that, in [12], the
term “possibility frame” is used for a kind of general frame version of the structures
defined in Definition 2.1.(i) below, which are essentially the “full possibility frames”
of [12]. The structures in Definition 2.1.(i) are the possibility-semantic analogues of
Kripke frames.

Definition 2.1.

(i) A possibility frame is a triple F = (F,v, (Ra)a∈I ) where (F,v) is a partially or-
dered set, each Ra is a binary relation on F , and the set RO(F) := RO(F,v) is
closed under the map

la : X (⊆ F) 7→ {y ∈ F | Ra[y] ⊆ X }

for each a ∈ I . We refer to elements of F as states of the frame. We call v and
each Ra the refinement relation and an accessibility relation of F, respectively.

(ii) A possibility model is a pair M= (F,π) where π is a map Φ→ RO(F), called a
valuation on the frame F.

When considering a possibility frame F, we regard la as a map RO(F)→ RO(F).

Definition 2.2. Let M= (F,π) be a possibility model and φ ∈ L (Φ, I).
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(i) For w ∈M, define the relation M, w � φ recursively as follows:2

M, w � p⇔ w ∈ π(p) (p ∈ Φ);

M, w � φ1 ∧φ2⇔M, w � φ1 and M, w � φ2;

M, w � ¬φ⇔∀v v w (M, v 6� φ);
M, w � φ1→ φ2⇔∀v v w (M, v � φ1⇒M, v � φ2);

M, w � �φ⇔∀v (Rwv⇒M, v � φ).

(ii) Let ¹φºM = {w ∈M |M, w � φ}. Call this the truth set of φ in M.
(iii) For w ∈ F, we write F, w � φ and say that v forces φ in F if and only if for

every possibility model (F,π), we have (F,π), w � φ. F validates φ if and only
if for every v ∈ F , the formula φ is forced by v in F.

Note that since we define ∨ in terms of ∧ and ¬, we have the following:

M, w � φ1 ∨φ2⇔∀w′ v w∃w′′ v w′(M , w′′ � φ1 ∨M , w′′ � φ2).

In the present paper, we are interested in the relationship between the validity of
a modal formula over a possibility frame and the first-order properties of the accessi-
bility and refinement relation in the frame. To see how familiar correspondences from
Kripke semantics must be reconsidered in the setting of possibility semantics, it helps
to consider a concrete example, such as the following.

xp y z

s t u

w

FIGURE 1. A possibility frame F and a valuation π on it. The refine-
ment relation of F is shown by solid lines as in Hasse diagrams and
the accessibility relation is shown by dashed arrows. The valuation π
is such that π(p) = {x}.

Example 2.3. Consider the possibility frame F= (F,v, R) of Figure 1. It can be checked
that M satisfies the axioms for a possibility model.3 Note that for each state w in F there
exists exactly one v such that Rwv. This property of partial functionality is defined by
the F axiom ◊p → �p over standard Kripke frames. However, it can be seen that for

2 Note that the clauses for ¬ and → scan the partial order downward. This is in line with a convention
used in weak forcing (see, e.g., [16]), to which the present semantics is related. In contrast, in the literature
on semantics for intuitionistic logic, the convention of going upward is more common.

3 The possibility frame F is constructed from a Kripke frame ({0,1, 2}, R), where R is the symmetric closure
of {(1, 0), (1, 2), (0, 0), (2, 2)}, by functional powerset possibilization as in [12]. The observations made here
follow from the construction.
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the state y we have F, y 6� ◊p → �p. To see this, observe that the forcing clause for
the defined operator ◊ works out to (see Figure 2):

(1) (F,π), y � ◊φ⇔∀v′ v y ∃w′ (Rv′w′ ∧ ∃uv w′ (F,π), u � φ).

y◊φ

v′ w′ ∃

uφ ∃

(1)

y◊φ

v′

uφ ∃

(4)

FIGURE 2. Forcing conditions for ◊. The same convention as in Figure
1 applies.

Consider the valuation π also shown in Figure 1. (It is easy to check that this is
indeed a valuation on F, i.e., π(p)ro = π(p).) Then we know (F,π), y � ◊p: in (1), the
only possible value of v′ is y itself, and one can pick w′ to be t so that the right hand
side holds. However, we also have (F,π), y 6� �p, since t 6∈ π(p).

Example 2.4. Another example is the B axiom p→ �◊p. This defines the symmetry of
the accessibility relation over standard Kripke frames. The accessibility relation R of F
from Figure 1 is not symmetric. However, the B axiom is validated by F; indeed, as we
will see later, p→ �◊p is validated by F if and only if (see Figure 3)

(2) (Rwv ∧ v′ v v)⇒∃w′ (Rv′w′ ∧w′ Ç w).

All the states in F are compatible with one another except that x , y, z are pairwise
incompatible. These states are not in the range of R, so (2) holds.

w v

v′w′

∃
u

∃

(2)

w

v′

u

∃

(3)

FIGURE 3. Conditions equivalent to the validity of the B axiom. The
same convention as in Figure 1 applies.

To see why (2) is equivalent to the validity of B, suppose that (2) holds in F and that
(F,π), w � p, i.e., w ∈ π(p). We show (F,π), w � �◊p. It suffices to show (F,π), v �
◊p, for an arbitrary v such that Rwv. With (1) in mind, take an arbitrary v′ v v. By
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(2), there exist w′ and u such that Rv′w′, u v w′ and u v w. Since π(p) is open, i.e.,
downward closed, u ∈ π(p). Then by (1), we have (F,π), v � ◊p. Conversely, suppose
that (2) does not hold. For w ∈ F, let π be a valuation such that π(p) = {w}ro. Then
(F,π), w � p. However, we see (F,π), w 6� �◊p. Indeed, by the failure of (2), there
exists v such that (F,π), v 6� ◊p. This is because if w′ ⊥ w then for all u v w′ we have
u⊥ w′ and thus u 6∈ π(p) = {w}ro; for u ∈ {w}ro if and only if ∀u′ v uu′ Ç w.

It is often the case that conditions on a possibility frame that are equivalent to va-
lidity of modal formulae can be simplified by imposing additional conditions on the
interaction of the accessibility and the refinement relation in possibility frames. For
instance, if we assume

(R-down) (Rwv ∧ v′ v v)⇒ Rwv′, 4

it is easily seen that (2) is equivalent to

(3) Rwv′⇒∃u (Rv′u∧ uv w),

which is much closer to the symmetry of R, the property that the B axiom defines over
standard Kripe frames (see again Figure 3). In fact, many familiar modal axioms with-
out ◊ define the same property over possibility frames satisfying (R-down) as over
Kripke frames; for instance, the 4 axiom �p→ ��p is validated by a possibility frame
(F,v, R) satisfying (R-down) if and only if R is transitive. Moreover, (1) can be simpli-
fied if F satisfies (R-down):

(4) (F,π), y � ◊φ⇔∀v′ v y ∃u (Rv′u∧ (F,π), u � φ).

(See Figure 2.) We refer to [12] for further discussion of (R-down) and other similar
conditions.

A few points should be made about these conditions. First, in Definition 2.1.(i) we
stated a condition for a structure (F,v, (Ra)a∈I ) to be a possibility frame in terms of
RO(F,v) and la; we will see in Section 2.2 that this condition, like (R-down), can be
stated in a first-order manner. Second, as shown in [12], we can assume (R-down)
and other conditions on the interaction of R and v without loss of generality. That
is, given a possibility frame F, we can construct a modally-equivalent possibility frame
F′ that satisfies (R-down) and other interaction conditions (see also Example 3.13).
Third, the main results of the present paper hold without imposing these conditions;
unless otherwise stated, we do not assume (R-down) and other interaction conditions
on possibility frames, beyond those that follow from the definition of possibility frames
(again see Section 2.2).

To develop correspondence theory for possibility semantics, we will take an algebraic
perspective on possibility frames. An important consequence of the definitions above is
that truth sets in an arbitrary possibility model M := (F,π) are always in RO(F). As is
the case for RO(P)where P is an arbitrary partial order, RO(F) is a complete Boolean al-
gebra with respect to set inclusion, where the meet is the intersection, the complement
is the interior of the set-theoretic complement, and the join is the interior of the closure
of the union. One can show that ¹φ1 ∧φ2º

M = ¹φ1º
M ∧ ¹φ2º

M, ¹¬φºM = −¹φºM
and ¹φ1 → φ2º

M = (−¹φ1º
M) ∨ ¹φ2º

M, where ∧, − and ∨ on the right hand sides
denote the meet, the complement and the join in RO(F), respectively.

Definition 2.5.
4This condition is often assumed for frames for intuitionistic modal logic (see, e.g., [17]) with the refine-

ment relation flipped. See also Footnote 2.
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(i) A map f : RO(F)→ RO(F) is completely additive if it preserves arbitrary joins,
i.e., for every family S ⊆ RO(F) we have f (

∨

S) =
∨

{ f (X ) | X ∈ S}. We also
say that a map f : RO(F)n→ RO(F) is completely additive in i-th coordinate for
i ∈ {1, . . . , n} if for every X1, . . . , X i−1, X i+1, . . . , Xn ∈ RO(F) the map

RO(F)→ RO(F)

(X1, . . . , X i−1, X , X i+1, . . . , Xn) 7→ f (X1, . . . , X i−1, X , X i+1, . . . , Xn)

is completely additive. f : RO(F)n → RO(F) is completely additive if it is com-
pletely additive in i-th coordinate for every i ∈ {1, . . . , n}. Completely multi-
plicative maps are defined similarly, but with joins replaced by meets.

(ii) We say that f is a left adjoint of g and that g is a right adjoint of f , if
f , g : RO(F)→ RO(F) satisfy, for X , Y ∈ RO(F),

f (X ) ⊆ Y ⇔ X ⊆ g(Y ).

Note that completely additive maps are order-preserving, and that if f and g both
have left adjoints, so does the composite f ◦ g.

The complete Boolean algebra RO(F) becomes a BAO when equipped with the oper-
ators la for a ∈ I , which are completely multiplicative operators (see [12] for more on
the duality theory relating possibility frames and BAOs). It is easy to see that, in gen-
eral, a completely multiplicative map g over a complete lattice (L,≤) has a left adjoint
f of the form X 7→min{Z ∈ L | Y ≤ g(Z)}. In our setting, this implies that each la has
a left adjoint of the form Y 7→min{Z ∈ RO(F) | Y ⊆ la(Z)}= (Ra[Y ])ro.

2.2. Translation to classical logic. Let the signature τ = {v} ∪ {Ra | a ∈ I}, where
v is a first-order binary relation symbol and each Ra is a first-order binary relation
symbol. We write L 1(τ) for the first-order τ-language and L 2(τ) for the monadic
second-order counterpart. L 1(τ) will be our first-order correspondence language. We
use x , y, z,ξ,η,ζ, etc. for first-order variables and P,Q, etc. for second-order monadic
ones. In particular, let {Pi} be a set of distinct monadic second-order variables, each Pi
corresponding to the propositional variable pi . Let τ̄ be the signature τ∪ {Pi | i ∈ κ}.

We regard a possibility frame F= (F,v, (Ra)a∈I ) as a structure for L 1(τ), by letting
domF = F , vF = v and RF

a = Ra for each a ∈ I . Likewise, we regard a possibility
model M = (F,π) as a structure (F, (π(p))p∈Φ) for L 1(τ̄), as an expansion of F with
PM

i = π(pi). In general, for a structure N, we use |= for the satisfaction relation
for first-order languages, and for parameters a1, . . . , am ∈ N and a first-order formula
β(x; y1, . . . , ym), we write β(N; a1, . . . , am) for the set {b ∈N |N |= β(b; a1, . . . , am)}.

We can view a possibility frame F as a structure for L 2(τ) in two different ways.
In one view, which is employed in the rest of this section and Section 3, we consider
a possibility frame F as a general prestructure for L 2(τ), with its one-place relational
universe being RO(F).5 In the other view, which appears in Section 4, we consider a
possibility frame F as an (ordinary) structure for L 2(τ), with no limitation on values
that bound second-order monadic variables can assume. In each case, we again write
|= for the corresponding appropriate satisfaction relation for L 2(τ).

Having defined classical languages and satisfaction relations, we can see, as in [12],
that the various conditions imposed on possibility frames are actually first-order. First,
we can show that there exists a formula βQ

ro(x) ∈ L
1(τ ∪ {Q}), where Q is a unary

5Our treatment of second-order logic follows [8].
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relation symbol, such that for every X ⊆ F, we have βQ
ro((F, X )) = X ro, where (F, X ) is

an expansion of F that interprets Q as X . Concretely, βQ
ro(x) is the formula

∀y v x ∃z v y ∃z′ w z Qz′

where w is the inverse of v. With this in mind, it can further be shown [12] that a
structure F for L 1(τ) is a possibility frame if and only if it satisfies (in addition to the
axiom of partial orders) the following pair of sentences in L 1(τ) for each a ∈ I :

β a
R-rule :≡ U((x ′ v x ∧ Ra x ′ y ′ ∧ y ′ Ç z)→∃y (Ra x y ∧ y Ç z));

β a
R⇒win :≡ U(Ra x y →∀y ′ v y ∃x ′ v x ∀x ′′ v x ′ ∃y ′′ Ç y Ra x ′′ y ′′),

where U(·) denotes the universal closure. Understanding the details of these conditions
will not be necessary for the purposes of this paper; what will be important for us in
this paper is just that the class of possibility frames is first-order definable. We refer to
[12, 3] for further discussion of these conditions, as well as simpler versions that can
be assumed without loss of generality.

We now give the analogue for possibility semantics of the standard translation of
modal formulae into first-order formulae.

Definition 2.6. For φ ∈ L (Φ, I) and a variable x , we define STx(φ) ∈ L 2(τ) induc-
tively as follows:

STx(pi) = Pi x ,

STx(¬φ) = ∀y v x ¬STy(φ),

STx(φ1 ∧φ2) = STx(φ1)∧ STx(φ2),

STx(φ1→ φ2) = ∀y v x (STy(φ1)→ STy(φ2)),

STx(�aφ) = ∀y (Ra x y → STy(φ)).

Recall that we are viewing a possibility frame as a general prestructure as explained
above. The following definition is standard [2], and the lemmas following it can be
proved in the usual way.

Definition 2.7. For φ ∈ L (Φ, I) and α(x) ∈ L 1(τ), we say that φ locally corresponds
to α(x), or that α(x) is a local correspondent of φ, if for every possibility frame F and
w ∈ F, we have

F, w � φ⇔ F |= α(w).
For a first-order sentence α̃ ∈ L 1(τ), we say that φ globally corresponds to α̃, or that α̃
is a global correspondent of φ, if for every possibility frame F we have

F � φ⇔ F |= α̃.

Lemma 2.8. Given a possibility frame F, w ∈ F and φ ∈ L (Φ, I), we have

F, w � φ⇔ F |= U2(STw(φ)).
6

Lemma 2.9. For φ ∈ L (Φ, I) and α(x) ∈ L 1(τ), the following are equivalent:
(i) φ locally corresponds to α(x).

(ii) For arbitrary possibility frame F and w ∈ F, we have

F |= U2(STw(φ))⇔ F |= α(w),

where U2(φ) denotes the universal quantification by the monadic second-
order variables Pi occurring in φ.

6By F |= U2(STw(φ)), we mean U2(STx (φ)) is satisfied by F and a variable assignment sending x to w.
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3. SAHLQVIST THEORY

In this section, we prove the possibility-semantic version of Sahlqvist’s Theorem.
ForL (Φ, I), positive and negative occurrences of propositional variables, and positive

and negative formulae are defined recursively as follows. For p ∈ Φ, the occurrence of
p in p ∈ L (Φ, I) is positive. Suppose an occurrence of p in φ ∈ L (Φ, I) is positive
(respectively, negative) and ψ ∈ L (Φ, I). Then the corresponding occurrences of p
in φ ∧ψ, ψ ∧φ, ψ→ φ and �φ are positive (respectively, negative); and the corre-
sponding occurrences of p in ¬φ and φ → ψ are negative (respectively, positive). A
modal formula is positive (respectively, negative) if all occurrences of all propositional
variables in it are positive (respectively, negative).

We define Sahlqvist antecedents, Sahlqvist implications and Sahlqvist formulae in the
standard way (see e.g. [5]). More concretely, they are specified by the following gram-
mar:

B ::= pi | �aB (boxed atoms)

A ::= B | 〈negative formula〉 | ◊A | A∧ A | A∨ A (Sahlqvist antecedents)

I ::= A→ 〈positive formula〉 (Sahlqvist implications)

F ::= I | F ∧ F | F ∨ F | �F (Sahlqvist formulae)

where i ∈ Φ, a ∈ I , and in the last clause the disjuncts do not have shared variables.
The following is the main theorem of the present section:

Theorem 3.1. Every Sahlqvist formula locally corresponds to a first-order formula in
the setting of possibility semantics. Moreover, one can effectively calculate the first-
order correspondent from a Sahlqvist formula.

The rest of the present section is devoted to develop a theory necessary to prove the
theorem. The argument will be based on algebraic correspondence theory [7], although
there will be slight changes in terminology and convention.

The key observation is as follows. Call a class function V a definably enumerable
class if the domain of V is the class of possibility frames and there exists a formula
β(x; z1, . . . , zk) ∈ L 1(τ) such that for every F we have V (F) = {β(F; w1, . . . , wk) |
w1, . . . , wk ∈ F} ∪ {;}.

Lemma 3.2. Let φ(p0, . . . , pn−1) ∈ L (Φ, I) and V0, . . . ,Vn−1 be definably enumerable
classes.7 Assume for every possibility frame F and w ∈ F, the following are equivalent:

(5) F |= U2(STw(φ));

(6) ∀P0 ∈ V0(F) · · ·∀Pn−1 ∈ Vn−1(F) (F, P0, . . . , Pn−1) |= STw(φ).

Then, φ locally corresponds to a first-order formula.

Proof. Let βi(x; z i
1, . . . , z i

ki
) witness Vi being definably enumerable. Let α(x) be the first

order formula obtained by replacing, in U2(STx(φ)), each quantifier ∀Pi by ∀z i
1 · · ·∀z i

ki

and each occurrence of Pi x by βi(x; z i
1, . . . , z i

ki
), for each i ∈ n, where z i

j are fresh
variables. Moreover, let α;(x) be the formula obtained by replacing, in STx(φ), each
occurrence of Pi x with x 6= x . It can easily be seen that φ indeed locally corresponds
to α(x)∧α;(x).

7By the notation like φ(p0, . . . , pn−1), we understand hereafter that all propositional variables occurring
in the formula are present in the parentheses.
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In what follows, by F we mean a possibility frame.

Definition 3.3. A modal formula is normative if, for each p ∈ Φ, the number of positive
occurrences of p in it is at most one.8

In the following, we assume, without loss of generality, that negative propositional
variables in a normative Sahlqvist antecedent are all towards the end of the enumera-
tion p0, p1, . . . of the propositional variables occurring in the formula.

We will later associate with a normative Sahlqvist antecedent a certain kind of map,
a Sahlqvist map, between partial orders. Below, n will be the number of propositional
variables in a normative antecedent and, m will be the number of those that occur
positively.

Definition 3.4. Let n, m, l ∈ ω (m ≤ n) and ā1, . . . , ām ∈ I<ω. A Sahlqvist map of type
(n, m, l; ā1, . . . , ām) is a map of the form f ◦〈(g1×· · ·× gm)◦πm, h1, . . . , hl〉: RO(F)n→
RO(F) where

(i) f : RO(F)m+l → RO(F) is completely additive;
(ii) πm : RO(F)n → RO(F)m is the projection onto the first m coordinates, i.e.,

πm(X0, . . . , Xn−1) = (X1, . . . , Xm−1);
(iii) each gi : RO(F)→ RO(F) has a left adjoint of the form

Y 7→ Rro
āi
[Y ] := (Rāi(0)[(Rāi(1)[· · · (Rāi(|ai |−1)[Y ])

ro · · · ])ro])ro;

(iv) each hi : RO(F)n→ RO(F) is order-reversing.

Note that for a formula φ(p0, . . . , pn−1) ∈ L (Φ, I) and possibility models (F,π) and
(F,π′), we have ¹φº(F,π) = ¹φº(F,π′) if π � n= π′ � n, where we identify propositional
variables with their indices. Write ¹φºF for the map RO(F)n → RO(F) that maps
π̃ ∈ RO(F)n to the unique value of ¹φº(F,π) where π: Φ→ RO(F) extends π̃.

Lemma 3.5. Letφ ∈ L (Φ, I) be a positive (respectively, negative) formula. Then ¹φºF

is order-preserving (respectively, order-reversing).

Proof. By simultaneous induction.

For a sequence of modal indices ā ∈ I<ω and a modal formula φ, we define the
expression �āφ recursively as �〈〉φ = φ and �ābφ = �ā�bφ. Let r : I<ω → I<ω be
the string reversal; i.e., r(〈〉) = 〈〉 and r(bā) = r(ā)b.

Lemma 3.6. If φ(p0, . . . , pn−1) is a normative Sahlqvist antecedent, then ¹φºF is a
Sahlqvist map of type (n, m, l; ā0, . . . , ām−1) for some l ∈ ω, where m is the number of
variables that occur positively in φ and, for each i ∈ m, the unique positive occurrence
of pi in φ follows �r(āi).

Proof. By induction. The properties used in the proof are that RO(F), the underlying
BAO of F, is a complete and completely additive BAO, making∧, ∨ and the operators for
◊a completely additive; that the operators la have left adjoints; and that if l : RO(F)→
RO(F) has a left adjoint of the form Y 7→ Rro

ā [Y ], then lb ◦ l has a left adjoint of the
form Y 7→ Rro

āb[Y ].

For X ∈ RO(F), we write Y ≤1 X if Y = {y}ro for some y ∈ X . Note that if Y ≤1 X
then Y ⊆ X .

Lemma 3.7. For X ∈ RO(F) \ {;}, we have X =
∨

Y≤1X Y .

8In [7], a related but slightly different concept of 1-implications is used.
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Proof. Since Y ≤1 X ⇒ Y ⊆ X , we have
∨

Y≤1X Y ⊆ X .
Let x ∈ X be arbitrary. Then {x}ro ≤1 X , whence x ∈ {x}ro ⊆

∨

Y≤1X Y . Therefore,
X ⊆
∨

Y≤1X X .

For ā ∈ I<ω, write Vā
1(F) for the family of regular open sets either empty or of the

form Rro
ā [{z}

ro] where z ∈ F. Also, let V0(F) := V0 := {;}. For ā ∈ I<ω, write Rā x y if
and only if there exist z1, . . . , z|a| ∈ F such that

Rā(0)xz1 ∧ Rā(1)z1z2 ∧ · · · ∧ Rā(|a|−1)z|a| y.

Lemma 3.8. For each X ∈ RO(F) and for each ā,

Rro
ā [X ] = (Rā[X ])

ro.

Therefore, Vā
1 is a definably enumerable class as witnessed by the first-order formula

β ā
1 (x; z)9

[∃z′ (λy Rāz′ y ∧ [λy ′ y ′ = z/Q]βQ
ro(z

′))/Q]βQ
ro(x).

Proof. For S ⊆ F × F , let us define the map lS by, for X ⊆ F,

lS(X ) = {x ∈ F | ∀y (Sx y ⇒ y ∈ X )}.

Then lRa
= la, and it can be shown that lRbā

= lb ◦ lRā
. Hence, by induction, we may

regard lRā
as a map RO(F)→ RO(F), for every ā ∈ I<ω.

It can easily be seen that Y 7→ Rro
ā [Y ] is a left adjoint of la(|a|−1) ◦ · · · ◦ la(0). By a

reasoning similar to the case of la, we see that Y 7→ Rā is a left adjoint of lRr(ā)
. Since

la(|a|−1) ◦ · · · ◦ la(0) = lRr(ā)
, we conclude Rro

ā [X ] = (Rā[X ])ro for any X ∈ RO(F), by the
uniqueness of the left adjoint.

V0 is also a definably enumerable class trivially.

Lemma 3.9. Let f : RO(F)n→ RO(F) be a Sahlqvist map of type (n, m, l; ā0, . . . , ām−1)
and G : RO(F)n → RO(F) be order-preserving. Then for w ∈ F, the following are
equivalent:

∀P0 ∈ RO(F) · · ·∀Pn−1 ∈ RO(F)

(w ∈ f (P0, . . . , Pn−1)⇒ w ∈ G(P0, . . . , Pn−1));
(7)

∀P0 ∈ Vā0
1 (F) · · ·∀Pm−1 ∈ Vām−1

1 (F)∀Pm ∈ V0 · · ·∀Pn−1 ∈ V0

(w ∈ f (P0, . . . , Pn−1)⇒ w ∈ G(P0, . . . , Pn−1)).
(8)

Proof. For simplicity, assume n= 2, m= 1, and l = 2; it is straightforward to adapt the
proof below for general cases.
(⇒) is clear. Assume (8). Suppose f = f0 ◦ 〈g ◦π1, h〉 where f0 : RO(F)2 → RO(F)

is completely additive, g : RO(F)→ RO(F) is the right adjoint of the map Y 7→ Rro
ā0
[Y ]

and h: RO(F)2→ RO(F) is order-reversing. Take arbitrary P0, P1 ∈ RO(F) and assume
w ∈ f (P0, P1). We will show w ∈ G(P0, P1).

By the adjunction, we can show that if P0 = ; then g(P0) = ;. Assume g(P0) = ;.
Then w ∈ f (P0, P1) = f0(g(P0), h(P0, P1)) = f0(;, h(P0, P1)) = f0(g(;), h(P0, P1)). Since
h is order-reversing and f0 is order-preserving, w ∈ f0(g(;), h(;, P1)) = f (;, P1). By
; ∈ Vā0

1 and (10), we have w ∈ G(P0, P1).

9 We use the λ-notation and the notation for syntactic substitution as in [5].
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Assume g(P0) 6= ;. Since h is order-reversing, f0 is completely additive, and g(P0) =
∨

X≤1 g(P0)
X (by Lemma 3.7), we have

w ∈ f (P0, P1)

= f0(g(P0), h(P0, P1))

⊆ f0(
∨

X≤1 g(P0)

X , h(P0,;))

=
∨

{x}ro⊆g(P0)

f0({x}ro, h(P0,;))

=
∨

Rro
ā0
[{x}ro]⊆P0

f0({x}ro, h(P0,;)),

where the last equality follows because g ’s left adjoint is Y 7→ Rro
ā0
[Y ]. For each x ∈ F,

let Q x = Rro
ā0
[{x}ro]. Note that Q x ∈ Vā0

1 (F) and that g(Q x) ⊇ {x}ro (the latter is by the
general fact that the composite of a right adjoint after its left adjoint is inflating). Then

w ∈
∨

Q x⊆P0

f0({x}ro, h(P0,;))

⊆
∨

Q x⊆P0

f0(g(Q x), h(Q x ,;))(9)

⊆
∨

Q x⊆P0

G(Q x ,;)(10)

⊆
∨

Q x⊆P0

G(P0, P1)(11)

= G(P0, P1).(12)

The inclusion (9) is by the order-reversing property of h and the order-preserving prop-
erty of f0; (10) is by (8); and (11) is because G is order-preserving.

Corollary 3.10. Let φ(p0, . . . , pn−1) be a normative Sahlqvist antecedent and
ψ(p0, . . . , pn−1) be positive. Assume that m is the number of propositional variables
that occur positively in φ, and that for each i ∈ m the unique positive occurrence of pi
in φ follows �āi

. Then for w ∈ F, the following are equivalent:

(13) F |= U2(STw(φ→ψ));

∀P0 ∈ Vā0
1 (F) · · ·∀Pm−1 ∈ Vām−1

1 (F)∀Pm ∈ V0 · · ·∀Pn−1 ∈ V0

(F, P0, . . . , Pn−1) |= STw(φ→ψ).
(14)

Proof. Note that, for w ∈ F, we have (F, P0, . . . , Pn−1) |= STw(φ→ψ) if and only if

∀w′ v w (w′ ∈ ¹φºF(P0, . . . , Pn−1)⇒ w′ ∈ ¹ψºF(P0, . . . , Pn−1)).

By Lemma 3.6, ¹φºF is a Sahlqvist map of type (n, m, l; ā0, . . . , ām−1) for some l ∈ ω.
By Lemma 3.5, ¹ψºF is order-preserving. By applying Lemma 3.9 to each w′ v w, we
obtain the equivalence between (13) and (14).

Corollary 3.11. For any Sahlqvist implication χ with a normative antecedent, there
exists a first-order formula α(x) such that χ corresponds to α(x).

Proof. By Corollary 3.10 and Lemma 3.2.
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We will now see that the general case reduces to that of normative formulae. For
V, V ′ ⊆ RO(F), write V +V ′ for the family of regular open sets of the form P∨P ′, where
P ∈ V and P ′ ∈ V . Note that if both V and V ′ are definably enumerable classes, so is
the class V +V ′ which is defined by (V +V ′)(F) = V (F) +V ′(F).

Lemma 3.12. Let m ≤ n. Suppose φ(p0, . . . , pn−1) is a modal formula such that each
pi is positive for i = 0, . . . , m − 1. Let ψ(pm, . . . , pn−1) be positive. Assume that for
definably enumerable classes V0, . . . ,Vm−1 the following are equivalent for each w ∈ F:

∀P0 ∈ RO(F) · · ·∀Pm−1 ∈ RO(F)

(w ∈ ¹σ(φ)ºF(P0, . . . , Pm−1)⇒ w ∈ ¹σ(ψ)ºF(P0, . . . , Pm−1));
(15)

∀P0 ∈ V0(F) · · ·∀Pm−1 ∈ Vm−1(F)

(w ∈ ¹σ(φ)ºF(P0, . . . , Pm−1)⇒ w ∈ ¹σ(ψ)ºF(P0, . . . , Pm−1)),
(16)

where

σ =

�

∨

0≤i<m

pi

Â

pm, . . . ,
∨

0≤i<m

pi

Â

pn−1

�

.

Then the following are also equivalent for each w ∈ F:

(17) ∀P ∈ RO(F) (w ∈ ¹σ0(φ)º
F(P)⇒ w ∈ ¹σ0(ψ)º

F(P));

(18) ∀P ∈ (V0 + · · ·+Vm−1)(F) (w ∈ ¹σ0(φ)º
F(P)⇒ w ∈ ¹σ0(ψ)º

F(P)),

where σ0 = [p0/p0, . . . , p0/pn−1].

Proof. (17) ⇒ (18) is clear. We will see (18) ⇒ (16) ⇒ (15) ⇒ (17). (16) ⇒ (15)
is by assumption. (15) ⇒ (17) is by instantiating (15) by P1 . . . , Pn−1 := P0, and by
¹

∨

0≤i<m piº
F(P0, . . . , Pn−1) =

∨

0≤i<m Pi .
We show (18) ⇒ (16). For simplicity, assume n = 3 and m = 2 (the proof can be

adapted for other cases straightforwardly). Take arbitrary P0 ∈ V0 and P1 ∈ V1 Then

w ∈ ¹σ(φ)ºF(P0, P1)

⊆ ¹σ(φ)ºF(P0 ∨ P1, P0 ∨ P1)(19)

= ¹σ0(φ)º
F(P0 ∨ P1)(20)

⇒(21)

w ∈ ¹σ0(ψ)º
F(P0 ∨ P1)

= ¹σ(ψ)ºF(P0, P1).(22)

(19) is because σ(φ) is positive in p0 and p1 and σ(p2) = p0 ∨ p1. (20) is by the
definition of σ and σ0. (21) follows from (18). (22) is because neither p0 nor p1
occurs in ψ.

By the lemma above, correspondence theory for a Sahlqvist implication in which the
only propositional variable in it is p0 reduces to that for a Sahlqvist implication with
normative antecedents. More concretely, the case for such an implication χ reduces
to that for the formula one obtains by replacing in χ the positive occurrences of p0 in
the antecedent by distinct propositional variables and, simultaneously, the other occur-
rences of p0 by the disjunction of those distinct variables. We can further show a similar
lemma for multiple variables to reduce the case for general Sahlqvist implications to
that for Sahlqvist implications with normative antecedents.

We are now ready to prove the main theorem of this section.
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Proof of Theorem 3.1. As in the correspondence theory for the standard Kripke seman-
tics, one can show that the set of modal formulae that locally correspond to first-order
formulae are closed under these operations:

χ 7→ �āχ (ā ∈ I<ω)

(χ,χ ′) 7→ χ ∧χ ′

(χ,χ ′) 7→ χ ∨χ ′ (if no propositional variables occur both in χ and in χ ′)

Also by the observation above one only needs to prove the theorem for a Sahlqvist
implication whose antecedent is normative. This follows from Corollary 3.11.

For a better understanding of the methods of this section, let us apply them to a
concrete example.

Example 3.13. Assume that I is a singleton, denote its only element by ∗, and let R= R∗
and x Â y↔ Ry x . The B axiom from Example 2.4 has an equivalent form

Bop :≡ ◊�p0→ p0

which is a Sahlqvist implication. We will calculate a local correspondent of Bop as an
example, by using the theorems in this section.

As we saw in Example 2.4, we can assume extra conditions on the interaction of R
and v to make correspondents simpler, without loss of generality. In fact, something
additional is true here: often, for an interaction condition C , if a first-order formula
α(x) is a local correspondent of a modal formula φ over the possibility frames that
satisfy C , i.e., for any possibility frame F |= C and w ∈ F,

F, w � φ⇔ F |= α(w),

then one can effectively obtain a first-order α̃(x) which is a local correspondent of φ.
See [12] for the details. To compute a local correspondent of Bop it is convenient to
assume the following conditions, alongside (R-down):

(separativity) x v y↔∀x ′ v x x ′ Ç y;

(R-dense) (∀y ′ v y ∃y ′′ v y ′ Rx y ′′)→ Rx y;

(up-R) (Rx ′ y ∧ x ′ v x)→ Rx y.

Again, we can assume these conditions without loss of generality, in the strong sense
stated above. One of the major consequences of the extra conditions is

(23) Rro
∗ [{x}

ro] = R[{x}].

We are now ready to calculate a local correspondent of Bop. Using the simplified
forcing relation (4) for ◊, we see that STx(Bop) is equivalent to

∀x1 v x ((∀x2 v x1 ∃x3 Â x2∀x4 Â x3 P0 x4)→ P0 x1).

Since p0 follows exactly one� in the antecedent of Bop, one can apply Lemma 3.9 where
the range of ∀P0 is restricted to V∗1. This class is defined by the first-order formula
β∗1(x; z), where

β∗1(x; z)↔ Rzx
by (23). A local correspondent of Bop is then obtained by applying Lemma 3.2: αBop(x)∧
α;(x) is a local correspondent of Bop, where αBop(x) is the first-order formula obtained
by replacing

∀P0 · · · P0 x · · ·



14 KENTARÔ YAMAMOTO

by
∀z0 · · · Rz0 x
︸︷︷︸

equivalent to β∗1 (x; z0)

· · ·

in U2(STx(Bop)), and α;(x) = [λx x 6= x/P0]STx(Bop). αBop(x) can be calculated to be

∀z0∀x1 v x ((∀x2 v x1 ∃x3 Â x2∀x4 Â x3 Rz0 x4)→ Rz0 x1),

and α;(x) is

∀x1 v x ((∀x2 v x1 ∃x3 Â x2∀x4 Â x3 x4 6= x4)→ x1 6= x1).

One can check that, under the assumption of the extra conditions above,
∀x (αBop(x)∧α;(x)) is equivalent to (3), the global correspondent of the B axiom given
in Example 2.4.

Given that the analogue of the Sahlqvist Correspondence Theorem holds for possi-
bility semantics, it is natural to ask whether an analogue of the Sahlqvist Completeness
Theorem holds for possibility semantics as well. We will briefly discuss this question in
Section 5.

4. MODEL-THEORETIC CHARACTERIZATION

In this section, we examine model-theoretic aspects of correspondence theory for
possibility frames, extending and adapting the classical work of van Benthem [1]. We
will see that the standard results for Kripke semantics smoothly extend to the setting
of possibility semantics.

First, we investigate a model-theoretic characterization of modal formulae that glob-
ally correspond to first-order formulae. Unlike in the previous sections, we regard pos-
sibility frames as (ordinary) structures for L 2(τ), i.e., with no restriction on the range
of second-order variables. In this section, we use the term “structures” without qualifi-
cations to refer to this kind of structure for L 2(τ). We also assume in this section that
I , the set of modal indices, is finite.

Let FR(φ) denote the set of possibility frames F such that for every possibility model
M = (F,π) and every w ∈ F, we have M, w � φ. Equivalently, FR(φ) is the set
Mod(SOT(φ)) of structures that models the monadic second-order formula SOT(φ),
where:

• SOT(φ) := Ũ2(STx(φ))∧ βpo ∧
∧

a∈I β
a
R⇒win ∧ β

a
R-rule;

• Ũ2(χ) denotes the universal quantification by the second-order monadic vari-
ables occurring in χ, but with the domain of the quantification restricted to
RO(F); concretely, Ũ2(χ) := χ for χ ∈ L 2(τ) with no monadic second-order
free variables and Ũ2(χ) := Ũ2(∀P (β P

val→ χ)) for χ with a monadic second-
order free variable P;

• βpo states v is a partial order; and
• β P

val is a sentence in L 1(τ∪ {P}) that says that P is a regular open set within
a possibility frame; i.e.,

β P
val :≡ ∀x (P x ↔ β P

ro(x)).

Definition 4.1. Let F be a structure. A generated substructure G of F is a substructure
of F such that if x ∈G and F |=♥x y for some ♥ ∈ {w}∪ {Ra | a ∈ I} then y ∈G.

It can be shown that a generated substructure of a possibility frame as a structure is
again a possibility frame (see [12]).



MODAL CORRESPONDENCE THEORY FOR POSSIBILITY SEMANTICS 15

Lemma 4.2. Let F be a structure and G be a generated substructure of F. Let π be an
interpretation of Pi (i ∈ κ). Then for each modal formula φ and each w ∈ G, we have
(F,π) |= STw(φ)⇔ (G,π) |= STw(φ).

Proof. Obvious.

The following result is originally due to Goldblatt [9]. For a family (Ni)i∈J of struc-
tures and an ultrafilter U over J , we write

∏

i∈J Ni/U for the ultraproduct of the family
using J (see, e.g., [15]).

Lemma 4.3. Let (Fi)i∈J and (Gi)i∈J be families of structures. Assume that each Fi is
a generated substructure of Gi . Let U be an ultrafilter over J . Then F :=

∏

i Fi/U is a
generated substructure of G :=

∏

i Gi/U .

Proof. This can be proved in the same way as over Kripke frames whose accessibility
relations are ♥’s as in Definition 4.1.

Recall that an ultrapower FJ/U is the ultraproduct
∏

i∈J Fi/U of the family (Fi)i∈J
where Fi = F for all i ∈ J . Given a family (Fi)i∈J of structures, one can think of a new
structure
⊕

i∈J Fi , their disjoint union, since the signature τ is relational. Note that, if
(Fi)i∈J is a family of possibility frames,

⊕

i∈J Fi is seen to be again a possibility frame
(see [12]).

Corollary 4.4. Let (Fi)i∈J be a family of structures and F :=
⊕

i∈J Fi . Let U be an ultra-
filter over J and G =

∏

i Fi/U . Then G is isomorphic to some generated substructure
of the ultrapower FJ/U .

Lemma 4.5. For φ ∈ L (Φ, I), we have that FR(φ) =Mod(∀x SOT(φ)) is closed under
generated substructures.

Proof. By induction on the complexity of φ.

Lemma 4.6. For φ ∈ L (Φ, I), if FR(φ) is closed under ultrapowers, then it is closed
under ultraproducts.

Proof. Obvious from the preceding lemmas, since FR(φ) is closed under disjoint unions.

We can now see that van Benthem’s [1] characterization of basic elementary classes
of Kripke frames can be extended to possibility frames as well. Recall that a class K
of structures is basic elementary if K = Mod(α) for some first-order α. By definition,
for a modal formula φ, we have that FR(φ) is basic elementary if and only if φ has a
global correspondent

Theorem 4.7. For φ ∈ L (Φ, I), we have FR(φ) is basic elementary if and only if it is
closed under ultrapowers.

Proof. By a general model-theoretic fact (see, e.g., [6, Corollary 6.1.16 (ii)]), FR(φ) =
Mod(∀x SOT(φ)) is basic elementary if and only if Mod(∀x SOT(φ)) and its comple-
ment are closed under ultraproducts. Since ∀x SOT(φ) is Π1

1 for any φ ∈ L (Φ, I), we
know that Mod(¬∀x SOT(φ)), the complement of Mod(∀x SOT(φ)), is always closed
under ultraproducts, as noted above. Then by the previous lemma, Mod(∀x SOT(φ))
is basic elementary if and only if it is closed under ultrapowers.

Let us now turn to local correspondence. An analogous result for Kripke semantics
was also proved by van Benthem [1].
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Theorem 4.8. For φ ∈ L (Φ, I), we have that φ locally corresponds to a first-order
formula if and only if for every possibility frame F, every index set J and an ultrafilter
U over J , we have

∀i ∈ J F |= SOT(φ)(wi)⇒ FJ/U |= SOT(φ)((wi)i/U).(†)

Proof. First observe that a modal formula φ locally corresponds to a first-order α(x)
if and only if Mod([c/x]SOT(φ)) =Mod(α(c)) where Mod is defined analogously for
the language L 2(τ∪{c}) and c is a new constant symbol; and that the quantifier-wise
syntactic complexity of the sentence [c/x]SOT(φ) remains Π1

1 in the new language.
Thus, a proof similar to the one before applies to this theorem.

To be more precise, one can show the following analogue of Corollary 4.4:

Claim. Let ((Fi , wi))i∈J be a family of structures forL 1(τ∪{c}) and U be an ultrafilter
over J . Then
∏

i Fi/U can be embedded in the ultraproduct
∏

i∈J

(
⊕

j∈J

F j , wi)/U ,(∗)

and its image is a generated substructure of (
⊕

j∈J F j)J/U .

Moreover, if (F, w) |= [c/x]SOT(φ), then for a generated substructure G of F con-
taining w we have (G, w) |= [c/x]SOT(φ), and if (Fi , wi) |= [c/x]SOT(φ) for all i ∈ J ,
an index set, then (

⊕

j∈J F j , wi) |= [c/x]SOT(φ) for all i. Thus, Mod(SOT(φ)[c/x])
is closed under ultraproducts of the form (∗) if and only if φ locally corresponds to a
first-order formula. This can easily seen to be equivalent to the condition (†).

A standard application of a result like Thorem 4.8 is to obtain a syntactic closure
property of the set of formulae having first-order correspondents, as follows.

Theorem 4.9. If �φ locally corresponds to a first-order formula, so does φ.

Proof. Suppose that φ does not locally correspond to a first-order formula. Then by
Theorem 4.8, there exist a structure F= (W, R,v), an index set J , an ultrafilter U over
J , and (wi)i ∈ FJ such that for every i ∈ I we have F |= SOT(φ)(wi) but FJ/U 6|=
SOT(φ)((wi)i/U). Let π be the valuation that witnesses the latter fact. Let v be an
object not in W . For each i ∈ I , let Fi = (W t {v}, R t {(v, wi)},v t {(v, v)}). Since
for every i ∈ J we have Fi |= ∃!x Rvx and Fi |= Rvwi , by Łoś’s Theorem, we know
that
∏

i Fi/U |= ∃!x R((v)i/U)x and that the unique witness to the preceding for-
mula is (wi)i/U . Note that FJ/U is a generated substructure of

∏

i Fi/U . The valu-
ation π is also a valuation for

∏

i Fi/U . Hence, (
∏

i Fi/U ,π) 6|= STx(φ)((wi)i/U) and
(
∏

i Fi/U ,π) 6|= STx(�φ)((v)i/U). However, by construction, for every i ∈ J we have
Fi |= SOT(�φ)(v). Therefore, by Theorem 4.8, we know that �φ does not locally
correspond to a first-order formula.

5. CONCLUSION

We have seen that despite the richer structure of possibility frames, involving not
only the accessibility relation but also the refinement relation, central results of stan-
dard correspondence theory continue to hold in this more general setting. A natural
question raised by our results is this: does every formula that has a first-order corre-
spondent in the setting of Kripke semantics also have a first-order correspondent in the
setting of possibility semantics?
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A second open problem suggested by our results concerns the Sahlqvist Complete-
ness Theorem, which states that every Sahlqvist formula is canonical. A natural ques-
tion to ask here is how this theorem can be extended to our general setting of possibility
semantics. In [12], a theory of canonical frames for possibility semantics is developed,
according to which, for a normal modal logic Λ, there is a canonical possibility frame10

whose modal theory is included in Λ. Unlike a canonical Kripke frame, built from
the ultrafilters in the Lindenbaum algebra of a logic, a canonical possibility frame is
built from proper filters in the Lindenbaum algebra, so even for an uncountable modal
language, the construction of the latter does not require the ultrafilter axiom, or equiv-
alently, the Boolean prime ideal axiom. The possibility-semantic version of canonicity
of a modal formula φ is then defined so that φ is filter-canonical if and only if, for
every normal modal logic Λ containing φ, the logic’s canonical possibility frame vali-
dates φ. Holliday [12] shows that, assuming the ultrafilter axiom, φ is filter-canonical
if and only if φ is canonical in the standard Kripke-semantic sense. It follows that ev-
ery Sahlqvist formula is filter-canonical, assuming the ultrafilter axiom. An interesting
open problem here is to show this fact without assuming the axiom. It was shown in
[12] that formulae of the form ◊ā�b̄ p → �c̄◊d̄ p are filter-canonical, but for general
Sahlqvist formulae the problem is open.

REFERENCES

1. Johan van Benthem, Modal correspondence theory, Ph.D. thesis, University of Amsterdam, 1972.
2. , Correspondence theory, Handbook of Philosophical Logic (D.M. Gabbay and F. Guenthner, eds.),

Handbook of Philosophical Logic, vol. 3, Springer Netherlands, 2001, pp. 325–408 (English).
3. Johan van Benthem, Nick Bezhanishvili, and Wesley H. Holliday, A bimodal perspective on possibility

semantics, Journal of Logic and Computation (Forthcoming).
4. Guram Bezhanishvili and Wesley H. Holliday, Locales, nuclei, and Dragalin frames, Advances in Modal

Logic, vol. 11, College Publications, London, Forthcoming.
5. Patrick Blackburn, Maarten de Rijke, and Yde Venema, Modal logic, Cambridge University Press, New

York, NY, USA, 2001.
6. C. C. Chang and H. J. Keisler, Model theory, Studies in Logic and the Foundations of Mathematics, Elsevier

Science, 1990.
7. Willem Conradie, Allesandra Palmigiano, and Sumit Sourabh, Algebraic modal correspondence: Sahlqvist

and beyond, preprint available at https://staff.fnwi.uva.nl/s.sourabh/, 2014.
8. Herbert B. Enderton, Second-order and higher-order logic, The Stanford Encyclopedia of Philosophy (Ed-

ward N. Zalta, ed.), fall 2015 ed., 2015.
9. Robert Goldblatt, Mathematics of modality, Center for the Study of Language and Information, Stanford

University, 1993.
10. Matthew Harrison-Trainor, First-order possibility models and finitary completeness proofs, preprint avail-

able at http://escholarship.org/uc/item/8ht6w3kk, 2016.
11. , Worldizations of possibility models, preprint available at http://escholarship.org/uc/

item/881757qn, 2016.
12. Wesley Holliday, Possibility frames and forcing for modal logic, UC Berkeley Working Paper in Logic and

the Methodology of Science, available at http://escholarship.org/uc/item/5462j5b6, 2015.
13. I. L. Humberstone, From worlds to possibilities, Journal of Philosophical Logic 10 (1981), no. 3, 313–339.
14. Tadeusz Litak, On notions of completeness weaker than Kripke completeness, Advances in Modal Logic

(Renate Schmidt, Ian Pratt-Hartmann, Mark Reynolds, and Heinrich Wansing, eds.), vol. 5, College
Publications, London, 2005, pp. 149–169.

15. David Marker, Model theory: An introduction, Springer-Verlag New York, 2002.
16. P. Odifreddi, Classical recursion theory: The theory of functions and sets of natural numbers, Studies in

logic and the foundations of mathematics, North-Holland, 1989.
17. F. Wolter and M. Zakharyaschev, The relation between intuitionistic and classical modal logics, Algebra and

Logic 36 (1997), no. 2, 73–92.

10Again, we are dropping the word “full” from the technical term defined in [12].

https://staff.fnwi.uva.nl/s.sourabh/
http://escholarship.org/uc/item/8ht6w3kk
http://escholarship.org/uc/item/881757qn
http://escholarship.org/uc/item/881757qn
http://escholarship.org/uc/item/5462j5b6


18 KENTARÔ YAMAMOTO

GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE, UC BERKELEY

E-mail address: ykentaro@math.berkeley.edu
URL: https://math.berkeley.edu/~ykentaro/

https://math.berkeley.edu/~ykentaro/

	1. Introduction
	2. Possibility semantics
	2.1. Introduction to the semantics
	2.2. Translation to classical logic

	3. Sahlqvist theory
	4. Model-theoretic characterization
	5. Conclusion
	References



