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of State Oceanic Administration, Guangzhou, China, 6University of Chinese Academy of Sciences, Beijing, China

Abstract We conducted two‐dimensional numerical simulations to investigate the mechanisms underlying
the strong spatiotemporal correlation observed between submarine landslides and gas hydrate dissociation due
to glacial sea‐level drops. Our results suggest that potential plastic deformation or slip could occur at localized
and small scales in the shallow‐water portion of the gas hydrate stability zone (GHSZ). This shallow‐water
portion of the GHSZ typically lies within the area enclosed by three points: the BGHSZ–seafloor intersection,
the seafloor at ∼600 m below sea level (mbsl), and the base of the GHSZ (BGHSZ) at ∼1,050 mbsl in low‐
latitude regions. The deep BGHSZ (>1,050 mbsl) could not slip; therefore, the entire BGHSZ was not a
complete slip surface. Glacial hydrate dissociation alone is unlikely to cause large‐scale submarine landslides.
Observed deep‐water (much greater than 600 mbsl) turbidites containing geochemical evidence of glacial
hydrate dissociation potentially formed from erosion or detachment in the GHSZ pinch‐out zone.

Plain Language Summary Many submarine landslides spatiotemporally correlate with gas hydrate
dissociation. However, direct mechanical evidence supporting whether the overpressure and deformation due to
glacial sea‐level drop‐induced hydrate dissociation are adequate for triggering submarine landslides is lacking.
Here, we present two‐dimensional thermal‐hydraulic‐chemical and geomechanical models of a gas‐hydrate
system in response to glacial sea‐level drops and conduct sensitivity analyses of the model behavior under a
wide range of key conditions from a global perspective. Our simulations suggest that glacial hydrate
dissociation might induce plastic deformation or slip at localized and small scales only possibly within the
shallow‐water portion of the hydrate stability zone. The deep part (>1,050 m below sea level) of the bottom
boundary of the hydrate stability zone could not slip; therefore, the entire bottom boundary of the hydrate
stability zone was not a complete slip surface. We demonstrate that glacial hydrate dissociation alone is unlikely
to trigger large‐scale submarine landslides. Our work highlights the vicinity of the upper limit of the hydrate
stability zone (where the base of the hydrate stability zone intersects the seafloor) as an important area for
investigating overpressure and focused fluid flow, localized plastic deformation or slip, and downslope
sediment transport related to glacial hydrate dissociation.

1. Introduction
Many submarine landslide scars are found in gas hydrate fields, and the ages of some slides show a temporal
correlation between increased slumping frequency and the last glacial sea‐level lowstands. Known examples are
found at the southern Carolina Rise and inner Blake Ridge (Paull et al., 1996); at the Amazon Fan (Maslin
et al., 1998); and at the Dongsha area of the northern South China Sea (Huang et al., 2022). A glacial sea‐level
drop could induce a decrease in pore pressure, and if the gas hydrate stability zone (GHSZ) thinning due to pore
pressure decreases overwhelms the trend of GHSZ thickening due to glacial temperature decreases, this process
could induce hydrate dissociation at the base of the GHSZ (BGHSZ). Hydrate breakdown can reduce sediment
cohesion (Liu et al., 2018), and the occurrence of free gas in the intergranular space due to hydrate dissociation
can increase pore pressure and reduce the shear strength of sediments (Locat & Lee, 2002). Therefore, glacial
hydrate dissociation can degrade slope stability (Paull et al., 2003) and has been predicted to be the cause of some
submarine landslides during glacial periods (Maslin et al., 2005; Owen et al., 2007).
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Since the early 2000s, scientists have investigated whether hydrate dissociation can induce slumping via nu-
merical modeling studies. In one‐dimensional models (Handwerger et al., 2017; Liu & Flemings, 2009), the heat
and mass transfer, which influence overpressure accumulation, and geomechanical deformation in the lateral
direction (i.e., at different water depths along the slope) are not considered. In two‐dimensional geomechanical
models, overpressure is either not calculated from the heat and mass balance equations for the gas, pore water and
hydrate system (Nixon & Grozic, 2007) or is estimated from ocean warming‐induced hydrate dissociation (Priest
& Grozic, 2016; Reagan et al., 2011; Sultan et al., 2004). The two‐dimensional geomechanical deformation
caused by the overpressure generated by dynamic hydrate dissociation due to glacial sea‐level drops was not the
primary focus of these numerical studies and has not been adequately evaluated.

Here, we present numerical simulations to investigate whether glacial hydrate dissociation can induce submarine
landslides. We consider overpressure generation due to glacial hydrate dissociation with pressure‐induced trig-
gering of landslides along localized plastic shear slip planes. We use the geological setting of the Dongsha area in
the northern South China Sea in low‐latitude regions (Figure 1a) as a case study because of several key features
allowing us to investigate links between hydrate dissociation and submarine landslides. First, turbidite deposits
are present between 4.47 and 6.01 m below the seafloor (mbsf) (Figure 1b), with temporal consistency between
the initial time of upper slope slumping (17.93 ka) (Figure 1g) and the occurrence of a global sea‐level lowstand
during the last glacial period (Miller et al., 2020) (Figure 1h). Moreover, there is a record of potential methane
emissions from hydrate decomposition within or beneath the turbidite deposit, as indicated by the heavier δ18O
and lighter δ13C values of the benthic foraminifera Uvigerina spp (abbreviated for several species) and heavier
δ34S values of chromium‐reducible sulfur before the end of the Last Glacial Maximum (Figure 1c–1f). Our
simulations present systematic and direct fluid dynamics and geomechanical evidence for the links between
glacial hydrate dissociation and submarine landslides.

2. Methods
Hydrate dissociation, fluid flow and thermal behavior in the gas hydrate system were simulated using the parallel
version of the TOUGH+HYDRATE code with the kinetic hydrate reaction model (Moridis, 2014). At the end of
the calculation, the pore pressure was imported into the FLAC3D geomechanical simulator to compute the
deformation with the Mohr‒Coulomb elastoplastic mechanical model.

The model system is a two‐dimensional slice of a slope in the upper shallow‐water area of Sites 973–3
(1,026 mbsl) and 973–4 (1,666 mbsl) (Figures 1a and 1i). The model geometry is shown in Figure 1i, and the
z coordinates are in meters below current sea level (mbsl). The model is presented in detail in Text S1 in Sup-
porting Information S1. The supplementary model parameters and equations used are listed in Table S1 in
Supporting Information S1.

3. Results
The main simulation results are presented for two scenarios. In subsection 3.1, the sea level decreased by 65.22 m
from 35 to 20 ka (4.38 m/kyr on average), and the changes in sea level and seafloor temperature were the same as
those measured at ODP Site 1,148 (Bates et al., 2014) (Figure 1a), as shown by the red line and blue line in
Figure 1h. In subsection 3.2, it was assumed that the sea level decreased by 138.7 m at a rate of 8.0 m/kyr and that
there was no change in seafloor temperature. This assumption may lead to a slight overestimation of hydrate
dissociation since the seafloor temperature generally decreases during glacial periods. Therefore, this assumption
will not underestimate the likelihood of glacial hydrate dissociation inducing slope failure. The value of 138.7 m
represents the maximum sea‐level decrease from the last interglacial highstand (+8.7 m at 124 ka) to the last
glacial lowstand (− 130 m at 20 ka) (Bates et al., 2014). The value of 8.0 m/kyr is lower than the maximum sea‐
level decrease rate (13.8 m/kyr from 47.3 to 45.7 ka), close to the second (8.23 m/kyr from 81.8 to 72.6 ka) and
third (8.18 m/kyr from 24 to 20 ka) highest decrease rates, and greater than the average decrease rate between 124
and 20 ka (1.33 m/kyr) (Bates et al., 2014).

3.1. The Sea Level Drop of 65.22 m From 35 to 20 ka

The hydrate saturation decreased in one of two ways: dissolution or dissociation (Figures 2a or 2e). When the
pressure–temperature–salinity conditions are suitable for stable hydrates, dissolution occurs when hydrates come
into contact with ocean water or pore water undersaturated in methane, producing aqueous methane and liquid
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water. Dissociation occurs when the pressure–temperature–salinity conditions are no longer favorable for stable
hydrates, producing gaseous methane and liquid water.

During the sea‐level fall, there was hydrate dissociation at the BGHSZ and in the near‐seafloor sediments near the
upper limit of the GHSZ (Figures 2a or 2e). The hydrate dissociation at the shallow part of the BGHSZ was
slightly less than that at the deep part of the BGHSZ (Figure 2a). The shallow BGHSZwas more influenced by the
decrease in seafloor temperature from 35 to 20 ka (i.e., 0.5074°C) (Figure 1h), which inhibited hydrate

Figure 1. The background conditions and conceptualized model domain at the study site. (a) Map showing the location of the
Dongsha area. Panels (b), (c), (d), (e) and (f) show the sand (grain diameter >0.063 mm) content, the number of Uvigerina
spp., the δ18O values ofUvigerina spp., the δ13C values ofUvigerina spp., and the δ34S values of chromium‐reducible sulfur
in the 973–4 core, respectively (Huang et al., 2022). (g) The 14 C calendar ages of planktonic foraminifera in the 973–4 core
(Lin et al., 2015; Shi et al., 2014; Zhang et al., 2015, 2018; Zhuang et al., 2015). (h) The red and blue lines show the sea level
and deep water temperature changes, respectively, at ODP Site 1,148 since the last interglacial highstand (Bates et al., 2014).
The gray line shows the global sea‐level changes from Miller et al. (2020). (i) The conceptualized geometry of the two‐
dimensional model domain in the main simulations. In panels (a) and (i), the water depths are from the General Bathymetric
Chart of the Oceans (GEBCO) 2020 bathymetry data set.
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dissociation. When this glacial decrease in temperature was not considered, the hydrate dissociation at the shallow
BGHSZ was similar to that at the deep BGHSZ (Figure 2e). In the near‐seafloor sediments near the upper limit of
the GHSZ, sea‐level and pressure drops could induce hydrate dissociation, and contact with the overlying hy-
drostatic ocean water facilitated overpressure dissipation (Figures 2c or 2g) and a shift in the boundary of the
hydrate stability zone, which facilitated gradual hydrate dissociation toward increasing sediment depths and water
depths with decreasing sea level (Figures 2a or 2e).

There was hydrate dissolution instead of dissociation at the seafloor (or below the sulfate–methane transition zone
when hydrates were present below the sulfate–methane transition zone in nature) that was deeper than the upper

Figure 2. Modeled results from the main simulations. Positive values of the vertical effective stress minus cohesion
(σv ef f − C> 0) indicate the potential plastic deformation zone. The green, purple and orange lines in panels (c), (d), (g) and
(h), and in Figures 3, 4 and Figure S4 in Supporting Information S1 indicate the locations of the initial BGHSZ, the modeled
base of the hydrate zone after sea‐level drops and the theoretical BGHSZ after sea‐level drops (assuming that the temperatures
are the same as the initial temperatures and that the pore pressure is hydrostatic), respectively. In panels (c) and (d), the locations
of the purple lines are very close to those of the green lines. In panel (g), the location of the purple line is generally the same as
that of the bottom boundary of the overpressure zone. In panels (d) and (h), the gray areas represent σv ef f − C≤ 0.
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limit of the GHSZ (Figures 2a or 2e). Unless there was a sufficient methane supply from deep layers to form
additional hydrates, this hydrate dissolution would occur constantly and gradually toward increasing sediment
depths. A long contact time with bottom water induced considerable hydrate dissolution (Figure 2a). In the near‐
seafloor sediments near the upper limit of the GHSZ, there should be hydrate dissolution due to contact with
bottom water before sea‐level and pressure drops shifted the local system outside the hydrate stability zone, after
which there should be hydrate dissociation.

Free gas occurred at the BGHSZ and in the near‐seafloor sediments near the upper limit of the GHSZ due to
hydrate dissociation because of sea‐level drops. The maximum gas saturation was approximately 27.9%
(Figure 2b).

Overpressure occurred at and above the BGHSZ (Figure 2c). The maximum overpressure was approximately
0.84 MPa. The vertical effective stress minus cohesion was positive at the tip of the GHSZ and at the shallow
BGHSZ, where z > − 718.6 m, indicating the potential plastic deformation zone (σv ef f − C> 0; blue area in
Figure 2d).

3.2. A Sea‐Level Drop of 138.7 m at a Rate of 8.0 m/kyr

In this scenario, the results (Figures 2e–2h) were significantly greater than those resulting from a sea‐level drop of
65.22 m (Figures 2a–2d). The maximum gas saturation reached 49.4% (Figure 2f). The maximum overpressure
reached 1.41 MPa (Figure 2g). The accumulated overpressure at the BGHSZ and the endothermic character of
hydrate dissociation tended to deepen the BGHSZ in return; thus, the shifted depths (i.e., the depth interval of
hydrate dissociation) were smaller than the theoretical values. This was illustrated by the locations of the modeled
base of the hydrate zone (purple lines in Figures 2c, 2d, 2g and 2h) and the theoretical BGHSZ (orange lines in
Figures 2c, 2d, 2g and 2h) after sea‐level drops. Therefore, this gas‐hydrate system at the BGHSZ was likely a
self‐inhibited system (Liu & Flemings, 2009). The potential plastic deformation zone formed in the shallow part
of the GHSZ and at the BGHSZ, where z > − 967.6 m (Figure 2h).

Positive x‐direction displacement (rightward) occurred near the initial GHSZ tip (i.e., the shallow end of the green
line in Figure 3a), just beneath the shallow end of the modeled base of the hydrate zone (the purple line in
Figure 3a), within the modeled hydrate zone where z > − 650.0 m, and beneath the deep part of the modeled base
of the hydrate zone where x > 6,250 m (Figure 3a). The maximum positive x‐direction displacement was
approximately 0.86 m at equilibrium. Negative x‐direction displacement (leftward) occurred beneath the modeled
base of the hydrate zone, where x < 6,250 m (Figure 3a).

The GHSZ exhibited generally positive z‐direction displacement (upward) (Figures 3b and 4a). The near‐seafloor
area, which was within or just above the plastic deformation zone where x < 3,250 m, had great positive z‐di-
rection displacements (Figures 3b and 4a), indicating potentially significant sediment uplift or expansion. The
maximum positive z‐direction displacement was approximately 2.69 m at the aforementioned near‐seafloor area
at equilibrium. Negative z‐direction displacement (downward) occurred beneath the modeled base of the hydrate
zone, where x < 7,750 m (Figures 3b and 4a), resulting from the downward pressure from the overpressure just
above the modeled base of the hydrate zone (Figure 2g).

Significant volumetric strain and shear strain occurred only at the top boundary (near‐seafloor boundary) and
bottom boundary (BGHSZ boundary) of the plastic deformation zone (Figures 3c and 3d).

4. Discussion
4.1. Likelihood of Glacial Hydrate Dissociation Causing Submarine Landslides

The significant positive x‐direction displacement, positive z‐direction displacement, volumetric strain and shear
strain suggest that significant local plastic deformation could occur at the near‐seafloor tip of the GHSZ (e.g.,
generally less than 1 km in length on the slope and less than 55 m below the local seafloor) (Figures 3a, 3d and 4a).
That is, the mechanical displacements and related instability were limited to the hydrate zone at shallow water
depths (Bryn et al., 2005). Moreover, the sediment plastic shear deformations should be confined to a short
distance because of the stability and support of the downhill sediments above the BGHSZ, indicated by the
negative or approximately zero x‐direction displacements (leftward or approximately motionless in the horizontal
direction) above the BGHSZ, where x > 3,250 m (Figures 3a and 4a).
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There should be a complete slip surface and significant relative displacement along the complete slip surface in a
submarine landslide; that is, the displaced mass moves on a relatively thin zone of intense strain, that is, a slip
surface (Locat & Lee, 2002; Talling et al., 2014). A slip surface is considered complete if it intersects both the
upper and lower seafloor slopes, as illustrated in Figure 4a in Talling et al. (2014). As shown in Figures 3a–3d,
there could be large deformation or local sliding along the BGHSZ boundary of the plastic deformation zone, as
indicated by comparisons of the x‐direction displacement across this boundary, the z‐direction displacement
across this boundary, and the significant volumetric and shear strain at this boundary. However, this potential slip
surface was not a complete slip surface because it did not continue to extend and intersect the lower seafloor slope
at an obtuse angle between the slip surface and the lower seafloor slope. This can be explained as follows. The
bottom boundary of the plastic deformation zone is spatially similar to the BGHSZ, and the depth of the BGHSZ
increases with increasing initial seafloor water depth on the slope. If the hydrate dissociation‐induced over-
pressure is greater than the values estimated in this work, the bottom boundary of the plastic deformation zone

Figure 3. Modeled displacement and strain in two simulation scenarios. A positive (negative) x‐direction displacement
indicates rightward (leftward) displacement, and a positive (negative) z‐direction displacement indicates upward
(downward) displacement.
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should extend toward greater depths rather than toward shallower sediment depths (mbsf) to intersect with the
lower seafloor slope. Therefore, glacial hydrate dissociation was unlikely to form a complete slip surface or
induce large‐scale submarine landslides.

4.2. General Implications for the Possibility of Glacial Hydrate Dissociation Causing Submarine
Landslides

The trends of our findings are representative of the general mechanisms that occur on marine hydrate‐bearing
slopes worldwide. This is supported as follows. First, the amplitudes of the sea‐level drops in this work (Bates
et al., 2014) are consistent with the global sea‐level drops during the last glacial period (Miller et al., 2020)
(Figure 1h). Therefore, the sea‐level drop amplitudes in this work are representative of or comparable to those on
marine hydrate‐bearing slopes worldwide during the last glacial period. Second, a sensitivity analysis of the

Figure 4. Modeled displacement vectors in two simulation scenarios. Panels (a) and (b) correspond to the displacement
results in Figures 3a, 3b, 3e and 3f, respectively. The magnitudes of the vectors are directly proportional to the lengths of the
vectors, and a length representing a magnitude of 1.0 m is shown in the upper right corners.
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model was conducted under various conditions, namely, sea‐level drop rate, slope angle, initial hydrate distri-
bution within the GHSZ and cohesion models of hydrate‐bearing sediments, to include broad modeling scenarios
and confirm the robustness of the broad conclusions. The small scale of the deformation at the near‐seafloor tip of
the GHSZ and the incompleteness of the potential slip surface (Section 4.1) remain unchanged even if there is a
higher rate of sea‐level drop (411.4 m/kyr) (Text S2 and Figures S2a, S2d and S2e in Supporting Information S1),
a higher‐angle slope (10°) (Figures 3e, 3h and 4b, S2b, S2d and S2e in Supporting Information S1), or a 50 m thick
hydrate layer only above the BGHSZ at the initial time (Text S2 in Supporting Information S1). 411.4 m/kyr was
the maximum sea‐level drop rate (from 54.37 to 54.3 ka) during the last glacial period according to the global sea
level data from Miller et al. (2020). As a result, sufficient sea‐level drop amplitudes (65.22 or 138.7 m), sea‐level
drop rates (4.38 m/kyr on average, 8 m/kyr or 411.4 m/kyr) and slope angles (2.34° or 10°) are assessed. Notably,
the aforementioned results and discussions (including Section 4.1) are based on low cohesion values for hydrate‐
bearing sediments (C = 0.07 + 0.076Sh(MPa); 0.07–0.1004 MPa for a hydrate saturation Sh from 0% to 40%)
(Equation (3) in Text S1 in Supporting Information S1). For cohesions that were greater and likely more
reasonable (C = 0.28 + 2.0Sh(MPa); 0.28–1.08 MPa for Sh from 0% to 40%) (Waite et al., 2009), the modeled
plastic deformation zone could become too small to distinguish (Figures S2f, S2g and S2h in Supporting In-
formation S1), let alone trigger sliding or large‐scale submarine landslides.

The modeled water depths of the BGHSZ pinch‐out zone (where the BGHSZ intersects the seafloor) in this work
(520–535 mbsl) were similar to those in low‐latitude regions globally, for example, 600 ± 50 mbsl on the
Hikurangi margin (Mountjoy et al., 2014) and 515–520 mbsl at the Rio Grande Cone (Ketzer et al., 2020). The
modeled extent of the potential plastic deformation zones should be more representative of those in low‐latitude
regions than those in high‐latitude regions. This is because the BGHSZ pinch‐out in high‐latitude regions (e.g.,
380–400 mbsl off Svalbard (Berndt et al., 2014)) was generally shallower than that in low‐latitude regions, partly
due to lower seafloor temperatures (e.g., approximately 3°C off Svalbard (Berndt et al., 2014)). In high‐latitude
regions, the potential plastic deformation zones should be in upper and shallower water regions due to their
shallower BGHSZ pinch‐outs. However, in both low‐latitude and high‐latitude regions, potential plastic defor-
mation or slip is limited within the shallow‐water region of the GHSZ, and the entire BGHSZ was not a complete
slip surface due to a lack of slip along the deep portion of the BGHSZ (Figure S3d in Supporting Information S1).

4.3. Comparisons With Other Models and Field Evidence and Explanations of Observed Deep‐Water
Turbidites

Our results suggest that the gas pressure beneath the BGHSZ might exceed the overburden stress plus low
cohesion values where the BGHSZ depth is shallower than 1,050 mbsl (Figure S2b in Supporting Informa-
tion S1), supporting the case of an initial BGHSZ depth of approximately 925 mbsl in Liu and Flemings (2009).
However, our two‐dimensional modeling suggests that glacial hydrate dissociation alone was unlikely to form a
complete slip surface and thus unlikely to induce large‐scale slope failures. Instead, local instability (e.g., plastic
strain) was more likely to occur in the GHSZ pinch‐out zone (Figures 3 and 4). This local instability is consistent
with field observations showing that the landward edge of creeping coincides with the BGHSZ pinch‐out at the
seafloor (600 ± 50 mbsl) in the Tuaheni Landslide Complex (Pecher et al., 2018). Mountjoy et al. (2014) showed
that there could be compressional deformation in the upper slide debris region and extensional deformation in the
lower slide debris region separated by the BGHSZ pinch‐out in hydrate‐controlled plastic deformation structures
according to seismic reflection and bathymetry data. Our simulations produced compression (small blue areas
surrounded by red areas in Figures 3a and 3e) and extension zones (red areas in Figures 3a and 3e) in the GHSZ
pinch‐out zone. The local instability in the GHSZ pinch‐out zone might be somewhat enhanced when coinciding
with the pressure release (up to several bars) during burial‐driven gas hydrate recycling (Gupta et al., 2023). The
GHSZ pinch‐out zone is an important area for investigating overpressure and focused fluid flow (Figure S4),
localized plastic deformation or slip, or downslope sediment transport related to glacial hydrate dissociation (e.g.,
Daigle et al., 2020; Flemings, 2021; Mountjoy et al., 2014; Pecher et al., 2018; Priest & Grozic, 2016; You
et al., 2022).

The observed turbidite deposits occurred at a wide range of seafloor water depths, for example, 1,026–2,998 mbsl
near our study site (2.45–8.5 mbsf) (Chen et al., 2014; Huang et al., 2022) and 750–4,500 mbsl on the southern
Carolina Rise and inner Blake Ridge (approximately 2 mbsf) (Paull et al., 1996). That is, the observed turbidite
deposits formed at water depths that could be too deep or too far from the GHSZ pinch‐out zone (e.g., <600 mbsl)
(Hühnerbach et al., 2004; Talling et al., 2014). The deep‐water (much greater than 600 mbsl) area was unlikely to
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have experienced plastic creep due to hydrate dissociation or was directly influenced by plastic creep locally at the
GHSZ tip area. In fact, there could be seafloor erosion of uplifted or expanded ridges close to the GHSZ pinch‐out
zone (Pecher et al., 2005) or downslope movement of detached materials from the GHSZ pinch‐out zone
(Mountjoy et al., 2014). That is, erosion and detachment from the GHSZ pinch‐out zone, which was deformed
(e.g., uplifted or expanded) by glacial hydrate dissociation (Figures 3b, 3f and 4), could have occurred. This may
be one of the potential mechanisms (Elger et al., 2018; Lee, 2009; Talling et al., 2014) explaining the occurrence
of thin layers of deep‐water (much greater than 600 mbsl) turbidite containing geochemical evidence of glacial
hydrate dissociation (Figures 1c–1f) in marine gas hydrate fields worldwide.

5. Conclusions
Our simulations suggest that glacial hydrate dissociation might induce plastic deformation or slip only possibly in
the shallow‐water region of the GHSZ. This region is generally smaller than the area enclosed by three points, that
is, the BGHSZ–seafloor intersection, the seafloor at ∼600 mbsl and the BGHSZ at ∼1,050 mbsl in low‐latitude
regions. The GHSZ pinch‐out zone and the shallow part (<1,050 mbsl) of the BGHSZ might slip at localized and
small scales. The deep part (>1,050 mbsl) of the BGHSZ could not slip; therefore, the entire BGHSZ was not a
complete slip surface. Glacial hydrate dissociation alone was unlikely to trigger large‐scale submarine landslides.
The observed deep‐water (much greater than 600 mbsl) turbidites containing geochemical evidence of glacial
hydrate dissociation might have been eroded or detached from the GHSZ pinch‐out zone deformed (e.g., uplifted
or expanded) by glacial hydrate dissociation.
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