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Abstract: The presence and extent of cribriform patterned Gleason 4 (G4) glands are associated with
poor prognosis following radical prostatectomy. This study used whole-mount prostate histology and
multiparametric magnetic resonance imaging (MP-MRI) to evaluate diffusion differences in G4 gland
morphology. Fourty-eight patients underwent MP-MRI prior to prostatectomy, of whom 22 patients
had regions of both G4 cribriform glands and G4 fused glands (G4CG and G4FG, respectively).
After surgery, the prostate was sliced using custom, patient-specific 3D-printed slicing jigs modeled
according to the T2-weighted MR image, processed, and embedded in paraffin. Whole-mount
hematoxylin and eosin-stained slides were annotated by our urologic pathologist and digitally
contoured to differentiate the lumen, epithelium, and stroma. Digitized slides were co-registered
to the T2-weighted MRI scan. Linear mixed models were fitted to the MP-MRI data to consider the
different hierarchical structures at the patient and slide level. We found that Gleason 4 cribriform
glands were more diffusion-restricted than fused glands.

Keywords: MP-MRI; diffusion; cribriform glands; prostate cancer; Gleason

1. Introduction

Prostate cancer (PCa) accounts for 26% of new cancer diagnoses in men, making
it the most common non-cutaneous cancer in men. An estimated 249,000 new cases
of PCa will be diagnosed in 2021, although not all cases have a high risk of metastatic
potential [1]. Prostate cancer is graded using the Gleason grading scale, which assigns
a score corresponding to the morphologic characteristics of the two most predominant
glandular patterns. These patterns assign patients into five Grade Groups (GG) to predict
prognosis [2]. Predominantly Gleason 3 (G3) cancers carry low metastatic risk and are now
monitored through active surveillance. Clinically significant cancers, including Gleason
grade 4 (G4) and grade 5 (G5), are more aggressive and are more likely to progress and
cause death [3].

Tomography 2022, 8, 635–643. https://doi.org/10.3390/tomography8020053 https://www.mdpi.com/journal/tomography

https://doi.org/10.3390/tomography8020053
https://doi.org/10.3390/tomography8020053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0000-0003-4010-7737
https://doi.org/10.3390/tomography8020053
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/article/10.3390/tomography8020053?type=check_update&version=2


Tomography 2022, 8 636

Since the original 2011 discovery that biochemical recurrence was strongly related
to the presence and extent of cribriform glands [4], the cribriform pattern has no longer
been considered a type of Gleason 3 cancer and was entirely moved to Gleason 4. The
2014 International Society of Urological Pathology (ISUP) consensus conference included
cribriform along with fused and poorly formed glands as defining Gleason pattern 4 [5].
Fused glands (FG) are a group of small glands that have lost any intervening stroma [6].
Cribriform glands (CG) are glands composed of a proliferation with multiple punched-out
lumina and no intervening stroma, distending a glandular space [6,7]. Figure 1 shows
representative examples of G4FG and G4CG morphologies from our cohort. A cribriform
pattern is associated with a worse prognosis than poorly formed or fused glands [5] and
has increased genomic instability and distinct molecular alterations compared to other
patterns as defined by an increased Decipher risk score [8,9]. In the initial 2011 study, the
cribriform pattern was present in the majority of cases where prostate-specific antigen
(PSA) failure occurred, but only a small number of those where PSA nonfailures occurred
(p < 0.0001) and had the highest odds ratio for PSA failure compared to other high-grade
cancer patterns [10]. Numerous studies since 2011 have shown cribriform glands to be
predictive of metastasis and death compared to other high-graded cancers, confirming the
aggressiveness of this pattern [4,11–14].
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Figure 1. Patient-specific slicing jigs are modeled to match the slice thickness of the T2-weighted
image (left). The slices are H&E stained, digitized, and annotated for different Gleason patterns
(middle). Representative tiles from areas of Gleason 4 cribriform glands and fused glands (G4CG
and G4FG, respectively) can be seen on the (right, bottom). Prostate tissue segmentation (SEL) was
performed to create masks for the stroma (blue), epithelium (yellow), and lumen (green) (top, right).

Multiparametric magnetic resonance imaging (MP-MRI) has shown promise in im-
proving the diagnostic accuracy of high-grade prostate cancer [15,16]. Apparent diffusion
coefficient (ADC) images are often used to identify areas of prostate cancer that restrict dif-
fusion [17]. Standardization of the prostate imaging reporting and data system (PI-RADS)
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has also improved the consistency of clinical radiology reads [18,19]. Recent studies have
shown MP-MRI outperforming prostate specific antigen (PSA) testing alone in the identifi-
cation of clinically significant PCa [20]. Additionally, when MP-MRI is combined with PSA
testing and MRI guided biopsy, it outperforms systematic transrectal ultrasound-guided
(TRUS) biopsy, therefore reducing unnecessary biopsies that could result in incorrect diag-
nosis or undertreatment [21]. Noninvasive imaging is becoming more standard for staging
and localizing prostate cancer.

Cancer diagnosis involves parallel passing of information between radiology and
pathology to downstream physicians. “RadPath” correlates and integrates radiology
and pathology reporting to mitigate discordance between these findings [22]. Whole-
mount tissue alignment to MP-MRI has enabled non-invasive measurement of pathological
features [23–26]. Recent studies have shown that RadPath techniques can be used to
distinguish between Gleason grades, suggesting that MP-MRI features are sensitive to
histomorphometric features of prostate cancer [27]. This study sought to determine whether
ADC values differed between G4 patterns. We specifically looked at patients with both
G4FG and G4CG to identify subject-specific differences in diffusion. In addition, we looked
at histomorphometric features to assess gland-level differences between G4 patterns.

2. Materials and Methods
2.1. Patient Population

Forty-eight patients undergoing MP-MRI prior to prostatectomy were screened for
inclusion in this institutional review board (IRB) approved study. Written informed consent
was obtained from all patients, ranging in age from 45 to 71 years (mean 61 years). Prior
to surgery, a PSA score was measured with an average score of 9.9 ng/mL (range 3.06 to
27.0 ng/mL). Following radical prostatectomy, inclusion criteria required patients to have
both G4 cribriform patterned tumors as well as regions of G4 fused gland tumors present
within the same slide. This reduced enrollment to 22 patients. Demographic information
for all recruited patients and the study cohort is summarized in Table 1.

Table 1. Demographic information for the patient cohort at the time of radical prostatectomy (RP).

Recruited Patients
(n = 48)

Study Cohort
(n = 22)

Age at RP, years (mean, SD) 61 (5.9) 63 (4.3)

Race (n, %)
African American 7 (15) 3 (13)
White/Caucasian 40 (83) 18 (82)
Other 1 (2) 1 (5)

Preoperative PSA, ng/mL (n, %)
≤10 38 (79) 14 (64)
10.1–20.0 8 (17) 6 (27)
≥20 2 (40 2 (9)

Grade group at RP (n, %)
6 9 (19) 1 (5)
3 + 4 22 (46) 11 (50)
4 + 3 6 (12) 4 (18)
8 8 (17) 4 (18)
≥9 3 (6) 2 (9)

pT (n, %)
1 33 (69) 14 (64)
2 11 (23) 6 (27)
3 4 (8) 2 (9)

Gleason 4 Subtypes (n, %)
Cribriform glands 27 (56) 22 (100)
Fused glands 40 (83) 22 (100)
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2.2. Imaging and MRI Pre-Processing

MP-MRI was acquired using a 3T MRI scanner (General Electric, Waukesha, WI, USA)
using an endorectal coil. Each protocol included T2-weighted imaging, as well as field-of-
view (FOV) optimized and constrained undistorted single shot (FOCUS) diffusion weighted
imaging (DWI) with ten b-values (0, 10, 25, 50, 80, 100, 200, 500, 1000, and 2000 s/mm2).

T2-weighted images were normalized by dividing by the intensity standard deviation
within the prostate to correct for inter-subject intensity variation [28]. Apparent diffusion
coefficient (ADC) maps were calculated from two combinations of b-values (0–1000 and
1000–2000). The b0 image was aligned with the T2 image using FMRIB’s Linear Image
Registration Tool (Functional Magnetic Resonance Imaging of the Brain Library, Oxford,
UK). Diffusion maps were then transformed into the T2 space using the calculated trans-
formation matrix [29]. Alignment was verified and manually corrected if misregistration
occurred by use of the tkregister tool from FreeSurfer (http://surfer.nmr.mgh.harvard.edu/,
accessed on 18 May 2018).

2.3. Surgery and Tissue Sectioning

Prostatectomy was performed using the da Vinci robotic system (Intuitive Surgical,
Sunnyvale, CA, USA) by a single fellowship-trained surgeon (KMJ) approximately two
weeks following imaging [30,31]. Surgical specimens were fixed in formalin overnight,
inked, and sectioned using a custom slicing jig [26]. Prostate masks were manually seg-
mented from the patient’s T2-weighted image using AFNI (Analysis of Functional Neu-
roImages, http://afni.nimh.nih.gov/, accessed on 5 April 2019) [32]. Patient specific
slicing jigs were designed using Blender 2.79b (https://www.blender.org/, accessed on
22 March 2018) to match the orientation and slice thickness of each patient’s T2-weighted
image [27,33–35], and 3D printed using a fifth-generation MakerBot (MakerBot Industries,
Brooklyn, NY, USA).

2.4. Tissue Segmentation and Annotation

Whole-mount tissue sections were paraffin embedded and slides from the sections
were stained for hematoxylin and eosin (H&E). Slides were digitally scanned using a Nikon
sliding stage microscope (Nikon Metrology, Brighton, MI, USA). A urological fellowship-
trained pathologist (KAI) annotated the whole-mount images using the Gleason grading
system [5]. Cribriform glands were distinguished from fused (non-cribriform) glands be-
cause of the notable outcome differences between the two types of Gleason 4 tumors [4,10].
Annotations were manually drawn on 4X down-sampled versions of the digitized histology
images using a Microsoft Surface Pro 4 (Microsoft, Seattle, WA, USA). Custom code devel-
oped in MATLAB (The MathWorks, Natick, MA, USA) automatically segmented lumen
and epithelium [34]. An example of an annotated slide and the automated prostate segmen-
tation is shown in Figure 1. This study included a total of 52 whole-mount slides containing
both G4FG and G4CG patterns from 22 patients with clinically significant prostate cancer.

2.5. Histology Co-Registration

Digitized whole-mount samples were co-registered to the T2-weighted image us-
ing previously published software and techniques [25,27,28,33–36]. A control-point co-
registration was applied using manually placed analogous points in each modality, specif-
ically along the boundaries of the organ and on clearly identifiable landmarks within
the organ. Approximately 20 to 50 control points were placed on each slide and then
down-sampled, along with the whole-mount slide, to MRI resolution. Using MATLAB’s
‘fitgeotrans’ function, a nonlinear spatial transform was calculated from the control points
and applied using the ‘imwarp’ function. A local weighted-means transform was used
for bringing the histology into MRI space to account for non-uniform distortions caused
by compression from the endorectal coil. This transform was additionally applied to the
pathologic annotation and segmentations (Figure 2) [33]. A nearest-neighbor interpolation
was used for the annotated image to retain the integer values.

http://surfer.nmr.mgh.harvard.edu/
http://afni.nimh.nih.gov/
https://www.blender.org/
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Figure 2. Example of the ADC maps and pathologist annotations aligned to the T2-weighted image
(top). The annotation key is as follows: G4FG (yellow) G4CG (pink), G3 (green) and benign atrophy
(black). The stroma epithelium and lumen segmentations shown on the (bottom) are likewise aligned
to the T2.

2.6. Linear Regression Models

To test the hypotheses that ADC and histomorphometric features differed between
G4FG and G4CG, a linear mixed model was used. Linear mixed model (LMM) is a method
to analyze data that are non-independent and hierarchical which allows both fixed and
random effects [37–41]. In this analysis, we fixed a one-layer LMM (1) to consider the
different hierarchical structures, considering patient as the random effect. We fixed an
additional model (2) considering the nested effect of slide within patient, as can be found
in the Supplement. The main effect assessed whether the ADC value and lumen, stromal,
and epithelial density differ between G4 patterns. All tests were 2-sided and conducted
at the 0.05 significance level. Statistical analyses were performed using R (The R Project
for Statistical Computing, https://www.r-project.org, accessed on 18 August 2021) [42].
Specifically, the lme4 package was used for mixed effect models, and the lmerTest package
was used for hypothesis testing in the mixed effects models.

3. Results

The results from fitted model (1) are shown in Table 2. Both ADC1000 and ADC2000,
as well as epithelial density, were observed to be lower in G4CG patterns than G4FG (all
p < 0.001). Additionally, G4CG presence was associated with higher lumen and stromal
densities compared to G4FG (both p < 0.001). The random effect estimates the standard
deviation for random intercept and error term (residual) for ADC1000 were 0.231 and 0.354,
respectively. Results from model (2) (Table S1) demonstrated analogous contrasts with the
results from model (1).

https://www.r-project.org
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Table 2. One-Layer LMM considering patient as random effect. Estimate and 95% Confidence
Intervals given in units of mm2/s.

ADC1000

Fixed effect Estimate 95% CI t-value Pr (>|t|)

Intercept 1.274 (1.176, 1.373) 25.88 <0.0001

Cribriform vs.
Fused Glands −0.096 (−0.103, −0.089) −26.682 <0.0001

Random effect Std Dev 95% CI

Subject (Intercept) 0.231 (0.172, 0.313)

Residual 0.354 (0.352, 0.355)

ACD2000

Fixed effect Estimate 95% CI t-value Pr (>|t|)

Intercept 0.933 (0.862, 1.003) 26.601 <0.0001

Cribriform vs.
Fused Glands −0.062 (−0.066, −0.057) −26.428 <0.0001

Random effect Std Dev 95% CI

Subject (Intercept) 0.164 (0.123, 0.223)

Residual 0.229 (0.228, 0.230)

Lumen

Fixed effect Estimate 95% CI t-value Pr (>|t|)

Intercept 0.0515 (0.041, 0.062) 9.755 <0.0001

Cribriform vs.
Fused Glands 0.0173 (0.015, 0.02) 12.295 <0.0001

Random effect Std Dev 95% CI

Subject (Intercept) 0.0244 (0.018, 0.033)

Residual 0.138 (0.138, 0.139)

Stroma

Fixed effect Estimate 95% CI t-value Pr (>|t|)

Intercept 0.831 (0.799, 0.863) 51.682 <0.0001

Cribriform vs.
Fused Glands 0.094 (0.088, 0.099) 35.276 <0.0001

Random effect Std Dev 95% CI

Subject (Intercept) 0.0749 (0.056, 0.102)

Residual 0.260 (0.259, 0.261)

Epithelium

Fixed effect Estimate 95% CI t-value Pr (>|t|)

Intercept 0.118 (0.088, 0.147) 7.971 <0.0001

Cribriform vs.
Fused Glands −0.111 (−0.115, −0.106) −50.11 <0.0001

Random effect Std Dev 95% CI

Subject (Intercept) 0.0689 (0.051, 0.094)

Residual 0.217 (0.216, 0.218)

4. Discussion

In this study, whole-mount tissue slices taken after radical prostatectomy were aligned
to the patient’s T2-weighted image to assess both diffusion and histomorphometric dif-
ferences between Gleason pattern 4 tumors. Linear regression models of ADC values
and histomorphometric features found that G4CG was more diffusion-restrictive than
G4FG. Additionally, we found that epithelial density was higher in G4CG while lumen and
stromal densities were lower compared to G4FG.
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Detecting tumor response early in the treatment process is desirable in cancer imaging.
Diffusion weighted imaging has been useful for imaging cancer as it shows areas of low
water diffusivity non-invasively. Areas of cancer appear darker on ADC images compared
to benign tissue. The results of this study suggest that ADC may be lower in G4CG than
in G4FG in prostate cancer, suggesting that more deleterious pathologies are associated
with a more restricted diffusion within grade groups. These results could help drive
surgical intervention, as targeting the darkest areas of the ADC image for biopsy could
result in identifying the presence of G4CG and prevent underdiagnosis that could delay
patient treatment.

One major limitation of this study is the relatively small patient cohort of 22 patients.
Future studies should look in larger populations to provide a more robust understanding
of the relationship between diffusion and histomorphometric differences between Gleason
pattern 4 tumors. A larger patient cohort could also determine whether machine learn-
ing and deep learning applications can further differentiate diffusion in Gleason pattern
4 tumors. Additionally, there were wide ranges in patient Gleason scores and baseline
PSA levels. Future studies should determine whether DWI performance varies based on
Gleason score and PSA levels at diagnosis, since these analyses were beyond the scope of
this study.

We used custom, patient-specific prostate slicing jigs modeled from the T2 image to
optimize the orientation of tissue sectioning; however, histologic slides used in this study
were cut at 10 µm, averaging 5 slices per patient, sampling a small portion of the full
4-mm MRI slice. While T2-weighted images allow for greater visualization of anatomical
landmarks, efforts to align, scale, and resample diffusion maps and annotated regions of
G4 tumors to the T2 image may have introduced minor alignment differences between
images. Future studies should determine downstream effects on analyses from errors in
MRI co-registration.

5. Conclusions

We demonstrate in a cohort of 22 patients, that cribriform glands were more diffusion-
restricted than fused glands in Gleason pattern 4 tumors within patient. This information
may be helpful for clinical decision making both prior to surgery and in radiation treatment
dose planning. Future studies should look in larger populations and determine whether
other texture features differ between G4 patterns.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography8020053/s1, Table S1: Two-Layer LMM considering
the slides nested within patients as the random effect. Estimate and 95% Confidence Intervals given
in units of mm2/s.
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