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a Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
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c School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
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ABSTRACT: Thorough evaluations of satellite precipitation products are necessary for accurately detecting meteorologi-
cal drought. A comprehensive assessment of 15 state-of-the-art precipitation products (i.e., IMERG_cal, IMERG_uncal,
GSMaP-G, CPC-Global, TRMM3B42, CMORPH-CRT, PERSIANN-CDR, PERSIANN, PERSIANN-CCS, SM2RAIN,
CHIRPS, ERA5, ERA-Interim, MERRA-2, and GLDAS) is herein conducted for the period 2010–19 giving special atten-
tion to their performance in detecting meteorological drought over mainland China at 0.258 spatial resolution. The cited
precipitation products are compared against China’s gridded gauge-based Daily Precipitation Analysis (CGDPA) product,
derived from 2400 meteorological stations, and their quality is assessed at daily, seasonal, and annual precipitation time
scales. Meteorological droughts in the datasets are determined by calculating the standardized precipitation evapotranspi-
ration index (SPEI). The performance of the precipitation products for drought detection with respect to the SPEI is as-
sessed at three time scales (1, 3, and 12 months). The results show that the GSMaP-G outperforms other satellite-based
datasets in drought detection and precipitation estimation. The MERRA-2 and the ERA5 are on average closer to the
CGDPA reference data than other reanalysis products for precipitation estimation and drought detection. These products
capture well the spatial and temporal pattern of the SPEI in southern and eastern China having a probability of detection
(POD) above 0.6 and a correlation coefficient (CC) above 0.65. CPC-Global, IMERG, and the ERA5 reanalysis product
are ideal candidates for application in western China, especially in the Qinghai–Tibetan Plateau and the Xinjiang Province.
Generally, the accuracy of precipitation products for drought detection is improved with longer time scales of the SPEI
(i.e., SPEI-12). This study contributes to drought-hazard detection and hydrometeorological applications of satellite precip-
itation products.

SIGNIFICANCE STATEMENT: The purpose of this study is to comprehensively evaluate the quality of 15 global
satellite-based, gauge-based, and reanalysis precipitation products for meteorological drought detection at 1-, 3-, and
12-month time scales. This work systematically evaluates these products’ capacity to capture precipitation occurrence
and intensity in different seasons. This is followed by a comparison of the precipitation products’ performance in
drought detection. This work’s findings and evaluation results will improve the ability of those who develop precipita-
tion products in identifying error sources and further improving retrieval algorithms. This paper’s results will serve as a
valuable reference for end users seeking to better understand the application of precipitation products to drought
detection.

KEYWORDS: Precipitation; Drought; Satellite observations; Reanalysis data

1. Introduction

Droughts are spatially complex hazards that have severe so-
cioeconomic and environmental impacts (Bevacqua et al.
2021; Dikshit et al. 2022; Zhang et al. 2022). These impacts ex-
acerbate water scarcity, affecting surface water and ground-
water resources. Reduced water supply leads to crop failure
and degraded aquatic habitats, severely impacting socioeco-
nomic sectors (Mishra and Singh 2011; Bevacqua et al. 2021;

Dikshit et al. 2022). Thus, from economic and environmental
perspectives there is an urgent need to monitor drought under
climatic change (Guo et al. 2022). China, for instance, has ex-
perienced extreme drought in the last decades, with the high-
est seasonal-mean temperature recorded since 1961 (Liu et al.
2022). These droughts inflicted large economic losses with av-
erage annual losses of $7 billion between 1984 and 2017,
which could rise to $47 billion under global warming of 1.58C
(Su et al. 2018).

Drought prediction and quantification are imperative for
reducing adverse environmental impacts and economic losses.
Drought assessment necessitates the definition of an appropri-
ate drought index to measure drought severity. Drought can
be broadly categorized as meteorological, agricultural, hydro-
logical, and socioeconomic drought (Wilhite and Glantz 1985;
Mishra and Singh 2010). Meteorological drought is the pre-
cursor of hydrological and agricultural droughts. The severity
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of meteorological drought is often given by the well-known
standardized precipitation evapotranspiration index (SPEI),
which quantifies the probability of drought occurring for a
given climatic event (Vicente-Serrano et al. 2010; Abbasi et al.
2019).

The quality of the meteorological drought detection and moni-
toring depends mainly on the accuracy of precipitation data
(Bai et al. 2019; Zhong et al. 2019). Gauge precipitation data
are used as a reference in the assessment of droughts, climate
trends, and variability, and for agricultural and hydrological ap-
plications (Sun et al. 2018; Zhang et al. 2020). However, gauge
observations in mountainous regions are sparse and unevenly
distributed, which makes it difficult to accurately assess the spa-
tial distribution of precipitation (Xu et al. 2015). Given this
problem, satellite-based and reanalysis precipitation products
with wide temporal and spatial coverage are often more useful
in drought monitoring than in situ observations. It is therefore
important to assess the quality of modern precipitation products
in precipitation estimation before considering their potential ap-
plications for drought monitoring.

The comprehensive quality assessment of multisource satellite-
based and reanalysis precipitation products in precipitation
estimation has attracted much attention in recent years.
Trinh-Tuan et al. (2019) conducted a comprehensive valida-
tion of three satellite precipitation datasets for the period
2001–10, which were the Climate Prediction Center morphing
technique (CMORPH), the Global Satellite Mapping of Pre-
cipitation (GSMaP) Reanalysis, and the Tropical Rainfall
Measuring Mission satellite (TRMM3B42) products over central
Vietnam. Derin et al. (2019) compared five precipitation prod-
ucts, namely, the Global Precipitation Measurement (GPM)-
based Integrated Multi-satellitE Retrievals (IMERGV05B,
IMERGV06B), the CMORPH, the GSMaPV07, and the Multi-
Source Weighted-Ensemble Precipitation (MSWEP) V2.2 over
mountainous regions worldwide. Liu et al. (2020) found that
IMERG products exhibited better performance than the GSMaP
and the Climate Hazards Center Infrared Precipitation with
Station data (CHIRPS) on Bali Island from 2015 through
2017. These studies evaluated the cited precipitation products
based on a few ground stations that are sparsely distributed in
mountainous and high-altitude regions. The evaluation of pre-
cipitation products based on a few ground stations is prone
to uncertainty because observations are sparsely distributed
in mountainous and high-altitude regions. The triple collec-
tion (TC) method is an ideal candidate for error quantifica-
tion in those regions with scarce precipitation observations.
This method was successfully applied for evaluating soil
moisture products (Gruber et al. 2016), leaf area index (Fang
et al. 2012), and land water storage (van Dijk et al. 2014)
when meteorological observations are lacking.

Previous research has largely focused on the applications or
comparisons of a few selected datasets used for precipitation
estimation. Few studies provide a comprehensive overview of
the existing precipitation products in various topographic set-
tings, time scales, and global climate types. Sun et al. (2018)
reviewed several global precipitation datasets with respect to
multiple time scales. Their evaluation did not incorporate the
latest precipitation products such as IMERGV06B, the fifth

generation of the European Centre for the Medium-Range
Weather Forecasts (ECMWF) atmospheric reanalyses of the
global climate (ERA5), a rainfall dataset derived from soil
moisture through the SM2RAIN algorithm (SM2RAIN), and
the Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2). The accurate evaluation
of precipitation datasets remains a major challenge. For exam-
ple, the density and distribution of the station network affect
the accuracy of precipitation estimates, and the differences in
the coordinated universal time (UTC) of the 24-h accumulated
values of daily gauge reports potentially bias the results (Beck
et al. 2017). Overall, the knowledge about the quality of precipi-
tation products in complex terrain and multiple time scales, and
about the potential error source of product algorithm is very
limited, which complicates the practical application and algorith-
mic improvement of global precipitation products. Uncertainty
in the precipitation datasets further propagates to drought de-
tection algorithms and may lead to unreliable conclusions.

Only a few studies have investigated the adequacy of pre-
cipitation products for global drought analysis (Golian et al.
2019; Hinge et al. 2021). Tang et al. (2020) evaluated ten pop-
ular precipitation products for the period 2000–18 in three
typical subregions of China, i.e., the Qinghai–Tibetan Plateau
(TB), the Xinjiang Province (XJ), and northeastern China
(NE). However, the latter study primarily focused on evaluat-
ing the performance of products in precipitation estimation.
There has been little comprehensive evaluation of the perfor-
mance of different global precipitation products, particularly rean-
alysis precipitation products, to guide future drought monitoring
applications. Therefore, a systematic assessment of the accuracy
and performance of satellite-based and reanalysis precipitation
products in detecting meteorological drought is timely.

All the evaluations performed in this work use China’s
gridded gauge-based Daily Precipitation Analysis (CGDPA)
product derived from 2400 meteorological stations as the ref-
erence dataset. This paper presents a comprehensive assess-
ment of the quality of 15 major satellite-based, gauge-based,
and reanalysis precipitation products during 2010–19 in differ-
ent subregions of China at daily, seasonal, and annual scales
using classical statistical metrics. The high-altitude and data-
sparse subregions (TB and XJ) are further analyzed by apply-
ing the multiplicative triple collocation (MTC) method which
is independent of the quality of the reference dataset. In addi-
tion, this work focuses on investigating precipitation products’
reliability in identifying meteorological drought characteristics.
The precipitation products’ accuracy in drought assessment is
evaluated using the SPEI index. The SPEI is calculated at the
monthly, seasonal, and annual time scales, denoted by SPEI-1,
SPEI-3, and SPEI-12 respectively.

2. Study area and datasets

a. Study area

The study covers mainland China for the period from 2010
to 2019. Seasonal analysis in this work is presented as spring
(March–May), summer (June–August), autumn (September–
November), and winter (December–February). Most precipitation
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falls in the summer, and annual precipitation decrease from the
wet southeast to the dry northwest (Wang et al. 2016). About
70% of gauging stations are relatively dense and uniformly dis-
tributed in the eastern and southern parts of China, with distan-
ces between stations ranging from 20 to 40 km. Fewer gauges
are established in the western part of China [Fig. 1a(1)]
where the interstation distance ranges between 50 to 100 km.
China is divided into eight subregions based on topoclimatic
conditions (Tang et al. 2016; Wang et al. 2018). The subre-
gions are shown in Fig. 1b, and they are as follows. 1) The
plain region of the Yangzi River (CJ) has a few isolated hills,
but most of the plains have low relief and are lower than
45 m above sea level. 2) Southeast China (SE) features a hu-
mid subtropical climate with a hot summer and mild winter.
The rainiest period of CJ and SE is from April through
September, while precipitation decreases sharply in October,
even though the weather remains warm. 3) Northern China
(NC) lies north of the Qingling–Huaihe line. The latter is a ref-
erence line used by geographers to distinguish between north-
ern and southern China, corresponding roughly to the 33rd
parallel. Qinling refers to the Qin Mountains, and Huaihe refers
to the Huai River. Most of the northern parts of China, includ-
ing its northwest and northeast regions, feature a temperate
continental climate, except for some areas that have a plateau
climate. It is cold in winter and warm in summer in the NC sub-
region, with a large temperature difference between winter and
summer, and between day and night. The NC subregion fea-
tures relatively low precipitation with a maximum in summer.
4) Northwestern China (NW) is bounded approximately by the
400-mm annual isohyet (Shi et al. 2007). 5) NE comprises
Heilong Jiang, Jilin, and Liaoning Provinces, and is located at a
relatively high altitude. 6) The Qinghai–Tibetan Plateau is
known as “the Roof of the World” with an extremely complex
environment and high precipitation variability. The plateau is
dominated by the plateau mountain climate with a high-altitude
arid steppe interspersed with mountain ranges and large brack-
ish lakes. 7) The Yungui Plateau (SW) subregion rises roughly
1000–2500 m above sea level, and the climate patterns in its
western and eastern areas differ from each other due to their
distinct terrain features. 8) The XJ subregion is distant from the
ocean and enclosed by high mountains. It features a continental,
dry climate with high interannual variability.

b. Datasets

The 15 global precipitation products and CGDPA refer-
ence datasets are available to the public (see Table S1 in the
online supplemental material). The metadata of the 15 global
precipitation products are summarized in Table 1. To match
the gauge observations, all satellite-based, gauge-based, and
reanalysis products are resampled to 0.258. The preprocessing
methods are divided into two categories based on the resolu-
tion of the product. The first linear interpolation method is
used for products with resolutions coarser than 0.258. The sec-
ond method consists of the area-weighted mean resampling
method, which is applied for the Precipitation Estimation
from Remotely Sensed Information Using Artificial Neural
Networks (PERSIANN)-Cloud Classification System product

(PCSS) at 0.048 resolution, SM2RAIN at 10 km (nearly 0.18)
resolution, and IMERG and GSMaP at 0.18 resolution. The
precipitation estimates are calculated as the area-weighted
mean of the data from all 0.048/0.18 grid cells that are fully or
partly contained within the 0.258 cell (Tang et al. 2020).

1) IN SITU OBSERVATION PRODUCT

The daily gridded ground-based precipitation dataset, CGDPA,
developed by the National Meteorological Science Data Center
of China is used as the reference dataset for the assessment of the
satellite-based and reanalysis products. This dataset includes ob-
servations from 2400 gauge stations and has high accuracy (Shen
and Xiong 2016). This precipitation dataset has undergone rigor-
ous quality control and has been used in several studies to evalu-
ate satellite-based precipitation datasets (Tang et al. 2016; Li et al.
2018; Tang et al. 2020; Zhang et al. 2020). This study assesses
various products from 2010 through 2019 at 0.2583 0.258 grid cells
with at least one gauge. All datasets are transformed to the
period 0000–2359 UTC (Beck et al. 2017; Baez-Villanueva et al.
2020). Missing days in the CGDPA product are removed from
the satellite-based and reanalysis precipitation products. Some
satellite and reanalysis products have gauge data (i.e., referring to
the gauge data assimilated into products or used to adjust prod-
ucts) integrated into their precipitation estimates. However, our
reference dataset (CGDPA) incorporates more rain gauges than
these products and permits representative intercomparison. Table 1
presents the overlap between the gauge stations of the precipi-
tation products and the CGDPA. The overlap is insignificant in
the 15 global precipitation products so that our evaluation re-
sults can be considered independent. Figure 1a displays the
main gauge sources with an overlap greater than 20% (GHCN
monthly and CPC-Global) and their gauge locations.

2) SATELLITE-BASED AND GAUGE-BASED

PRECIPITATION PRODUCTS

Ten satellite-based and one gauge-based precipitation prod-
ucts are analyzed in this study (see Table 2). This study focuses
on gauge-incorporated satellite products since they are in gen-
eral more accurate than satellite-only products (Tang et al.
2016; Beck et al. 2017). The SM2RAIN product uses soil mois-
ture for obtaining accumulated rainfall estimates based on a
“bottom-up” approach. It is included to complement the tradi-
tional (“top-down”) retrieval approaches (Brocca et al. 2019).

3) REANALYSIS PRECIPITATION PRODUCTS

Four reanalysis products (Table 2) are analyzed as they are
important sources for estimating precipitation in high-elevation
areas and remote regions (Beck et al. 2019). Reanalysis prod-
ucts merge model outputs, remote sensing observations, and in
situ measurements through a data assimilation procedure to
produce a retrospective estimation of meteorological variables.

4) GRIDDED TEMPERATURE PRODUCTS FOR

DROUGHT INDEXING

The drought index (SPEI) is computed from precipitation and
air temperature. The SPEI is computed from each precipitation
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FIG. 1. (a) The spatial distribution of rain gauges in China, 1) CGDPA gauge locations,
2) Global Historical Climatology Network (GHCN) monthly gauge locations, 3) CPC
Global Unified Gauge-Based Analysis of Daily Precipitation (CPC-Global) gauge stations;
(b) the geographical setting of China’s eight subregions.
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product using its respective precipitation values and air tempera-
ture data from the ERA5 reanalysis. We consider the ERA5 air
temperature as the “ground truth” since previous studies have
demonstrated its high quality (Tarek et al. 2020).

3. Methodology

a. Statistical metrics

The classification of precipitation intensities into categories is
based on a standard of the World Meteorological Organization
(WMO), which was adapted for the study area: 1) 1–3 mm day21

(light precipitation); 2) 3–5 mm day21 (low moderate precipi-
tation); 3) 5–10 mm day21 (high moderate precipitation);
4) 10–20 mm day21 (low heavy precipitation); 5) 20–50 mm day21

(high heavy precipitation); 6) .50 mm day21 (extreme precipita-
tion) (Zhou et al. 2020).

Ten indexes are used to evaluate the performance of target
precipitation (i.e., satellite-based, gauge-based, and reanaly-
sis) products against the reference precipitation datasets (i.e.,
CGDPA) (see Table 3).

The notation for symbols appearing in Table 3 is as follows:
n is number of samples; Si is precipitation of the target dataset
at the ith location; Gi is precipitation of the reference dataset
at the ith location; S is the mean value of the target precipita-
tion at all the locations with rain gauges; G is the mean value
of the reference precipitation at all the locations; H is the
number of positive precipitation events detected in the refer-
ence and target datasets, i.e., G . threshold and S . thresh-
old; F is the number of false alarms in which the target
dataset detects precipitation but the reference dataset does
not, i.e., G # threshold and S . threshold; and M is the num-
ber of missed events, which is inverse to F, i.e., G . threshold
and S # threshold. The terms f(x) and g(x) represent the
probability distributions of S and G, with probability density
functions f and g, respectively; log(.) denotes the natural loga-
rithm; b is the bias ratio between the reference (abbreviated
as G) and target (abbreviated as S) datasets; a is the variabil-
ity ratio; CV is the coefficient of variation; and s is the stan-
dard deviation.

The Pearson correlation coefficient is used to discern the
linear statistical association between the reference (i.e., rain
gauge) and the target (i.e., satellite and reanalysis) datasets.

Though precipitation distribution is non-Gaussian, the Pearson
and Spearman correlation coefficient have similar values for the
evaluated products. The root-mean-square error (RMSE) is
used to assess the overall error characteristics of the datasets.
The probability of detection (POD), the false alarm ratio
(FAR), and the critical success index (CSI) measure the precipi-
tation occurrence detection capability of datasets (Diem et al.
2014; Zhou et al. 2020). The threshold for calculating the CSI
and defining rainfall/nonrainfall events is set at 1 mm day21 as
in many other studies, i.e., .1 mm day21 represents the occur-
rence of a rainfall event (Mantas et al. 2015; Zhou et al. 2020).
The Kullback–Leiber divergence (KLD) is applied to measure
the similarity between two probability distributions. This algo-
rithm has been applied in image matching and to estimate the
accuracy of satellite precipitation products (Prakash et al. 2018;
Zhang et al. 2020). A detailed demonstration of the KLD
method can be found in Zhang et al. (2020). The Kling–Gupta
efficiency (KGE) statistic is also applied, which combines the
contributions of correlation, bias, and variability terms (Gupta
et al. 2009; Kling et al. 2012). The KGE has been widely used to
evaluate the performance of precipitation products and in hy-
drological applications (Beck et al. 2017; Zambrano-Bigiarini
et al. 2017; Wang et al. 2018; Baez-Villanueva et al. 2018, 2020).
There are two advantages of the KGE evaluation index. First, it
decomposes the total performance into three components (cor-
relation, bias, and variability); thus, the mismatches between the
reference and evaluated product can be better understood. Sec-
ond, compared to the RMSE, it does not assign disproportional
weights to mismatches in high precipitation values (Zambrano-
Bigiarini et al. 2017; Baez-Villanueva et al. 2018, 2020). The
Taylor diagram (Taylor 2001), the probability density function
(PDF), and the performance diagram (Roebber 2009) are also
applied in this work to demonstrate the regional and seasonal
error characteristics of the precipitation datasets (Nashwan et al.
2020). The Taylor diagram integrates the CC, the standard devi-
ation (STD), and the centered root-mean-square deviation
(RMSD). The performance diagram integrates the CSI, the
POD, the frequency bias (POD divided by SR), and the success
ratio (1 2 FAR). The Taylor diagram and the PDF focus on
precipitation intensity evaluation and have been implemented
in several studies to evaluate the quality of satellite precipitation
products (Tang et al. 2020; Zhou et al. 2020; Noor et al. 2021).

TABLE 1. Summary of precipitation products that incorporate gauges and their main gauge sources.

Main gauge sources Precipitation products
Number of gauges

used in mainland China Overlap (%)

China Meteorological Administration (CMA) CPC-Global ;700 ;29.2
Global Telecommunication System (GTS) CHIRPS ;200 ;8.3
GHCN daily CHIRPS ;228 ;9.5
GHCN monthly CHIRPS ;544 ;22.7
Global Summary of the Day (GSOD) CHIRPS ;251 ;10.5
CPC-Global MERRA-2 ;700 ;29.2

CMORPH-CRT GSMaP
Global Precipitation Climatology Project (GPCP) GLDAS-2.1 } }

PERSIANN-CDR
Global Precipitation Climatology Centre (GPCC) TRMM3B42 } }

IMERG_cal
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b. Error decomposition

This work decomposes the total error (i.e., mean square er-
ror) into systematic and random components, a procedure that
has proven effective in characterizing the errors of satellite pre-
cipitation products (Willmott 1981; AghaKouchak et al. 2012).
The systematic (PSyst; %) and random (PRand; %) errors are de-
rived from the total (Ptot; mm) error as follows:

Ptot 5
1
n
∑
n
(S 2 G)2 5 1

n
∑
n
(S* 2 G)2 1 1

n
∑
n
(S 2 S*)2, (11)

PSyst 5∑
n
(S* 2 G)2

/
∑
n
(S 2 G)2, (12)

PRand 5∑
n
(S 2 S*)2

/
∑
n
(S 2 G)2, (13)

where S and G denote target precipitation datasets, and
reference precipitation datasets, respectively. The term S*

is defined by the least squares linear regression function
S* 5 a3G1 b, with a and b denoting the slope and inter-
cept, respectively.

c. Cross evaluation in gauge station sparse areas

The TC method is proposed to estimate the RMSE of three
independent inputs in the absence of “ground truth” data.
The MTC method is an extended TC approach to derive the
RMSE and CC of a triplet at the same time with better perfor-
mance than the TC method in characterizing precipitation prod-
ucts error (Alemohammad et al. 2015; Li et al. 2018; Tang et al.
2020; Lu et al. 2021). Testing a diverse combination of products

serves as a basis for evaluating the sensitivity of the MTC
method to the composition of the triplet. The MTC is calculated
according to

s2
r1
5 C11 2

C12C13

C23

s2
r2 5 C22 2

C12C23

C13

s2
r3 5 C33 2

C13C23

C12

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

r2t,1 5
C12C13

C11C23

r2t,2 5
C12C23

C22C13

r2t,3 5
C13C23

C33C12

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

where Cij (i 5 1, 2, 3; j 5 1, 2, 3), s2
ri
and r2t,i denote, respec-

tively, the covariance between products i and j, the RMSE, and
the CC. More details about the MTC method can be found in
Duan et al. (2021). This work applies the MTC method to the
precipitation products evaluated in the XJ and TB subregions
where in situ gauge stations are scarce (see Fig. 1).

d. The SPEI index

The SPEI index considers precipitation and potential
evapotranspiration (PET) in determining the onset, duration,

TABLE 3. The statistical indexes used in the evaluation of precipitation products.

Statistical index Equation Optimal value Unit Index

Pearson correlation coefficient (CC)

CC5
∑
n

i51
(Si 2 S)(Gi 2G)����������������

∑
n

i51
(Si 2 S)2

√ ������������������
∑
n

i51
(Gi 2G)2

√
1 } (1)

Root-mean-square error (RMSE)

RMSE5

������������������
∑
n

i51
(Si 2Gi)2

n

√√√ 0 mm (2)

Probability of detection (POD)
POD5

H
H 1M

1 } (3)

False alarm ratio (FAR)
FAR5

F
H 1 F

0 } (4)

Critical success index (CSI)
CSI5

H
H 1M1 F

1 } (5)

Kling–Gupta efficiency (KGE)
KGE5 12

��������������������������������������������
(CC2 1)2 1 (b 2 1)2 1 (a 2 1)2

√
1 } (6)

Kullback–Leiber divergency (KLD)
KL( f , g)5


1‘

2‘
f (x) log f (x)

g(x)dx
0 } (7)

Centered root-mean-square deviation (RMSD)
RMSD5

�������������������������������������
1
n
∑
n

i51
[(Gi 2G)2 (Si 2 S)]2

√
0 mm (8)

Bias ratio (b)
b 5

S

G

1 } (9)

Variability ratio (a)
a 5

CVS

CVG

5
sS/S

sG/G

1 } (10)
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and magnitude of drought conditions (Vicente-Serrano et al.
2010). The SPEI is a useful index for meteorological drought
detection (Dikshit et al. 2021). This work extends the SPEI
procedure from the gauge-station scale to the regional scale.
The latitude, total monthly precipitation, and mean tempera-
ture information are used to calculate the SPEI index. PET is
estimated based on the Thornthwaite equation (Thornthwaite
1948). The SPEI is computed using its respective precipitation
values and air temperature data from the ERA5 reanalysis
for each precipitation product.

The SPEI is calculated at the 0.258 spatial scale for three
time scales (i.e., n 5 1, 3, and 12 months). The SPEI value
serves to categorize the severity degree of drought. The classi-
fication of the SPEI values is displayed in Table 4 (Shiru et al.
2018).

4. Results

a. Overall performance at a daily scale

The boxplots of five metrics (CC, RMSE, KLD, KGE, and
CSI) over mainland China at the daily scale are shown in Fig. 2.
The lower and upper edge of the box is the 25th and 75th per-
centiles, and the horizontal line in the box is the median. The
spatial distribution of KGE indexes of 15 precipitation products
in various regions of China is depicted in Fig. 3.

In summary, the metrics presented in Fig. 2 demonstrate that
the CPC-Global gauge-based product has the highest accuracy
among the 15 global precipitation products. In the following,
this paper presents the performance analysis of satellite-based
and reanalysis precipitation products separately.

1) SATELLITE-BASED AND GAUGE-BASED

PRECIPITATION PRODUCTS

The red color in Fig. 2 represents satellite-based and CPC-
Global gauge-based precipitation products. It is seen in
Fig. 2 that most satellite-based products moderately correlate
(0.40 , CC , 0.80) with the CGDPA reference datasets,
while PCSS (CC5 0.14) and PERSIANN (CC5 0.23) have a
poor correlation. The performance of the IMERG_cal prod-
uct is better than that of the IMERG_uncal product with a
smaller KLD. However, there is only a slight improvement
with respect to the CSI (IMERG_cal: 0.41; IMERG_uncal:
0.39). This implies that the gauge-corrected IMERG product
is more effective in improving intensity estimation than occur-
rence detection. As for the PERSIANN family of precipita-
tion products, namely, PERSAINN, PCSS, and PCDR, the
performance metrics of PCDR are better than those of PCSS
and PERSIANN. This is not surprising because PCDR is
a bias-adjusted product utilizing the GPCP data. This highlights
the ability of bias correction to improve the accuracy of satellite-

TABLE 4. Drought classification based on SPEI values.

Drought category SPEI value

Moderate drought 21.0 , SPEI # 0
Severe drought 21.5 , SPEI # 21.0
Extreme drought SPEI # 21.5

FIG. 2. Red (satellite- and gauge-based) and blue (reanalysis) box-
plots of five metrics comparing 15 products with CGDPA datasets at
the daily scale from 2010 through 2019. The bottom and top edges of
the boxes in the figure represent the 25th and 75th percentiles, re-
spectively, and the horizontal line in the middle of the boxes repre-
sents the median. The dots are the outliers for a single 0.258 grid cell.
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FIG. 3. Spatial distributions of KGE at the daily scale from 2010 to 2019 for various precipitation products in
mainland China only displaying grids with gauge stations.
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based precipitation. The comprehensive performance of the
PERSIANN product (RMSE: 11.92 mm day21; KLD: 7.85) is
superior to that of the PCSS (RMSE: 16.23 mm day21; KLD:
8.32) product, but the time lag of the PERSIANN product is
2 days compared to the nearly real-time estimation of the PCSS
product. The lag time hinders the capacity of the PERSIANN
product in near-real-time applications such as flood simulation
and drought monitoring at a daily scale. The CHIRPS and
PCDR products are both long-term climatological data re-
cords that could be used in the studies of atmosphere and
weather patterns through time. The metrics of the CHIRPS
(KGE: 0.20; CSI: 0.33; RMSE: 11.49 mm day21; KLD: 8.63)
and PCDR (KGE: 0.26; CSI: 0.36; RMSE: 10.58 mm day21;
KLD: 5.27) products exhibit minor differences, yet the PCDR is
slightly better than CHIRPS’s, which could be a better choice for
climatological studies in China.

Figure 3 shows that the accuracy of precipitation products
is questionable, particularly in arid regions such as the TB and
XJ subregions. Among the 10 satellite-based and gauge-based
precipitation products, the performance of the PERSIANN
family is relatively poor. The overall quality of the PERSIANN
family products is the worst in terms of the KGE values, with
approximately 90% of the domain exhibiting KGE values lower
than 0.50, particularly for the PCSS product that has poor accu-
racy. However, the significant advantages of PCSS products are
their short time lag (1 h) and high spatial resolution (0.048). The
PCSS product is effective in monitoring the variability of near-
real-time precipitation events. The PCDR is the best in the
PERSIANN family products. This is probably because PCDR
uses GPCP data for postadjustment that contains long-term
historical precipitation datasets (Table 1). The PERSIANN
products use passive microwave precipitation (PMW) data for
training, but the PMW data lack the predictive skill to detect
precipitation in winter.

The SM2RAIN product exhibited the second worst perfor-
mance. It appears that the SM2RAIN product is generated
based on the unstable link between soil moisture and precipi-
tation. The KGE value of the SM2RAIN product is the larg-
est in Inner Mongolia (KGE . 0.60) where precipitation is
low, and the KGE is the smallest in the SE (KGE, 0.45) sub-
region where precipitation is abundant. This is due to the fact
that the soil in humid areas becomes easily saturated and cannot
reveal the characteristics of precipitation changes. Besides, the
snow and the permafrost in the TB region significantly influence
the quality of the SM2RAIN product.

The CPC-Global and IMERG_cal precipitation products
are found to be the best precipitation data among the 15
precipitation products for daily precipitation estimation
(see Figs. 2 and 3), even in the XJ (KGE ; 0.30) and TP
(KGE ; 0.45) regions where the accuracy of most products
is poor (KGE , 0.25). The corrected IMERG_cal product
has a higher KGE value than the IMERG_uncal product.
The quality of the IMERG_cal gauge adjusted product is
improved in the XJ, TB, and NE subregions compared to
the IMERG_uncal, demonstrating the positive contribution
of the gauge-station correction.

The performances of the GSMaP and CMORPH products
are poorer than that of the CPC-Global and IMERG_cal

products based on the spatial KGE and five statistical metrics,
but they are more accurate than the rest of the satellite-based
precipitation products. The high quality of the CPC-Global,
IMERG_cal, GSMaP, and CMORPH are all related to
CPC and GPCC datasets, which incorporate gauge observa-
tions in China (Table 1). This reveals the importance of the
in situ correction for improving the accuracy of precipita-
tion products.

2) REANALYSIS PRECIPITATION PRODUCTS

The statistical metrics diagram (Fig. 2, blue color) shows
that the MERRA-2 products have superior performance in
detecting precipitation occurrence compared to the other
three reanalysis precipitation products. Most reanalysis prod-
ucts have moderate correlations (0.40 , CC , 0.80) with the
CGDPA reference datasets, while GLDAS-2.1 shows a poor
correlation with CC 5 0.38. Overall, MERRA-2 has high CC
(0.65), and CSI (0.51) values which exceed those of ERA5,
ERA-Interim, and GLDAS. However, they are lower than
CPC-Global’s.

The MERRA-2 data show high KGE values in the eastern
part of China (with mean regional KGE: 0.63), followed by
the ERA5, ERA-Interim, and GLDAS products. In terms of
KGE, the quality of the ERA5 product (with mean KGE:
0.59) was better than the ERA-Interim product’s (with mean
KGE: 0.53). The reason is various newly reprocessed datasets
and recent instruments that could not be imbedded in ERA-
Interim but are imbedded in ERA5, including ground-based
radar datasets. Four reanalysis products exhibited a signifi-
cantly lower level of performance in the western regions of
China. This is probably because of the rugged topography
characteristic and complex climate (such as Gansu Province,
which includes subtropical monsoon, temperate monsoon,
temperate continental, and alpine climate types) in the west-
ern regions. Notably, the GLDAS product exhibited the low-
est accuracy in high altitudes and steep-slope regions of TB.
The quality of the GLDAS product depends on model-driven
data, and assimilation techniques. GLDAS simulations are
forced with a combination of NCEP’s Global Data Assimi-
lation System (GDAS), disaggregated daily GPCP precipi-
tation, and Air Force Weather Agency (AFWA) radiation
datasets. The GLDAS product solves the temporal continu-
ity problem, but its quality must be improved as a reliable
data source of precipitation for hydrological simulation.
The performance of the MERRA-2 precipitation product
is poorer in the TB subregion, while it seems to perform
better in the low-lying Sichuan basin in the eastern TB
subregion.

b. Seasonal performance at the daily scale

The division of seasons is described in section 2a. Figure 4
shows Taylor diagrams with the correlations and standard de-
viations of the products. The closer the product is to the Buoy
point (reference dataset), the higher the accuracy of a precipi-
tation product.

Figure 5 presents the performance diagrams for mainland
China during the study period. The higher the 1 2 FAR and
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POD (upper-right corner), the better the quality of a precipi-
tation product. Figure 6 shows the PDF, which represents
the probability of the occurrence of precipitation events of
different intensities. The closer to the top of the histogram,
the higher the accuracy of a precipitation product (Wang et al.
2018; Zhou et al. 2020; Jiang et al. 2023; Lei et al. 2022).

There are large differences in the performance of the 15 pre-
cipitation products in different seasons. According to the Taylor
diagrams (Fig. 4), in spring, summer, and autumn, the satellite-
based precipitation products have higher correlations and lower
errors, while reanalysis-based precipitation products performed
better in winter. Figure 5 shows the performance diagram of the
CPC-Global andMERRA-2 precipitation products. Both products
reliably detect precipitation events in any season. The TRMM3B42
and CHIRPS products exhibited poor performance in all seasons.
The PDF analysis (Fig. 6) indicates that the CPC-Global product is
most consistent with the reference datasets. The PCSS product,
however, has the worst performance. This is because the overesti-
mation of low values and underestimation of high values is notable
with the PCSS product. The following sections evaluate the perfor-
mance of satellite-based and gauge-based precipitation products
and reanalysis precipitation products separately.

1) SATELLITE-BASED AND GAUGE-BASED

PRECIPITATION PRODUCTS

The Taylor diagrams imply that the CPC-Global, PCDR,
and GSMaP products perform well in all seasons (low STD
and RMSD, high CC). IMERG_cal and IMERG_uncal have
a high RMSD in spring, summer, and autumn. The CDR ex-
hibits the highest accuracy in all seasons in the PERSIANN
family of products. The PCSS product had a significantly
lower performance followed by the PERSIANN product in
winter.

The performance diagram reveals that the IMERG_uncal and
IMERG_cal products have strong detection power (high success
ratio, CSI, and POD, low frequency bias) in spring, summer, and
autumn, but weak detection power in winter. The IMERG_cal
product is slightly better than IMERG_uncal product throughout
the year. In spring, summer, and autumn, the overlap points cor-
responding to several precipitation products (Fig. 5), indicating
that their skill in detecting precipitation is similar, while the distri-
bution of points on the performance map in winter is scattered,
indicating that the skills to detect precipitation are markedly
different among products. In winter, the CMORPH, PCSS,
PERSIANN, and SM2RAIN products are significantly worse

FIG. 4. Taylor diagrams at a daily scale from 2010 through 2019 for different seasons.
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at detecting precipitation than in other seasons. Notably, the
PCSS and PERSIANN products showed large FAR, large bias,
and small CSI values. The exception is the PCDR product,
which also performs well in winter.

The probability of daily precipitation values is well cap-
tured throughout the year by the CPC-Global, CHIRPS, and
CMORPH (Figs. 6a–d). The quality of SM2RAIN fluctuates
with the seasons. PERSIANN and PCSS have poor detec-
tion power with respect to precipitation in all seasons. The
IMERG_cal and IMERG_uncal significantly deviate from
the reference dataset.

In spring (Fig. 6a), the CHIRPS product exhibits a good per-
formance, and is slightly worse than CPC-Global precipitation
product. Following CPC-Global and CHIRPS, the precipitation
products CMORPH and GSMaP capture precipitation intensity
reasonably well. The PCDR is superior to the other members of

the PERSIANN family. The product SM2RAIN shows a strong
underestimation of light and moderate precipitation events
whose intensity is below 10 mm day21.

The heavy precipitation events (10–50 mm day21) in-
creased significantly in summer (Fig. 6b). The CPC-Global
and CMORPH products exhibited a perfect performance
in capturing heavy precipitation events. The performance
of the CMORPH product is slightly better than the CPC-
Global product’s based on the evaluation results. The GSMaP
and MERRA-2 products are worse than the CPC-Global
and CMORPH products, but better than the other products
in summer. Among the nine satellite-based precipitation
products IMERG_cal and IMERG_uncal show a poor ac-
curacy especially in identifying high heavy precipitation
(20–50 mm day21) and extreme precipitation (.50 mm day21).
PCDR exhibits the best performance among the PERSIANN

FIG. 5. Performance diagrams at a daily scale from 2010 to 2019 for different seasons.
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products, while PCSS is the worst. The performance of
SM2RAIN precipitation products is notably improved in
summer compared to its poor performance in the spring.

Figure 6c demonstrates that the CPC-Global product per-
formed best, followed by CHIRPS and CMORPH in autumn.
The calibrated IMERG_cal dataset also significantly overesti-
mates precipitation events above 10 mm day21. PCDR detects
events above 10 mm day21 significantly better than the other
members of the PERSIANN family.

CPC-Global and MERRA-2 perform similarly well in win-
ter (Fig. 6d) and are more reliable than the CHIRPS product.
The TRMM3B42 dataset tends to underestimate all precipita-
tion events, especially light (1–3 mm day21) and moderate
(3–10 mm day21) precipitation in winter.

2) REANALYSIS PRECIPITATION PRODUCTS

The Taylor diagram shows that the quality of the ERA5
product is higher than that of the ERA-Interim precipitation

product except in winter. The performance diagram (Fig. 5)
establishes that the four reanalysis products have good detec-
tion ability for precipitation events. The MERRA-2 product is
the best among them, and the performances of the rest of the
reanalysis products are not much different from each other.

The PDF diagram shows that MERRA-2 is the best reanal-
ysis product in spring [Fig. 6a(1)] followed by GLDAS and
ERA5. The ERA5 product underestimates light precipitation
(1–3 mm day21) while overestimating other precipitation
events. Nevertheless, it performed better than the ERA-Interim
product in most cases. MERRA-2 is the best in detecting sum-
mer precipitation [Fig. 6b(1)], followed by ERA5 and GLDAS.
The ERA5 and ERA-Interim products tend to underestimate
light and moderate precipitation while overestimating heavy
summer precipitation. In autumn [Fig. 6c(1)], the MERRA-2
product is close to the reference datasets. In contrast, the
ERA-Interim product exhibits the worst performance. In win-
ter the MERRA-2 shows a significant advantage [Fig. 6d(1)].
The GLDAS product performs better than the ERA5 and

FIG. 6. The probability density function of daily precipitation from 2010 through 2019 for (a) spring, (b) summer, (c) autumn, and (d) winter
for gauge- and satellite-based products. (a1)–(d1) The probability density functions for reanalysis precipitation products.
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ERA-Interim products in detecting winter precipitation events,
except for light precipitation. The ERA5 and ERA-Interim
products show similar performance.

c. Error component decomposition

The error component decomposition is performed on daily
precipitation. The mean error (ME) quantifies the different
error sources. It may occur that the actual absolute bias of the
product is large, but the ME of the evaluation results is small.
The ME metric may not reliably reflect the performance of
products. Error decomposition methods provide us with a
more objective analysis of error sources. The errors of multi-
ple products generally originate from the retrieval algorithm
and reanalysis model.

The random error is not analyzed in this paper because it is
inversely related to the systematic error described in section 3b.
The error decomposition method proposed by Willmott (1981)
(see Fig. 7) indicates that the systematic error of the IMERG_cal,
IMERG_uncal, ERA5, CMORPH, and CPC-Global products
is relatively small (lower than 35%) while that of the PCDR,
PERSIANN, PCSS, and SM2RAIN products is large (exceed
50%). Besides, the systematic error tended to be more
pronounced in ERA-Interim (38.2%) compared with the
ERA5 product (28.7%). It was notable that the systematic
errors of reanalysis-based precipitation products, except for
the ERA5 product, are generally larger than the satellite-
based products.

d. Annual trends of indices

The long-term trend of annual KGE and CSI values for
precipitation products from 2010 to 2018 is shown in Fig. 8.
The KGE and CSI indices are computed from daily precipita-
tion and averaged over the year. This time-limited period is
used in this study because the ERA-Interim, SM2RAIN, and
PERSIANN datasets are partly unavailable in 2019. The
KGE values show that the IMERG_cal product’s KGE is bet-
ter than IMERG_uncal product, demonstrating that the im-
provement caused by gauge adjustment is greater than the
improvement caused by satellite sensors. It is important to
have a continuous stable performance of a precipitation prod-
uct over a long period. The KGE value of the PCSS product
varies greatly, and the downward trend of its KGE indicates

that the capacity to estimate precipitation intensity gradually
decreases over time. The PCSS product has the highest reso-
lution (0.048) in the PERSIANN product family, but the accu-
racy of the cloud segmentation algorithm varies greatly from
year to year. When analyzing long-term series special atten-
tion could be paid to the accuracy of the PCSS, TRMM3B42,
and CHIRPS products because their quality exhibits large in-
terannual variability.

e. Cross evaluation in the gauge sparse subregions
(TB and XJ)

The cross evaluation is performed on daily precipitation. A
careful selection of datasets is critical to ensure reliable MTC
results. This is because the same type of products used in trip-
let collection method may contain cross-correlated errors due
to their overlapping use of common input data and processing
methods. For example, several satellite-based products that
are gauge adjusted belong to the same types in this case.
Therefore, they were not used to maximize the independence
of products for MTC analysis. Instead, three different precipi-
tation product types are used in each triplet: one satellite-
based product (“top-down”), one reanalysis product, and the

FIG. 8. The CSI and KGE for precipitation products from 2010
through 2018.

FIG. 7. The proportion of systematic errors for precipitation
products in mainland China.
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SM2RAIN product (“bottom-up”), or gauge-based interpolated
products are used in this study for cross evaluation purposes.
The SM2RAIN is considered as a truly independent source of
precipitation that is widely used inMTC analysis (Massari et al.
2017). The PERSIANN, PCSS, and ERA-Interim products
with poor quality in the evaluations of classic statistical metrics
(section 4a) were discarded from the triplets.

Table 5 lists the triplets, and every row in the table repre-
sents a triplet (product A, B, and C). It is seen in Table 5 that
MTC with 24 different triplets yielded a consistent overall
ranking of products. MTC tended to yield higher CC esti-
mates, compared to the results of the statistical metrics
(section 4a). CPC-Global, IMERG_cal, IMERG_uncal, CGDPA,
ERA5, GSMaP, MERRA-2, PCDR, SM2RAIN, GLDAS,
TRMM, CMORPH, and CHIRPS ranked from best to worst
in terms of the mean value of correlation with the unknown
truth from all pixels. The relative rank displays a slight dif-
ference in TB and XJ regions (such as ERA5, SM2RAIN,
and CMORPH). Similar findings were reported by Li et al.
(2018), Massari et al. (2017), and Duan et al. (2021) using the
MTC method. Overall, the gauge-based and GPM satellite
products are more accurate even in the TB and XJ regions, and
the reanalysis product ERA5 is of high quality and very close in
performance to the gauge-based product. This suggests that
MTC could be used to identify the “best” available precipita-
tion products for poorly gauged areas where reference datasets
are not available.

Figures 9(1–11) and 9(13–23) depict the spatial distribution
of various triplets with different combinations of precipitation
products in the TB and XJ subregions, respectively. The met-
ric maps for SM2RAIN and MERRA-2 in Figs. 9(1–11) and
9(13–23) are provided by the first triplet and the thirteenth
triplet, respectively. According to Table 5 and Fig. 9 the
IMERG_cal product shows the second largest CC in most
areas in the TB (0.649) and XJ (0.629) subregions. The
IMERG_uncal product is only slightly worse than IMERG_cal.
This demonstrates that the latest version of the GPM products
performed well even in regions with scarce gauge stations. It is
worth noting that the high quality of GPM products does not
completely rely on gauge correction compared with the perfor-
mance of other gauge adjusted products. The ERA5 reanalysis
product exhibits better performance in the TB regions (CC:
0.612) than in the XJ regions. This means that the choice of pre-
cipitation products and the improvement of algorithms must be
paid attention to in complex terrain subregions with few gauge
stations.

f. Performance at seasonal scale

Precipitation products such as IMERG, TRMM3B42,
CHIRPS, and PCDR have bias correction/adjustments based
on monthly gauge precipitation, whereas products such as
GSMaP use daily gauge precipitation. The bias may be
different at daily and seasonal scales. Therefore, this work
evaluates the performance of precipitation products at

TABLE 5. The daily precipitation in the Qinghai–Tibetan Plateau (triplets 1–12) and in the Xinjiang subregion (triplets 13–24) is
estimated with different triplet combinations.

RMSE (mm day21) CC

Triplet Products Product A Product B Product C Product A Product B Product C

Qinghai–Tibetan Plateau
1 SM2RAIN–MERRA-2–CPC-Global 3.204 2.311 0.551 0.326 0.789 0.911
2 SM2RAIN–MERRA-2–IMERG_cal 2.610 3.707 1.936 0.545 0.470 0.649
3 SM2RAIN–MERRA-2–IMERG_uncal 2.685 3.633 1.906 0.522 0.492 0.645
4 SM2RAIN–CGDPA–ERA5 3.059 2.933 1.702 0.385 0.657 0.612
5 SM2RAIN–MERRA-2–CGDPA 2.787 3.463 2.267 0.478 0.536 0.587
6 SM2RAIN–MERRA-2–GSMaP 2.404 3.876 2.167 0.598 0.423 0.554
7 SM2RAIN–MERRA-2–PCDR 3.124 2.854 2.627 0.372 0.694 0.296
8 SM2RAIN–CGDPA–GLDAS 3.099 2.620 3.168 0.366 0.703 0.278
9 SM2RAIN–MERRA-2–TRMM 2.713 3.536 3.191 0.503 0.517 0.274

10 SM2RAIN–MERRA-2–CMORPH 2.054 4.251 2.817 0.696 0.350 0.243
11 SM2RAIN–MERRA-2–CHIRPS 3.334 2.727 3.342 0.350 0.720 0.204
12 CGDPA–MERRA-2–CHIRPS 1.097 1.460 1.494 0.439 0.600 0.417

Xinjiang
13 SM2RAIN–MERRA-2–CPC-Global 2.717 3.163 0.957 0.112 0.640 0.830
14 SM2RAIN–MERRA-2–IMERG_cal 2.490 4.311 1.898 0.230 0.298 0.629
15 SM2RAIN–MERRA-2–IMERG_uncal 2.425 4.401 1.945 0.217 0.330 0.619
16 SM2RAIN–MERRA-2–GSMaP 2.378 4.455 2.117 0.258 0.272 0.586
17 SM2RAIN–MERRA-2–CGDPA 2.585 4.127 2.357 0.193 0.396 0.475
18 SM2RAIN–MERRA-2–CMORPH 2.282 4.550 2.469 0.289 0.253 0.408
19 SM2RAIN–CGDPA–GLDAS 2.680 3.746 2.600 0.136 0.504 0.397
20 SM2RAIN–CGDPA–ERA5 2.658 3.679 3.837 0.144 0.517 0.393
21 SM2RAIN–MERRA-2–TRMM 2.472 4.334 2.475 0.236 0.317 0.363
22 SM2RAIN–MERRA-2–PCDR 2.668 3.725 2.427 0.140 0.474 0.337
23 SM2RAIN–MERRA-2–CHIRPS 2.860 4.091 3.050 0.102 0.546 0.168
24 CGDPA–MERRA-2–CHIRPS 1.238 1.781 1.544 0.245 0.518 0.258
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FIG. 9. The CC of the TB (1–11) and XJ (13–23) subregions based on MTC using data from 2010 through 2019. The
number in parentheses corresponds to the triplet index in Table 5. For example, the metrics for the SM2RAIN and
MERRA-2 products are from the first triplet for the TB region and the thirteenth triplet for the XJ region.
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FIG. 9. (Continued)
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FIG. 9. (Continued)
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the seasonal scale. The satellite-based and reanalysis pre-
cipitation products at the seasonal scale are compared in
this paper by aggregating daily precipitation to seasonal
precipitation.

Figure 10 illustrates the boxplots of CC and RMSE metrics
for all seasons. Among the satellite-based products, GSMaP,
IMERG, TRMM, PCDR, and CHIRPS exhibit stable perfor-
mance with high CC and low RMSE in all seasons. GSMaP
and IMERG outperform the other products. For reanalysis
products, MERRA-2 performs the best, followed by ERA5.
However, it is important to note that the quality of several
products fluctuates with the seasons. Specifically, the accuracy
of SM2RAIN and CMORPH significantly decreases in winter
[Fig. 10a(4)], while the accuracy of GLDAS fluctuates in sum-
mer [Fig. 10a(2)].

This work compared the CC and RMSE at a daily scale dis-
played in Fig. 2 with the same statistic at a seasonal scale dis-
played in Fig. 10. The comparison reveals that IMERG_cal
performs better (with high CC, and low RMSE) at seasonal
time scales than daily time scales, which demonstrates that
the evaluation results are dependent on time scales.

g. Drought monitoring performance

The evaluation of precipitation products shows that gauge-
adjusted products perform relatively better than the rest.
Only gauge-adjusted products of the PERSIANN family and
IMERG series were used to assess the drought monitoring per-
formance. ERA-Interim is not used among reanalysis products
due to its poor performance compared to ERA5.

1) SPATIAL-SCALE ANALYSIS OF SPEI

The SPEI is calculated at multiple time scales (1, 3, and
12 months) to assess the effectiveness of precipitation products
in drought monitoring. The spatial patterns of CC, POD, and
FAR associated with the SPEIs computed from precipitation
products are displayed in Figs. 11–13, respectively. CC, POD,
and FAR are computed against the SPEI from the reference
dataset (CGDPA). This study specifies the SPEI, 21.0 (severe
drought) as the drought condition threshold for the computation
of the POD and FAR.

It is seen in Fig. 11 that all products exhibit similar spatial
patterns with high CC in eastern and southern China. How-
ever, they have inferior performances in monitoring drought
over western China where there is small CC. The worst per-
formance is observed in the TB subregion with scarce gauge
stations for all precipitation products. The accuracy of precipi-
tation products is affected by large-scale climatic variations
(Yu et al. 2022). Nearly all precipitation products display bet-
ter accuracy in eastern China (humid climate) compared to
western China (arid climate). This may be due to three rea-
sons. First, there are numerous mountainous and high-altitude
regions in western China. The number of in situ gauge sta-
tions is very limited in the rugged terrain compared with that
in the plains and valleys of eastern China. The spatial sparsity
of the in situ gauge observation network improves the diffi-
culty of error correction in western China. Second, a higher
frequency of orographic precipitation easily prevails in moun-
tainous regions which largely contributes to a complex con-
vective system. The duration of extreme precipitation events
in arid regions (low moisture) tends to be shorter than in hu-
mid regions (high moisture especially in the coastal area).
The short-term extreme precipitation events are easy to
overlook and difficult to be detected by satellite sensors.
This constitutes a challenge for most precipitation products
(Navarro et al. 2020). Third, the atmosphere is significantly
colder (snowfall and frozen) in western China compared
with that in eastern China. The performances of precipita-
tion products fluctuated and were variable in winter (snow-
fall and frozen) compared with other seasons (see Figs. 4
and 5).

Generally, the GSMaP product exhibits a better performance
in detecting drought events compared to other satellite precipi-
tation products at multiple time scales, with the highest CC
(above 0.65) in mainland China, followed by the IMERG_cal
product. The CMORPH shows the worst performance in the
XJ subregion and northeast China with respect to all evaluated
products. Among four reanalysis precipitation products the per-
formance of MERRA-2 is obviously better than ERA5 and
GLDAS, especially in the TB subregion. The ERA5 is better
than GLDAS in drought detection, while the ERA-Interim is
no doubt the worst.

FIG. 9. (Continued)
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The POD (Fig. 12) and FAR (Fig. 13) are used to estimate
the true and false detection rates of drought, respectively.
The spatial patterns of POD and FAR for all products are
similar to that of CC (Fig. 11). More than 60% of drought
months can be accurately detected, as illustrated by PODs
usually above 0.60, by FARs usually (less than 0.30) in south-
ern and eastern China. The rate of true detection is higher in
southeastern China compared to that in northwestern, with
the results shown in Fig. 12. The detection performances of
the IMERG_cal, GSMaP, and MERRA-2 products compare
well with the rest of the products. The lowest PODs are
mostly found in the TB, XJ, and SW subregions, indicating
that the quality of precipitation products is limited in those

regions (Fig. 12). The drought detection accuracy of precipita-
tion products is improved with longer time scales of SPEI
(i.e., SPEI-12). This improvement may be due to the SPEI of
longer time scales (e.g., 12-month time scales, SPEI-12) being
more accurately predicted with smoother values (Anshuka
et al. 2019; Dikshit and Pradhan 2021). A low FAR is gener-
ally observed in southern and eastern China (Fig. 13). The
highest FAR is observed in the TB subregion, followed by
parts of the XJ and NW subregions. This is consistent with the
results observed with respect to the POD index. The GSMaP
and MERRA-2 products exhibit a consistently low FAR in
mainland China at three investigated time scales. The FAR of
the reanalysis products is relatively high with exception of the

FIG. 10. Boxplots of CC, and RMSE metrics comparing satellite-based (red) and reanalysis products (blue) with
CGDPA datasets at the seasonal scale: (a1) spring, (a2) summer, (a3) autumn, and (a4) winter.
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MERRA-2 products compared with satellite-based precipita-
tion products. The MERRA-2 product performed well in
drought monitoring in mainland China with respect to the in-
vestigated three temporal scales. The use of observations
from newer microwave sounders and hyperspectral infrared
radiance instruments improves the capacity of MERRA-2 in
drought detection compared with other model-derived precip-
itation products. Moreover, MERRA-2 is the first satellite-
era global reanalysis to assimilate space-based observations of
aerosols and represent their interactions with other physical
processes in the climate system. Yet, it is not possible to ascer-
tain whether or not the original spatial resolution of the
MERRA-2 product is suitable for drought monitoring in gen-
eral because the MERRA-2 product was downscaled from
0.6258 to 0.258 in this study.

2) TEMPORAL ANALYSIS OF SPEI

Temporal changes of the SPEI-1, SPEI-3, and SPEI-12
were calculated from precipitation products over mainland
China [Figs. 14a–c,a(1)–c(1)]. Figure 14c shows that the SPEI
curves become smoother with longer time scales. The PCDR
product exhibits a significant overestimation between late 2015
and early 2017. Although there are differences in the magnitude
of the SPEI values from the reference dataset, the precipitation
products’ estimates generally exhibit similar drought-intensity
values.

Figures 14e–g display the difference values, in which the
red line represents the reference dataset. For satellite-based
products, the GSMaP, IMERG_cal, and CHIRPS products
show a close match with the reference dataset at all time
scales. The CMORPH product shows a relatively consistent
similarity with the reference dataset with the exception of
some months (e.g., between late 2017 and early 2019). The
performance of the TRMM3B42 and PCDR products fluctu-
ated concerning drought detection, with significant overesti-
mation and underestimation.

The ERA5 and MERRA-2 products are highly consis-
tent with the reference dataset at all time scales among the
reanalysis products. Specifically, the MERRA-2 product
shows the best match with the reference dataset (smallest
SPEI difference values) at all time scales, which suggests
that the MERRA-2 product is most suitable for detecting
drought over mainland China, closely followed by the
GSMaP and IMERG_cal products. The GLDAS tends to
overestimate or underestimate drought events with unreli-
able performance.

5. Discussion and conclusions

This study assessed the quality of global precipitation prod-
ucts at the daily, seasonal, and annual time scales from 2010
to 2019, and their suitability for detecting drought within
mainland China. The precipitation estimation of gauge-based
CPC-Global and satellite-based GSMaP products performed
well on a daily scale, indicating that the gauge incorporation
could significantly improve the quality of precipitation prod-
ucts in detecting the occurrence and intensity of the precipita-
tion. Among 11 satellite-based and gauge-based products, the

CPC-Global, IMERG_cal, GSMaP, and CMORPH have a high
quality, which is related to their incorporation of CPC and
GPCC gauge datasets. The PCDR performance was found to be
better than those of PCSS and PERSIANN in the PERSIANN
family. Among the reanalysis products MERRA-2 proved supe-
rior to ERA5, ERA-Interim, and GLDAS. The precipitation
evaluation indicates that precipitation products’ accuracy varies
from season to season when evaluated with respect to their sea-
sonal performance. The accuracy of the precipitation products is
usually worse in winter. The CMORPH, PCSS, PERSIANN,
and SM2RAIN products perform poorly with respect to precipi-
tation detection in winter. Three possible reasons for poor perfor-
mance in winter are as follows: 1) PMW has trouble discerning
ice and snow from clouds (CMORPH); 2) the frozen soil and soil
saturation introduce large errors into the “bottom-up” algorithm
(SM2RAIN); 3) the low occurrence of precipitation days introdu-
ces many zero values in the training datasets hindering the accu-
rate prediction of the artificial neural network algorithm (PCSS
and PERSIANN).

The cross evaluation performed with the MTC method re-
vealed that the CPC-Global, IMERG_cal, IMERG_uncal,
CGDPA, ERA5, GSMaP, MERRA-2, PCDR, SM2RAIN,
GLDAS, TRMM, CMORPH, and CHIRPS products were
ranked from best to worst, respectively, in terms of the mean
value of correlation. The gauge-based and GPM satellite prod-
ucts are more accurate even in the gauge scarce regions, and
the reanalysis product ERA5 is of high quality and very close in
performance to the gauge-based products. The MTC method is
useful to evaluate product performance in mountainous regions
with few gauge observations.

The improvement of product quality is not completely ex-
plained by gauge correction. The product retrieval algorithm
is also important. Specifically, although MERRA-2 and
GLDAS incorporate gauge datasets, the distinct performan-
ces of the two products may be due to the gauge-data process-
ing approach and their representation of model physics. In
terms of the gauge-data processing approach MERRA-2 imple-
ments a sophisticated data assimilation method that combines
observations from multiple sources with a numerical weather
prediction model to produce a consistent, high-quality estimate
of atmospheric variables, including precipitation. In contrast,
GLDAS-2.1 represents merged, spatially, and temporally inter-
polated fields of GDAS, GPCP, and AFWA radiation fields. In
addition, MERRA-2 relies on a more advanced atmospheric
model and includes more sophisticated parameterizations of
key processes such as cloud microphysics, which may result
in better precipitation estimates. However, GLDAS-2.1 ad-
mits precipitation as an input instead of model physics simu-
lation. This means the correct description of the complex
physical process in the retrieval algorithm significantly im-
proves the products’ quality. The quality improvement of
precipitation data is imperative because drought detection
capacity depends heavily on the bias of the precipitation
products.

Meteorological drought is detected by the SPEI index from
global precipitation products. Our main findings are as fol-
lows: The SPEI calculated from the precipitation products ex-
hibit similar spatial patterns, with large CC and POD in southern

Z HANG E T A L . 1927NOVEMBER 2023

Brought to you by UNIVERSITY OF CALIFORNIA Santa Barbara | Unauthenticated | Downloaded 02/29/24 04:52 AM UTC



FIG. 11. The CC of the SPEI-1, SPEI-3, and SPEI-12 was calculated from the satellite-based and reanalysis precipitation products with the
CGDPA reference dataset over mainland China.
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FIG. 11. (Continued)
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FIG. 12. The POD of the SPEI-1, SPEI-3, and SPEI-12 was calculated from the satellite-based and reanalysis precipitation products
with CGDPA reference dataset over mainland China.
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FIG. 12. (Continued)
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FIG. 13. The FAR of the SPEI-1, SPEI-3, and SPEI-12 was calculated from the satellite-based and reanalysis precipitation products with
CGDPA reference dataset over mainland China.
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FIG. 13. (Continued)
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FIG. 14. Temporal changes of SPEI-1, SPEI-3, and SPEI-12 were calculated from the CGDPA and
(a)–(c) satellite-based and (a1)–(c1) reanalysis products in mainland China. The difference values in
SPEI-1, SPEI-3, and SPEI-12 between the CGDPA and (e)–(g) satellite-based and (e1)–(g1) reanal-
ysis products over mainland China.
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and eastern China, and small CC and high FAR observed in
western China. The complex topography, high altitude, sparse
distribution of in situ gauge stations, and arid atmosphere consti-
tute a challenge for drought detection in western China, espe-
cially in the Qinghai–Tibetan Plateau. MERRA-2 and GSMaP
perform much better than other products in terms of CC, POD,
and FAR with respect to the products capacity to detect drought
at various spatial and temporal scales. They are followed by
IMERG_cal, CHIRPS, and ERA5 in drought detection per-
formance. The reanalysis MERRA-2 product performs well
in drought detection, which is largely due to it assimilating
space-based observations of aerosols and representing their
interactions with other physical processes in the climate sys-
tem. The good performance of CHIRPS is not surprising,
because the data were created for early warning systems
and drought monitoring.

Precipitation products are necessary for characterizing
meteorological drought. The precipitation evaluation re-
sults depend on time scales, such as is the case with
IMERG, which performs better at seasonal scales than
daily scales. Moreover, exploring the bias that may be
introduced by the Thornthwaite PET algorithm in the
SPEI drought evaluation index is necessary. High-quality,
high-spatial resolution, and near-real-time long-term (over
30 years) datasets of precipitation are required for assess-
ing and monitoring drought. However, currently, there is
still a lack of such datasets. Therefore, downscaling and de-
veloping long-term real-time satellite products with high
spatial–temporal resolution at a global scale deserve fur-
ther study.

This study’s methodology and results could provide a valu-
able reference for end users seeking to better understand the
application of precipitation products to drought detection un-
der different scenarios by considering terrain characteristics,
seasonality, and precipitation intensity. It is hoped these eval-
uation results will benefit developers of precipitation products
in identifying error sources and further improving retrieval
algorithms.
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