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Global branches and local states of the
human gut microbiome define associations
with environmental and intrinsic factors

Julien Tap 1,6 , Franck Lejzerowicz 2,7, Aurélie Cotillard1, Matthieu Pichaud1,
Daniel McDonald 3, Se Jin Song2, Rob Knight2,3,4,5, Patrick Veiga1,8,10 &
Muriel Derrien 1,9,10

The gut microbiome is important for human health, yet modulation requires
more insight into inter-individual variation. Here, we explored latent struc-
tures of the human gut microbiome across the human lifespan, applying
partitioning, pseudotime, and ordination approaches to >35,000 samples.
Specifically, three major gut microbiome branches were identified, within
which multiple partitions were observed in adulthood, with differential
abundances of species along branches. Different compositions and metabolic
functions characterized the branches’ tips, reflecting ecological differences.
An unsupervised network analysis from longitudinal data from 745 individuals
showed that partitions exhibited connected gutmicrobiome states rather than
over-partitioning. Stability in the Bacteroides-enriched branch was associated
with specific ratios of Faecalibacterium:Bacteroides. We also showed that
associations with factors (intrinsic and extrinsic) could be generic, branch- or
partition-specific. Our ecological framework for cross-sectional and long-
itudinal data allows a better understanding of overall variation in the human
gut microbiome and disentangles factors associated with specific
configurations.

The human gutmicrobiome is a complex ecosystem holding promises
as a target for human health. Recent studies have shown that envir-
onmental and host factors explain less than 20% of the variation in
microbial composition1–4, suggesting significant roles for stochastic
factors and ecological rules in gut microbiome assembly (reviewed
elsewhere5–7. A factor known to influence species distribution and
diversity of ecosystems is the history of community assembly8. Indeed,
members’ appearance order in the ecosystem influences the evolution
of the ecosystem, a phenomenon known as the priority effe, which has

been studied in animalmodels9,10 and in vitro11 but is underexplored in
human due to the lack of datasets that are both large-scale and long-
itudinally dense. Altogether, multiple factors contribute to the large
inter-individual variability of human gut microbiota across the life
span. This large variation among subjects, combined with individua-
lized stability, justifies understanding better underlying ecological
features to guide microbiome-based preventive or therapeutic
approaches. Ordination methods, techniques such as principal coor-
dinates analysis that aim at representing or analyzingmultivariate data
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in fewer dimensions12, have been used to visualize and describe
microbiome data. In addition, previous studies have attempted to
distill down this continuous variation intomoremeaningful partitions,
using either data-driven13 or a priori approaches14,15. Partitioning allows
for the capture of more precise associations with both intrinsic
factors16–19 and extrinsic factors, such as diet1,20,21. Similarly, partition-
ing of the gut microbiome has been shown to improve the insight into
clinical response to dietary intervention22 or drug treatment23. How-
ever, to date, partitions are mostly studied within single cohorts and,
therefore, potentially lack a more global landscape observed in the
human gut. In addition, gut microbiota may fluctuate differentially
between subjects over time, with some individuals showing
more stability than others depending on their species composition
(e.g. with higher abundance of Faecalibacterium prausnitzii and Bifi-
dobacterium species)24. Indeed, recent and more extensive long-
itudinal studies showed a variable stability between subjects even in
the absence of ecological stressors24,25, suggesting that some
configurations may be more prone to fluctuations. However, to date,
the intra- and inter-variation of gut microbiome may be obscured
in small and homogeneous cohorts. Here, we performed a large-scale
analysis of the human gut microbiome. First, using public metagen-
omes across lifespan and populations (> 17,000 samples from
CuratedMetagenomicsData26, consisting ofmultiple cohorts but with a
wide range of analytical methods), we combined clustering, based on
Dirichlet Multinomial Mixture models, and ordination approaches27.
We identified partitions that could be ordinated along branches, i.e., a
continuum of microbiome configurations that connects local ecolo-
gical states.

Then, we interrogated independent data from the American Gut
Project (>16,000 samples)4, mostly consisting of adults, and mostly
cross-sectional, but also utilizing longitudinal data in a subset of sub-
jects. We found that most of the patterns (branches and partitions)
identified inCMDadultswere replicated in theAmericanGut Project. A
longitudinal analysis of 745 subjects suggested that local partitions are
connected by preferred ecological paths corresponding to newly
identified gut microbiome branches. Last, we showed that partitions
exhibited both common and differential associations with environ-
mental and intrinsic factors. Collectively, we identified branch-specific
local states of the human gut microbiome connected by ecological
paths, which differ in stability and characteristics for both host and
environmental factors.

Results
Unsupervised partitioning of the human gutmicrobiome across
lifespan and populations
In the absence of large public data from single cohorts with reduced
technical variability, pooled public data are increasingly used to study
gut microbiome ecology at various taxonomic levels. We thus exploi-
ted the public “curatedMetagenomicData” (CMD, version 3) database26

of 18,726 fecal metagenomes, including 86 studies across the lifespan,
as well as different populations and health conditions (Supplementary
Fig. 1a), with inherent large variations in technical parameters. To
identify partitions of the human gut microbiome, i.e., possible ecolo-
gical states, we used the Dirichlet Multinomial Mixtures (DMM) parti-
tioning method since it was extensively used in prior attempts in gut
microbiome studies18,28–33. In short, DMM models are adapted for
compositional data, provide a confidence indicator upon samples’
classification, allow for building partitions with different dispersions,
and can be used to classify a new sample that was not included in the
original modelling.

First, we assessed how the DMM partitioning was sensitive to
sample size and the presence of low abundant genera. We tested up to
100 possible partitions (k= 1–100) for three computational seeds and
two CMD cohorts of ca. 1000 individuals (PREDICT1 and LifeLines-
DEEP). We found that a larger sample size led to more partitions using

either the Bayesian Information Criterion (BIC) or the Laplace’s index to
find the best model fit (Supplementary Fig. 2). In addition, after
selectingmore-abundant genera (i.e., the top 30 genera), the number of
partitions modeled for 1000 randomly selected metagenomes (PRE-
DICT1) increased from 4 to 10 (Supplementary Fig. 2) suggesting that
low abundant genera introduced noise in partitioning and reduced the
number of partitions. Despite library size variations, 84.7% of samples
retainedmore than 80% of reads when filtered to contain only themost
abundant 30 genera. We kept this dataset representing 87.1% of total
reads for further analyses to delineate a wider variety of partitions.

Second, we identified 24 partitions using DMM on five CMD
subsampled training sets of 3233 metagenomes obtained by combin-
ing selections of 30 samples for each sex, age category, and region of
birth to balance age categories and alleviate the overrepresentation of
North Americans and Europeans in CMD (Supplementary Fig. 1b). For
up to 100 possible partitions (k = 1–100) and using BIC and Laplace’s
index as goodness-of-fit measures, a consensus of all five subsampled
sets resulted in 24partitions, referred to asDMM(k24) (Supplementary
Fig. 3). The DMM(k24) partitions were more homogeneous (based on
theta index, see methods) than DMM(k1) (i.e., no partition scenario),
except for partitions m18, m19, and m22 (Supplementary Fig. 4a).

Next, 81% of the samples that were left out during subsampling
were then classified into a partition with >80% confidence when using
the DMM(k24) model (Supplementary Fig. 4b). Partitions m4, m10,
m12, m14, m15, m16, m17, m23, and m24, which showed significant
alpha or beta-diversity differences between the training and remaining
set, were over-represented in the training set compared to the
remaining set (Chi-square test, p <0.05). The whole DMM(k24) set,
comprising all samples, remained homogeneous by partitions, as
indicated by the few alpha (Shannon index) and beta diversity (Jensen-
Shannon Distance) differences with the remaining set of samples not
used for DMM modeling (Supplementary Data 1). Hence, we hypo-
thesized that our partitions likely represent local ecological states of
the human gut microbiome.

Human gut microbiome local partitions are ordinated within
global branches
We intended to characterize those partitions further. We observed an
average variation of up to threefold in the Shannon diversity index
across the partitions (Fig. 1a and Supplementary Data 2) but did not
find any significant correlations between the top five genera with the
highest cumulative weight contribution in the model component and
alpha-diversity (Fig. 1b). Here, weight contributions to theDMMmodel
are related to genera relative abundance. Of note, two of the least
diverse partitions, m19 and m22, were enriched in infant samples
(Fig. 1c and Supplementary Fig. 5). We estimated associations between
each genus’s respective alpha weight in the DMMmodel, and Shannon
estimated alpha diversity of gut microbiome partitions, using Spear-
man correlations. Regarding other genera with lower contributions to
the DMM model, we found that some genera belonging to the Rumi-
nococcaceae and Lachnospiraceae families were positively associated
with partition diversity (Spearman’s rank correlation test, p <0.05,
Supplementary Data 2). The highest associated genus with partitions
diversity was Ruminococcus (rho =0.88, p <0.001). Genera having the
highest weights in the DMM model like Bacteroides, Prevotella, and
Bifidobacterium were not associated with partitions diversity (Spear-
man’s rank correlation test, p >0.05, Supplementary Data 2). Those
results suggest that alpha diversity is not the only factor that could
help ordinate these gut microbiome partitions.

Next, we reasoned that those partitions could represent stages of
ecological progression, either between or within age categories. We
applied the Potential of Heat-diffusion for Affinity-based Trajectory
Embedding (PHATE) algorithm to the CMD dataset to further explore
this possibility. PHATE is a visualizationmethod conceived to discover
latent structures, such as transitions, in high dimensional data while
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conserving global and local structures of the data, which has pre-
viously been applied to gut microbiome data to detect “branches“27.

The PHATE analysis resulted in several branches (Fig. 1d–h), i.e.,
continuums ofmicrobiome configurations connecting local ecological
states, on which we mapped the centroids of the partitions previously
identified. The 24 partitions were distributed along branches indicat-
ing congruence between two independent approaches (DMM-based
partitioning and PHATE-visualization). Metagenomes and DMM(k24)
partitions were sorted similarly following Shannon’s alpha diversity
gradient along each branch, with the least diverse partitions at the tips
of the branches (m19, m16, m24, m21) (Fig. 1d). We also observed that

some branches were associated with ratios of Prevotella, Bacteroides,
and Bifidobacterium (Fig. 1e, f), as well as aerotolerant bacteria
(represented mainly by Enterobacteriaceae and Streptococcaceae)
(Fig. 1g). Individuals older than three years old were less frequent in
branches enriched with Bifidobacterium and aerotolerant bacteria
(Supplementary Fig 5).

Consequently, and in agreementwith the cumulative DMMmodel
alpha weight of genera (Fig. 1b), we classified the DMM-based parti-
tions as a function of theirmost dominant taxa:Bacteroides, Prevotella,
Clostridiales (Lachnospiraceae and Ruminococcaceae genera), Bifido-
bacterium, and aero-anaerobic facultative genera (Fig. 1h). We found
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Fig. 1 | PHATE branches and DMM-based partitions of the human gut micro-
biome. a Boxplot for Shannon index in the 24 partitions, ranked by increasing
values (n = 17,847 samples). The box bounds the interquartile range (IQR) divided
by the median, and whiskers extend to a maximum of 1.5 × IQR beyond the box.
Dots are sample data points. b Heatmap of major genera in the 24 partitions.
Partitions are ranked, by increasing values of Shannon index while genera are
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highest cumulative weight). Color accounts for genera alpha weights in the
DMM(k24) model. c Proportion of infants samples as a function of DMM gut
microbiome partitions. d–g PHATE scatter plot where samples were colored
respectively by Shannon index, Prevotella:Bacteroides ratio, Bifidobacter-
ium:Bacteroides ratio, and aerobic anaerobic genera count ratio. hMapping of the
centroid of the 24 gut microbiome partitions on the branches detected by PHATE.
The branches are colored according to main taxa for each partition.
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that the projection of the partitions on the PHATEmapwas consistent
with the branches’ drivers, such that central partitions were driven by
enrichment in genera related to Clostridiales and Bifidobacterium, and
were among the highest in alpha-diversity (Fig. 1a). A differential ana-
lysis at species level (CLR transformed) on adult subjects revealed
multiple differences between the central root (M8) and tips of bran-
ches (Supplementary Data 3). For instance, the partition closest to the
tip in the Bacteroides branch (m21) was enriched in Bacteroides ster-
coris and Clostridium bolteae while depleted in Bifidobacterium ado-
lescentis and Ruminococcus bromii. Meanwhile, the partition closest to
the tip of Prevotella branch (m16) was enriched in Prevotella coprii,
Prevotella stercorea while depleted in R. bromii and Eubacterium hallii.
The partition encompassing the Bifidobacterium branch (m24) was
enriched in Bifidobacterium bifidum, Bifidobacterium breve and deple-
ted in R. bromii and Dorea longicatena. The ‘aerobic and aerotolerant’
branch was enriched in Enterococcus faecalis, Streptococcus epidermis,
Streptococcus mitis and depleted in R. bromii, B. adolescentis, F.praus-
nitzii. Overall, the core was most often enriched in B. adolescentis and
Clostridiales (R. bromii, F. prausnitzii) compared to tips.

We further tested whether branching composition continuums
could be retrieved using an alternative and a complementary, pseudo-
time method called Wishbone34, to provide an ordering of samples
along the continuous branches. Wishbone is tailored to detect a tra-
jectory based on a t-SNE ordination, that bifurcates from a common
root into two branches, and along which the samples are ordered.
Hence, we ran Wishbone on a t-SNE ordination computed from
8,356 samples encompassing the main branches (Bacteroides and
Prevotella) as well as the central partition (m8). Consistent with the
PHATE analysis, Wishbone detected the central m8 partition as the
root from which the two Bacteroides and Prevotella branches deviated
(Supplementary Fig. 6). At genus level, from root to the tips we
observed that Bifidobacterium and Ruminococcus declined along the
branches, followed by Faecalibacterium while Bacteroides and Pre-
votella increased in their respective branch, confirming our observa-
tions from the DMM partitions (Supplementary Fig. 7a). Reporting the
abundance dynamics at the species level along the Wishbone trajec-
tory revealed a succession for different species of Bacteroides (Sup-
plementary Fig. 7b) including B. ovatus and B. fragilis only appearing at
the very end of the Wishbone trajectory. Interestingly, F. prausnitzii
and B. bifidum exhibited a gradual and sharp decrease in abundance
along the trajectory, respectively. The partitions were ordered in a
similar way to PHATE along these branches, keeping in notably the
partitions located respectively on the tips of the two branches. (Sup-
plementary Fig. 7c).

Overall, we showed that DMM-based local partitions can be
ordered within the global structure, called branches, revealed by
PHATE and confirmed by Wishbone.

Low-diversity tips of branches display potential functional shifts
To document the functional associations of the extreme ecological
states, we identified which metabolic pathways were differentially
abundant in the metagenomes composing the low-diversity branch
tips with multinomial regressions models (songbird) using the high-
diversity partition m8 as a reference (Supplementary Fig. 8). Our
analysis indicated that the functional characteristics of the root parti-
tion (m8) compared to the m16 (Prevotella) and m21 (Bacteroides) tip
partitions, are largely driven by taxonomic differences, as the root was
more strongly associated with functions associated with Archaea such
as methanogenesis (or alternatively, a lack of Archaea in the tip par-
titions). Prevotella tip (m16) displayed a higher association with path-
ways related to nitrate reduction, DHNA (menaquinone) biosynthesis,
heme biosynthesis (songbird model Q2 = 0.2831), pathways of the tet-
rahydrofolate biosynthesis (PWY-7539/PWY-6147), which are known to
be involved in the oxidative stress response, overall suggesting that
Prevotella tip is enriched in pathways related to aerobic and anerobic

respirations. The Bacteroides branch tip partition (m21) was enriched
with amino acid (PWY-5030 and ARGININE-SYN4-PWY) and glycosa-
minoglycan degradation (PWY-6572) pathways, suggesting an
increased capacity for amino acid catabolism in this partition (song-
birdmodel Q2 = 0.3833). The m21 partition was also enriched in Gram-
negative cell wall biosynthesis (PWY-6478, PWY-6749, PWY-7312,
NAGLIPASYN-PWY).

We further used the recently developed Gut Microbiome Health
Index (GMHI), which predicts the likelihood of disease based on the
distribution of gut microbial species in adults, as a proxy for health35.
There was generally a higher GMHI along the entire Prevotella branch
(Supplementary Fig. 9), suggesting that while the tip of the Prevotella
branch may present both alterations in composition and, therefore,
functions of the gut microbiome (reflected by a loss of diversity and a
functional shift), the overall likelihood of disease may not necessarily
be affected.

Global and local partitioning can be replicated in the 16S rRNA
dataset of the American Gut Project
Given the large amount of available 16S rRNA gene amplicon data with
associatedmetadata in public databases, we reasoned that confirming
the validity of our approach on a 16S rRNA dataset would facilitate
further investigations aiming to decipher the links between branches
or partitions with health and environmental factors. Thus, we applied
the same partitioning and ordination approach to the American Gut
Project dataset (see methods), which consists of ca. 16,000 16S rRNA
gene amplicon sequencing-based fecal samples associated with mul-
tiple demographic, lifestyle, health, dietary variables (Supplementary
Fig. 1b), and which includes longitudinal sampling from a subset of
individuals. Using DMM-based modeling at the genus level (Supple-
mentary Fig. 10a), the bestmodel fit in the AGP database was obtained
with 19 partitions. Similar to the CMDpartitions, we showed high intra-
partitions homogeneity (except for partition 19) (Supplementary
Fig. 10b) based on high prediction confidence (Supplementary
Fig. 10c) and consistent Shannon alpha diversity between the training
and remaining sets (Supplementary Fig. 10d).

We further sought to verify whether AGP partitions were analo-
gous to CMD’s. Because the AGP cohort is mainly composed of adult
samples (>18 years with prevalence >90%) (Supplementary Fig.1) and is
less heterogeneous in terms of analytical parameters, population
demographics (age, country of residence), we reasoned that the CMD
adult-associated partitions should capture AGP partitions. We com-
pared the partitions between the two datasets using a hierarchical
clustering approach (based on common dominant genera (Fig. 2). We
did not observe database-specific clustering and instead noticed the
pairing of partitions originating from the heterogeneous (i.e., CMD)
and single cohort (i.e., AGP), suggesting that analogous partitions
could be retrieved regardless of the cohort and technical parameters
used (Fig. 2a). Then, we measured the Jensen-Shannon distance
between DMM-based partitions alpha weights from both datasets.
There was no significant difference between CMD and AGP datasets
(PERMANOVA, p >0.05). However, we detected an Akkermansia-enri-
ched branch consisting of a single partition (M13) in the AGP dataset
(Fig. 2a) thatwas not detected in the CMDdataset. Then, we generated
a PHATE-map of the AGP dataset, which resulted in the generation of
three main branches. Similar to the CMD dataset, Shannon’s alpha
diversity decreased towards the tip of the three branches (Fig. 2b), and
a contrasting Bacteroides to Prevotella ratio discriminated the major
two branches (Fig. 2c and Fig. 1e). The projection of the centroids of
the 19 DMM-partitions on this PHATE-map led to a similar result as
obtained previously, with partitions being arranged along the global
branches (Fig. 2d). It is noteworthy to observe a declining gradient of
alpha-diversity from Clostridiales-dominated partitions towards the
tips of the Bacteroides or Prevotella branches: the M1 partition being
the most diverse while the least diverse Bacteroides and Prevotella
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partitions, respectivelyM11 andM18, formed the tips of their branches.
Altogether, our analysis of the AGP cohort largely replicated our initial
observation indicating that the human gutmicrobiome configurations
are consistent despite analytical variations.

Local partitions and branches exhibit varying levels of stability
The ordination of local partitions within global branches prompted us
to hypothesize that those partitions represent different states of eco-
logical succession, which we tested with longitudinal data.

We analyzed data originating from 745 participants of the AGP
cohort, fromwhom at least two samples were collected over timewith
12.5 (IQR [1.1-73.0]) days apart on average. We assigned each of the
associated 2,998 gut microbiome profiles to a partition and a branch
and reported the changes between two-time points (Supplementary
Fig. 11). Individuals assigned to Bacteroides and Prevotella branches
tended to remain in their initial branches over time while individuals
assigned toClostridiales orAkkermansiabranches tended to transition
to Bacteroides and, to a lesser extent, to Prevotella branches. (Sup-
plementary Fig. 11).

Then, to test whether local partitions are either random stratifica-
tionor ecological states,webuilt anetworkbasedon longitudinal data as
a function of stability, with instability marked by a high occurrence of
observed switches (Fig. 3a). Of note, this network was performed in an
unsupervised fashion, (i.e not integrating the partition coordinates
depicted in Fig. 2d). The percentageof individualswho remained in their
initial partition was, on average 42%, and consistently superior to the
frequency computed using randomly generated events (~10% upper CI
95% bound), suggesting that partitions may be relatively stable states
(Fig. 3b). Out of the 18 partitions, the M15 and M14 partitions were the
most stable within the Bacteroides and Prevotella branches, respectively.

In contrast, some partitions were connected by a higher occurrence of
switches (e.g., between M3 and M5 and between M2 and M6) based on
the network. These switches occurred in the Bacteroides-enriched
branch where Faecalibacterium and Bacteroides genera had the highest
weight in those partitions. These partitions were further assessed to
determine whether they resulted from an artifact of over-partitioning.
We reasoned that an over-partitioningwould result in the same variation
over time between andwithin testedpartitions using alpha-diversity and
the ratio of the two most abundant genera (Faecalibacterium and Bac-
teroides) as markers of the ecosystem composition in the Bacteroides-
enriched branch. By plotting the variation over time of those para-
meters, we observed that compositional changes were limited where
switching between the partitions did not occur by an individual. Mean-
while, compositional changes were scattered and overlapping where
switching did occur between partitions (Supplementary Fig. 12).

We further investigated the dynamics of the Faecalibacter-
ium:Bacteroides ratio duringM3/M5 andM2/M6 partition switches and
observed that the variations of this ratio were elevated in the case of
inter-partition switches compared to intra-partition fluctuations
(Fig. 3c, d). This observation suggests that the differential ratio of
Faecalibacterium:Bacteroides is larger between samples of participants
that switch between partitions than those that remain stable over time
within a partition, supporting our hypothesis that partitions may
represent local stable states. Of note, the median values of the Fae-
calibacterium:Bacteroides ratio in subjects that switch partitions over
time nearly coincided between the two sets of partitions (M2/M6 and
M3/M5), at 0.24 and 0.26, respectively (Fig. 3e, f) possibly suggesting
that a Faecalibacterium:Bacteroides ratio of 1:4 may be a potential
marker of gut microbiome instability (Fig. 3g, h) for the Bacteroides-
enrichedmicrobiomebranch. A ratio below 1:64, corresponding to the
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median of them15 partition, the gutmicrobiome was in an altered and
stable state.

Global and local variations are differently associated with host
and environmental factors
Last, we interrogated the AGP dataset (ca 16.000 fecal samples, see
methods) to identify associations between branches/partitions and
factors relating to the host including dietary habits, lifestyle, region of
birth, age, BMI, bowel movement frequency, sex, diseases and anti-
biotic history). Given the high dimensional nature of the data, we fitted
a multinomial logistic regression across 100 predictors (i.e., factors)
collected through the AGP main questionnaire (FDR <0.1) (Supple-
mentary Data 4). To gain insights on factors that could explain the
decreased diversity of the communities along the branches, we used
the most central and diverse partition (M1) as the reference in this
logistic regression, which was primarily composed of female

participants consuming vegetables in high frequency (daily), with low
exposure to antibiotics (Fig. 4a). For each predictor, the model
returned odds ratios representing the strength of association for a
given partition (vs. the reference one).

Overall, host predictors (age, BMI, bowel movement frequency),
antibiotic history, and region of birth had the highest weight (i.e.,
absolute logodds ratio) in themodel (Fig. 4b), while dietary predictors
contributed to a lesser extent. Among the dietary factors, plant
diversity, the frequency of snacks, vegetables, and sugary sweets had
the highest weights (Fig. 4b).

Next, we estimated how the weight of these predictors varied
across partitions along their respective branches. A higher cumulative
weight of predictors was observed for partitions with lower alpha-
diversity and closer to the tip within each branch (Fig. 4c). This
observation indicated that themore distant the partition was from the
reference partition M1 the more it was associated with host and
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environmental factors in our model. Furthermore, host-associated
predictors model weight variations appeared to be specific to branch.
For instance, along thePrevotellabranch, fromroot to tip, weobserved
a model weight increase for BMI and a model weight decrease for age,
while along the Bacteroides branch, we observed a model weight
increase for bowel movements per day (Fig. 4d).

We also observed specific association with branches in a global
manner that were not associated with partition position within bran-
ches. Specifically, sex (being male), region of birth (e.g., Australia &
New Zealand, central and southern Asia) had a high coefficient weight
for predicting partitions in the Prevotella branch, lung disease, and
exercise frequency were most specific to the Bacteroides branch
(Fig. 4d). Hence, the ability to predict a partition from AGP metadata
was associated to overall observed branches structure.

Next, we sought to identify partitions that deviate from these
overall predictors’ gut microbiome differences (vs. partition M1) by
considering the odds ratios of each predictor per partition (Fig. 4d).
For instance, Clostridiales-enriched partition M5 exhibited a higher
odd ratio in the number of types of plants (OR 1.59) and seafood
frequency (OR2.09) consumption.Bacteroides-enrichedpartitionM15,
M11, and Clostridiales-enriched partition M19 were mainly associated
with diseases, and the Akkermansia partition was significantly asso-
ciated with lower bowel frequency (Fig. 4d).

Taken together, our data showed that partitions exhibited both
common and differential characteristics for both environmental and
host factors that were branch-dependent or independent.

Discussion
The high inter-subject variability of the human gut microbiome is well
recognized and complicates both the study of association with factors

and response to treatment or dietary interventions. Multiple studies
have partitioned human gut microbiomes with both supervised and
unsupervised approaches but have suffered from low sample sizes or
homogeneous cohorts. Here, we performed the largest-scale analysis
to date (ca. 35,000 samples) to stratify the human gut microbiome
across lifespan and populations. Using two complementary approa-
ches (i.e., ordination and partitioning) on cross-sectional and long-
itudinal data, our analysis reveals that the human gut microbiome can
be structured into partitions representing local ecological states that
are dynamically linked within global gradients, referred to as micro-
biome branches.

Multiple studies have reported different microbiota states, using
either supervised (alpha-diversity) or unsupervised (enterotypes)
analysis. Using Dirichlet multinomial mixture models (DMM), ten
states have been identified in a study of infants with developing gut
microbiome from birth to four years30, while (2-5) are typically detec-
ted in adults28. By contrast, Lathi et al. identified 32 gut microbiome
partitions using specific, dominant features in adults36 with the same
approach we also used in our study. Then, while most studies analyze
partitions independently, we further mapped them into branches,
using a recently developed approach, PHATE, a non-linear dimen-
sionality-reduction method that accounts for both local and global
structures in a dataset27.

Using a single (AGP) or multiple cohorts (CMD), we showed that
similar numbers of partitions converge into two previously identified
configurations (Bacteroides and Prevotella enriched) in adults and are
centered around Clostridiales-enriched partitions, which were also
enriched in Bifidobacterium, and characterized by a higher health
index35. In adults, the analysis at the species level revealed that the
central root was enriched in F. prausnitzii, R. bromii, B. adolescentis
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while tips were enriched with respective members of Bacteroides or
Prevotella and others such as C. bolteaewhichwas found to be durably
enriched following antibiotic intake37,38. A pseudotime analysis allowed
us to further identify the decline in species along branches. For
instance, B. adolescentis and R. bromii decreased earlier in the pro-
gression along the branches towards the tips than F. prausnitzii. Thus,
pseudotime analysis allowed us to identify successive ecological states
within branches.

The main difference between the two datasets was the detection
in CMD of some partitions exclusively detected in infants, which were
enriched in aerotolerant genera or Bifidobacterium, a commonmarker
of the gut microbiome in early life, which is consistent with the under-
representation of infants in the AGP dataset. Notably, multiple bran-
ches were detected in infants, which is consistent with a higher inter-
subject gut microbiome variability observed in this population com-
pared to adults39. Therefore, using complementary approaches, we
identified various microbial states connected within branches, which
differed in microbial composition, function, and potentially health
status.

Previous studies identified a low-diversity Bacteroides micro-
biome state associated with obesity and systemic inflammation18,19,
which may be reflected in our study by the Bacteroides-enriched par-
tition with the lowest diversity and associated with higher disease
prevalence. This suggests that our analysis allowed us to capture both
well-established and more recently identified partitions that could be
of further interest. In addition, we observed that partitions with a
similar alpha-diversity from different branches were associated with
different factors, confirming the need to study the gut microbiome
beyond alpha-diversity40. Extremities of both Prevotella and Bacter-
oides branches, which harbored the lowest gut microbiome diversity,
differed in function compared to more central Clostridiales-enriched
root in a respectively specific manner.

Next, we reasoned that partitions could represent gut micro-
biome states structured as a network with preferred paths, with indi-
viduals beingmore likely to transition between neighboring partitions
than more distant ones. This hypothesis was supported by a network
analysis performed without a priori knowledge (without coordinates
of partitions) on a large dataset of subjects with time-series data
(>700 subjects), which showed that indeed, partition switches occur-
red most frequently between neighboring partitions.

We confirmed previous findings of a low rate of switching
between the Bacteroides and Prevotella branches25,28,41. Some partitions
were more prone to shift to a specific partition over time, that were
non-random inter-partition switches. This result suggests partitions
may be connected through low-entropy ecological paths, which
deserves further exploration with controlled time series studies. In
addition, specific partitions appeared more stable than others,
implying that somepartitionsmaybe stable ecological attractorswhile
others would be transient states of the human gut microbiome. The
least stable partitions were not associated with a lower diversity but
instead with Faecalibacterium:Bacteroides ratio variation. However, it
is unclear which factors contribute to these higher shift rates and
whether the loss of Faecalibacterium precedes or results from the
transition between partitions. A recent study identified Faecalibacter-
ium prausnitzii among species associated with stability in healthy
subjects24. In addition, we found that one of the lowest-diversity Bac-
teroides partition, whichwasmore associatedwith diseases, antibiotics
history, and higher bowel movement frequency, was both the most
stable (i.e., little movement out of this partition) and was the most
extreme (i.e., located at the tip) in its branch. Low diversity has been
previously associated with instability7,25. Therefore, this could indicate
that this partition represents a highly altered stable state, in which
transition to another would require a significant force to shift to
another state. Overall, we found intra-branch differential stability,
which was not captured in previous studies with smaller sample sizes.

Subsequently, we reasoned that those partitions would be char-
acterized by different host and environmental variables depending on
branches. We confirmed results from previous studies identifying age,
BMI, bowel movement frequency, and antibiotic intake as the top
factors associated with gut microbiota variation2–4. Notably, differ-
ences between branches were observed, such as the Prevotella-enri-
ched branch associated with the region of birth (a proxy for lifestyle
and dietary habits) and the Bacteroides-enriched branch with medical
history and lower exercise, and a lower bowel movement frequency
was associated with the Akkermansia branch, in line with previous
studies42,43. Specific associations were found within branches such as
the association between the lowest diversity partition of the Prevotella
branch with specialized diets. In line with our results, associations with
dietwere found tobepartition-specific in a previous study1, suggesting
that insight intomore refined structures allows for the identification of
associations that may be obscured at the global level. Integrating
partitions within a branch allowed us to better disentangle both
microbiome-environment and microbiome-host associations.

Our study has several strengths, including the large size and
highly heterogeneous population, which allowed us to uniquely par-
tition highly variable gut microbiomes, and reproducing the findings
from a heterogenous dataset to a homogeneous one. Furthermore, we
showed the use of complementary and independent approaches to
partitioning the gut microbiome by using both large cross-sectional
(n > 10,000) and longitudinal data.

Our study has several limitations. First, health status, diet, and
host parameters were either lacking or self-reported. Second, our
study relied primarily on westernized adults and therefore needs to be
complemented by underexplored populations. Third, the longitudinal
study was not controlled and had varying stool collection periods on a
limited number of subjects per partition, and should be reproduced on
other longitudinal datasets. In addition, the American Gut project
database is not representative of the global population, and the sub-
cohort with multiple samples analyzed may be even less representa-
tive. Futuremore controlled longitudinal studies combininghigher gut
microbiome resolution and clinical data would allow further explora-
tion of how partitions’ composition and functional potential may vary
with clinical outcomes.

Nevertheless, our study expands current knowledge of gut
microbiota variation on an unprecedented sample size in various
populations, health conditions, and ages. Potential future applications
of our ecological framework include the study of the least explored
transition from infancy to childhood, short-term challenges (diet,
antibiotics), or longer-term ones (aging, disease) which will help
identify the gutmicrobiome’s transition to novel states thatmay guide
microbiome-based approaches.

In conclusion, our study showed the relevance of structuring
human gut microbiome data at a local and global level to better cap-
ture associations with health, diet, and lifestyle and identify transitions
that may represent alternative states. Whether these ecological states
and paths constrain the response of the human gut microbiome to
changes in its environment warrants further investigation. This upda-
ted view of the human gut microbiome landscape provides a con-
ceptual framework for moving towards precision nutrition and
therapeutic approaches.

Methods
Studies datasets
CuratedMetagenomicData (CMD). We extracted taxonomic and
functional tables from the curatedMetagenomicData R package26

(version 3.0, release 2021), which aggregates read counts per species
using MetaPhlAn3 and metabolic pathways per species using
HUMaNN3 from 86 studies. Only stool samples counting more than
five million reads and excluding one duplicated study (referred to as
“LeChatelierE_2013”) were retained. For taxonomic analyses, the
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samples’ read counts were sum-collapsed per genus and per species.
The resulting feature tablewas rarefied to a depth of 1,000,000 counts
per sample for alpha diversity analysis. Outliers analysis were per-
formed following the criteria in ref. 44.

American Gut Project (AGP). In the AGP initiative, stool samples were
collected at home and shipped at room temperature before microbial
DNA extraction and 16 S rRNA amplicon sequencing, which were per-
formedaspreviouslydescribed4.Weused redbiom45 to fetchdata from
Qiita46. 20,454 stool sample identifiers were available in the database
on the date 2019 December 5th, within the Deblur-Illumina-16S-V4-
100nt-fbc5b2 context. Analyses were performed as previously
described44. In short, bioinformatic analysis was performedwithQIIME
2019.10, bloom sequences were removed as previously described47,
and taxonomy was assigned using the GreenGenes database (v 13.5).
We retained samples ≥1000 reads. 1579 samples were defined as
technical outliers andexcluded following the criteria in ref. 44. A genus
count matrix with 16,021 samples was analyzed.

Statistics and reproducibility
This study is a meta-analysis of multiple publicly available datasets, so
the sample size was not predetermined using statistical methods.
Instead,we try to include all available data and specifiedour criteria for
selecting particular subsets of studies. The methodologies for data
collection from individuals, such as whether the process was per-
formedblindor not, canbe found in thepublications corresponding to
each study. In addition, we used two large datasets where we applied
same analyses to ensure findings reproducibility.

Gut microbiome partitioning and branches
In the exploration cohort both studies’ datasets, CMD and AGP, the 30
genera with the highest read mass were extracted for downstream
analyses. Samples were partitioned using Dirichlet’s multinomial mix-
ture (DMM) modeling on the microbiota data29. We trained DMM
models using five subsets from the whole dataset to reduce population
bias. Each subset was sampled from the whole dataset with stratification
by each combination of sex, geographic region of origin (region of birth
for the AGP dataset), and age class (n up to 30 by strata). Subsampling
was not limited to a single sample per subject. Of note, participants
having at least two samples represented less than 5% of the participants.
DMMmodeling was performed for each subset constituting our training
set, and the best model was picked up using BIC and Laplace minima,
and majority vote (i.e., which optimal value of the k parameter was
picked up more often). Partitions homogeneity were assessed using
theta index extracted from DMM models. Low values of theta corre-
spond to highly variable partitions. Thewhole dataset wasmodeledwith
DMM using the corresponding genera from the training dataset in the
remaining dataset. Genera alpha weights for each DMM component
from the CMD and AGP datasets were compared using hierarchical
clustering on the Jensen-Shannon distance (Ward’s method).

We assessedmicrobiomebranch latent structure on the CMD and
AGP datasets (genus relative abundance) using the PHATE algorithm
(phateR version 1.0.7), with the gamma parameter set to zero27 for
visualization purposes and all other parameters set to default. Based
on DMM genera alpha weight, we extracted microbiome branches.

For differential analysis at species level, abundances were cen-
tered log-ratio (CLR) transformed after adding a pseudocount of 1.
Mann–Whitney tests were performed between the central partition
and each partition corresponding to branch tips. For each compar-
aison, p values were adjusted for multiplicity by Benjamini-Hochberg
false discovery rate correction.

Longitudinal analysis
To assess stability patterns within partitions and switching between
partitions over time, we extracted data from 745 participants of the

AGP dataset who had provided at least two samples, resulting in
2998 samples. Partition stability was assessed by comparing the pro-
portion of individuals who remained in their initial assigned partition
and the proportion of individuals who remained in their randomly
assigned partition. 100 random assignations were performed to
compute a confidence interval for each partition. The percentile 95th
for stability obtained from randomized assigned partitions was
retained as a threshold for significatively.

Stability and proportion of change were computed for each par-
tition. A network was built to show how individuals can change parti-
tions as a function of time using igraph R package 1.3.5. Only edges
representing more than 5% of the partition events (including switch
and non-switch), to decrease visual noise, were shown.
Fruchterman–Reingold algorithm was used to visualize the network.

Health, demographic, and dietary associations with partitions
and branches
To assess whether health, demographic, and diet participants’ meta-
data were associated with gut microbiome partitions and branches in
AGP, we fitted a multinomial log-linear model via neural networks
using the nnet R package (version 7.3-15). Gut microbiome partitions
were used as responses andmetadata as predictors. The partition with
the highest alpha-diversity assessed with the Shannon index was
defined as the reference.

Categorical variables, like region of birth, were one-hot encoded.
Binary predictors, like disease self-declaration, were coded by 0 to 1
(e.g., “Diagnosed by a medical professional” encoded to 1, “I do not
have this conditions” encoded to 0, other categories were considered
as missing values). Continuous predictors, like Age and BMI, were
scaled from 0 to 1. Ordered predictors, like food groups frequency,
were coded from 0 (never) to 1 (daily). Antibiotic history was con-
sidered as an ordered factor from “I have not taken antibiotics in the
past year” to antibiotic intake within the “week” of fecal sample col-
lection. In short, 100 health, demographic and dietary predictors were
used to build the model. Missing values were replaced by the average
computed for each predictor.

Log odds ratios by predictor and gut microbiome partition and
their respective p-values were extracted from the resulting model
using broom_helpers R package (version 1.2.1). False discovery ratewas
computed by predictors. All statistical analyses were computed using
R software version 3.648.

Functional analysis of gut microbiome branches
TheOXYTOLdatabase v 1.3wasused to associate eachmicrobial genus
to an aerotolerant or obligate anaerobic metabolism49. A score
resulting on dividing aerotolerant aggregated read count by anaero-
tolerant aggregated read count was performed for each sample.

Differentially-abundant metabolic pathways were identified using
multinomial regressions via neural networks in songbird version
1.0.350. This analysis was performed on the curatedMetagenomicData
pathways, after collapsing (i.e., summing per sample) the read counts
across taxa, hence resulting in a list of coefficients for each pathway,
indicating their strength of association with each model’s target.
Models of pathway enrichment were run on sample subsets belonging
the DMM partitions associated to branch tips and DMM partition
identified as central that serve as reference group. The performance of
neural network models was monitored using tensorboard (version
1.15.0) in terms of cross-validation error and log-likelihood loss during
training/testing iteration for a 70/30 ratio split performed on the full
sample set. Optimal model solutions were reached for trials involving
run parameters varying for number of epochs and batch sizes. Those
models and parameters retained for post-processing analyses of the
coefficients are available in configurations files (supplementary mate-
rial and code) used by prep_songbird (version 1.0), which allowed
generating the subsets and songbird command lines in QIIME2. For
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each model, the coefficients were ranked to get the top 10 pathways
found most strongly associated with each model target. These path-
ways were used as numerators to calculate log ratios for the samples
composing the targeted and reference partitions. 21 “nucleotide bio-
synthesis” pathways were used as a denominator because they repre-
sented ubiquitous pathways in microbial metabolism, which were
present in 98% of the samples.

Pseudotime analysis
To confirm the ordering of our partitions along enterobranches, we
performed a pseudotime analysis using Wishbone, which orders
samples along a two-way trajectory branching off from a common
root34. Although Wishbone is suited to avoid short-circuit between
trajectories for complex datasets, we performed the analysis on a
subset of the samples consisting of the central partition m8 (expected
trunk) and the partitions enriched in Prevotella (m4, m12, m13, m14,
m16, m17) and Bacteroides (m2, m3, m5, m20, m21) (expected bran-
ches). The trajectory was detected using a randomly selected sample
from the central partition (m8) as a starting point
(EGAR00001421178_9002000001557655LL) as well as the first two
components resulting from the eigendecomposition operated on the
diffusionmatrix (seeWishbonemethods). Results are representedon a
t-SNE map computed after a projection of the data on the three first
components of a PCA (perplexity=30; seed=666).

Data availability
All data used in this study are publically available. Cur-
atedMetagenomicData are available at https://github.com/
waldronlab/curatedMetagenomicData. The AGP data used in this
study are available inQiita under the study ID 10317, and the associated
sequences can be found under EBI accession ERP012803. Source data
for all main figures are provided as supported data files. Source data
are provided with this paper.

Code availability
Source codes used in this study are available from GitHub (http://
github.com/tapj/branches) and Zenodo (https://doi.org/10.5281/
zenodo.7801644).
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