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ABSTRACT OF THE DISSERTATION 

 

Neural computations for behaviorally relevant information storage and retrieval 
from seconds to hours 

 

by 
 
 

Siavash Ahmadi 
 
 

Doctor of Philosophy in Biology 
 
 

University of California San Diego, 2020 
 
 

Professor Jill K. Leutgeb, Chair 
 
 
 

Episodic memories unfold in space and time, typically in a sequential manner. The 

hippocampus, being an effective sequence generator, critically supports the acquisition and recall 

of episodic memories. Further, it is thought to accomplish this by implementing a “cognitive 

map”—and internal representation of relations among external events. However, several aspects 

of how the encoding, maintenance, and retrieval of sequences are mediated at the hippocampal 

neuronal level are not well-understood. Moreover, it is unclear how the hippocampus continues 

to process established cognitive maps to use them for guiding behavior at a later time. My thesis 

consists of two studies combining experimental and computational approaches in which I 
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demonstrate how the hippocampus implements sequential computations to support episodic 

memory. To understand how the hippocampus might act as a cognitive map, first I examine how 

animals display stable memory-guided behaviors despite substantial reorganization of 

representations in the hippocampus code for space (i.e., change in the correspondence of neural 

activity to constant external/internal variables). In this study, I uncover several aspects of neural 

dynamics in terms of spatial and temporal co-firing of neural ensembles which support memory. 

I also investigate how subpopulations representing specific memories are reactivated after 

learning to support future memory retrieval. In the second study, I investigate the phenomenon of 

phase precession which is thought to constitute the “low-level” basis for forming and 

orchestrating multi-neuronal sequential activity that is repeatedly manifested in behavior. By 

independently controlling converging inputs (DG and MEC) onto the same neural network 

(hippocampal CA3), I elucidate the distinct roles of these inputs in organizing the temporal codes 

of CA3. I propose a simple computational model that explains the observations and makes 

quantitative predictions for future testing. I conclude by discussing how the phenomena 

discovered in the two studies are related, and propose a framework for testing my predictions in 

future experiments. Together, these investigations advance our understanding of hippocampal 

dynamics that support encoding, maintenance, and retrieval processes by dissecting multiple 

circuits and distinct neuronal populations within them.
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INTRODUCTION 

Episodic memory and the brain structures supporting it 

Language, symbolic reasoning, a sophisticated theory of mind, and the ability to produce 

and appreciate art might set us apart from other animals, but what distinguishes us from each 

other no doubt stems from our personal autobiographical, or episodic, memory. Memories of our 

childhood, our parents, friends, life events, and personal secrets are what make us who we are as 

individuals. Without them, we might still possess the uniquely human cognitive abilities, but we 

would no longer be who we used to be. In this dissertation, I investigate the neural mechanisms 

underlying some forms of episodic memories that are thought to establish them over a few 

seconds and maintain them for many hours and days. 

In psychology and neuroscience, episodic or autobiographical memory is defined as the 

memory of events that take place within a spatial and temporal context. An instance of an 

episodic memory may be remembered as “I bought bread from the bakery yesterday morning.” 

In humans, episodic memory is accompanied by autonoetic consciousness (Tulving, 1983) 

whereby a personally experienced event is remembered as such. Autonoetic consciousness is 

one’s ability to imagine oneself back within the remembered memory as if it were happening at 

the moment of imagination. Furthermore, episodic memory is distinguished from semantic 

memory which is the memory of facts expressible in propositional form and crucially lacks an 

autonoetic nature (e.g., “Paris is the capital of France”). 

Our ability to probe specific brain regions responsible for storing episodic memories 

arguably began with the classic work of Scoville and Milner (Scoville & Milner, 1957) where 

they reported the case of patient H.M. who, for medical reasons regarding his intractable 
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epilepsy, had gone through brain surgery where portions of his medial temporal lobe were 

resected. H.M.’s surgery caused him to lose his ability to form new memories. Intriguingly, 

H.M.’s other cognitive abilities such as his intelligence, reasoning and language abilities 

remained intact after the surgery. Even more fascinating was the fact that, H.M.’s memory loss 

was specific to the episodic and semantic varieties: procedural (“muscle”) memory, perceptual 

learning, and skill learning had all remained intact. Furthermore, H.M. retained his short-term, 

“working” memory such that he could hold short conversations or retain information for minutes 

by constantly rehearsing it. In addition to helping establish the memory taxonomy of declarative 

versus non-declarative (Squire, 1992), these observations established, for the first time, that the 

former is attributable to a circumscribed part of the brain, namely the hippocampus and its 

associated areas such as the entorhinal cortex (Scoville & Milner, 1957). Subsequent studies of 

H.M. (Corkin, 1984, 2002) as well as other memory loss patients (e.g., Rosenbaum et al. (2005)) 

demonstrated that the neural substrates for episodic memories could be further distinguished 

from those supporting merely semantic memories (Gordon Hayman, Macdonald, & Tulving, 

1993; O'Kane, Kensinger, & Corkin, 2004; Rosenbaum et al., 2005; Tulving, Hayman, & 

Macdonald, 1991). Postmortem histology and brain reconstruction (Annese et al., 2014) 

confirmed that H.M.’s brain lesions were extensive and included a deafferented hippocampus 

and additional structures in the medial temporal lobe including the entorhinal cortex (Annese et 

al., 2014; Corkin, Amaral, González, Johnson, & Hyman, 1997). 

Circuitry of the hippocampus and entorhinal cortex 

The hippocampal formation and the entorhinal cortex are part of the greater 

parahippocampal region (Witter, Groenewegen, Lopes da Silva, & Lohman, 1989). The 

parahippocampal region is the locus of convergence of multiple sensory information sources that 
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are eventually routed through the hippocampus through the superficial layers (layers II and III) 

of entorhinal cortex (EC). Early anatomical studies identified at least two major subdivisions in 

the medial and lateral aspects of the entorhinal cortex with distinct cytoarchitectonic and 

connectivity profiles. The superficial EC consists of two principle neuron types, the stellate and 

pyramidal cells, which form extensive intrinsic recurrent networks. Entorhinal cortex layer II 

(ECII) and layer III (ECIII) pyramidal cells’ projections are largely confined to the EC, while the 

ECII stellate cell population forms the primary source of direct input to the dentate gyrus (DG) 

and CA3 subregions of the hippocampus (HPC). ECIII stellate cells target the interneurons of the 

CA1 subregion in HPC. Both ECII and ECIII stellate cells send axons to area CA2 in HPC. 

These direct, monosynaptic connections from superficial EC to HPC are termed the perforant 

pathway (PP). Within HPC, DG comprises the granule cell and mossy cell populations. The 

granule cells of DG are the most numerous cell type in HPC (> 1,000,000) and send their axons 

(termed “mossy fibers”) to the pyramidal cells of CA3. The mossy cells of DG, in turn, receive 

CA3 projections and project back to the DG granule cells. The roughly 250,000 pyramidal cells 

of the CA3 region project to area CA1 as well as form relatively extensive recurrent connections 

onto other pyramidal cells in CA3. In addition to receiving indirect ECIII and direct CA3 input, 

CA1 neurons also receive inputs from area CA2. CA1, containing roughly ~350,000 tightly 

packed pyramidal cell bodies in its stratum pyramidale, acts as the main output path of the 

hippocampus, projecting to the subicular structures as well the deep layers (V and VI) of EC. It 

is now worth reviewing, in some detail, the computational considerations that arise from the 

anatomical properties just described. 

The potential function of the different subregions of the hippocampus might be analyzed 

based on the cytoarchitecture, connectivity, and electrophysiological properties of each region.  
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Figure 0.1: Simplified schematic of the anatomical connections of the EC-HPC circuit. 
Information generally flows from the superficial layers (II/III) of the entorhinal cortex (EC) 
through the hippocampus (HPC) to the deep layers (V/VI) of EC, with the arrows indicating 
monosynaptic connections. The curved arrow on the right indicates the direction of this 
information flow. The perforant pathway, indicated in orange, originates in ECII and makes 
monosynaptic contacts onto DG, CA3, and CA2. The temporoammonic pathway, indicated in 
purple, originates from ECIII and makes monosynaptic contacts onto CA1 and CA2. Within 
HPC, DG granule cells send their mossy fibers to CA3 and CA2. CA3, in turn, projects to CA2 
and CA1, with CA2 providing an additional input to CA1. CA1 acts as the output circuit of the 
hippocampus and sends its axons to ECV/VI. 
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DG has been proposed to generate an efficient, orthogonalized code (Rolls, 1989, 1996). Here, 

“efficiency” refers to the idea that only those patterns that do occur in the input (but not those 

that are rare or never occur) are learned by the DG system. This, in effect, compresses the input 

for encoding. Moreover, “orthogonal” refers to the statistical independence of the set of encoded 

patterns. Orthogonalization can be achieved by a combination of two features: first, the number 

of DG granule neurons is far greater than the number of stellate neurons in the layer II of the 

entorhinal cortex where almost all entorhinal and the bulk of parahippocampal inputs to DG 

originate ((Gatome, Slomianka, Lipp, & Amrein, 2010; Kitamura et al., 2014; Varga, Lee, & 

Soltesz, 2010; Witter et al., 1989); > 1,000,000 vs. < 40,000 in the rat). Because the synapses of 

each DG neuron may be thought of as having randomly distributed weights with respect to a new 

memory item to be stored, this expansion in the dimensionality of input ensures that the 

probability of the same neuron being activated in response to similar inputs is very low. Second, 

competitive learning may lead to a winner-take-all scheme in which the subpopulation with the 

highest drive due to a given input will suppress the activity of neighboring neurons via lateral 

inhibition, thereby increasing the signal-to-noise ratio (Dasgupta, Stevens, & Navlakha, 2017; 

Rolls, 1996). The very low probability (< 10-4) of a CA3 cell being contacted by a DG mossy 

fiber (Amaral, Ishizuka, & Claiborne, 1990) also make it more likely that distinct CA3 

representations are activated by various DG inputs, a function termed pattern separation 

(Hainmueller & Bartos, 2020; Rolls, 1996). These theoretical insights regarding pattern 

separation are experimentally supported by the observation that small changes in the 

environmental features lead to both a substantial decorrelation in the dentate gyrus population 

code and the recruitment of distinct statistically independent CA3 populations (Leutgeb, 

Leutgeb, Moser, & Moser, 2007). Calcium imaging (GoodSmith et al., 2017), juxtacellular 
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(GoodSmith et al., 2017), and optogenetically tagged electrophysiological (Senzai & Buzsáki, 

2017) recording from mossy and granule cells of the dentate gyrus suggested that the findings of 

Leutgeb et al. (2007) on pattern separation by DG may primarily but not exclusively 

(GoodSmith, Lee, Neunuebel, Song, & Knierim, 2019) reflect the contributions of the mossy 

cells or adult-born granule neurons (Danielson et al., 2016). 

The CA3 region forms a recurrently connected network which can accomplish 

autoassociation. Analyses of this architecture (Marr, 1971; Rolls, 1996; Treves & Rolls, 1994) 

have suggested that after storing orthogonalized DG input patterns, CA3 can facilitate reliable 

retrieval of stored patterns given only a partial corresponding input. In this manner, the DG input 

can serve as an index code, while the CA3 performs pattern completion (Knierim & Neunuebel, 

2016; Rebola, Carta, & Mulle, 2017; Rolls, 2013). CA3 sends backprojections to DG 

(Scharfman, 2007) which may aid the retrieval process (Hainmueller & Bartos, 2020; Lisman, 

1999). CA3 neurons maintain a stable response to minor changes in the environment (Colgin et 

al., 2010; Leutgeb et al., 2005a; Leutgeb & Leutgeb, 2007; Leutgeb, Leutgeb, Treves, Moser, & 

Moser, 2004; Vazdarjanova & Guzowski, 2004), suggesting autoassociative dynamics govern 

the CA3 circuit as an error correction/pattern completion mechanism as suggested by theoretical 

inquiries (Treves & Rolls, 1992; Tsodyks, 1999). Since CA3 neurons receive both DG and EC 

inputs, there may be a division of labor in terms of encoding and retrieval between the two 

inputs. In this view, the relatively weak, associatively modifiable synapses of the PP (EC input) 

provide the processed input modalities from the various sensory areas, whereas the strong non-

associative DG inputs act as an unsupervised teacher that are useful at the encoding stage, but 

should remain inactive during retrieval (Treves & Rolls, 1992). Indeed, experimental data have 

shown that DG inputs are strong enough to act as a “detonator” for CA3 spiking (Henze, Wittner, 
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& Buzsáki, 2002; McNaughton & Morris, 1987). Larson and Lynch (1986) showed that a 

“priming” stimulus followed 200 milliseconds later by a second stimulation can induce strong 

potentiation in the hippocampus, supporting the dual-input encoding scheme (Bittner et al., 

2015). By exposing rats to a novel (i.e., previously not experienced) modified Hebb-Williams 

maze (in which rats are required to navigate with as short a path as possible between a start and 

end location) , Lee and Kesner (2004) provided evidence for a dissociation between the roles of 

the DG and EC inputs in encoding and retrieval processes, respectively. The rats performed 10 

trials a day over the course of three learning days. It was argued that intact encoding and retrieval 

would be predictive, respectively, of within-day and between-day reduction in navigation errors. 

By this logic, Lee and Kesner (2004) showed an encoding deficit in rats with DG-to-CA3 input 

lesions, and a retrieval deficit in rats with EC lesions. Further, comparison of contra- with 

ipsilateral DG-CA3 lesions supported the notion than DG and CA3 work together to support 

encoding, but not retrieval (Jerman, Kesner, & Hunsaker, 2006). Finally, CA3 has been shown to 

be important for fast one-trial learning of spatial memories (Kesner, Hunsaker, & Warthen, 2008; 

Nakashiba, Young, McHugh, Buhl, & Tonegawa, 2008; Nakazawa et al., 2003) as well as 

recalling a memory when presented only with partial cues (Nakazawa et al., 2002). 

CA2, situated anatomically between CA3 and CA1 regions, is the studied region of the 

hippocampus studied least (Dudek, Alexander, & Farris, 2016). In part, the lack of extensive 

research into CA2 is due to the small size of this region and the fact that it has been difficult to 

define its boundaries conclusively. However, recent advances have made possible to identify and 

record from CA2. In terms of EC-HPC connectivity, CA2 receives inputs from both layers II and 

III of EC as well as from CA3 (Chevaleyre and Siegelbaum (2010); Rowland et al. (2013); but 

see Kohara et al. (2014)). However, while ECIII inputs to CA2 are strongly excitatory, CA3 
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Schaffer collaterals provide a large inhibitory drive in CA2 (Chevaleyre & Siegelbaum, 2010). 

CA2, in turn, sends strong excitatory projections to the deep sublayer CA1 (Chevaleyre & 

Siegelbaum, 2010; Kohara et al., 2014), as well as to ECII (Rowland et al. (2013); but see Cui, 

Gerfen, and Young (2013)). CA2 has been shown to be important for social memory (Hitti & 

Siegelbaum, 2014) and proposed to provide a degraded copy of a memory to CA1 where a stable 

version of the same memory can be combined with the CA2 input to “timestamp” stored patterns 

in support of episodic memory (Mankin, Diehl, Sparks, Leutgeb, & Leutgeb, 2015). Intriguingly, 

in stark contrast to the CA3 where representations remain stable over long time periods, the 

representations of CA2 temporally evolve despite the fact that it forms recurrent connections 

(Okamoto & Ikegaya, 2019), although this representational instability could be due to a 

combination of a somewhat lower recurrence rate (1.4% versus 1-4%; (Amaral et al., 1990; 

Bennett, Gibson, & Robinson, 1994; Guzman, Schlögl, Frotscher, & Jonas, 2016; Okamoto & 

Ikegaya, 2019; Rolls, 2013; Witter, 2007)), inhibitory modulation (Sun et al., 2017), and/or 

distinct plasticity rules (Carstens & Dudek, 2019). Through its backprojections to CA3, CA2 can 

also regulate the overall network excitability in the hippocampus (Boehringer et al., 2017). 

Finally, CA1 receives excitatory inputs from ECIII with feedforward inhibition from 

ECII through its distal interneurons (Kitamura et al., 2014; Milstein et al., 2015). In addition to 

the EC input, CA1 receives inputs from CA3 and CA2. The major outputs of CA1 end in the 

deep (layers V/VI) of EC as well as the subiculum. The CA1 circuit of the hippocampus has been 

proposed to serve multiple functions. Levy (1989) proposed that CA1 is a predictive network 

that compares a “preprocessed” version of incoming information from CA3 to the direct input of 

EC in order to produce a predictive representation. Rolls (2010) proposes that CA1 recodes 

discrete memory items, the constituents of episodic memory, to generate an appropriate recall 
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cue to be sent to neocortex. In this way, memory consolidation, the transfer of recently acquired 

memories to neocortex, could occur or older memories previously stored in neocortex could be 

reinstated (Bosch, Jehee, Fernández, & Doeller, 2014; Goode, Tanaka, Sahay, & McHugh, 2020; 

Hindy, Avery, & Turk-Browne, 2019; Nyberg, McLntosh, Houle, Nilsson, & Tulving, 1996; 

Pacheco Estefan et al., 2019; Tanaka et al., 2014). Due to its relatively dense packing of 

pyramidal cells and anatomical position, CA1 is the most readily accessible region of the 

hippocampus both for electrophysiological recordings and, more recently, optical monitoring of 

neural activity. Consequently, CA1 is perhaps the most well-studied hippocampal network. 

A synaptic theory of memory 

The first refined theory on how stimuli can effect lasting cellular changes that allow the 

brain to store and later recall memories was articulated by Donald Hebb. Hebb proposed that the 

“repeated or persistent” excitation of a post-synaptic cell B by a pre-synaptic cell A results in 

physiological processes in at least one of the two cells that increase the efficacy of A → B 

communication (Hebb, 1949). This process explains “associative” or “Hebbian” learning 

whereby two simultaneously occurring stimuli become associated in appropriate cellular 

substrates in the brain such that the activation of one facilitates the activation of the other. The 

first experimental evidence for a cellular mechanism that could underlie this form of learning in 

the mammalian brain was discovered in 1973. Bliss and Lømo (1973) reported that perforant 

path (EC to DG input) synaptic efficiency abruptly increased following brief yet strong trains of 

stimuli activating the perforant path axons which was sustained for many hours. The discovery 

of such “long-term potentiation” (LTP) triggered a whole new field in memory research that has 

led to a plethora of studies identifying its detailed cellular and molecular mechanisms (Nicoll, 

2017). Although both pre- and post-synaptic molecular mechanisms may be involved in the 
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induction and expression of LTP (Bliss & Collingridge, 1993; Nicoll & Schmitz, 2005), a 

preponderance of evidence favors a stronger post-synaptic role (Granger & Nicoll, 2014). A key 

characteristic of postsynaptic LTP is the instrumental involvement of N-methyl-D-aspartate 

(NMDA) receptors (Collingridge, Kehl, & McLennan, 1983). 

Of direct relevance to the mechanisms of hippocampal learning and memory is 

psychopharmacological evidence that LTP is important in the process. Morris, Anderson, Lynch, 

and Baudry (1986) showed that NMDA receptor blockade with agent AP-V impairs behavioral 

memory performance, likely through disruption of LTP (Morris et al., 1986). Later studies 

corroborated this view by showing that hippocampal LTP was necessary (Castro, Silbert, 

McNaughton, & Barnes, 1989; Moser, Krobert, Moser, & Morris, 1998) and sufficient (Tang et 

al., 1999) for spatial navigation, and that, conversely, spatial navigation effected LTP in the 

hippocampus (Martin, Grimwood, & Morris, 2000; McNaughton, Barnes, Rao, Baldwin, & 

Rasmussen, 1986). Together, these studies identified the synapse as a very appealing locus for 

the encoding, retention, and recall of memories. In the field of hippocampus-dependent spatial 

navigation and memory, this guided future research into how hippocampal activity patterns can 

orchestrate synaptic changes in support of memory (Magee & Grienberger, 2020). 

Place selectivity, cognitive map, and the neural basis of memory 

As reviewed earlier, the episodic memory deficits observed in patient H.M. were 

attributable to the loss of medial temporal lobe structures, including the hippocampus. Motivated 

by this, and to understand how neurons in the hippocampus responded to various stimuli, in 

particular memory-related variables, John O’Keefe placed microelectrodes into the CA1 region 

of the hippocampus of rats and recorded unit spiking activity (O'Keefe & Dostrovsky, 1971). 
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Observing that many hippocampal units responded only when the animals were placed in 

specific locations within the environment, it was concluded that the hippocampus provides the 

rest of the brain with a spatial map useful for navigation behaviors. This was particularly 

interesting because of the experiments of Edward C. Tolman (Tolman, 1948) wherein he had 

concluded that rats learning mazes establish a map of their environment in their brain to help 

them find routes and environmental relationships. Hence, the spatially selective spiking of 

hippocampal cells gave them the moniker “place cells.” To explain this observation as well as 

the memory deficits of H.M., O’Keefe and Dostrovsky proposed that the hippocampus serves as 

a cognitive map in the brain (O'Keefe & Nadel, 1978). 

Working with John O’Keefe, Richard Morris published a landmark study in which he and 

colleagues showed that, in rats, the hippocampus was specifically required to solve what’s now 

known as the Morris water maze. The Morris water maze consists of a large, circular water tank 

filled with opaque water (made opaque with milk or chalk) with a small platform submerged just 

below water level, located somewhere in the tank. Rats are placed in the water at random 

locations in each trial. Because rats do not like being in water, they start swimming around until 

they find the hidden platform and climb on it to escape. Within a few trials (< 10), rats learn the 

location of the hidden platform so that, unlike in the first couple of trials where they swam 

randomly in search of the platform, they can subsequently swim directly to the platform from 

any starting position. Morris, Garrud, Rawlins, and O'Keefe (1982) showed that rats with 

hippocampal lesions, but not cortical lesions, lost the ability to learn the location of the hidden 

platform by observing that these rats continued to take circuitous paths to the platform, 

indicating a lack of place learning and/or navigation ability. 
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Representation of the content of experience in the hippocampus 

To represent episodic events, the brain need store not only a where component, but also a 

what component. Soon after the first report of spatially restricted hippocampal activity (O'Keefe 

& Dostrovsky, 1971), John O’Keefe was in fact the first to suggest that the hippocampus could 

combine location information from a landmark-independent navigation system with information 

regarding the content of an experience or environmental features (O'Keefe, 1976). However, this 

idea was a theoretical postulate and was not demonstrated experimentally. To examine how 

various features of a given experience are represented by the hippocampus, classically 

hippocampal neurons are monitored while animals explore an environment looking for 

experimenter-provided food. For example, (Muller & Kubie, 1987) were the first to describe the 

response of place cells to changes in sensory stimuli, such as the coherent rotation of place field 

locations with a rotation of the cue card in a cylindrical enclosure. Bostock, Muller, and Kubie 

(1991) reported that replacing a familiar white cue card on the wall of a cylindrical enclosure 

with a black cue card leads to the gradual divergence of the distribution and response intensity of 

place fields in the hippocampus. Hippocampal cells can also encode navigation-related variables 

such as direction of movement and velocity (McNaughton, Barnes, & O'Keefe, 1983). In a T-

maze where rats were required to alternate between running down the left or right side of the 

maze to receive a food reward, spatially selective CA1 cells responded differentially on left- or 

right-bound trajectories in the same position (Wood, Dudchenko, Robitsek, & Eichenbaum, 

2000). The first clear and conclusive evidence that the what and where of an experience can be 

simultaneously encoded by the hippocampus, however, came from CA3 data in rats exploring 

two similar but distinct environments, thereby excluding variables such as behavioral context 

(Wood et al., 2000) or directional orientation (McNaughton et al., 1983). In response to subtle 
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environmental changes (such as the color or shape of it), hippocampal place cells modulate the 

rate at which they emit spikes, thereby encoding episodic content without compromising location 

information represented by the place field position (Leutgeb et al., 2005b). In contrast, place 

field positions completely reorganize in response to dramatic changes in the environment, such 

as moving from one experiment room to another. It is also noteworthy that because the task-

specific non-spatial response of the hippocampus can override its spatial representations (Wood, 

Dudchenko, & Eichenbaum, 1999), the hippocampus can be thought of as a general device 

storing relationships between external entities (Eichenbaum & Cohen, 2014; Lisman et al., 2017; 

Whittington et al., 2020). Hippocampal cells are also known to display sustained activity in well-

defined “time fields” during working memory task delays (MacDonald, Lepage, Eden, & 

Eichenbaum, 2011; Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008), though this mode of 

firing does not seem to be directly involved in supporting working memory functions (Sabariego 

et al., 2019). 

Upstream of the hippocampus, both spatial and non-spatial coding is observed. The 

medial portion of EC contains many different types of spatially modulated cells (Sasaki, 

Leutgeb, & Leutgeb, 2015; Sugar & Moser, 2019). These include the famous grid cells that fire 

in regular hexagonal patterns that tessellate the entire environment during exploration (Hafting, 

Fyhn, Molden, Moser, & Moser, 2005); head direction-tuned cells with or without conjunctive 

tuning of other variables (Sargolini et al., 2006), border cells, which are active along 

environmental edges (Solstad, Boccara, Kropff, Moser, & Moser, 2008); speed cells, whose 

firing rate is tightly related to movement speed (Kropff, Carmichael, Moser, & Moser, 2015); as 

well as spatially modulated cells with irregular firing patterns (Diehl, Hon, Leutgeb, & Leutgeb, 

2017). MEC firing patterns, specifically those of grid cells, can rearrange their firing rate 
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reminiscent of hippocampal rate remapping thought to encode the content of episodic events 

(Diehl et al., 2017; Diehl, Hon, Leutgeb, & Leutgeb, 2019). The firing patterns in the lateral 

portion of EC are dominated by the non-spatial variables of experience. LEC cells are strongly 

responsive to objects and object place relationships (Deshmukh & Knierim, 2011; Hargreaves, 

Rao, Lee, & Knierim, 2005). 

Drifting place code for time 

The early developments enumerated above gave birth to the subsequent explosion in 

neurophysiological research into the neural underpinnings of memory processing, lost in patients 

like H.M. following hippocampal damage. Consequently, many attempts were made to identify 

the specific role of the hippocampus in flexible navigation and/or to identify the key players 

required to support the building and deployment of a cognitive map. McNaughton et al. (1983) 

were the first to identify a velocity signal in the hippocampus. Later, it was shown that self-

motion is required for place cell discharge Foster, Castro, and McNaughton (1989). In an 

important early study, (Thompson & Best, 1990) recorded the activity of hippocampal units over 

timescales much longer than previously examined. If the hippocampus were indeed important to 

store memory related representations, it was argued, its activity should remain stable in the 

absence of environmental change. Thompson and Best (1990) found that putative single 

hippocampal cells to a large extent retained their place selectivity for up to several months. An 

important caveat of this study, however, was that sampling of the hippocampal population was 

sparse both anatomically and temporally: even though some individual cells might retain stable 

place selectivity over a long time, at the population level, this might not be the case. Moreover, 

because the months-long recordings were sampled periodically (as opposed to continuously), it 

was not clear how dynamic the place selectivity profiles could be. 
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Recent advances in recording technologies have made it possible to continually monitor 

the activity of large ensembles of neurons from various hippocampal regions. Using tetrodes, 

Mankin et al. (2012) were the first to perform large-scale electrophysiological ensemble 

recordings of the same set of neurons in areas CA1 and CA3 of rat hippocampus over a period of 

up to 60 hours. This pivotal study demonstrated that the population level representations in CA3 

are largely stable across extended time periods, but CA1 representations drift in the absence of 

any overt changes in the environment, the experience, or behavior of the animals. By comparing 

hippocampal representations across 24-h long intervals, the authors further showed that the place 

selective activity patterns are not under the influence of circadian rhythms. Ziv et al. (2013) used 

calcium imaging to monitor activity in very large sets (up to 1040) of CA1 neurons over weeks. 

They reported that ~15-25% of cells were common between, and had stable place representations 

across, any two sessions. These studies extended the findings of an earlier study by Manns, 

Howard, and Eichenbaum (2007) where the authors investigated the question of how changes in 

hippocampal representations may help rats perform a memory task that depended on their 

estimate of temporal context. It was reported that a greater change in representations for 

temporally distant contexts and a lesser change in temporally proximal ones correlated with 

better behavioral performance (Manns et al., 2007).  

The findings of Mankin et al. (2012) suggested that an important ingredient of episodic 

memories, namely the when, may in fact be encoded by the hippocampus. In principle, a time-

varying and a time-constant representation of the same event can be compared to estimate 

elapsed time since the occurrence of the event, as suggested by previous computational studies 

(Estes, 1955; Howard & Kahana, 2002; Mensink & Raaijmakers, 1989). To further investigate 

this hypothesis, Mankin et al. (2015) recorded from large ensembles of all three hippocampal 
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regions CA1, CA2, and CA3, over extended time periods and in two spatial contexts while rats 

randomly foraged for food. Representations in CA2 evolved almost exclusively in response to 

elapsed time, but not to a change in context (Mankin et al., 2015). In contrast, and as expected 

(Mankin et al., 2012), CA1 representations changed to a moderate degree in response to both 

elapsed time and different contexts. CA3 representations remained largely stable across time, but 

responded strongly to contextual differences. In view of prior computational work on the 

representation of time of episodic memories, these results were reminiscent of the circuitry of the 

hippocampus with CA3 and CA2 fields projecting to CA1 where a stable representation of the 

same context (CA3 input) can be compared to and combined with a time-varying representation 

of the environment (CA2 input) to “timestamp” episodic memories and thus estimate elapsed 

time. Similar ideas were explored by Rubin, Geva, Sheintuch, and Ziv (2015) using calcium 

imaging in CA1. While the Mankin et al. study had the obvious advantage that all hippocampal 

subregions, including the areas inaccessible to imaging techniques, were sampled, Rubin et al. 

characterized the dynamics of the CA1 code over even longer time periods. It was shown that the 

CA1 code possesses a global aspect that changes gradually across days irrespective of the 

particular behavioral context, and that it may be used to computationally estimate the time at 

which a representation was recorded (Rubin et al., 2015). 

The above studies together suggest that representational drift might be a bona fide signal 

in the hippocampal code. In fact, representational drift has been reported in other brain areas 

(Driscoll, Pettit, Minderer, Chettih, & Harvey, 2017; Gallego et al., 2018; Rokni, Richardson, 

Bizzi, & Seung, 2007) and suggested to serve specific computational functions (Rule, O’Leary, 

& Harvey, 2019). This view raises the question of what aspects of the code remain invariant with 

respect to a given behaviorally relevant variable, such as the geometry of the environment or 
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reward-place contingencies (Clopath, Bonhoeffer, Hübener, & Rose, 2017). This view will be 

referred to as the “reorganization theory” in this thesis. On the other hand, studies to uncover the 

physical locus of stored memories in the brain (Tonegawa, Liu, Ramirez, & Redondo, 2015) 

suggest that, at least in the memory system, the reactivation of the same ensemble of cells active 

at the time of memory acquisition is tantamount to the recall of the stored set of stimuli (Josselyn 

& Tonegawa, 2020). This view will be referred to as the “engram theory” in this thesis. Thus, it 

is unclear how the two hypotheses – the engram theory, where reactivation of an ensemble of 

neurons with a stable identity leads to memory retrieval, and the reorganization theory whereby 

representational drift is a feature of the distributed code, perhaps useful to encode time – can be 

reconciled. 

Of note, in the studies where representational drift was reported in the hippocampus 

(Mankin et al., 2015; Mankin et al., 2012; Rubin et al., 2015; Ziv et al., 2013), the subjects were 

not actively engaged in a memory task. Since memory demand and/or attentional process can 

enhance coding fidelity in the hippocampus (Muzzio et al., 2009), the representational drift in 

the hippocampus over extended time periods may be explained by task conditions. Furthermore, 

the engram theory arises mainly from studies of a particular memory process known as 

contextual fear conditioning (CFC), typically with genetic cell tagging and optogenetic 

reactivation methods as tools to study encoding and retrieval. If the mode of memory circuit 

engagement in CFC differs systematically from that in spatial memory and navigation tasks, the 

theories may not be at odds after all. Moreover, if the characteristics of the tools used to probe 

the brain elicit non-physiological operation modes, it would not be surprising to observe that the 

reactivation of the same cells in the hippocampus would lead to the behaviorally measured 

retrieval of contextual fear memories. For instance, in a mouse model of Alzheimer’s disease 
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unable to retrieve specific memories with natural recall cues, the optogenetic reactivation of a 

memory engram leads to the behavioral expression of the memory (Roy et al., 2016). Thus, the 

overexpression of activity in memory-related brain circuits by optogenetics might override the 

reorganization expected from a naturally drifting code as posited by the reorganization theory. 

Together, these arguments necessitate further investigation to tease apart the memory-related 

factors enumerated above and to clarify the distinctions between the reorganization and engram 

theories. 

What determines the allocation of memory traces to specific neurons? 

For over a century, where in the brain memories are stored has remained an enigma 

(Josselyn, Köhler, & Frankland, 2017; Schacter, Eich, & Tulving, 1978). Lashley famously 

carried out experiments with rats to identify a specific locus for memory to no avail. He trained 

rats to learn mazes and tested them after lesioning various areas of the cortex and found that 

memory deficits correlated with the total amount of lost cortical tissue rather than lesions to 

specific cortical areas (Lashley, 1950). Studies of patient H.M. (Scoville & Milner, 1957) 

brought us closer the anatomical structure housing episodic memories, but a cellular and 

molecular understanding seemed out of reach without the appropriate tools. Recently, with the 

advent of advanced genetic engineering methods our understanding of this matter has greatly 

advanced (Josselyn & Tonegawa, 2020). Like other cells in the body, neurons are complex 

factories. Neural activity, primarily characterized by the generation of action potential spikes, 

can trigger cascades of subcellular events that regular homeostasis and the future responses of 

the cell to incoming stimuli. One of the most interesting such subcellular events is the expression 

of immediate early genes (IEGs). IEGs were discovered in the context of cell signaling of 

mitogenic stimuli in cancer research (Kelly, Cochran, Stiles, & Leder, 1983), and were found to 



20 

 

be expressed in response to diverse forms of stimuli including neurotrophic factors (Kelly et al., 

1983), and cholinergic agonists by depolarization via voltage-dependent calcium channels of 

adrenal gland-derived cells (Greenberg, Ziff, & Greene, 1986; Morgan & Curran, 1986). IEG 

expression in the brain was first discovered when the convulsant Metrazole was administered to 

neurons to study Metrazole-induced epileptic seizures (Morgan, Cohen, Hempstead, & Curran, 

1987). Taking advantage of the relationship between neural activation and IEG expression 

(Morgan & Curran, 1989), Guzowski, McNaughton, Barnes, and Worley (1999) used 

microscopy together with ensemble neurophysiological recordings to show that CA1 cells 

expressing the immediate-early gene Arc can be identified as having been active when rats 

visited different environments. Building on these tools, Reijmers, Perkins, Matsuo, and Mayford 

(2007) genetically tagged c-fos-active neurons of basolateral amygdala to show that during recall 

the same neurons active at encoding were reactivated, resulting in the behavioral expression of 

fear memories. Interestingly, the artificial reactivation of tagged neurons with optogenetics is 

sufficient to elicit a behavioral fear response (Liu et al., 2012). For the first time, a cellular 

substrate was hence identified as the physical locus of a memory. 

What determines which neurons are recruited to encode a memory under natural 

conditions? Direct synaptic input cannot explain this because even though a large fraction of 

neurons in a brain region might be involved in receiving and locally processing the same input, 

only a small proportion of the neurons in that area will acquire the memory (Repa et al., 2001). 

On the other hand, the neuronal expression level of cAMP response element-binding protein 

(CREB) correlates with the probability of the involvement of a neuron in representing a memory 

(Han et al., 2007), while its artificial overexpression and inhibition can bias or preclude the 

neurons to be recruited to the engram (Yiu et al., 2014; Zhou et al., 2009). CREB overexpression 
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also increases the propensity of a neuron for synaptic plasticity and helps the consolidation 

process (Zhou et al., 2009). However, as CREB is involved in a multitude of cellular processes, 

these results per se do not imply a causal role for it in memory allocation. Because CREB 

regulates excitability (Zhou et al., 2009), an influential theory (Rogerson et al., 2014; Silva, 

Zhou, Rogerson, Shobe, & Balaji, 2009) proposed neuronal excitability as an attractive variable 

determining memory allocation because it elegantly explains memory allocation. The idea that 

intrinsic excitability regulates neuronal selectivity is also corroborated by intracellular recordings 

and manipulations in the hippocampus. Place cells in a novel environment have higher 

excitability than silent cells (Epsztein, Brecht, & Lee, 2011); conversely, when silent CA1 cells 

are made more excitable by current injection, they form new place fields (Lee, Lin, & Lee, 

2012). Examination of the expression of place fields across multiple environment and 

experimental conditions demonstrated that CA1 cells have an intrinsic “propensity” that dictates 

spatial selectivity (Lee, Briguglio, Cohen, Romani, & Lee, 2020). Importantly, propensity was 

shown to be determined by cell excitability through intracellular recordings (Lee et al., 2020). 

Within the neuronal population, intrinsic excitability naturally fluctuates such that different 

subsets of neurons become more or less likely to participate in memory representations (Cai et 

al., 2016). Such fluctuations in excitability segregate ensembles for different memories in time 

which can be used to encode their temporal continuity (Cai et al., 2016). Lastly, after acquisition, 

excitability significantly influences neuronal reactivation during subsequent sleep (Mizunuma et 

al., 2014), presumably for further potentiation and consolidation (van de Ven, Trouche, 

McNamara, Allen, & Dupret, 2016). 

Aside from excitability, reward signals can modulate the expression of place selectivity 

in the hippocampus. Reward information is directly represented in the hippocampus (Gauthier & 
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Tank, 2018), but non-reward cells also tend to cluster their place fields near reward (Dupret, 

O'Neill, Pleydell-Bouverie, & Csicsvari, 2010) or behaviorally relevant locations (Hok et al., 

2007; Hollup, Molden, Donnett, Moser, & Moser, 2001). Direct photostimulation of 

dopaminergic inputs from ventral tegmental area (Mamad et al., 2017; McNamara, Tejero-

Cantero, Trouche, Campo-Urriza, & Dupret, 2014) and locus coeruleus (Takeuchi et al., 2016), 

both dopaminergic hubs (Kempadoo, Mosharov, Choi, Sulzer, & Kandel, 2016), to hippocampal 

neurons at specific locations on a maze enhances and stabilizes the place memory and 

representations of that location (Mamad et al., 2017; McNamara et al., 2014). The contribution 

of locus coeruleus (Takeuchi et al., 2016) could, however, be mediate through pronounced 

arousal during memory performance (Breton-Provencher & Sur, 2019). In addition, attention 

(Kentros, Agnihotri, Streater, Hawkins, & Kandel, 2004; Muzzio et al., 2009) and novelty 

detection (Fyhn, Molden, Hollup, Moser, & Moser, 2002) mechanisms can also enhance place 

field expression and stability in the rodent hippocampus. 

Oscillations, brain states, and the two-stage model of memory 

The various cellular processes in the brain – including the ionic fluxes, synaptic currents, 

action potentials, and calcium spikes – produce voltage differentials with respect to a reference 

point (Buzsáki, Anastassiou, & Koch, 2012). The electric fields resulting from such voltage 

differentials can be measured with electrodes placed in the extracellular space. Depending on the 

spatial organization of the sources and the degree of their temporal synchronization, voltage 

differentials can manifest as oscillations in the local field potentials (LFPs). Such regular 

rhythmic activity constitutes an important mode of information processing in addition to 

neuronal spiking (Arnal & Giraud, 2012; Buzsáki, 2006; Sejnowski & Paulsen, 2006). Brain 

oscillations have been implicated in such functions as sparsening of the neural code (Perez-Orive 



23 

 

et al., 2002), facilitating interareal communication (Colgin et al., 2009; Womelsdorf et al., 

2007), attentional processes (Taylor, Mandon, Freiwald, & Kreiter, 2005; Womelsdorf et al., 

2007), sensory perception (Gray & Singer, 1989), cognitive control (Helfrich & Knight, 2016), 

and even consciousness (Vesuna et al., 2020). In the hippocampus, different oscillation 

frequencies are associated with different behavioral and cognitive functions (Buzsáki, 2006; 

Buzsáki, Lai-Wo S, & Vanderwolf, 1983; Colgin, 2016; Leung, Da Silva, & Wadman, 1982; 

Vanderwolf, 1969). 

The most prominent oscillatory band in the hippocampus LFP is the 6-10 Hz rhythm, 

termed “theta,” named so after “thalamus” (Niedermeyer, 1999; Walter & Dovey, 1944) because 

early studies of thalamic lesions shifted the oscillation frequency of the alpha band (8-12 Hz in 

primates) lower to a new band (Kennard, 1943). Theta oscillations are observed throughout the 

hippocampus during rapid eye movement (REM) sleep and wakefulness, specifically during 

locomotion, and attentive and voluntary behaviors (Vanderwolf, 1969; Whishaw & Vanderwolf, 

1973). Theta is thought to originate through a combination of cellular and circuit interactions 

between subcortical, entorhinal and local inhibitory networks in the hippocampus (Buzsáki et al., 

1983; Buzsáki & Moser, 2013; Colgin, 2013; Colgin, 2016). In the upstream EC, theta is 

selectively expressed in the medial portion of the entorhinal cortex (Deshmukh, Yoganarasimha, 

Voicu, & Knierim, 2010). Higher frequency gamma oscillations (30-120 Hz) occur during both 

wakefulness and sleep in local neuronal processing (Colgin, 2016; Colgin et al., 2009), and have 

been proposed to support encoding of current sensory information in memory tasks (Colgin, 

2016), information routing (Colgin et al., 2009), memory retrieval (Shirvalkar, Rapp, & Shapiro, 

2010), and working memory (Sasaki et al., 2018; Yamamoto, Suh, Takeuchi, & Tonegawa, 

2014). The third prominent set of LFP oscillations is observed in the fast 150-250 Hz band, 
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which is termed the ripple band oscillations or ripples for short. Ripples are a prominent 

oscillation in the CA1 pyramidal cell layer (Buzsáki, 2015) and CA3 (Sasaki et al., 2018), and 

temporally coincide with sharp-wave events initiated in CA3 (Buzsáki, 1986). The co-occurrence 

of sharp wave and ripple oscillations has given rise to the term sharp wave-ripple (SWR; Ylinen 

et al. (1995)). SWRs occur primarily in quiescent wakefulness and non-REM sleep (Buzsáki, 

2015) and can be triggered by distinct mechanisms in CA2 (Okamoto & Ikegaya, 2019; Oliva, 

Fernández-Ruiz, Buzsáki, & Berényi, 2016) or CA3 (Buzsáki, 1986, 2015; Ylinen et al., 1995). 

Hippocampal SWRs can affect cortical targets (Chrobak & Buzsáki, 1994). 

Animal behavior can be viewed as a two-stage process: preparatory (i.e., exploratory or 

goal-directed) and consummatory (i.e., immobility, sleep). Coincidentally, the theta and ripple 

band oscillations occur predominantly during preparatory and consummatory behaviors, 

respectively (Buzsáki, 2015). Accordingly, two prominent “brain states” can be characterized by 

the mode of oscillatory voltage fluctuations in the rodent. By “default,” namely when the 

extrahippocampal inputs are severed, the hippocampus constantly generates sharp wave events 

(Buzsáki et al., 1983). When the extrahippocampal inputs dominate, however, such as during 

locomotion, the hippocampus switches to a different oscillatory regime where theta is most 

prominent (Buzsáki et al., 1983). With the memory deficit profile of H.M. in mind (Scoville & 

Milner, 1957), Buzsáki (1989) synthesized his physiological findings in the study of 

hippocampal oscillations to propose a “two-stage” model of memory encoding and 

consolidation. If the hippocampus is required for the rapid acquisition of memories, the naturally 

occurring physiological signatures would be good candidates with which to support this function. 

Accordingly, during learning in the preparatory theta brain state neocortical input imprints a 

temporary trace of experience in the hippocampal network. This constitutes the first stage of 
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memory consolidation. In the second stage, which unfolds during the consummatory brain state, 

the newly formed hippocampal memory trace is transferred to neocortex through the re-

expression of activity and potentiation of appropriate synapses during the abundant SWRs 

(Vyazovskiy, Cirelli, Pfister-Genskow, Faraguna, & Tononi, 2008). A feature of this system 

would be that it supports one-shot learning (a fundamental feature of episodic memory) because 

it can quickly acquire information and repeatedly try to incorporate it into the knowledge 

reservoir through ample “offline” repetitions. 

From a purely computational perspective, Marr (1971) was the first to propose that 

memory consolidation can happen if the hippocampus acquires everyday memories and plays 

them back to the neocortex so that it can store them long-term as well as extract categories and 

abstractions from this data. Pavlides and Winson (1989) were the first to examine neuronal 

spiking activity in post-experience sleep, and found that hippocampal neurons’ spiking became 

more prominent if the same neurons became activated during exploration immediately preceding 

the sleep. Wilson and McNaughton (1994) explored a similar idea by simultaneously recording 

large numbers of CA1 neurons and showed that CA1 neuronal correlations were strongly 

reactivated in post-experience sleep, suggesting that the spike content of SWR was determined 

by learning and was not random. A landmark computational study by McClelland, McNaughton, 

and O'Reilly (1995) further corroborated computational basis of the idea that the hippocampus is 

a fast-learner and the neocortex a slow one. This study was motivated by the observations that 

hippocampal damage produces temporally graded retrograde amnesia (i.e., amnesia that is most 

severe for the most recent memories and less severe for more remote ones; Kim and Fanselow 

(1992); Scoville and Milner (1957); Squire (1992); Zola-Morgan and Squire (1990)) and 

provided an account of why this must be the case: that shared structure of events and experiences 
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can be learned in a gradual and interleaved manner by neocortex while minimizing catastrophic 

interference among learned materials. In this scheme, the hippocampus acts as a temporary 

storage of newly acquired information so that this information does not interfere with established 

neocortical knowledge or memories. Furthermore, this “consolidation” process is temporally 

extended to allow the system to extract shared structure by interleaving new learning with 

exposure to exemplars of existing knowledge (Káli & Dayan, 2004; McClelland et al., 1995). 

The synchrony between various neurophysiological signatures of memory processing across the 

hippocampus and neocortex lends further support to these ideas. SWRs and neocortical spindles 

(transient 7-14 Hz oscillations linked to memory functions; Peyrache and Seibt (2020)) act in a 

coordinated way (Peyrache, Battaglia, & Destexhe, 2011; Siapas & Wilson, 1998), while SWRs 

coincide with cortical down-state to up-state transitions (Battaglia, Sutherland, & McNaughton, 

2004). Together, these theoretical, computational, and experimental data and ideas lay the 

groundwork for the future exploration of memory encoding and consolidation processes. 

In the last two decades, studies of hippocampal reactivation during SWRs have focused 

on three avenues. First, improvement in recording technology has allowed an increase in the 

number of simultaneously recorded neurons and thus detailed characterization of the reactivation 

events themselves, plus the conditions under which they occur. Second, the mechanisms of 

neuronal reactivation and its physiological effects on the network have been investigated. Third, 

the relation between offline reactivation and various behavioral variables and mnemonic 

processes have been further elucidated. These results are reviewed next. 

Replay: properties, mechanisms, and role in memory 
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The computational and theoretical studies reviewed above suggest that everyday 

experiences may be recapitulated by neural activity during sleep. Intuitively, we also know that 

dreaming in sleep sometimes matches previous experiences. Motivated by this, Pavlides and 

Winson (1989) showed, for the first time, that single hippocampal neurons that were active 

during a given experience were more likely to be active in the subsequent REM sleep compared 

to those neurons that did not spike in behavior. Later, comparison of sequential neuronal spiking 

during pre- and post-experience sleep revealed that the patterns of post-experience spiking reflect 

the order in which the neurons fired during exploration (Skaggs & McNaughton, 1996). This 

experience-dependent ordering and re-expression of neuronal pairs became known as “replay,” 

but it was not until later that with improved recording and statistical methods large-scale 

sequences of neuronal reactivation were confirmed in REM (Louie & Wilson, 2001) and non-

REM, slow-wave sleep (SWS) (Lee & Wilson, 2002; Nádasdy, Hirase, Czurkó, Csicsvari, & 

Buzsáki, 1999). 

Studying hippocampal activity patterns during sleep before and after experience allows 

one to segregate the role of memory-related and sensory-related changes in the brain. A common 

feature of replay events is that they coincide with hippocampal sharp-wave ripples (Kudrimoti, 

Barnes, & McNaughton, 1999; Lee & Wilson, 2002; Nádasdy et al., 1999). SWRs and the 

associated burst of spiking in hippocampal neurons influence cortical activity and induce 

synaptic changes (Buzsáki, 1986; Chrobak & Buzsáki, 1994; Sadowski, Jones, & Mellor, 2016; 

Ylinen et al., 1995), which is consistent with a role for replay in transferring acquired memories 

to neocortex (Buzsáki, 1989). This idea is further supported by the fact that hippocampal 

reactivation was strongest following a novel experience (Cheng & Frank, 2008; Kudrimoti et al., 

1999). However, because sharp-wave ripples also occur during quite wakefulness, a natural 
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question is whether replay occurs in conjunction with ongoing behavior. Recordings from large 

ensembles of CA1 neurons showed that replay does in fact occur when rats were consuming a 

reward at either end of a linear track where they ran back and forth (Foster & Wilson, 2006). 

Intriguingly, the sequence of place field reactivation that the rats experienced while running from 

one end to the other end of the track replayed in reverse order: the most recently traversed place 

fields fired first in the sequence, while the place fields traversed first on a track journey fired last 

in the sequence. Theories of reinforcement learning suggested a role for such reverse replay in 

evaluating the value of recent experience (Foster & Wilson, 2006). As such, reverse replay 

would provide a mechanism for the hippocampus to relate the reward information available at 

the end of a trajectory to the sequence of spatial locations that led the rat to its current position. 

In fact, when outcomes are rewarded, replay becomes more prevalent and robust (Singer & 

Frank, 2009), supported by the dopaminergic system (McNamara et al., 2014). 

The idea that awake replay may have a role in the online evaluation of sequences was 

further supported by the observation that sequences play out in forward order in anticipation of 

upcoming trajectories (Diba & Buzsáki, 2007). When rats are performing a two-alternative 

spatial working memory task, hippocampal sequences were shown to alternate between depicting 

one or the other of the possible choices (Johnson & Redish, 2007) in a manner dependent on 

prior experience (Jackson, Johnson, & Redish, 2006; O'Neill, Senior, Allen, Huxter, & Csicsvari, 

2008; Singer, Karlsson, Nathe, Carr, & Frank, 2010). The prevalence and quality of replay in a 

spatial working memory task was shown to be related to correct choices (Singer, Carr, Karlsson, 

& Frank, 2013). Replay was also shown to extend to spatial locations far from the animal’s 

current location within the same environment (Davidson, Kloosterman, & Wilson, 2009), or a 

different environment (Gupta, van der Meer, Touretzky, & Redish, 2010; Karlsson & Frank, 
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2009). The role of awake replay in online choice evaluation is also supported by the stronger 

hippocampal-prefrontal interactions during wakefulness compared to sleep (Shin, Tang, & 

Jadhav, 2019; Tang & Jadhav, 2019). 

To establish a causal link between replay and memory, multiple strategies have been 

employed. Because replay is associated with the incidence of SWRs, closed-loop detection and 

disrupting SWRs during sleep and wakeful behavior has been used as a relatively straightforward 

way to inhibit replay and study its effects on learning and memory. SWRs disruption by 

electrical stimulation during sleep and (Girardeau, Benchenane, Wiener, Buzsáki, & Zugaro, 

2009) awake behavior (Jadhav, Kemere, German, & Frank, 2012) impairs subsequent or ongoing 

spatial memory performance. Disruption of SWR-associated spiking impaired the development 

and stabilization of representations for new goal locations (Roux, Hu, Eichler, Stark, & Buzsáki, 

2017) or a novel environment (van de Ven et al., 2016). Conversely, selective artificial 

stimulation of the medial forebrain bundle, a carrier of reward information, during the 

reactivation of specific place cells in SWR biases exploration behavior toward the place fields of 

the artificially conditioned cells (de Lavilléon, Lacroix, Rondi-Reig, & Benchenane, 2015). 

Furthermore, direct recordings of hippocampal and neocortical activity shows functionally 

relevant communication between the two systems during sharp-wave ripples (Khodagholy, 

Gelinas, & Buzsáki, 2017; Maingret, Girardeau, Todorova, Goutierre, & Zugaro, 2016). 

Gridchyn, Schoenenberger, O'Neill, and Csicsvari (2020) trained rats to locate goal locations in 

two separate environments and disrupted reactivated neuronal spiking in subsequent sleep for 

one of the two environments. This clever experimental design allowed the authors to harness the 

environment-specific firing selectivity of hippocampal cells to simplify the online replay 

decoding processes. Memory performance was impaired only in the environment whose 



30 

 

associated replay events were selectively interfered with (Gridchyn et al., 2020). More 

sophisticated online decoding methods have also been used to show a role for awake replay in 

memory task performance (Ciliberti, Michon, & Kloosterman, 2018). Computational modeling 

(Káli & Dayan, 2004) and experimental data (Rasch & Born, 2007) both support the idea that 

replay helps the brain maintain memories in the face of representational changes (Mankin et al., 

2015; Mankin et al., 2012; Rule et al., 2019). 

As pointed out in some of the literature reviewed above, conventional experimental 

protocols have shown, by comparing pre- and post-experience sequential reactivation, that 

experience can produce changes in the patterns of population burst during SWRs. There are two 

modes of learning-related changes can be distinguished in such protocols. In studies where a 

novel environment is experience by animals, the experience of novelty itself has been shown to 

promote reactivation patterns in subsequent rest (Cheng & Frank, 2008). This can reflect the 

encoding of information about the color, geometry, scale or other factor determined by the 

environment. On the other hand, because animals are typically kept in home cages where 

neuronal activity is minimal (Chawla et al., 2005), reactivation after the only notable experience 

of the animals on a given day might be the driver of the heightened excitability in the 

hippocampus. Thus, there are at least two factors that are intermingled in the conventional 

setting. Complementary to this, if environment-, novelty- and experience-specific factors are 

held constant, flexible learning of new goal locations on each day may drive reactivation in a 

different manner than tested using conventional paradigms. Another aspect of post-experience 

dynamics that remains unknown is for how long and with what fidelity reactivation dynamics 

continue to unfold after initial learning. Previous studies have monitored this activity for only 

short (~30 min) periods. If the animals are required to remember information for many hours to 
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guide their future behavior, one might expect to see dynamic changes in neural activity for the 

duration of sleep periods in between learning and testing. Further, the animals in these studies 

rested in the same location as the learning and testing took place, perhaps biasing the content of 

replay. Finally, it is unclear whether different neuronal subpopulations participate in reactivation 

to the same extent and whether these dynamics change if learned information must be retained 

for future memory testing. 

Role of theta in plasticity and orchestrating sequential activity for the rapid encoding of 

episodic memory for later replay 

So far, we have discussed the role of offline reactivation in promoting the long-term 

storage of recently acquired memories. Here we review the evidence for how plasticity is 

regulated during acquisition, specifically by theta oscillations marking preparatory brain states. 

Among many functions attributed to theta oscillations (Colgin, 2013), two features are of 

particular interest. First, theta has been shown to play a role in the regulation of neural plasticity. 

Following initial suggestions that stimulation patterns at theta-like intervals can enhance 

plasticity (Larson, Wong, & Lynch, 1986 ), Huerta and Lisman (1993) elicited theta oscillations 

in LFPs by activating septal cholinergic cells and showed that theta regulated neural plasticity in 

a phase-dependent manner. Huerta and Lisman (1995) showed that the synaptic strength of CA1 

cells can be efficiently enhanced or reduced by single bursts resembling those occurring in vivo 

if delivered at specific phases of theta oscillations. Thus, in principle, the hippocampus networks 

can exploit these properties to optimize memory functions. 

The second intriguing feature of theta is its relationship to the spiking of individual 

hippocampal neurons. As a rat moves about the environment, place cells become active in their 
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spatial receptive fields and quiet down after the animal leaves the place field of each cell. At the 

same time, theta oscillations occur robustly while the animal is running. In general, by virtue of 

their generation mechanism (Colgin, 2013) the peak and trough phases of theta oscillations 

reflect the trough and peak of the collective firing rate of the population, respectively. This 

means that any given place cell is more likely to emit spikes while theta is at its trough. Within 

its place field a cell will fire over multiple theta cycles for as long as the animal is physically in 

the field. However, as an animal runs through the field from one side to the other, its spiking 

follows a precise relationship to the theta cycle: spikes emitted early in the field (near the entry 

point) will be more likely to occur at the end of the theta cycle, whereas spikes emitted late in the 

field (near the exit point) will be more likely to occur at the early phase of the theta cycle. In 

between the entry and exit from the place field, the spikes follow a roughly linear relationship 

with theta phase. In brief, the theta phase of spikes appear to advance to earlier and earlier part of 

the cycle as the animal progresses further and further into the field until exit. This phenomenon 

is referred to as “theta phase precession,” first reported by O'Keefe and Recce (1993). Phase 

precession is observed throughout the hippocampus (Skaggs, McNaughton, Wilson, & Barnes, 

1996), and is known to provide additional spatial information alongside firing rate (Harris et al., 

2002; Huxter, Burgess, & O'Keefe, 2003; Skaggs et al., 1996). 

Assuming each hippocampal cell is exhibiting phase precession while the animal is 

running, the spikes from a few cells with a series of partially overlapping place fields will be 

organized in the theta cycle to reflect the order in which they are traversed. Theta-nested 

sequences thus organized are called hippocampal “theta sequences” (Dragoi & Buzsáki, 2006; 

Foster & Wilson, 2007). It should be noted that while the phase precession and theta sequence 

phenomena seem to be tightly intertwined, they need not be mutually interdependent. For 
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example, random variations in the preferred phase of individual cell spiking over successive 

theta cycles can in principle scramble the order of spikes while preserving the precession effect 

(Feng, Silva, & Foster, 2015; Foster & Wilson, 2007; Middleton & McHugh, 2016). On the 

contrary, cells can maintain a tight spike ordering without reducing their average theta phase 

over the course of a place field traversal. At any rate, phase precession can in theory act as the 

organizing mechanism for the formation of theta sequences. The potential physiological 

significance of theta sequence formation is underscored by the fact that the behaviorally relevant 

time course of place cell spiking during exploration (a few seconds) can be effectively 

compressed to less than about 125 ms and repeated several times during a multi-field trajectory. 

This can facilitate neural plasticity via spike timing-dependent plasticity (STDP; Bi and Poo 

(1998); Feldman (2012); Markram, Lübke, Frotscher, and Sakmann (1997); Mishra, Kim, 

Guzman, and Jonas (2016)) to rapidly encode episodic events experienced only once (Dragoi, 

Harris, & Buzsáki, 2003; Skaggs et al., 1996). In addition, theta phase precession and theta 

sequences can provide a mechanism for quick evaluation of possible decisions via hippocampal-

cortical communication (Jones & Wilson, 2005; Schmidt, Duin, & Redish, 2019; Wikenheiser & 

Redish, 2015). 

Theoretical interpretations of phase precession generally postulate a role for prediction or 

cued recall of upcoming sequences (Jaramillo & Kempter, 2017; Jensen & Lisman, 1996; 

Lisman & Redish, 2009; Lisman, Talamini, & Raffone, 2005; Maurer & McNaughton, 2007; 

Sanders, Rennó-Costa, Idiart, & Lisman, 2015). Hippocampal networks evolve through a 

combination of internal dynamics and external influences (Buzsáki & Tingley, 2018; Czurkó, 

Hirase, Csicsvari, & Buzsáki, 1999; Pastalkova et al., 2008; Wang, Romani, Lustig, Leonardo, & 

Pastalkova, 2015). Accordingly, the theta cycle can be said to orchestrate neural computations 
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(Buzsáki, 2006) in terms of internally- and externally dominated dynamics (Lisman & Redish, 

2009; Lisman et al., 2005; Maurer & McNaughton, 2007; Sanders et al., 2015). Although phase 

precession is not observed when rats run in a running wheel without a memory task (Hirase, 

Czurkó, Csicsvari, & Buzsáki, 1999), if the running wheel is used as a delay period in the 

context of a spatial working memory task, hippocampal cells show phase precession that gives 

rise to theta sequences depicting the future decision of the rat (Pastalkova et al., 2008). 

Moreover, when rats are trained to jump in anticipation of a foot shock, hippocampal cells show 

location-independent phase precession whose temporal profile is consistent with the 

interpretation that the phase advancement of spikes is a predictive signal (Lenck-Santini, Fenton, 

& Muller, 2008). Thus, during phase precession spike phase appears to follow two stages across 

its place field: a “predictive” phase precession, along with a phase cluster representing the “true” 

place field (Sanders et al., 2015; Yamaguchi, Aota, McNaughton, & Lipa, 2002). 

On the population level, statistical mapping of the identity of multiple cells of a theta 

sequence to external position (i.e., neural decoding) uncovers paths at the current location, 

behind, or ahead of the animal at early, mid, and late theta phases (Gupta, van der Meer, 

Touretzky, & Redish, 2012; Johnson & Redish, 2007; Wang, Foster, & Pfeiffer, 2020). The 

neural coding properties, information processing delays, and theoretical considerations regarding 

the architecture of DG and CA3 suggest that their mutual interaction may be important for 

encoding, and by extension, for phase precession (Jerman et al., 2006; Lisman et al., 2005). 

Accordingly, DG circuit can relay an incoming item to CA3 to cue the recall of the rest of the 

sequence. However, an error correction mechanism would be necessary to ensure the errors at 

each step in recalling the sequence do not accumulate to a catastrophic degree. This error 

correction mechanism is proposed to be accomplished by the reciprocal DG-CA3 connections 
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(Lisman, 1999; Lisman et al., 2005). The DG-CA3 interactions then provide the look-ahead 

signal late in the cycle, while the representation of current location can be triggered by EC input 

(Sanders et al., 2015). This model provides an explanation for the modulation of plasticity by 

theta oscillations (Huerta & Lisman, 1993) by positing segregated encoding and retrieval on a 

fast timescale. During learning, the spikes from cells with overlapping place representations can 

be encoded in a well-organized sequence late in the theta cycle, and later reactivation in offline 

brain states to further potentiate the appropriate connections (Redish & Touretzky, 1998). At the 

same time, previously stored associations can be recalled early in the cycle to guide navigation 

(Redish & Touretzky, 1998; Sanders et al., 2015). 

These theoretical considerations implicate the segregation of different inputs in the theta 

cycle as a beneficial coding scheme. Indeed, hippocampal circuits can also organize their timing 

to maximize activity, and perhaps optimize plastic circuit changes, in circumscribed portions of 

the theta cycle (Mizuseki, Sirota, Pastalkova, & Buzsáki, 2009; Robbe et al., 2006). 

Extrahippocampal inputs perhaps play a major role in supporting this theta cycle-specific 

organization because brief electrical stimulation does not disrupt the spike theta phase predicted 

by the normal progression of phase precession (Zugaro, Monconduit, & Buzsáki, 2005). In the 

absence of MEC, hippocampal phase precession is greatly, but not entirely, abolished (Schlesiger 

et al., 2015). The remaining precession can in principle be supported in part by LEC inputs. In 

support of this hypothesis, during an object recognition task (Robinson et al., 2017), phase 

precession is not impaired by MEC inaction in object responsive CA1 cells, which may receive 

maximal input from LEC (Deshmukh & Knierim, 2011; Hargreaves et al., 2005). What’s more, 

consideration of other oscillatory components in the neural activity further supports this notion. 

Gamma oscillations are typically considered to consist of two distinct sub-bands (Colgin, 2016): 
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slow (25-55 Hz) and fast (60-100 Hz). In the hippocampus, fast gamma oscillations reflect an 

increase in input originating from EC (Colgin et al., 2009; Mizuseki et al., 2009; Pernía-Andrade 

& Jonas, 2014; Schomburg et al., 2014). In contrast, slow gamma corresponds to local input in 

the hippocampus (Bragin et al., 1995; Colgin et al., 2009; Csicsvari, Jamieson, Wise, & Buzsáki, 

2003; Kemere, Carr, Karlsson, & Frank, 2013). For example, in the CA3 circuit, slow gamma is 

likely inherited from DG (Hsiao, Zheng, & Colgin, 2016). When slow gamma is present, place 

cell spiking mainly occurs in the first half of the place field (Bieri, Bobbitt, & Colgin, 2014). 

Furthermore, spike phase relationships as well as current source density analyses suggest that EC 

input dominates during the second half of place field passage (Bieri et al., 2014; Mizuseki et al., 

2009; Schomburg et al., 2014). This view is consistent with the results of cell type specific 

manipulations which led to selective disruption of spiking in the first and second halves of place 

fields (Royer et al. (2012); but see Fernández-Ruiz et al. (2017) who suggest the opposite). 

The idea that phase precession and theta sequence mechanisms can prime the appropriate 

synapses for further potentiation has received empirical support. Experiments investigating the 

relationship between theta state firing and subsequent replay reveal that co-firing strength in 

behavior is predictive of subsequent replay quality (O'Neill et al., 2008). After performing a 

memory task, but not after random foraging, interference with the incidence of SWRs, and 

presumably replay, led to an NMDA-receptor dependent compensatory increase in the incidence 

rate of SWRs (Girardeau, Cei, & Zugaro, 2014), suggesting temporary changes during learning 

primed the hippocampal network for further potentiation during SWR-associated firing. Phase 

precession can be reduced without affecting place selective firing if rats are passively transported 

across the place fields of multiple cells (Cei, Girardeau, Drieu, Kanbi, & Zugaro, 2014). 

Exploiting this, Drieu, Todorova, and Zugaro (2018) showed that post-experience replay was 
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impaired without phase precession and theta sequences, suggesting a link between theta-

modulated firing in preparatory brain states and SWR-associated synaptic modifications in 

ensuing consummatory brain states. Studies of hippocampal spiking during post-natal 

development demonstrate that experience dependent replay of sequence established during 

navigation emerge in concert with theta sequences (Farooq, Sibille, Liu, & Dragoi, 2019; 

Muessig, Lasek, Varsavsky, Cacucci, & Wills, 2019), but after phase precession has developed 

(Langston et al., 2010). Extrahippocampal input from the MEC is also required to flexibly form 

replay sequences (Chenani et al., 2019). These studies demonstrate the coordinated interplay 

between theta- and SWR-associated sequential activity in service of learning and memory. 

Despite this wealth of knowledge, the mechanisms of phase precession are not well-

understood.  Although these data together with computational modeling (Chance, 2012; Thurley, 

Leibold, Gundlfinger, Schmitz, & Kempter, 2008) suggest that it is possible that phase 

precession requires the interaction of two theta-modulated excitatory inputs, this hypothesis has 

not been directly investigated when hippocampal circuits are engaged in supporting ongoing 

memory-guided behavior. Other computational models of phase precession have mostly focused 

on network interactions (Losonczy, Zemelman, Vaziri, & Magee, 2010; Romani & Tsodyks, 

2015; Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996; Wallenstein & Hasselmo, 1997) or 

cellular mechanisms (Harvey, Collman, Dombeck, & Tank, 2009; Magee, 2001). Inhibitory 

interneurons can contribute to brain computations in complex ways, including division, 

subtraction, task variable representations, pattern separation, and gain control (Fu et al., 2014; 

Kvitsiani et al., 2013; Lapray et al., 2012; Markram et al., 2004; Roux & Buzsáki, 2015; Wilson, 

Runyan, Wang, & Sur, 2012; Wilson & Laurent, 2005). But, inhibitory circuits are generally 

considered to provide “disinhibition time windows” during which excitatory input can drive 
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spiking. Combined with the phase interaction of excitation and inhibition this can give rise to the 

precession effect (Kamondi, Acsády, Wang, & Buzsáki, 1998; Lengyel, Szatmáry, & Érdi, 2003; 

Mehta, Lee, & Wilson, 2002). What, if any, aspects of phase precession is controlled by specific 

input components in the EC-HPC circuit has not been investigated thoroughly. Additionally, 

whether phase precession arising de novo in each stage of the processing pipeline – within the 

DG, CA3, or CA1 – is not known. If phase precession is generated de novo, it would be 

important to know whether it arises in the intrinsic circuitry of each region or multiple inputs are 

combined to produce it. It is also possible that the EC-specific phase precession (Hafting, Fyhn, 

Bonnevie, Moser, & Moser, 2008; Reifenstein et al., 2016) can be inherited directly by 

downstream hippocampal areas (D’Albis, Jaramillo, Sprekeler, & Kempter, 2015; Jaramillo, 

Schmidt, & Kempter, 2014). 

What do the neurons of the hippocampus really represent? 

Despite the enormous complexity of artificial deep neural networks (DNNs), there exists 

a straightforward and simple explanation for the representations that develop with training these 

networks: each neuron is a nonlinear feature detector. In other words, DNNs, at least of the 

classifier variety, untangle the highly non-linear features of their input so that an input can be 

sorted into an appropriate category (Bengio, Courville, & Vincent, 2013; LeCun, Bengio, & 

Hinton, 2015). While we have an intuitive interpretation of hippocampal single neuron 

responses, quantitatively speaking it is still not clear what exactly these cells represent. This 

means that we do not have a theory that can predict to what extent each neuron will alter its 

activity patterns in response to a particular input, and how its activity patterns inform the 

downstream networks to do further computations. 



39 

 

One view of the nature of hippocampal representations is that the set of place selective 

firing profiles, or a place map, is the expression of the attractor states of a navigation system 

(McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Redish & Touretzky, 1998). These 

ideas were first developed based on the experimental data obtained from the hippocampus 

(Samsonovich & McNaughton, 1997), but after the discovery of grid cells and other specialized 

cell types in the MEC (Buzsáki & Moser, 2013) it became clear that the MEC circuit is better 

suited to represent location based on self-motion cues (McNaughton et al., 2006). Further 

complicating the early interpretations was the fact that the hippocampus can represent the 

ongoing context through its firing rate profiles (Bostock et al., 1991; Leutgeb, Leutgeb, Moser, 

& Moser, 2005c; Muller & Kubie, 1987; Wood et al., 1999; Wood et al., 2000). A reinforcement 

learning-based model that combines self-motion and temporal difference learning to provide 

consistent spatial coordinates has also been proposed (Foster, Morris, & Dayan, 2000), though 

this model seems inconsistent with the accumulation of place fields at behaviorally relevant 

locations (Fyhn et al., 2002; Hok et al., 2007). 

Prior experience of the animal during learning has a significant effect on how intuitively 

defined contexts are represented in the hippocampus. For example, CA3 circuits display 

intermediate representations in morphed environments between two square and circle end points 

if the rats are trained in the same place in the end point arenas (Leutgeb et al., 2005a), but not if 

they are trained in separate places (Colgin et al., 2010; Wills, Lever, Cacucci, Burgess, & 

O'Keefe, 2005). So whether the population is said to represent a given context depends on more 

factors than the present set of stimuli. Thus, interpretations may be complicated if we do not 

have a good definition of what constitutes a context. Perhaps the first formal definition of a 

“context” was given by Fuhs and Touretzky (2007). Accordingly, what defines a context is “not 
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a particular class of stimuli […] or behaviors […], but a set of time windows within which the 

statistical structure of sensory experiences and behaviors is stable” (Fuhs & Touretzky, 2007). 

Thus, the hippocampal response is its best estimate of the parameters of a statistical inference 

model about the current context that can inform behavior. When the context is inferred to have 

sufficiently changed to warrant learning a complex new model, the hippocampus will undergo 

remapping (Sanders, Wilson, & Gershman, 2020). 

Recent theories of hippocampal representations take inspiration from reinforcement 

learning to cast the hippocampus as a general purpose computing machine suited for 

computations that rely on learned relations (Stachenfeld, Botvinick, & Gershman, 2017). The 

reinforcement learning framework is concerned with an agent interacting with its environment. 

Interaction here is two-way. The agent influences the environment through its actions while the 

environment influences the agent by rewarding it (rewards can be 0 or negative, i.e., neutral or 

punishing outcomes). The agent is thus faced with a computational task: to learn the action- 

reward contingencies in the context of its environment. To optimize its resources for this 

computational task, the agent must represent the relevant information in an effective manner. 

The successor representation is one such representation scheme (Gershman, 2018), and is 

proposed to be exactly what the hippocampus learns and represents (Stachenfeld et al., 2017). 

Therefore, the place selective responses of the hippocampus are its best prediction of the 

discounted future occupancy of the rat at each location. This information is relayed to other brain 

areas to be combined with estimates about reward outcomes to guide behavior (Stachenfeld et 

al., 2017). Hence, this model implies that when rats learn reward-place contingencies in a 

memory task, their exploration behavior should be correlated with place field activity in the 

environment. In agreement with this prediction, a recent study reported that the targeted 
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stimulation of place fields expressed at behaviorally relevant locations biases the animals to visit 

those locations (Robinson et al., 2020). A generalized unsupervised method, called the Tolman-

Eichenbaum Machine, proposes a framework for factorizing representations that correspond to 

different aspects of knowledge and flexibly combining them to represent novel experiences 

(Whittington et al., 2020). In this way, solving one task (i.e., learning structural knowledge) can 

be used in spatial and non-spatial domains to explain a wide variety of empirically observed 

phenomena of hippocampal coding (Whittington et al., 2020). 

The importance of memory task engagement in the study of hippocampal computations 

As discussed earlier episodic memories can be characterized as combining an event 

content (the what; “I bought bread”) that took place in a spatial context (the where; “from the 

bakery”) and temporal context (the when; “yesterday morning”), coupled with autonoetic 

consciousness. Hence, in the strictest sense, understanding the neural mechanisms of episodic 

memory is possible only in humans. However, by analogy the ability to use stored information in 

terms of the conjunction of the what, the where, and the when of experiences is analogously 

referred to as episodic-like memory (Eichenbaum, Fortin, Ergorul, Wright, & Agster, 2005). 

Episodic-like memory has been rather extensively documented in multiple species, including rats 

(Babb & Crystal, 2005, 2006; Clayton & Dickinson, 1998; Kart-Teke, De Souza Silva, Huston, 

& Dere, 2006; Naqshbandi, Feeney, McKenzie, & Roberts, 2007; Roberts et al., 2008; Schwartz, 

Hoffman, & Evans, 2005). Consequently, rats have been recently used as model organisms for 

the study of episodic memory. However, crucially, the vast majority of modern neuroscientific 

research into hippocampal information processing has largely investigated it outside the scope of 

a memory task, thus undermining the interpretation of their relevance for mnemonic function. 
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Preview of the dissertation 

To test whether hippocampal activity patterns hypothesized to be involved in estimating 

elapsed time (Mankin et al., 2015) indeed allow for episodic-like memory, rats can be trained to 

distinguish between a short (e.g., 30 minutes long) and long (e.g., 6 hours long) delay period by 

learning to associate each delay with a distinct spatial location. Hippocampal population activity 

patterns can then be analyzed in relation to behavioral responses and performance for a test of 

the hypothesis. However, before this can be ascertained, one must first establish whether 

hippocampal populations exhibits a greater, diminished, or similar rate of reorganization while 

rats are required to encode and retain spatial information to guide their goal-directed behavior 

many hours later, compared to when they are not required to do so. Learning the structure of an 

8-arm radial maze and place-reward contingencies on it (Olton & Samuelson, 1976) is known to 

depend on hippocampal circuits (Olton, Walker, & Gage, 1978), including DG (McNaughton, 

Barnes, Meltzer, & Sutherland, 1989; Sasaki et al., 2018). 

To determine the rate of hippocampal population response reorganization during the 

performance of a spatial memory task over many hours, we developed a delayed-matching-to-

place task and trained rats on it while monitoring hippocampal CA1 neural activity. Compared to 

a control condition in which rats engaged in a “memory-less” task behaviorally matched the 

experimental condition, the memory task condition caused a significantly greater code 

reorganization over six hours. This was manifest both at the level of single cells and pairwise 

correlations between them, resulting in the degradation of the spatial information conveyed by 

the hippocampus after many hours. In spite of this degradation, a distinct subset of neurons 

began to overrepresent the goal location immediately after the rats’ first time exploring the goal 

location each day. This goal selective population exhibited properties consistent with higher 
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intrinsic excitability. Our experimental design also allowed us to examine the evolution and 

peculiarities of post-learning neural activity patterns for many hours. We discovered that cells 

were biased by memory task performance to fire in long-duration SWRs. Goal cells, in 

particular, were also more likely to fire in SWRs. Finally, the reorganization of place 

representations in the memory task led to the clustering of neural activity on arms most visited 

by the rats in the memory task, suggestive of a mechanistic role in guiding animal behavior. 

These results, presented in full in chapter 1, elucidate how memory-related representations are 

processed offline and retained for future retrieval. 

In chapter 2, we investigate the complementary physiological processes, namely 

encoding during online states. As suggested by earlier arguments, DG and CA3 work together to 

support encoding the initial traces of memory to be further processed in offline states. Phase 

precession in this network is likely to play a critical role. However, the generation mechanisms 

of phase precession with respect to various circuit inputs are not well-understood. Studying CA3 

phase precession allowed us to independently control one of its two major theta-modulated 

excitatory inputs, namely DG and MEC. We examined CA3 spiking with or without DG and/or 

MEC inputs while rats performed a hippocampal dependent working memory task. We found 

that both inputs are necessary for intact CA3 phase precession. However, we discovered a double 

dissociation as well. Whereas the DG-CA3 circuit was capable of supporting precise spiking late 

in the theta phase (prospective/predictive coding) without MEC input, the DG input was 

indispensable for this function when MEC was intact. Furthermore, spiking order of pairs of 

CA3 cells in the theta cycle, normally matching the behavioral sequence of place field traversals, 

was found to no longer match the behavioral sequence without intact DG inputs, even in those 

CA3 cells that had some remaining phase precession. In contrast, MEC lesions did not affect this 
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phenomenon, even in cells with significantly impaired phase precession. We developed a 

computational model that explained the empirical findings and made testable predictions 

regarding the role of each input, including the inhibitory interneuron network, in orchestrating 

precise spike timing during theta, important for memory encoding processes. 

Chapter 3 concludes the dissertation by synthesizing the findings of chapters 1 and 2. In 

addition, the implications of the findings and the most promising future research directions are 

discussed. Specific predictions and experimental designs to test them are also developed. 
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CHAPTER 1: Reorganization of hippocampal population patterns during memory retention over 

hours 

 

Abstract 

Hippocampal place cells are thought to support memory-guided navigation by encoding 

map-like representations of an animal’s environment—activity patterns tied to internal and/or 

external variables, such as animal position (Grieves & Jeffery, 2017). In the absence of a 

behavioral task, these representations undergo continual spontaneous reorganization, typically 

detectable only after an extended amount of time (on the scale of hours) has elapsed (Mankin et 

al., 2012). Consequently, because hippocampal patterns can be faithfully re-expressed across 

minutes-long intervals, the reinstatement of the previously encoded patterns upon re-exposure to 

the same environment is taken to be the basis of memory retrieval and, by extension, goal-

directed navigation (Dupret et al., 2010; Gridchyn et al., 2020; Josselyn & Tonegawa, 2020; 

Roux et al., 2017; Singer et al., 2013). However, it is unclear how on substantially longer 

timescales the reorganized representations of a static environment can still be valid and 

informative for navigation. We trained two groups of rats to perform a spatial memory task and a 

non-memory task on an 8-arm radial maze. In the memory version, rats learned a new goal-arm 

location each morning and were tested 6 hours later for memory retention. In the non-memory 

version, rats performed a behaviorally matched task without a consistently rewarded location. 

Compared to the non-memory task, a number of findings were revealed in the memory task: (1) 

Single-cell place representations were less stable, leading to degradation of position decoding 

accuracy over time. (2) During memory retention between the learning and test phases, strong 

spatial co-firing between cell pairs diminished, while strong pairwise spike train correlations 
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were preserved to a larger extent than weak ones. (3) Despite instability in the spatial code, a 

distinct population coded for new goal location information, and pairwise spatial correlations of 

goal cells tended to be better preserved than those of non-goal cells. (4) During sleep in the six-

hour retention period between learning and testing, spiking was preferentially recruited in long-

duration sharp wave ripples (SWRs). (5) Pairwise coactivation from the learning phase was more 

strongly re-expressed in SWRs during the retention period and during sleep after testing. Taken 

together, our results establish that neuronal activity patterns show substantial instability during 

memory retention over hours without interfering with task performance. Thus, in principle, the 

functional neural subpopulations emerging in concert with memory task performance could 

support memory-guided behavior. These findings segregate memory-related network dynamics 

from coding for more consistently remembered environmental features, such as space and 

context.  
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Introduction 

The rodent hippocampus is thought to support spatial memory by providing a map of the 

environment encoded in the spiking of its cells at precise spatial locations (Buzsáki & Moser, 

2013). Single cell and population level analyses of this code have demonstrated that hippocampal 

cells retain stable place fields from seconds to minutes (Diehl et al., 2019; Leutgeb et al., 2004; 

Sasaki et al., 2015). In general, in a novel environment, CA1 place fields start out broad and 

imprecise, conveying low spatial information but as the animal learns the conjunction of all 

features that define the environment the place fields become more precise and stable (Karlsson & 

Frank, 2008). As time passes, these representations drift, with the drift being readily detectable 

on the timescale of hours or longer (Mankin et al., 2012; Ziv et al., 2013). By utilizing this 

drifting code, the output area of the hippocampus, CA1, can in principle compute the time since 

a memory was acquired by comparing a temporal context encoded by a constantly drifting 

population code originating from CA2, and a high-fidelity copy of the memory stored in CA3 

(Mankin et al., 2015). However, if extrahippocampal networks should rely on receiving accurate 

spatial information from CA1, a temporally drifting CA1 code will be problematic unless there is 

concurrent and fast recalibration of downstream areas (Rule et al., 2019). Since learning in the 

hippocampus occurs faster than in neocortex (McClelland et al., 1995), other strategies must 

exist to ensure reliable computations. One hypothesis is that once animals engage in active 

encoding and retaining task-related information, the hippocampal code stabilizes, obviating 

neocortical recalibration. Alternatively, the hippocampal code for space may reorganize in a 

heterogeneous way in a memory task, accelerated in some cells but more stable in others. 

During an experience, the hippocampal networks undergo changes that are evident when 

neuronal co-firing is compared after exploration of a novel environment relative to that prior to 
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exploration. In particular, neuronal co-firing is significantly enhanced post-experience compared 

to the pre-experience baseline (Skaggs & McNaughton, 1996; Wilson & McNaughton, 1993). 

This also indicates that learned associations continue to be processed in post-experience offline 

states. This active offline processing predominantly takes place during sharp-wave ripple 

(SWR)-associated firing (Nádasdy et al., 1999), and important for memory and affects 

subsequent spatial selectivity profiles of hippocampal cells (Norimoto et al., 2018; Roux et al., 

2017). Yet, the hours-long time course of this process after an experience is not known. If SWR-

related activity continues for many hours post-experience, this would put its proposed role in 

place map stabilization (Roux et al., 2017) at odds with population reorganization over a 

relatively long time periods (hours to days). Alternatively, SWR participation of hippocampal 

neurons could be selective, with a dichotomy in the identity of the cells that fire in SWRs 

determined by their spatial selectivity during exploration. Furthermore, it is unclear how SWR-

associated spiking patterns change when information is learned and activity retained over many 

hours to guide behavior. When the environment is novel (as in most previous studies of SWR-

related firing), SWRs occur at a pronounced rate (Cheng & Frank, 2008; Singer & Frank, 2009), 

potentially facilitating the rapid formation and stabilization of spatial maps. When rats perform a 

task in a highly familiar environment, however, the reduced incidence rate of SWRs could lead 

to increased place map reorganization, potentially undermining spatial memory performance. 

Alternatively, task performance per se might promote stable place selectivity (Kentros et al., 

2004). These factors can be dissociated if memory-dependent behavior is paired with a non-

memory control. 

To answer the above questions, we trained rats to perform one of two tasks on an 8-arm 

radial maze. The first group performed a memory task where, each day, they learned the location 
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of a reward at the end of one arm and were tested six hours later. The second group performed a 

non-memory version of this task in which the rewarded location was inconsistent and random to 

prevent the establishment of a reward-place association. This control group shared all behavioral 

variables without learning a new goal arm allowing us to determine whether network dynamics 

can be ascribed to experience or learning, and place map stability on memory load. We thus 

monitored the same population of CA1 neurons in learning, retention, and testing periods to 

directly assess the stability of hippocampal representations during behavior as well as the 

dynamics of the network during rest in the six hour retention period. We found that, compared to 

the non-memory task, memory task performance caused single-cell place representations to be 

less stable, leading to degradation of position decoding accuracy over time. In addition, we 

observed pronounced reorganization in correlations between pairs of spatial maps and pairs of 

spike trains. Despite this reorganization, a distinct population of neurons preferentially 

represented the goal location, and tended to have better preserved spatial coding between 

learning and retrieval. Furthermore, during rest in the six-hour retention period, spiking was 

preferentially recruited in long-duration sharp wave ripples. Finally, pairwise coactivation from 

the learning phase was more strongly re-expressed in SWRs during the retention period and 

during sleep after testing. 

Results 

The memory based behavioral paradigm 

We developed a delayed match-to-place spatial memory task in which rats (N = 9) 

learned the location of a food reward available at the end of a goal arm on an 8-arm radial maze 

(Figure 1.1A). The goal arm was pseudorandomly chosen for each session to induce daily 
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memory updates. We trained the rats to freely explore the maze in blocks of 5-6 trials (labeled 

S0-S5; whole block labeled “SAMPLE”) and learn and remember the goal arm in each 

experimental session which was baited consistently in every trial. The rats had access only to the 

goal arm in S0, but to all arms subsequently. To isolate the effect of learning a new goal location 

every day, a control group of rats (N = 4) performed a non-memory variation of this task in 

which the baited arm was pseudorandomly chosen for each trial rather than for a whole session 

to ensure that no location would be reliably informative to be remembered for future reward 

seeking behavior. 

Rats were tested for their memory of the goal arm six hours after the end of the SAMPLE 

phase. For brevity we will refer to the arm visited in S0 by the rats in the non-memory group also 

as the goal arm (see Methods). We quantified the behavioral performance by two measures: the 

time from the start of the TEST trial to the rats’ first visit to the reward zone of the goal arm, or 

their rank of first entry to that arm. Rats trained to perform the memory task visited the goal arm 

sooner than those performing the non-memory task (Figure 1.1B; rank sum = 909, z-stat = -

3.043, p = 0.0023, Wilcoxon’s rank sum; t54 = -3.20, p = 0.0023, two-sample t-test). Testing the 

rats for their memory of the goal arm after only 30 minutes indicated that rats in both tasks 

acquired the memory of the first visited arm despite it not being consistently baited in the non-

memory task (Figure 1S.1A). Comparing this to the results of testing the rats after six hours 

(Figure 1.1B) suggests that although the goal arm is remembered by all rats for the initial 30 

minutes post-learning, only in the memory task do rats remember the goal arm for up to a 

minimum of six hours (until tested). We estimated the distribution of arm entry rank data via 

simulations based on observed turn data (Figure 1S.1B; see Methods for simulation details) and 

observed that, by the rank-of-entry measure, performance was better than what would be  
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Figure 1.1: Accurate spatial localization does not explain spatial navigation and 
performance in a memory task. (A) Behavioral tasks. (B) Behavioral performance. (C) Spatial 
coding in the hippocampus. “S” and “T” labels indicate the place maps of the same cell in the 
SAMPLE and TEST phases, respectively. The bottom half of examples had a cluster quality 
score of 4, except the example from rat 897 which had a score of 5. (D) The spatial correlation of 
hippocampal place maps across the two phases of the behavioral tasks. (E) The hippocampal 
code is more unstable when the animals perform a memory task. (F) Pure location is inconsistent 
with the oft-proposed function of the hippocampus, namely accurate localization. (G) The 
median absolute error of the Bayesian decoder increases only in the memory task, presumably 
due to greater instability of the maps shown in (D-E). (H) The spatial instability of the maps or 
the drop in decoder accuracy are not due to degenerate place coding in the hippocampus, such as 
lower spatial selectivity or loss of place fields. (Top) Fraction of all cells with a place field in 
SAMPLE but not TEST (“S only”), TEST but not SAMPLE (“T only”), SAMPLE and TEST 
(“S+T”) and cells that did not form a place field in either SAMPLE or TEST (“Neither”). 
(Bottom) The hippocampus displayed greater spatial selectivity across the two phases of the 
memory, but not the non-memory, task, as evidence by the higher proportion of cells expressing 
a place field in the memory task.  
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expected by chance only in the memory task (Figure 1.1C; Mem vs. Sim rank sum = 1071794.5, 

z-stat = -4.70, p = 1.3 × 10-6; NMem vs. Sim rank sum = 888826.5, z-stat = -0.492, p = 0.311). 

Importantly, this confirmed that the difference in performance between the two versions of the 

task was indeed due to a memory effect as opposed to arising from diverging behavioral 

strategies or other latent variables. Thus, training history and the repeated receipt of reward at a 

constant location in each session were crucial for the long-term (i.e., hours-long) retention of the 

spatial information required to solve the memory task. Furthermore, our task design and training 

protocol were effective and rats did learn the tasks as intended. 

Memory task engagement destabilizes hippocampal spatial 

representations 

The prevailing view of hippocampal function is that it computes a stable code for 

acquired memories (Eichenbaum, 2017), which in rodents is predominantly and overtly in the 

spatial domain (O'Keefe & Nadel, 1978). This code is then routed to downstream areas to guide 

behavior on the basis of spatial memories (Morris et al., 1982; Redish & Touretzky, 1998; 

Sanders et al., 2015). A large body of literature has corroborated this view by primarily showing 

that the hippocampal code indeed contains very substantial spatial information (Brown, Frank, 

Tang, Quirk, & Wilson, 1998; Davidson et al., 2009; Frank, Brown, & Wilson, 2000; Gonzalez, 

Zhang, Harutyunyan, & Lois, 2019; Pfeiffer & Foster, 2013; Wikenheiser & Redish, 2015; 

Wilson & McNaughton, 1993; Zhang, Ginzburg, McNaughton, & Sejnowski, 1998; Ziv et al., 

2013). It is known that in an open field paradigm hippocampal neural representations become 

decorrelated as a function of elapsed time (Mankin et al., 2012). If the previously observed 

representation changes (Mankin et al., 2012) were due to the lack of a behaviorally relevant 

objective, we would expect to see more stable maps in our memory task. Moreover, previous 
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experiments were done over relatively short time periods and/or in the absence of a memory task, 

leaving unanswered to what extent hours-long code reorganization would affect spatial memory 

performance. 

Our paradigm requires that spatial information be learned and retained over extended 

time scales on the 8-arm radial maze. Furthermore, we follow the same population of neurons 

after learning a new goal through six hours of memory retention until testing and memory 

retrieval. In addition, our control group allows us to dissociate the task-specific learning from 

expected learning of environmental features or passage of time. Thus, to ask how hippocampal 

representations in our novel paradigm compare to those in classic open-field or linear track 

paradigms without an explicit memory task and studied over much shorter intervals, we 

proceeded to quantify the spatial stability of single cell place maps across the SAMPLE and 

TEST behavioral epochs. After confirming the success of the training protocol and the 

robustness of behavioral performance, a subset of 24 (memory) and 9 (non-memory) individual 

sessions (where testing took place 6 hours after SAMPLE) were selected for analysis of neural 

dynamics (fig 1.1B; neurons N = 1795 from 34 sessions). Surprisingly, we observed that, 

compared to the non-memory task, memory task performance led to a greater amount of change 

in the within-cell spatial map correlations over extended time intervals (Figure 1.1C-D). 

Quantitatively, the proportion of cells that were uncorrelated or only weakly correlated was 

higher in the memory task compared to the non-memory task (Figure 1.1E; 29.3% vs. 20.9%, p = 

0.0114, χ2 = 6.40, chi-squared test). This was not due to poor cluster quality as the patterns were 

replicable when the analysis was restricted to the clusters with the highest quality scores (27.7% 

vs. 18.9%, p = 0.0476, χ2 = 3.92, chi-squared test). Thus, when rats are required to retain spatial 
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information for extended periods of time, the representations of single hippocampal cells 

undergo a greater amount of reorganization than when they passively explore the environment. 

Position estimation suffers from reduced spatial stability of place 

representations 

To ask how despite greater instability in the hippocampal neural code the rats could 

successfully perform the memory task, we compared the generalization ability of a Bayesian 

decoder across the SAMPLE and TEST epochs. Specifically, we reasoned that if the 

hippocampus helps the rats solve the memory task by providing an accurate map-like 

representation of the environment, the increased instability of the neural code due to the memory 

task should have no material impact on the ability of a downstream decoder to locate the rats 

from neural activity. For instance, such a population decoder might be able to extract stable 

spatial information even though individual cell representations change over time. Using five-fold 

cross validation, we were able to decode the instantaneous position of the rat better than chance 

in both tasks and for both behavioral epochs (Figure 1.1F; see Methods). However, the decoder 

generalized better to the TEST epoch in the non-memory task compared to the memory task 

(Figure 1.1F, inset; compare the difference between the memory curves (blue) with the 

difference between the non-memory curves (gray)). Quantitatively, the median absolute error 

increased significantly between the SAMPLE and TEST epochs only in the memory task (Figure 

1.1G). This drop in the decoder performance was not due to disparate place selectivity profiles of 

hippocampal cells in the two tasks (Figure 1.1H). These data are inconsistent with the hypothesis 

that the function of the hippocampus in solving our spatial memory task is to broadcast an 

accurate position estimate within the map of an environment. 
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Memory task modulates pairwise place representation and spiking 

dynamics 

We next hypothesized that higher-order neural dynamics might mediate the successful 

performance of the rats in the memory task. To test this, we first examined to what extent 

pairwise correlations between spatial representations were maintained across the two tasks. 

Whereas a positive correlation between two cells’ place maps is indicative of sufficiently 

overlapping place fields, a zero or negative correlation would be inconclusive about the exact 

relationship between the spatial receptive fields of the cells (Figure 1.2A). Therefore, to assess 

how place selectivity is co-modulated between cell pairs, we focused on positively correlated cell 

pairs and asked to what extent such positive correlations are maintained across the SAMPLE and 

TEST epochs in each task. 44.0% and 34.9% of all cell pairs in the memory task had a positive 

map correlation in the SAMPLE and TEST epochs (Figure 1.2B). However, while in the non-

memory task the percentage of cell pairs with a positive map correlation at SAMPLE (45.7%) 

was similar to that in the memory task, only 28.9% had a positive correlation in TEST epochs 

(Figure 1.2B). Of the positively correlated cell pairs in the SAMPLE epoch 51.0% in the 

memory task and 44.5% in the non-memory task were still positively correlated at TEST (Figure 

1.2C; p = 6.8 × 10-17, χ2 = 69.73, chi-squared test), indicating that changes in the spatial 

selectivity of these pairs was more coherent in the memory task. The amount of change in the 

pairwise map correlations was a function of the initial correlation strength of the pairs (Figure 

1.2D). In particular, whereas the weakly- and moderately-correlated pairs (pairs with r < 0.1 and 

0.1 < r < 0.4, respectively) reorganized similarly across the two tasks (Figure 2D, left and middle 

panels, Cohen’s effect size d < 0.061), the strongly correlated cell pairs retained their strong 

correlation to a greater extent in the non-memory task (Figure 2D, right panel, Cohen’s effect 
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size d = -0.535). Thus, while pairs of place cells are more likely to retain their similar spatial 

selectivity profile across task phases in the memory task compared to the non-memory task, 

changes in spatial co-selectivity originate primarily in the cells with the most highly similar 

firing patterns. 

The place representation correlations are coarse measures of coherent population changes 

and only account for firing rates. To gain insights into how the precise relative spike timing of 

the cells is preserved throughout the experimental sessions, we examined the spike trains by 

calculating the correlation coefficient between pairs of spike count vectors (Figure 2E; see 

Methods). At SAMPLE, about 95% of the spike train correlation values lay between -0.06 and 

0.128 in both tasks, with almost all (99.8%) significant (at α = 10-4) values being positive (Figure 

1.2F). While a similar proportion of all spike train pairs were significantly correlated in both 

tasks (Figure 1.2F), a higher percentage of trains positively correlated at SAMPLE were 

correlated at TEST in the non-memory task (Figure 1.2G, memory vs. non-memory: 23.0% vs. 

32.0%, t31 = -2.17, p = 0.038, two sample t-test). Inspection of the correlation matrices across 

SAMPLE and TEST suggested that low and high correlation values are affected differently 

(Figure 1.2H). Indeed, quantile-quantile plots (QQ-plots) comparing the shape of distributions 

across the two epochs supported this observation (Figure 1.2I). 

To compare how small and large correlations changed from SAMPLE to TEST across the 

two tasks, we quantified two features of the QQ-plots for each session. The “flattening” of the 

portion of the QQ-plots between 0 and 0.01 was taken to be a proxy for how small correlations 

changed, whereas the deviation of points greater than 0.05 was taken to be a proxy for how large 

correlations changed (Figure 1.2I; see Methods). At the population level, strongly correlated 

values became more extreme, while weakly correlated values were further diminished in the  
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Figure 1.2: Pairwise spatial firing and temporal firing correlations are preferentially 
reduced in the memory task. (A) Example place maps pairs with relatively stable and unstable 
co-firing. (B) The distribution of all place map correlation values in the memory task (left) and in 
the non-memory task (right) for the SAMPLE (solid line) and TEST (shaded histograms) epochs. 
The marked rectangular area is blown up in the inset for clarity. Notice that in the memory task 
the overall distribution is similar between SAMPLE and TEST, while in the non-memory task 
the TEST distribution is reduced. This is because the values are normalized to represent a 
fraction of all possible map pairs so if a place cell stops firing at TEST, it contributes to the 
denominator without contributing to the numerator in the normalization step. (C) Compared with 
the non-memory task, a higher proportion of place cells in the memory task retained their co-
firing from SAMPLE to TEST. (D) Distribution of spatial firing map correlation changes 
between SAMPLE and TEST epochs for pairs with low (r < 0.1), moderate (0.1 < r < 0.4), or 
high (r > 0.4) correlation at SAMPLE. Cell pairs with the most similar spatial co-firing patterns 
(High) saw a greater amount of reduction in their co-firing at TEST in the memory versus the 
non-memory task. (E) Schematic of the computational steps for estimating spike train 
correlations. (F) Distribution of spike train correlations in the memory (top) and non-memory 
(bottom) tasks for the SAMPLE (solid line) and TEST (shaded) epochs. (G) In the memory task, 
a lower proportion of cells retained their spike train correlation between SAMPLE and TEST 
epochs. (H) Example spike train correlation matrices from the memory task. (I) QQ-plot of 
example correlation matrices from (H). How the changes in strong and weak values are 
quantified is graphically displayed. (J) Quantification of changes in strong and weak spike train 
correlations from all sessions of each task. (K) In both tasks, cell pairs with strongly correlated 
spike trains were more likely to retain their correlation between SAMPLE and TEST. Retention 
is quantified as the fraction of pairs at SAMPLE that were significantly correlated at TEST. 
Weak correlations: r < 0.05, Strong correlations r > 0.05. 
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memory task (Figure 2J). Individual strongly correlated pairs at SAMPLE were more likely to be 

retained at TEST compared to weakly correlated pairs in both tasks (Figure 1.2K). Thus, while at 

the population level the tails of the spike correlation distributions were differently modulated by 

the two tasks, the strength of individual correlations in SAMPLE determined to what extent they 

were carried over to the TEST epoch. The relationship between the values of place map and 

spike train correlations did not appear to have a straightforward interpretation, suggesting that 

these analyses captured different aspects of neural dynamics (Figure 1S.2). Taken together, these 

results delineate the distinct dynamics of firing rate and spike timing correlations between the 

memory and non-memory tasks. 

Goal location is overrepresented in the memory task 

To further characterize the neural dynamics that might support behavioral performance, 

we examined the distribution of place representations in the two tasks (Figure 1.3A). Cells 

typically had multiple discrete place fields scattered throughout the maze (Figure 1.3B). Cells 

with a place field on the goal arm (labeled “goal cells”) constituted roughly 10.4% and 4.9% of 

the population of simultaneously recorded cells in the memory and non-memory tasks, 

respectively (Figure 1.3C, z = 4.84, rank sum = 15344.5, p = 1.3 × 10-6, rank sum test). 

Intriguingly, compared to non-goal cells (place selective cells without a place field on the goal 

arm), the goal cells were overrepresented in both tasks (10.4% vs. 3.1% in memory, z = 10.88, 

rank sum = 27037.5, p = 1.5 × 10-27; and 4.9% vs. 2.6% in non-memory tasks, z = 3.00, rank sum 

= 3429, p = 0.0027; rank sum tests). To account for possible disparities in the number of place 

fields per cell, we recounted the goal arm place fields as a fraction of all place fields (Figure 

1.3D). The proportion of all place fields expressed within an experimental session was greater on 

the goal arm compared to the non-goal arms only in the memory task (memory: 20% vs. 11.0%, 



61 

 

z = 5.02, rank sum = 9954, p = 5.3 × 10-7; non-memory 12.5% vs. 13.4%, z = -0.224, rank sum = 

1799, p = 0.82; rank sum tests). Furthermore, the proportion of goal cell place fields was greater 

in the memory task than in the non-memory task (z = 3.68, rank sum = 10372.5, p = 2.3 × 10-4, 

rank sum test). Thus, the goal arm was overrepresented in the memory task both when calculated 

as a fraction of all hippocampal cells and as a fraction of all place fields expressed within an 

experimental session. 

To assess whether the goal-representing cells have distinct coding properties, we 

calculated the proportion of such cells that retained their spatial selectivity across the SAMPLE 

and TEST behavioral epochs. In the memory task, but not the non-memory task, goal cells were 

more likely to continue to be spatially selective (Figure 1.3E; Mem: 88.4% vs. 76.6%, p = 

0.0016; NMem: 88.7% vs. 76.0%, p = 0.05014, chi-square tests), although their place fields were 

no more likely to remain on the same arm of the maze compared to non-goal cells (Figure 1.3F; 

Mem: goal vs. non-goal 66.7% vs. 68.4%, p = 0.46; NMem: 69.2% vs. 71.1%, p = 0.62, chi-

square tests). Cells that represented the goal arm at SAMPLE had a higher average firing rate at 

baseline (Figure 1.3G; mean firing rates in PRE: Mem, 0.30 Hz vs. 0.57 Hz goal vs. non-goal, p 

= 0.043; NMem, 0.25 Hz vs. 0.23 Hz goal vs. non-goal, p = 0.95) and higher peak firing rate in 

the SAMPLE epoch (Figure 1.3H; Median peak SAMPLE firing rates: Mem, 11.41 Hz vs. 8.12 

Hz, goal vs. non-goal, p = 0.0018; NMem, 13.44 Hz vs. 8.98 Hz, goal vs. non-goal, p = 0.0329; 

rank sum tests) compared to non-goal representing cells. Interestingly, in the memory task goal 

cells fired at a significantly higher rate upon the rat’s first pass through the goal arm field (which 

took place in trial S0; see Methods) compared to the subsequent visits (trials S1-S5), as well as 

compared to the first pass through the place fields of non-goal cells (Figure 3I; firing rates during 

first field traversal: Mem, 19.86 Hz vs. 15.08 Hz, goal vs. non-goal, p = 0.0087; NMem, 17.27  
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Figure 1.3: Goal arm is overrepresented in the hippocampal population by the more 
excitable cells. (A) Schematics of the counting methods for estimation of overrepresentation. 
Top: in the by-cell method, overrepresentation of the goal arm was calculated as the number of 
goal cells (cells with at least one place field on the goal arm) as a fraction of the number of 
simultaneously recorded hippocampal cells. Bottom: in the by-field method, overrepresentation 
was calculated as a fraction of place fields expressed on the goal arm out of all discrete place 
fields. (B) Examples of non-goal (top two rows) and non-goal cells (bottom row). (C) The goal 
arm was overrepresented in both tasks when counted by-cell. In the memory task, the 
overrepresentation was more pronounced. (D) The goal arm was overrepresented in the memory 
task when counted by-field. (E) Goal cells were more likely to retain their place selectivity in the 
memory task. (F) Retention of place selectively was not arm-specific as both goal and non-goal 
cell populations had a similar probability of representing the same arm in both SAMPLE and 
TEST epochs. (G) Baseline firing rate of goal cells calculated in the PRE epoch (before any new 
learning took place) was higher than non-goal cells in the memory task. (H) Peak firing rate of 
the goal cell population was higher during SAMPLE, evident in the upward shift of the QQ-
plots. (I) In-field firing rate of goal cells was higher during the first pass through the place field 
(which occurred in trial S0) compared to subsequent visits (S1 to S5). This was not the case for 
non-goal cells (first visit occurring in trial S1, compared to subsequent visits in S2 to S5). 
Though a similar pattern was observed in the non-memory task, the effect was less pronounced. 
(J) Goal cells expressed more place fields than non-goal cells in both tasks, on average. The 
vertical lines indicate the means. 
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Hz vs. 11.91 Hz, goal vs. non-goal, p = 0.007; rank sum tests). Goal cells were also more likely 

to have more place fields compared to non-goal cells in both task epochs (Figure 3J; number of 

place fields at SAMPLE: Mem, mean: 2.49 vs. 1.57, median: 2 vs. 1; NMem, mean: 2.82 vs. 

1.89, median: 3 vs. 1; medians p < 10-6, rank sum tests). Together, these results identify cell 

excitability and intrinsic spiking propensity as the physiological properties that play a role in 

determining functional cell fate to represent each session’s goal location. 

Distinct pairwise place representations and spiking dynamics in relation 

to goal cells 

Next, we sought to characterize the interactions between the goal cells and the rest of the 

population to determine how they shape neural dynamics in each task. Place map correlations 

between goal cells were significantly stronger than between a goal cell and a non-goal cell, or 

between non-goal cells (Figure 1S.3; p < 10-80, Kruskal-Wallis test; post-hoc comparisons p < 

0.01). In addition, place map correlations between one non-goal and one goal cell were stronger 

than between non-goal cells (Figure 1S.3, post-hoc comparisons p < 0.01). At SAMPLE, the 

median place map correlation between goal and non-goal cells was -9.7 × 10-4 in the memory 

task and 0.012 in the non-memory task, with 49.5% and 55.1% of the values, respectively, in the 

positive (Figure 1.4A, p = 2.4 × 10-8, χ2 = 31.16, chi-square test for proportions). In contrast, at 

TEST time about 38.7% and 36.1% of place map correlations between goal and non-goal cells 

were positive (p = 0.0073, χ2 = 7.20, chi-square test for proportions). Of the positive correlations 

between goal and non-goal cells at SAMPLE, 54.6% and 48.4% remained positive also at TEST 

(Figure 4B, p = 8.2 × 10-6, χ2 = 19.90, chi-square test for proportions). When pairs of goal cells 

alone were considered, 63.4% and 54.9% of the positive SAMPLE correlations were retained at 

TEST (Figure 4B, p = 0.0041, χ2 = 8.25, chi-square test for proportions). We also found 
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significant interactions between the number of goal cells in a given pair (0, 1, or 2) and the task 

performed (memory or non-memory) (Figure 1S.4): weakly correlated pairs in the SAMPLE 

epoch enhanced their place representation correlation at TEST to a greater extent when at least 

one member of the pair was a goal cell only in the memory task (interaction term F-value = 8.53, 

p = 0.0002; two-factor ANOVA). In contrast, the correlation between strongly correlated pairs at 

SAMPLE was reduced to a greater extent at TEST when at least one pair member was a non-

goal cell in the memory task (interaction term F-value = 3.91, p = 0.0203; two-factor ANOVA). 

When exactly one pair member was a goal cell, weakly-, moderately-, and strongly correlated 

cell pairs exhibited a median change in correlation between SAMPLE and TEST of 0.046, -0.08, 

and -0.33 in the memory task, and of 0.032, -0.079, and -0.194 in the non-memory task (Figure 

1.4C). All values were statistically significantly different across the two tasks (Figure 1.4C, p < 

0.05, rank sum tests), though the greatest effect was observed for the pairs with high SAMPLE 

correlations. Taken together, these analyses suggest that the goal-selective cell population might 

have an enhancing effect on positive correlations between place maps from SAMPLE to TEST. 

We next grouped cell pairs by their goal-selectivity and inspected the spike train 

correlation matrices of each session based on this grouping (Figure 1.4D). Overall, the 

correlation matrices of the TEST epoch appeared sparser compared to their SAMPLE 

counterparts in the memory task (Figure 1.4D), with the sparsification mainly evident in the non-

goal population (Figure 1.4D-E). The comparison between how the samples were distributed 

relative to each via QQ-plots showed that the strong correlations between non-goal cells were 

skewed rightward compared to those in the goal cell population evident in the upward divergence 

of quantiles from the equidistribution line (Figure 1.4E-F). In contrast, when at least one member 

of a weakly correlated spike train pair was drawn from the non-goal cell population, the  
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Figure 1.4: Dynamics of pairwise spatiotemporal co-firing profiles in relation to the goal 
selective population. (A) Distribution of spatial co-firing similarity between goal selective and 
non-goal selective cell pairs in the memory (blue) and non-memory (gray) tasks with SAMPLE 
and TEST data displayed as solid line or shaded histogram, respectively. (B) Proportions of 
SAMPLE spatial co-firing retained at TEST for cell pairs with exactly one or two goal selective 
members. (C) Quantitative changes in co-firing of cells pairs with exactly one goal-selective 
member. Pairs with a high co-firing score (r > 0.4) show the greatest change between SAMPLE 
and TEST epochs. (D) Example spike train correlation matrices from the memory task. Goal 
selective and non-goal selective cells are sorted into blocks (note the labels). (E) QQ-plots of 
memory task correlation matrices separated by goal-selectivity. (F) Changes in strongly 
correlated cell pairs in the memory task sorted by goal-selectivity. (G) Changes in weakly 
correlated cell pairs in the memory task sorted by goal-selectivity. (H-K) Organized as in (D-G) 
but for the non-memory task. (L) Distribution of the correlation values of spike train pairs in the 
memory (left) and non-memory (right) tasks. Insets show the proportion of strongly correlated 
pairs (r > 0.1). (M-N) Histograms of the proportion of pairwise weak or strong SAMPLE spike 
train correlation values that were retained at TEST for the memory (M) and non-memory (N) 
tasks, separated by goal-selectivity. In each pair one member was fixed to be a non-goal selective 
cell, while the second member was chosen to be either a goal selective cell (darker histograms) 
or non-goal selective cell (lighter histograms). Strong and weak values are shown separately as 
shaded or solid line histograms, respectively.  
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correlation was further weakened compared to goal cell-goal cell interactions which on average 

remained intact (Figure 1.4G). These correlation strength-specific effects were not found in the 

non-memory task (Figure 1.4H-K), except for the further weakening of weakly correlated spike 

train pairs drawn exclusively from the non-goal population (Figure 1.4K). The strength of a non-

goal cell’s spike train correlation depended on the identity of its partner: in both tasks spike train 

correlations with a goal cell were stronger (r > 0.10) than with non-goal cells (Figure 1.4L, 

insets: p < 10-4, chi-squared tests). Finally, between SAMPLE and TEST in the memory task 

weak spike train correlations were eliminated at a higher rate than strong ones (Figure 1.4M, fig 

1S.5). In contrast, spike trains correlated with goal cells were differentially retained between 

SAMPLE and TEST depending on the initial correlation strength at SAMPLE (Figure 1.4N, fig 

1S.5). In summary, cells that develop a representation of the goal arm in the memory task 

mediate distinct place map and spike train correlations across the population. Furthermore, in the 

memory task the hippocampus shapes the neural dynamics in such a way to promote goal 

representations and eliminate the non-goal representations. 

Population spatial firing rates predict behavioral choices 

How can the hippocampus take advantage of goal overrepresentation? Theories of 

hippocampal function based on reinforcement learning (Stachenfeld et al., 2017) predict that 

hippocampal representations quantify the animal’s expected visit probability to various spatial 

locations in the environment. We tested this prediction by comparing the total neural activity 

expressed on each of the eight arms of the maze with the probability of the behavioral visits to 

that arm. In the memory task, we found that the per-arm total neural firing activity was strongly 

predictive of the total number of visits to that arm at TEST (Figure 1.5A-B; Spearman’s rank 

correlation r = 0.282, p = 5.1 × 10-5). However, importantly, this was not the case in the neural 
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data recorded from rats performing the non-memory task (Figure 1.5B; Spearman’s rank 

correlation r = 0.131, p = 0.27). This is crucial for two reasons. First, because the relationship is 

not present in the non-memory task, it indicates that the fact that rats visit a certain arm more 

often does not automatically lead to a greater level of hippocampal firing rate on that arm. 

Rather, this is indicative of some form of learning related to the task objectives. Second, supports 

the hypothesis that the learning objective of the hippocampus, in a mathematical sense, is to 

provide a mechanism to enable future discovery of remembered locations. The pairwise 

dynamics delineated in the previous section are consistent with this interpretation. Thus, goal 

overrepresentation might indicate a readily detectable signal quantifying the rat’s estimate of the 

probability of future visits to discrete locations in an environment once learning has taken place. 

Memory task engagement primes the population to spike in longer 

ripples 

So far, our results demonstrate that although memory task performance drives the 

hippocampal network to alter the single-cell spatial maps, these changes are far from random and 

maintain a level of higher-order coherence in the memory task above and beyond what was 

observed in the non-memory task which suggests a role for supporting memory-guided 

behaviors. Because these dynamics were characterized by comparing the SAMPLE and TEST 

behavior epochs, we reasoned that the changes we uncovered must arise from the neuronal 

events occurring in the intervening period. Thus, we sought to elucidate the dynamics of 

hippocampal spiking in the six hour long memory retention period between the two behavioral 

epochs (i.e., MID sleep). Sharp-wave ripple activity has been proposed to reorganize 

hippocampal synapses (Norimoto et al., 2018; Sadowski et al., 2016), specifically when rats are 

engaged in a memory task (Dupret et al., 2010; Kovács et al., 2016; Roux et al., 2017). In  
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Figure 1.5: Population firing rate distributions over the maze at TEST predict visits to 
individual maze arms. (A) Example of correlation between visit counts to each maze arm (left) 
and population firing rates across the maze (right). The average arm firing rate (AAFR) across 
the population is displayed as arcs near each arm. The color coding indicates the number of visits 
to each arm in the left panel and rank of the values in the right panel. (B) Spearman’s rank 
correlation between AAFR and arm visit counts is significant only in the memory task, 
indicating learning is necessary for firing rate reorganization to guide future behavior.  
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addition, spiking in long-duration SWRs in the awake state has been shown to be important for 

memory task performance (Fernández-Ruiz et al., 2019). We, therefore, quantified the ripple 

length preference (RLP) of hippocampal cells by calculating the ratio between the proportion of 

long ripples a cell fired in and the expected proportion of the cell’s spikes in ripples of various 

lengths assuming the cell fired with equal probability in ripples of any length (Figure 1.6A; see 

Methods). Hippocampal cells became more likely to fire in longer ripples in the memory task in 

the MID sleep epoch and less likely to fire in shorter ripples (Figure 1.6B). However, the 

preferred ripple length was less specific when the rats performed the memory task (Figure 1.6C). 

Goal cells had a higher ripple sensitivity (i.e., probability of firing a spike when a ripple event 

occurs) compared to non-goal cells in the memory task (Figure 1.6D). Likewise, memory task 

goal cells had a higher ripple sensitivity compared to cells recorded in the non-memory task 

(Figure 1.6D). To characterize how ripple-specific cell pair co-firing is modulated by memory 

demand, we quantified the ripple length preference of cell pairs in a similar manner as before 

(Figure 1.6E). As in the single-cell case, hippocampal cell pairs became more selective for firing 

in longer ripple events in MID sleep (Figure 1.6F). Thus, single and pairwise hippocampal cell 

spiking during rest ripple events is modulated by memory demand. 

Strong and weak spike correlations in behavior are differentially re-

expressed in sharp-wave ripple events 

We have so far shown that a) single-cell place representations change to a greater extent 

in the memory task than in the non-memory task, b) pairwise spike timing correlations follow 

distinct dynamics for weak and strong correlations during behavior, and c) single- and pairwise 

cell spiking becomes biased to take place in longer ripple events in the intervening period 

between SAMPLE and TEST epochs. Because of the interaction of spiking and MID sleep ripple  
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Figure 1.6: Long-term SWR-associated spiking dynamics during memory retention. (A) 
Ripple length preference (RLP) of spiking in the memory (top) and non-memory (bottom) tasks. 
Short and long ripple thresholds are defined as one standard deviation below or above the mean, 
respectively. These values amounted to 304 ms and 575 ms. (B) Quantification of RLP as the 
area under curve (AUC) below (top) and above (bottom) the respective thresholds from panel A. 
Data from the memory task are summarized by the teal histograms, while the non-memory task 
data are summarized by the gray shaded histograms. The vertical lines are the medians. (C) 
Variability of RLP expressed as the coefficient of variation. Color coding same as in (B). (D) 
The empirical probability distributions of spiking in SWRs of various durations (left), and post-
hoc comparisons (95% confidence intervals) after a Kruskall-Wallis test (right). G: Goal cells, N: 
non-goal cells, O: Cells with no place field in behavior. (E) RLP of pairwise firing in the 
memory (top) and non-memory (bottom) tasks. (F) Quantification of pairwise RLP, similar to 
(B). (G) Coactivity re-expression index (i.e., correlation between pairs of correlation matrices 
obtained from SAMPLE and 30-minute long bins of MID epoch).  
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length, we wondered whether ripple-specific spiking might play a role in weakening or 

strengthening relative spiking dynamics between cell pairs. We thus asked to what extent the 

correlated firing found in the SAMPLE epoch was re-expressed within the ripple events after the 

SAMPLE epoch was over. We computed the similarity between the correlation matrices 

obtained in SAMPLE and from the ripple-specific spiking in MID sleep. Strong SAMPLE 

correlation between pairs of cells’ spike trains were re-expressed during SWRs for the entire six 

hour duration of MID sleep (Figure 1.6G), but was heightened preferentially in the memory task 

(three factor ANOVA with task, correlation strength, and time as factors; correlation strength, 

memory: 0.245 vs. non-memory: -0.051, p = 7.3 × 10-6; task, memory: 0.125 vs. non-memory: 

0.016, p = 0.0021). Interestingly, these correlations continued to be re-expressed even after the 

animals had been tested (in the POST rest session) in the memory, but not non-memory, task 

(Figure 1S.6). Taken together, these observations hint at the idea that neural dynamics are altered 

in important ways specifically in long ripple events during hours-long memory retention periods. 

Discussion 

Hippocampal function is marked by highly spatially selective firing of individual 

neurons. We studied the reorganization of hippocampal representations for up to 8 hours while 

rats performed one of two tasks, one involving the encoding, retention, and retrieval of a spatial 

goal location and the other matching the behavioral variables of the first task without the task 

memory-dependent elements. Motivated by verifying whether memory engagement alter the 

profile of code reorganization for future behaviorally relevant navigation, we found, surprisingly, 

that in fact the hippocampal population reorganized more than expected from passive exploration 

of the environment. We demonstrated that this code “instability” is detrimental for the decoding 

of spatial information conveyed by hippocampal activity because after many hours the 
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correspondence between spatially selective firing and external variables was less precise. We 

next sought to elucidate what dynamics would permit the hippocampus to continue to support 

memory-based task performance despite this apparent reorganization. Pairwise correlation 

analyses of spatial and temporal co-firing of cell pairs illustrated the heterogeneous dynamics of 

hippocampal reorganization: strong spatial correlations were reduced, while strong temporal 

correlations were retained. These strong temporal correlations were re-expressed in the sharp-

wave ripples of the rest period between learning and testing and continued past testing in the 

memory task alone. Spiking was also biased to manifest in long duration SWRs in the memory 

task. 

Ziv et al. (2013) have shown that the remaining overlap among active hippocampal 

populations across many days is informative as to the spatial position of an animal on a linear 

track. Thus, based on this one could argue that the degraded decoder performance at TEST in our 

experiments would be inconsequential in the brain. However, there are two major differences 

between this study and ours. First, in the Ziv et al. study a linear track was used to investigate 

long-term hippocampal dynamics. In our tasks the environment consisted of an 8-arm radial 

maze that spanned a two-dimensional space. On the eight arms of the maze neuronal firing was 

direction selective as would be expected when the rats’ trajectories are stereotyped (McNaughton 

et al., 1983). In the stem area of our maze (the center platform), the travel direction of the rats 

was not restricted. These topological and geometrical differences may result in different spatial 

coding properties in the hippocampus. Perhaps more importantly, the second difference between 

our design and that in the Ziv et al. study was that one group of rats in our experiments 

performed a spatial memory task in which they were required to learn a new goal location each 

day and remember it until testing six hours later. In fact, one of our major findings was that 
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memory task performance further reduced the accuracy of hippocampal representations. We 

monitored neural activity for during behavioral epochs separated by only six hours. It is 

conceivable that over much longer time periods of days or weeks, the hippocampal 

representations might undergo much more drastic reorganization, which would further 

undermine the decoding accuracy of a downstream readout. Because this would happen over a 

slow enough time-course, it could be accompanied by concomitant recalibration of cortical 

circuits that receive spatial information from the hippocampus. This could act as a remedy to 

ensure stable memories. However, these ideas remain to be tested in the future. 

The higher order correlation structure of neural networks likely represents the smallest 

computational units in the brain (Harris, Csicsvari, Hirase, Dragoi, & Buzsáki, 2003). We 

observed that pairwise spatial firing correlations were reduced specifically in cell pairs that 

started out with significant co-firing. In particular, this occurred at an exaggerated rate in the 

memory task compared to the non-memory task. On the other hand, temporal correlations 

between cell pairs were differentially modulated for strong and weak pairwise correlations, but in 

a similar quantitative manner in both tasks. Whereas weak correlations were selectively 

eliminated between learning and testing, strongly correlated temporal firing of cell pairs was 

selectively retained. This was particularly interesting in relation to SWR-associated spiking 

wherein cell pairs that were strongly correlated in learning, were selectively re-expressed for the 

duration of the rest session. Although this co-firing re-expression in SWRs was statistically 

significant in both tasks, it was markedly more pronounced in the memory task (Figure 1.6G). 

Previous studies have suggested that sharp-wave ripples work to stabilize hippocampal codes 

(Roux et al., 2017), and as such our results are consistent with these reports. The selective 

exclusion of weakly correlated cell pairs from sharp-wave ripples could be either due to a lack of 
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statistical power in our study or because these correlations are in fact rapidly eliminated early on 

in SWRs of MID sleep. Corroborating this is work that shows that in slice preparations sharp-

wave ripples can actively diminish and eliminated synapses (Norimoto et al., 2018). Mediated by 

phase precession (Skaggs et al., 1996), Strongly correlated cell pairs, on the other hand, may be 

“tagged” through precisely organized spike timing during theta states (Sanders et al., 2015). We 

further saw that goal-selective cells exhibited indirect markers of high excitability as well as a 

higher propensity to participate in SWRs, which is consistent with previous reports (Mizunuma 

et al., 2014). These results also shed light onto an important, previously unanswered (Buzsáki, 

2015) question of the determinants of cell participation in sharp wave ripple-associated firing in 

support of memory task performance. 

Goal overrepresentation has previously been shown to occur when a behaviorally 

relevant location is defined in the environment (Dupret et al., 2010; Fyhn et al., 2002; Hok et al., 

2007). Goal overrepresentation can be promoted by dopaminergic inputs as rats receive a reward 

on the goal arm (McNamara et al., 2014). However, in our task this is unlikely as the goal arm 

was already overrepresented in the very first trial each day (trial S0). Goal selective cells likely 

did not became selective for the goal arm due to repeated visits to the same arm as 

overrepresentation was evident in the non-memory task (fig 1.3C-D) where the baited arm 

changed in each SAMPLE trial. A more likely origin of such overrepresentation is probably by 

excitability. There is a rich literature on the mechanisms of memory allocation that proposes that 

cAMP response element binding protein (CREB)-mediated excitability determines competitive 

cell responses to new incoming stimuli (Josselyn & Tonegawa, 2020; Rogerson et al., 2014; 

Silva et al., 2009). This is a potential explanation for why in the non-memory version of our task 

the rats seemed to show traces of memory of the goal arm (arm presented in trial S0) when tested 
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30 minutes after learning (Figure 1S.1A). The same set of rats were not biased to visit the goal 

arm after six hours (Figure 1.1B), suggesting that excitable cells rapidly acquire the memory of a 

location upon the first visit, compatible with the one-short learning requirements of episodic 

memory. 

Once neurons are recruited to represent a location, they could help the rat solve the 

memory-guided navigation problem in two ways. First, these cells directly draw the animal to 

highly valued locations. Recent in vivo experiments bolster this view by showing that targeted 

stimulation of place cells can bias behavior toward their specific place fields (Robinson et al., 

2020). The overrepresentation ensures that the bias force generated by the goal-representing cells 

overrides the bias that could originate from cells representing other locations. In addition, goal-

selective cells can bias the content of awake replay events which have been shown to be 

instrumental in guiding ongoing decision making during behavior (Jadhav et al., 2012; Pfeiffer 

& Foster, 2013).  The second way in which goal-selective cells can support memory performance 

is by coordinating the response of the rest of the network. We showed that non-goal selective 

cells that co-fire with goal selective cells had a higher probability of displaying stronger 

correlations (Figure 1.4L, insets). In the spatial domain, the same pattern was observed: 

correlations between goal-selective and non-goal selective cells were better retained than 

between two non-goal-selective pairs (Figure 1.4C). Thus, arguments presented above regarding 

the mechanisms by which excitable, goal-selective cells can guide behavior would be applicable 

to the non-goal selective cells. 

The picture that emerges suggests the following model. A goal location is encoded in the 

excitable cell population, aided by dopamine when the goal is associated with a reward, as was 

the case in our memory task. Because of our task design (goal location visited on first trial, S0) 
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the confluence of reward, first visit, and prior knowledge about the goal location being the first 

arm that’s visited each day, learning can take place very rapidly (in as few as 5 trials). Memory 

traces acquired are then further potentiated on subsequent visits and retained for many hours only 

if they can inform future behavior. If so, offline processing during SWR-associated firing 

promotes the stability of recently acquired traces. Cells that represent locations other than the 

goal arm are selectively weakened both in terms of their spatial and temporal correlations. 

Because of the natural fluctuations in excitability each day (Cai et al., 2016), memory traces do 

not necessarily interference as the identity of goal selective cells changes from day to day. These 

results shed light on the question of how memory can be retained in a stable way despite time-

dependent changes in the spatial coding of the hippocampal population. Future studies should 

investigate how precisely the memory traces encoded in the CA1 population are read out in 

downstream areas. Ideally, the exact targets of goal-selective and non-goal selective cells can be 

identified and simultaneously studied in a memory task. 
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Methods 

Experimental Procedures 

Approvals 

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee at the University of California, San Diego, and conducted at the University of 

California, San Diego according to National Institutes of Health guidelines. 

Subjects and surgeries 

Thirteen experimentally naive, male Long-Evans rats weighing between 250 g and 350 g 

were food restricted and maintained at ∼85%-90% of their ad libitum weight. The rats were 

randomly assigned to the memory (N = 9) or non-memory (control; N = 4) tasks and pre-trained 

for 3 to 27 days on an 8-arm radial maze. Food was made available ad libitum two to three days 

prior to the rats. The animals were then implanted with hyperdrives containing 14 individually 

movable tetrodes over the right hippocampus targeted at AP: -4.0 mm, ML: +2.8 to +3.0 mm 

(from bregma). Otherwise, surgeries followed the procedures previously published (Sabariego et 

al., 2019). Rats were housed individually on a reversed 12 h light/dark cycle, with behavioral 

testing and recording sessions performed in the dark phase of the light-dark cycle. 

Behavioral task and apparatus 

Over the course of three to five weeks following implantation, the tetrodes were 

advanced to the principal cell layers of CA1. After seven days of postop recovery, subjects were 

once again food deprived to 85%-90% of their baseline weight, and trained to run on the maze 

for sugar pellet rewards. An 8-arm radial maze (189 cm in diameter; 11.4 cm wide arms; 

octagonal stem with a circumradius of 13.75 cm) was used to habituate, train, and test the rats. 
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At the end of each arm (at ~90 cm radius from the center), a small (5 cm diameter, 2.5 cm tall) 

black cup was affixed to the maze with Velcro to hold the sugar pellet rewards. Each arm of the 

maze was independently controllable by the experimenter to be in one of two positions: lowered 

or raised. In the lowered position, an arm would be completely detached from the stem and 

inaccessible to the rat. 

Each experimental session consisted of 5 recording epochs in the following order: PRE, 

SAMPLE, MID, TEST, POST. The PRE, MID, and POST epochs were rest periods during 

which the animals were placed in a Plexiglas box in a different room than the behavioral testing 

was performed, and allowed to rest for 30 minutes, 6 hours, and 30 minutes, respectively. 

Unlimited water was available to the rats during the rest epochs. The behavior took place in the 

SAMPLE and TEST epochs. To start the SAMPLE epoch, a rat was brought to the experiment 

room and placed in a pedestal that was separated from the 8-arm maze by a black curtain. Before 

the start of each trial within SAMPLE the maze surface was wiped with 70% EtOH and the 

appropriate goal reward cup was baited with 15-20 (45 mg) or 45-60 (20 mg) sugar pellets. In 

each trial, a new set of three additional (randomly chosen) cups were baited with only 2 (45 mg) 

or 5 (20 mg) sugar pellets to incentivize the rats to explore the maze. Before the start of each trial 

and after wiping and baiting, all maze arms were lowered and the rat was placed on the stem of 

the maze. For trial S0, only the day’s goal arm was raised (i.e., made accessible to the rat). Rats 

typically ran down the arm to consume the reward as soon as the arm was raised. Once they 

finished consuming the reward, they turned around and return to the stem at which point they 

were removed from the maze and placed in the pedestal again. For subsequent trials (S1 to S5), 

the same procedure was repeated for the rats in the memory task group, except instead of one 

arm, all eight arms were simultaneously raised at the start of each trial and the rat was given 2-3 
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minutes to freely explore the maze to maximize spatial sampling. In three sessions (from two 

rats) only four trials after S0 (i.e., S1-S4) were recorded. For the TEST epoch, the same protocol 

was used except the rats were allowed to explore the maze for up to 10 minutes. For the non-

memory task rats, the only difference was that the arm with the large reward was randomly 

chosen per trial (both for trials S1-S5 and at TEST). For two rats doing the memory task, and in 

three sessions from two non-memory task rats, the TEST epoch was executed exactly like trials 

S1-S5. 

Neural recordings 

Neural data were collected using the Neuralynx Cheetah data acquisition system. During 

recording, the position of the animal’s head was tracked with an overhead camera recording the 

position of a diode array on the headstage preamplifiers. Spike data were recorded relative to a 

reference tetrode left the cortex, sampled at 32 kHz, digitally filtered between 600 Hz and 6 kHz, 

and threshold crossing events as well as the spike waveforms were saved to disk. Local field 

potentials (LFPs) were sampled at 2 kHz and digitally filtered between 0.5 Hz and 900 Hz.  

Putative single neurons were identified by clustering spikes in MClust (A. David Redish, 

University of Minnesota) using peak amplitude, peak-to-valley distance, and energy (i.e., sum of 

squared amplitudes of waveform samples) features. Each cluster was manually assigned a 

“quality score” between 1 and 5, with a score of 5 representing an excellent cluster with no 

“noise”, well separated from the rest of the threshold-crossing events. In practice, no clusters 

were assigned a score of 1 (any “cluster” that would have received this score was ignored) while 

only a handful of clusters had a score of 2. Clusters with a score of 2 were not included in the 

study. Quantitatively an analysis of variance showed that scores of 3, 4, and 5 had strictly 

increasing Isolation Distances and strictly decreasing L-Ratios on the log scale, as desired. We 
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opted to use subjective scores because, compared to quantitative cluster quality metrics (Isolation 

Distance and L-Ratio), they better accounted for several aspects of neural recordings unique to 

our study. These included the confirmation of clusters stability over time, high-quality 

waveforms, distance from multi-unit activity cloud, distance from the high-dimensional identity 

hyperplane, and accounted for any discrepancies between sleep and behavior firing rates. 

Histology and recording site assignment 

After the last day of recording, each subject was euthanized with pentobarbital and 

perfused intracardially with PBS followed by 4% paraformaldehyde in PBS. The brain was post-

fixed in situ for several hours, after which the tetrodes were retracted and the brain extracted and 

stored in 30% sucrose in PBS for one or two days until it sank to the bottom of the solution. 

Coronal sections (30 μm) were taken with a cryostat. All sections were Nissl-stained with cresyl 

violet. In 2 rats, immunohistochemistry was used to stain for CA2 marker α-actinin as previously 

described (Mankin et al., 2015). CA2 recording sites were designated as those in which the end 

of tetrode track overlapped with the CA2 stain or dispersed cytoarchitectural zone characteristic 

of CA2 (Mankin et al., 2015). 

Data analysis 

All analyses were carried out using custom software written in Matlab 2018b 

(Mathworks). 

Behavioral performance 

Two measures were used to quantify behavioral performance. First, behavioral 

performance was quantified as the time from the start of the TEST trial to the moment the head 

of the animal was within the reward zone. Second, the eight arms of the maze were sorted by the 
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rank of the rats’ entry. The rank of entry to the reward arm was used as another measure of 

behavioral performance. Entry into the arm was defined as traveling at least 35 cm down an arm 

(measured from the center of the maze). 

To estimate chance level performance, a null distribution of visit ranks to each arm was 

simulated based on the visitation behavior of the animals. During actual behavior, the rats did not 

choose the arms of the maze randomly; for instance, following a visit they were much less likely 

to choose the arm from which they had just exited compared to any other arm. To mimic this 

behavior, the visit behavior was modeled as a distribution describing the probability of each 

egocentric “turn” (the angle between the arm just exited and the arm taken next). 100,000 trials 

were simulated as follows. For each simulated trial, first a random arm was chosen from 1 to 8. 

Next, for a maximum of MAX_VISITS iterations (i.e., trial lengths), an arm was randomly drawn 

based on the egocentric probability of turns. Various trial lengths were used because the 

behavioral paradigm did not cap the number of visits a rat could in fact make. While a higher 

caps would lead to a more accurate estimate of actual chance level performance, because the rats 

were not allowed to make an unbounded number of visits a cap of 11 was chosen to closely 

match actual behavior (Figure 1.1B). 

Neural data 

A subset of recordings with high cell recording yield and good behavioral performance 

was selected for further analysis. 

Spatial firing rate maps (place maps) and estimates of map stability 

For each neuron, the number of spikes falling into each 4 cm by 4 cm spatial bin covering 

the entirety of the maze was counted which was then normalized by the amount of time each bin 
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was occupied by the animal during behavioral epochs. The normalized spike density was 

smoothed with a 2 dimensional Gaussian kernel with a standard deviation of 6 cm. Only periods 

of running (> 2 cm/s) were used to construct place maps. Bins that were not visited are not 

displayed where place maps are shown in this paper. Importantly, each behavioral session was 

parsed and separated into four distinct periods: stem running, reward zones, outbound running 

(from the stem to reward zones), and inbound running (from reward zones to the stem). Thus, 

each behavioral epoch had four distinct place maps. Throughout the paper only the outbound 

maps were analyzed, except for position reconstruction in Figure 1.1F where all four maps were 

used (see below). Several key analyses were replicated with inbound maps with similar results 

(data not shown). 

Place map stability was quantified by taking the correlation coefficient (corrcoef function 

in Matlab) between the place maps of two neurons, or those of the same neuron across two 

behavioral epochs. Only neurons with place selectivity in both epochs were included. 

Place field definition 

Conceptually, a place field was defined as the set of all adjacent pixels in a place map 

with a peak rate above a given threshold. Specifically, all map pixels with a value above 2 Hz 

were extracted. A graph representation of suprathreshold pixels was then built with the nodes 

representing the suprathreshold pixels. Pixels with touching edges and corners were considered 

adjacent in the graph. Next, for each connected component of the graph, a depth-first search 

(DFS) was started from the peak node to find all connected nodes that exceeded 20% of the 

starting node’s value. Nodes visited by the DFS were considered a candidate place field. When 

overlapping fields were discovered, the overlap region was taken to be the final place field. A 

minimum of 3 and a maximum of 40 bins were required for a place field to be retained. Smaller 
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and larger fields were discarded. A cell was considered to be place selective in an experimental 

epoch if it had at least one place field as defined above. 

Goal overrepresentation was quantified in two ways. The number of cells with a place 

field on the goal arm was divided by the total number of simultaneously recorded cells in each 

session (Figure 1.3A, C) for a by-cell overrepresentation estimate. To account for possible 

disparities in the number of fields per cell, goal overrepresentation was also estimated by 

dividing the number of place fields (from any cell) on the goal arm by the total number of place 

fields in a given trial (from any cell). This gave a by-field estimate of overrepresentation (Figure 

1.3A, D). The values in Figure 1.3C, D, I were obtained from individual trials in SAMPLE or 

TEST. 

Position reconstruction 

A previously described Bayesian decoder (Pfeiffer & Foster, 2013; Zhang et al., 1998) 

was used to reconstruct position in Figure 1.1F-G. Non-overlapping windows of 250 ms long 

were used. The place maps for the four running direction/zones (i.e., reward zones, stem, 

inbound runs, and outbound runs) were concatenated. In other words, the training data for each 

session was a 50 x 200 x N matrix of smoothed firing map, where each map was 50 x 50 bins 

(four maps per cell, concatenated along the second dimension) and N is the number of 

simultaneously recorded cells in that session. Decoding was done only for bins with at least 5 

spikes and 5 active neurons. 

To estimate the generalization capacity of the decoder in the SAMPLE epoch, it was 

trained on trials S1 to S5 with the data from one out of the five trials excluded, and evaluated on 

the data from the excluded trial (e.g., training on data from S1, S2, S4, and S5; testing on S3). 



88 

 

This resulted in a five-fold leave-one-out cross-validation (LOOCV) scheme. The generalization 

capacity of the decoder across the SAMPLE and TEST behavioral epochs was quantified by 

training the decoder on all data from the SAMPLE and evaluating it on TEST data. 

Figure 1.1F shows the cumulative distribution of the absolute errors of the decoder. The 

absolute error was calculated as the Euclidean distance between the position estimate and the 

actual rat position. The actual position was the position of the rat at the video tracking sample 

closest in time to the center of the time bin in which position was decoded. To obtain a null 

distribution for position estimate errors, we shuffled the identity of the cells for each session and 

performed the decoding as described. The error bars in Figure 1.1F are standard errors of the 

mean across sessions. 

Pairwise correlations 

Map pair correlations were calculated as the correlation coefficient between the place 

maps of pairs of cells with at least one spike in a given behavioral epoch. Autocorrelations were 

excluded. For spike train correlations, the entirety of the behavioral epochs of interest was 

divided into 30 ms long bins and the number of spikes within each bin was counted. The spike 

train correlation was calculated as the correlation coefficient between such spike count vectors 

for pairs of cells. Statistically significant (p < 10-4) spike correlation values between 0 and 0.05 

were considered weak; those greater than 0.05 were considered strong. 

Quantifying QQ-plots 

To quantify how the distribution of strong and weak spike train correlations compared 

across SAMPLE and TEST epochs, the shape of the QQ-plots was quantified via two techniques. 

First, a linear regression model was fit the QQ-plot points between 0 and 0.01 on the horizontal 
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axis. The difference between the slope of the regression model and the expected distribution line 

in the QQ-plot (red dashed line) was taken to indicate the “squishing” of the weak correlations. 

Second, the average sum of the square deviation between the QQ-plot points and the expected 

distribution line (red dashed line) was taken to indicate the skewing of extreme SAMPLE values 

at TEST. For this measure, only points with a SAMPLE value of at least 0.05 were used. 

Goal and non-goal cells 

Cells with at least one place field on the goal arm at SAMPLE were considered goal 

cells. Cells with at least one place field on an arm other than the goal arm, but no fields on the 

goal arm, were considered non-goal cells. In the non-memory task, the goal arm was defined as 

the arm visited in trial S0. This would ensure that the novelty factor of a large reward at the 

beginning of an experimental session was similar across the two tasks. 

Baseline firing rate estimation 

The baseline firing rate in PRE (Figure 1.3G) was calculated simply as the total number 

of spikes divided by the total length of the PRE epoch in which the cell was recorded. 

SWR detection 

LFPs from all tetrodes were filtered between 150–250 Hz and the average of the envelope 

of the filtered signal (computed via a Hilbert transform) was taken. The resulting signal was then 

smoothed with a Gaussian kernel (σ = 12.5 ms). Periods when the signal exceeded 1 s.d. of the 

recording epoch mean for at least 40 ms, during which the signal amplitude reached at least 3 s.d. 

were identified. In addition, multi-unit activity (MUA) periods exceeding 3 s.d. above mean 

MUA rate were marked. Ripple periods were defined as such MUA periods that had an overlap 

with the strong 150-250 Hz LFP periods as described above (Csicsvari & Dupret, 2014). 
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Ripple length preference 

First, the spikes of each cell falling within a ripple event were identified. Next, the 

deviation from the expected number of spikes in each of 40 time bins from 0 to 1 second (bin 

width of 25 ms) was quantified as the ratio of the (discrete) probability mass functions of spike 

ripple length and ripple incidence for each temporal bin. Prior to computing the quotient, the 

probability mass functions were linearly smoothed with a kernel of 75 ms. The resulting ratios 

quantified whether the length distribution of the ripples in which the spikes of a given cell 

occurred followed the overall distribution of ripple lengths, and if not how it deviated from the 

“expected” distribution. This approach also accounted for any disparities between firing rates 

and ripple incidence across cells and sessions. The panels in Figure 1.6A-B show the smoothed 

(kernel: 100 ms) probability-normalized such discrete ratios (normalization done row-wise). To 

increase the signal-to-noise ratio of the estimates, cell that spiked in 10 or fewer ripple events 

were excluded. 

To quantify the differences between ripple length preference (RLP) for short and long 

ripples across the two tasks, the area under curve of the normalized ratios was calculated for time 

bins less than 1 s.d. below and 1 s.d. above the mean, respectively. Figure 1.6B shows the 

distribution of total mass falling to the left (“Short Ripple Mass”) and right (“Long Ripple 

Mass”) of the cutoffs. To quantify the specificity of RLPs, the coefficient of variation for the top 

and bottom halves of the RLPs were calculated from Figure 1.6A and plotted in Figure 1.6C. 

Statistics 

All statistical tests were two-sided at α = 0.05 unless otherwise noted. When the 

assumptions of parametric tests were not violated, parametric tests were used; otherwise, an 

appropriate non-parametric test was applied. The Anderson-Darling and F tests were used to 
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evaluate whether assumptions of normality and homoscedasticity were met, respectively. Effect 

size was calculated as Cohen’s 𝑑 defined as follows: 

𝑑 =
𝑥1��� − 𝑥2���

𝑠
 

where 𝑥𝚤�  is the sample mean for group 𝑖 and 𝑠 is the pooled variance calculated as 

𝑠 =  �
(𝑛1 − 1)𝑠12 + (𝑛2 − 1)𝑠22

𝑛1 + 𝑛2 − 2
 

with 𝑠𝑖2 being the sample variance for group 𝑖. 

Code availability 

All custom-written code is available upon reasonable request to jleutgeb@ucsd.edu. 

Acknowledgements 

Chapter 1, in full, is material that is unpublished and coauthored by Ahmadi, S, Leutgeb, 

S, and Leutgeb, JK. The dissertation author was the primary investigator and author of this 

material. 

  



92 

 

Appendix 1.1: Supplementary figures 
 
Figure 1S.1: Rats remember the S0 arm and return to it better than expected by chance in 
both tasks. A, (Left) Because an F-test rejected the null hypothesis of equal variances between 
the two groups (F44,18 = 0.4658, p = 0.040), we compared the time-to-reward measure of 
performance with Wilcoxon’s rank sum test, which did not reveal a difference between the tasks 
(rank sum = 1351, z = -1.631, p = 0.1029). (Center) Performance, as measured by the median 
rank of entry to the S0 arm at TEST, was different between the two tasks (rank sum = 1315, z = -
2.2582 p = 0.0239). (Right) However, the performance in the non-memory task was better than 
chance as compared with simulation data (see Methods). B, The probability of egocentric turns at 
the end of an inbound run was not uniform. These probabilities were used to simulated random-
choice performance for a fair evaluation of the rats’ memory of the target arm. All data are from 
the same rats used for the results reported in the main text. 
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Figure 1S.2: Spatial map and spike train pairwise correlations provide distinct information 
about hippocampal dynamics. Correlation between measures of spatial and temporal co-firing 
in the memory (left) and non-memory (right) tasks are shown. The absence of a linear 
relationship suggests that the two analysis methods reveal different information about neural 
computations in our tasks.  
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Figure 1S.3: Place map correlation strength depends on the goal-selectivity of the cell pairs. 
Top: In the memory task, place map correlation strengths decrease from the strongest to the 
weakest between two goal cells, one non-goal and one goal-cell, and two non-goal cells. Bottom: 
A similar pattern is observed in the non-memory task. Multiple comparison results following 
Kruskal-Wallis tests are displayed (p < 10-80 in each panel). The horizontal lines are 99% 
confidence intervals. Thus, the lack of overlap indicates a statistical difference between the 
values after post-hoc tests. 
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Figure 1S.4: Quantitative changes in spatial co-firing of cells grouped by place selectivity. 
The difference between pairwise spatial map correlations at SAMPLE and TEST are shown for 
pairs with both members being non-goal selective (A), one member being goal selective and the 
other non-goal selective (B), and both goal selective (C). Data from the memory and non-
memory tasks are plotted in blue and gray, respectively. In addition, in the three columns to the 
right, the changes are shown separately for pairs with low (r < 0.1), moderate (0.1 < r < 0.4), or 
high (r > 0.4) initial (i.e., SAMPLE) place co-firing.  
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Figure 1S.5: Three-factor ANOVA results for the spike train interactions between the goal 
selective and non-goal selective populations. (A) Post-hoc comparisons of groups with 99% 
confidence intervals displayed. (B) ANOVA table. Variables are follows: Task: {MEM, 
NMEM}, CorrStrength: {STRONG, WEAK}, S0_PF: {GOAL, NONGOAL}. 
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Figure 1S.6: Re-expression of behavioral coactivations continues throughout the 
experimental session preferentially in the memory task. (Left) Re-expression index is high 
for strongly co-firing pairs early in the MID sleep epoch (EM) and continues to the rest epoch 
after testing (POST) only in the memory task. (Right) Weak co-firing of pairs is not re-expressed 
in sleep in the memory task but marginal re-expression is detected in the initial portion of MID 
sleep (EM) in the non-memory task. Red crosses are outliers (1.5 times mid-quartile interval). * 
p < 0.05, *** p < 0.001, **** p < 0.0001.   
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CHAPTER 2: Distinct roles of dentate gyrus and medial entorhinal cortex inputs for phase 

precession and temporal correlations in hippocampal CA3 place cells 

 

Abstract 

The CA3 recurrent circuit is a hippocampal subregion known to support memory 

consolidation and route planning by the activation of stored sequences of neurons organized 

during experience. The precise temporal firing patterns of CA3 ensembles during behavior is 

evident in the relationship of spike timing to the local theta oscillation, which is characterized by 

phase precession of spikes. Although this computation is thought to be critical for building 

behavioral sequences during learning, the origins of its computation are unknown. By assessing 

CA3 network activity in the absence of each of its theta modulated excitatory inputs, the dentate 

gyrus (DG) and the medial entorhinal cortex (MEC), we show necessary and unique 

contributions of each region. The DG-CA3 circuit is essential for organizing the temporal order 

of compressed behavioral sequences, by promoting the expression of prospective “look-ahead” 

spiking during theta states, whereas the MEC modulates the gain of excitation. We propose a 

simple computational model that accounts for this double dissociation where the two 

feedforward pathways exert differential effects on inhibitory subnetworks. DG inputs affect the 

phase and MEC inputs affect the amplitude of the inhibitory theta signal. Our results thus 

describe the circuit mechanisms that contribute to the generation of sequence coding in the CA3 

recurrent circuit. 
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Introduction 

Although the hippocampus and the timing of its neuronal activity have long been 

recognized as critical for episodic memory and spatial navigation (Buzsáki & Moser, 2013; 

Squire, 1992), many of the underlying computations within hippocampal circuits are not 

described at a level of detail to understand how these functions are supported. In particular, the 

hippocampal CA3 area is thought to be a key hub for autoassociative and sequence computations 

because of its recurrent connectivity and the integration of inputs from two major excitatory 

pathways (Hopfield, 1982; Marr, 1971; McNaughton & Morris, 1987). The inputs originate from 

the medial entorhinal cortex (MEC), which synapse onto the distal apical dendrites of CA3 

pyramidal cells, and from the dentate gyrus (DG), which make highly potent synapses on 

proximal dendrites (Amaral & Witter, 1989) that enable single granule cells to drive CA3 

spiking (Henze et al., 2002). In theory, such specialized connectivity can provide the DG-CA3 

circuitry with a means to determine which patterns received through the perforant pathway are 

selected for encoding (Romani & Tsodyks, 2015; Treves & Rolls, 1992). 

A prerequisite for encoding sequences is that they are organized in the correct temporal 

order, but compressed in time compared to a behavioral sequence. Sequence compression is 

thought to be supported by phase precession, which entails that the spiking of principal cells 

systematically advances from late to early over successive cycles of the 6-10 Hz theta rhythm as 

an animal traverses the spatial receptive field of place cells in rats (O'Keefe & Recce, 1993; 

Skaggs et al., 1996). The remarkable temporal organization of single-cell phase precession 

implies that multiple place cells fire in a temporal order within each theta cycle that matching the 

behavioral-scale order in which their place fields are visited (Dragoi & Buzsáki, 2006; Foster & 

Wilson, 2007). Sequences so established are called theta sequences. The time differences that are 
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generated between pairs of cells by precise theta-scale spike timing are such that long-term 

potentiation between synapses may be facilitated to store sequence information (McNaughton & 

Morris, 1987; Mizuseki et al., 2009). Thus, phase precession can play an instrumental role in 

producing appropriate sequences and selection of memory items for storage, although the 

network mechanisms of its generation remain poorly understood. Because phase precession is 

also observed in the medial entorhinal cortex (MEC), it is possible that hippocampus inherits 

phase precession from MEC through its direct perforant path axons (Hafting et al., 2008; 

Jaramillo et al., 2014; Schlesiger et al., 2015). If MEC input were to sustain phase precession in 

the hippocampus, then lesioning the second theta modulated input to CA3, namely DG, should 

not interfere with normal CA3 phase precession. Alternatively, it has been proposed that the DG 

can support the de novo generation of phase precession in CA3 (Thurley et al., 2008; Tsodyks et 

al., 1996), and as a result ensure the encoding of correct sequences of experienced items in the 

subsequent processing stages in CA3 and CA1. 

A third, possibility is that both DG and MEC inputs are simultaneously required for 

normal CA3 phase precession. In this case, it would still be possible that the two inputs have 

distinct, yet complementary, roles in supporting CA3 phase precession. For instance, based on its 

role in supporting physiological signatures of sequence formation and CA3 prospective firing to 

distinguish similar items in dentate-dependent task (Drieu et al., 2018; Sasaki et al., 2018; van 

Dijk & Fenton, 2018), the dentate gyrus could be critical for supporting prospective firing in 

CA3 during theta states, a mode of firing expressed late in the theta cycle but early in a place 

field traversal. To complement this, MEC may provide the content of the memory items to be 

encoded in an all or none manner by the proper timing of its convergent inputs onto the same 

CA3 pyramidal cell (Lisman & Redish, 2009; Lisman et al., 2005; Treves & Rolls, 1992). In 
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other words, MEC input may modulate the gain of excitation on CA3 pyramidal cells, while DG 

input organizes the phase information to support correct sequential ordering of memory items. 

To test these possibilities, we performed recordings of CA3 cells with either diminished MEC or 

with diminished DG inputs. 

Here, we show that the integrity of the DG-to-CA3 connections, in particular, promote 

the precise temporal firing of CA3 for phase precession. Surprisingly, we find that the DG-CA3 

circuit is both necessary and sufficient for two critical functions. First, it promotes the temporally 

reliable expression of prospective “look-ahead” spiking during theta states (Hasselmo, Bodelón, 

& Wyble, 2002; Lisman et al., 2005; Sanders et al., 2015). Second, it supports the theta time-

scale spike timing compression of behavioral time-scale sequences. Integrating these 

experimental findings via computational modeling, we suggest that the in vivo results are 

explained by two distinct feedforward pathways exerting differential effects particularly on their 

associated inhibitory subnetworks: DG inputs affect the phase, whereas MEC inputs affect the 

amplitude of the inhibitory theta signal. 

Results 

To test the role of DG and MEC inputs for CA3 phase precession, single-unit activity in 

the CA3 region of the rat hippocampus from two previously published datasets (Sabariego et al., 

2019; Sasaki et al., 2018) were analyzed. In each of these datasets, CA3 cells were recorded in 

hippocampus-dependent working memory tasks after lesioning either the dentate granule neurons 

or the medial entorhinal cortex (Figure 2S.1a,b), and each lesion group was paired with a 

respective control group (DG lesioned and control: 16 sessions from 9 rats and 7 sessions from 4 

rats; MEC lesioned and control: 20 sessions from 8 rats and 18 sessions from 7 rats). Because 

our analysis was focused on the precise timing of neuronal activity over a series of theta cycles, 



108 

 

we began by selecting periods of 5 or more spikes that occurred within spike intervals of less 

than 500 ms and while animals were moving and theta oscillations are thus likely to occur 

(Figure 2S.1c). Because rat trajectory shape and spatial coverage in the working memory tasks 

were irregular, we used spike train analysis to avoid systematic errors in estimating the extent of 

place fields or extracting spikes from individual place field traversals. Along with identifying 

spike trains, we identified the corresponding behavioral characteristics, such as running speed 

and distance travelled (see Methods; Figure 2S.1d). We confirmed that a sufficient proportion of 

all recorded spikes (29.2% in control and 15.9% in lesion data sets) were assigned to some train 

(Figure 2S.2a). While this method of defining periods of increased spiking focuses on temporal, 

not on spatial characteristics, the analyzed trains of both datasets gave rise to similar standard 

spatial coding characteristics (Figure 2S.2b-h). Using spike trains, we then investigated the 

dynamics of phase precession in each data set to gain insight into the contributions to CA3 

temporal firing patterns. 

DG granule cell input is necessary for the expression of phase 

precession in downstream CA3 neurons 

Although it has long been known that there is substantial phase precession in DG cells 

(Skaggs et al., 1996), it has not been clear whether DG inputs are necessary for phase precession 

in its direct target cells in CA3. We therefore compared phase precession between CA3 cells that 

were recorded in DG-lesioned and control animals in rats that were trained to perform a dentate-

dependent radial 8-arm maze task (Table 2S.1) (Sasaki et al., 2018). We began by determining 

the level of phase precession in control CA3 cells. We plotted theta phase of all spikes of 

qualifying trains of a cell against the distance that the animal travelled from the beginning to the 

end of each train (“slope-by-cell” analysis). In control CA3 cells, phase precession was evident 
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in the negative circular-linear regression slope (Figure 2.1a). In rats with DG lesions, substantial 

loss of mossy fiber innervation has previously been confirmed for all recording sites that are 

included in the analysis, and the extent of DG granule cell loss was previously quantified by a 

measure between 0 and 4, 0 indicating the complete absence of TIMM staining, and 4 indicating 

control TIMM stain intensity (Sasaki et al., 2018). Here, we included cells from all recordings at 

sites with partial or complete mossy fiber loss (scores 0, 1, and 2) as a separate analysis of 

tetrodes in each score category was not possible to due small N. In CA3 cells recorded from 

tetrodes with reduced mossy fiber input, phase precession was less apparent and more variable 

than in controls (Figure 2.1b). In the slope-by-cell analysis, the median circular-linear regression 

slope value was -149.4° for the control cells which was less than 0° (Figure 2.1c; Sign Rank test; 

z-value = -6.19, signed rank = 396, p = 2.96 × 10-10). The median slope of cells from the DG-

lesioned animals was -79.2°, which was also less than zero (Figure 2.1c; Sign Rank test; z-value 

= -2.63, signed rank = 742, p = 0.0043), but less negative than in controls (Figure 2.1c; 

Wilcoxon’s rank sum test; z-value = -3.63, rank sum = 5446, p = 2.84 × 10-4). In addition, a 

lower proportion of CA3 cells in lesioned rats displayed phase precession (88.1% versus 69.1% 

in CTRL(DG) and LESION(DG), respectively; χ2 test for proportions, χ2 test statistic = 8.34, p = 

0.0039). This trend was preserved when only negative slopes that were statistically significant 

were considered (Figure 2.1c, shaded bars; 61.9% versus 38.2% in CTRL(DG) and LESION(DG), 

respectively; χ2 test for proportions, χ2 test statistic = 8.47, p = 0.0037).  

To reveal any remaining phase precession that might have been masked by trains without 

phase precession, we re-ran the circular-linear regression on the pool of trains with significant 

single-train phase precession (Figure 2.1d). This analysis too indicated impaired phase 

precession in lesioned rats (Figure 2.1d, left; CTRL(DG) less than zero: z-value = -6.17, signed  
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Figure 2.1: Dentate granule cell input is required for intact phase precession in CA3. a, 
Examples of intact phase precession in CA3 cells. Left, schematic of the circuitry of interest with 
the major theta-modulated excitatory inputs to CA3. Right, spike trains and session phase-
position plots for two example CA3 cell. Solid magenta lines indicate significant phase 
precession (p < 0.05). The example train is highlighted in red. 1 cycle = 360°. b, Data presented 
as in panel a, for cells in the DG lesion experiment. Dashed magenta lines indicate no phase 
precession. c, Slope-by-cell analysis (i.e., spikes from all trains of each cell were pooled and a 
circular-linear regression line was fit to this pool for each cell). Median magnitude of slopes 
(violin plots) and the proportion of negative slopes (bar plots) are reduced by the DG lesions. 
Stippled horizontal line over the bar plots indicates chance level (0.05). d, When only trains with 
a significant slope were pooled for each cell, the slopes were significantly less negative for 
control compared to DG lesioned rats. Organized similar to panel c. e, Regression slopes for each 
train in CTRL(DG) (left) and LESION(DG) (right). Each row contains the slope values of one cell’s 
trains, plotted with blue vertical ticks. Rows are sorted from top to bottom by the median value 
of each cell’s slopes, indicated with black ticks when negative, and magenta ticks when positive. 
The shaded regions mark negative values. f, Slope-by-train analysis. Violin plots of the per-cell 
average train slopes (left). The proportion of the distributions below zero are plotted as bar 
graphs (right). Organized similar to panel c. Scale bars: vertical bars 500 µV, LFP scale bars 250 
ms, path scale bars 50 cm. 
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rank = 151, p = 3.45 × 10-10; LESION(DG): z-value = -1.30, signed rank = 441, p = 0.0974; 

CTRL(DG) vs. LESION(DG): z-value = -3.79, rank sum = 5409, p = 1.46 × 10-4), with a lower 

proportion of CA3 cells having negative (73.8% versus 47.1% in CTRL(DG) and LESION(DG), 

respectively; χ2 test for proportions, χ2 test statistic = 11.3958, p = 7.36 × 10-4) or significant 

negative (shaded bars; 65.5% versus 38.2% in CTRL(DG) and LESION(DG), respectively; χ2 test 

for proportions, χ2 test statistic = 11.203, p = 8.17 × 10-4) correlations (Figure 2.1d, right).  

Differences between the two groups were also apparent from the distribution of slopes 

obtained from the circular-linear regression analysis of single train data (“slope-by-train” 

analysis; Figure 2.1e). For statistical comparison, we averaged the circular-linear slopes of all 

train’s for each cell (Figure 2.1f) and then compared the cell’s averages across groups. The 

median value of cell-averaged slopes was significantly less than zero in control but not DG 

lesioned rats (CTRL(DG): z-value = -5.942, signed rank = 452, p = 1.40 × 10-9, LESION(DG): z-

value = -0.529, signed rank = 1086, p = 0.299), with the median of LESION(DG) significantly 

different from CTRL(DG) (z-value = -4.6597, rank sum = 5168, p = 3.17 × 10-6). Further, the 

proportion of CA3 cells on the negative end of the distribution was lower in LESION(DG) than 

CTRL(DG) (χ2 test statistic = 6.5657, p = 0.0104). Taken together, these analyses demonstrate that 

CA3 phase precession is disrupted when the dentate granule input to CA3 neurons is reduced. In 

particular, the averaging of single train slopes revealed that the remaining inputs to CA3 after 

DG lesions, although maintaining minimal phase precession on average, are not sufficient to 

sustain the reliable, single-train phase precession thought to be required for real-time encoding 

and retrieval of episodic memories. 

MEC inputs to CA3 are also necessary for the expression of phase 

precession in CA3 neurons 
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The medial entorhinal cortex is known to be necessary for CA1 phase precession. 

However, it is not known whether CA3 also requires MEC input to produce phase precession or 

can generate phase precession together with DG through their reciprocal connections. Thus, we 

next tested whether DG alone can support CA3 phase precession by analyzing recordings of CA3 

cells in MEC-lesioned rats. The MEC lesions were consistent between rats and included 93.0% 

of the total volume, with damage approximately matched across cell layers (95.3% of layer II, 

92.4% of layer III, and 91.4% of deep layers) (Sabariego et al., 2019). We extracted qualifying 

spike trains recorded in the CA3 of MEC-lesioned animals according to the abovementioned 

criteria (Table 2S.1). Our slope-by-cell analysis revealed that the CA3 cells of control rats 

displayed tight, negative correlations between the theta phase and position of the spikes (Figure 

2.2a) while correlations were significantly diminished in MEC-lesioned animals (Figure 2.2b). 

As a population, the median slope shifted from -120.4° per train-length to -66.9° per train-length 

when the MEC was lesioned (Figure 2.2c; Wilcoxon’s rank sum test; z-value = -2.34, rank sum = 

11754, p = 0.0193). However, both medians were significantly less than zero (CTRL(MEC), z-

value = -6.18, signed rank = 750, p = 3.16 × 10-10; LESION(MEC), z-value = -3.6, signed rank = 

4204, p = 1.57 × 10-4; Sign tests). The proportion of slope values was significantly lower in the 

MEC lesioned rats both when all negative slopes (83.2% and 70.3%, CTRL(MEC) vs. 

LESION(MEC); χ2 test statistic = 5.52, p = 0.0188) and only negative slopes that reached 

statistical significance (54.4% and 38.6%, CTRL(MEC) vs. LESION(MEC), χ2 test statistic = 6.26, p 

= 0.0124; χ2 tests for proportions) were considered. These trends were confirmed in the slope-

by-cell analysis of slope values that reached statistics significance (Figure 2.2d; Medians less 

than zero: CTRL(MEC), z-value = -5.824, signed rank = 423, p = 2.87 × 10-9; LESION(MEC), z-

value = -1.863, signed rank = 2766, p = 0.0312; Median of CTRL(MEC) vs. LESION(MEC): z-value  
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Figure 2.2: Medial entorhinal cortical input is required for intact phase precession in CA3. 
This Figure follows the presentation of Figure 2.1, with data from the MEC lesion experiment. a-
b, Examples of CA3 phase precession in control (a) and MEC-lesioned rats (b). Schematics of 
the circuitry of interest are shown to the left of each panel, with the phase-position plots to the 
right. Significant phase precession (p < 0.05) is indicated with a solid magenta line. Example 
trains are highlighted in red. c, Slope-by-cell analysis. Median magnitude of slopes (violin plots) 
and the proportion of negative slopes (bar plots) are reduced by the MEC lesions. Stippled 
horizontal line over the bar plots indicates chance level (0.05). d, When instead only trains with a 
significant slope were pooled for each cell, the slopes were significantly smaller in magnitude for 
MEC lesioned rats.  e, Regression slopes for each train in CTRL(MEC) (left) and LESION(MEC) 
(right) f, Slope-by-train analysis. Violin plots of the per-cell average train slopes (left). The 
proportion of the distributions below zero are plotted as bar graphs (right). Scale bars: vertical 
bars 500 µV, LFP scale bars 250 ms, path scale bars 50 cm. 1 cycle = 360°. 
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= -4.075, signed rank = 10749, p = 4.60 × 10-5; Proportions: 73.3% and 50.6%, negative slopes 

of CTRL(MEC) vs. LESION(MEC), χ2 test statistic = 10.50, p = 0.0012; 61.4% and 39.9%, 

significant negative slopes of CTRL(MEC) vs. LESION(MEC), χ2 test statistic = 15.48, p = 8.32 × 

10-5; χ2 tests for proportions). In a similar manner to the effects of DG lesions, the positive shift 

of the slopes with MEC lesions was visually appreciable from the slope-by-train analysis (Figure 

2.2e). Statistical comparisons in the slope-by-train analysis confirmed the slope-by-cell analysis 

results (Figure 2.2f; Medians less than zero: CTRL(MEC), z-value = -6.30, signed rank = 716, p = 

1.51 × 10-10; LESION(MEC), z-value = -1.15, signed rank = 5615, p = 0.124; Median of 

CTRL(MEC) vs. LESION(MEC): z-value = -4.87, signed rank = 10263, p = 1.09 × 10-6; Proportions: 

83.2% and 55.7%, negative slopes of CTRL(MEC) vs. LESION(MEC), χ2 test statistic = 14.459, p = 

1.43 × 10-4). These observations support a role for MEC in the generation of robust phase 

precession in the CA3 of rats. Therefore, the DG-CA3 network alone is incapable of generating 

phase precession at control levels—for this, both the DG and MEC inputs are necessary. 

DG and MEC support CA3 phase precession via qualitatively distinct 

mechanisms 

After confirming that both the DG and MEC are necessary for CA3 phase precession, we 

asked whether there are qualitative differences in the mechanism by which each of these inputs 

supports phase precession in CA3. Loss of phase precession can be either due to reduced theta 

phase range over which spiking occurs, or heightened variability around a monotonically 

decreasing precession slope, or both.  To determine how the theta phase range was altered by the 

lesions, we calculated the onset and offset theta phase of CA3 spike trains. The onset phase of 

trains – defined as the circular mean of the theta phase of train spikes in the first theta cycle of 

each train – showed a marked shift toward earlier phases in CA3 cells of DG lesioned rats 
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compared to control rats (Figure 2.3a). The distribution of the onset phase (Φon) of all trains was 

left-skewed, with a peak in the rising half of theta and a circular mean of 242.4°, in the DG-

lesioned rats, this distribution appeared more symmetrical, with a circular mean of 202.5°. The 

difference between the two circular means was significant (Figure 2.3a; Watson-Williams test; 

F1,2900 = 160.86, p < 10-35). In contrast, the distributions of offset phases (Φoff) – defined as the 

circular mean theta phase of train spikes in the last theta cycle of each train – were more similar 

between control and lesioned rats, though there was a statistically significant shift in the mean 

phase from 123.9° in the control group to 102.7° in lesions (Figure 2.3b; Watson-Williams test; 

F1,2900 = 27.27, p = 1.89 × 10-7). The effect size was greater for the onset phase (Cohen’s d = -

0.6670) compared with offset phase (Cohen’s d = -0.2998). The offset phase showed a 

considerably smaller shift (Figure 2.3b), indicating that the DG granule cell drive primarily 

determines the phase of early spikes in the theta cycle, in line with the idea of “look-ahead” 

spikes (Hasselmo et al., 2002; Lisman et al., 2005; Sanders et al., 2015). 

These effects on CA3 spike timing were unique to DG lesions as MEC lesions had no 

effect on either the onset or the offset phases of the train spikes (Figure 2.3c,d). The onset of 

phase of the MEC-lesioned CA3 trains had a mean of 236.7° compared with 237.1° in controls 

(Figure 2.3c; difference not significant, F1,5456 = 0.0334, p = 0.8549; Watson-Williams test). 

Similarly, the mean offset phase of MEC-lesioned CA3 cells (246.6°) was very close to that of 

controls (242.9°), with their difference not statistically significant (Figure 2.3d; Watson-

Williams test; F1,5456 = 1.6962, p = 0.1928). These changes suggest it is predominantly the DG 

rather than the MEC input to CA3 that is involved in setting the theta phase of CA3, in particular 

the onset phase within the theta cycle. 

The onset phase specific shift of spike timing within the theta cycle can be produced in at  
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Figure 2.3: DG, but not MEC, lesions selectively alter the onset phase of CA3 phase 
precession. a, Left, Onset phase (Φon) of each train in control rats (CTRL(DG)). Rows represent 
single units sorted as in Figure 2.1c. Note the clustering of the median onset phases in the rising 
portion of theta. Data are repeated from 2π to 4π for clarity, and two theta cycles are displayed 
above for reference. Right, Onset phase of the trains in LESION(DG), showing more dispersed 
values compared to control rats. Organization as on the left. b, Single-pass offset phase (Φoff) 
distribution is similar for CTRL(DG) and LESION(DG). Organization as in a. Note that the offset 
phases cluster in the descending portion of theta. c, Population onset phase for the CTRL(DG) 
(light blue bars) and LESION(DG) (dark blue line) data sets are different with an effect size of d = 
-0.667. Data are repeated from 2π to 4π for clarity. d, Population offset phase of the CTRL(DG) 
(light blue bars) and LESION(DG) (dark blue line) data sets are different with an effect size of d = 
-0.299. e-h, As in panels (a-d) but for the MEC lesion experiment. Onset and offset phase values 
in CA3 are similarly dispersed with and without MEC inputs. e, Onset phases of CTRL(MEC) and 
LESION(MEC). f, Offset phases of CTRL(MEC) and LESION(MEC). g, Population onset phase 
distribution is not different in control and MEC-lesioned animals. h, Population offset phase 
distribution is also not different in control and MEC-lesioned animals. 
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Figure 2.4: In the absence of DG input, peak probability of CA3 spiking shifts to earlier 
phases of the theta cycle, corresponding to exiting the place field. a, Distribution of CA3 
spike incidence in the early, mid, and late theta cycle bins. As expected, the middle of the theta 
cycle contains more spikes than the early or late phases. b, The proportion of CA3 spikes 
occurring early in the theta cycle was markedly increased without the DG granule cell input 
(LESION(DG); top) (χ2 statistic = 973.199, p = 4.7 × 10-212, χ2 test for independence of 
dimensions of tabulated data), suggesting that the remaining inputs, notably the MEC, tend to 
drive CA3 firing later in place fields. Total number of spikes in LESION(DG) was 28,704. The 
bottom plot shows that although in the absence the MEC inputs (LESION(MEC)), CA3 spikes 
tended to occur later in the theta cycle (corresponding to a shift to place field entry; χ2 statistic = 
191.408, p = 2.7 × 10-42, χ2 test), this shift was small. The remaining inputs (such as DG) seem to 
have a slight tendency to drive CA3 firing at the entry to CA3 place fields, especially as 
compared to MEC inputs. The total number of spikes in LESION(MEC) was 68,385. The control 
rats’ plots from (a) are superimposed with dotted lines to aid direct visual comparison. c, 
Fraction of CA3 spikes in each bin of the theta cycle as a function of normalized (%) distance 
through the train, displayed as stacked bars. Notice the increase in the relative incidence of early-
phase spikes in the DG lesioned rats (top right plot). d, (Top) DG lesions selectively increase the 
variability of spike phase in the first half of a field traversal (compare bar pairs from 5% to 45% 
of normalized distance). (Bottom) MEC lesions, on the other hand, do not alter the reliability of 
theta phase preference in a major way. The theta cycle was split into 3 equally sized bins. E: 
early theta cycle, M: mid theta cycle, L: late theta cycle. * p < 0.05, ** p < 0.01, *** p < 0.001, 
Wilcoxon’s rank sum tests (uncorrected for multiple comparisons). 
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least two distinct ways. First, it is possible that the mean theta phase shifts without a change in 

the phase variance. Second, it is possible that the mean and variance of the phase shift 

simultaneously. This possibility can be interpreted as the addition of “noise” spikes to early theta 

phases at the entry to the place field which would increase the phase variance and shift the mean 

to earlier phases. To distinguish these two possibilities, we analyzed two independent measures 

of the spike phase distribution. First, we examined how spike phase is distributed across the theta 

cycle regardless of distance (Figure 2.4a-b). In control animals, CA3 spike phase was 

concentrated in the middle of the theta cycle, as expected (Figure 2.4a). However, in DG-

lesioned, but not in MEC-lesioned animals, CA3 spike phase shifted from the expected 

distribution to earlier phases (Figure 2.4b; DG experiment (top): χ2 statistic = 973.199, p = 4.7 × 

10-212; MEC experiment (bottom): χ2 statistic = 191.408, p = 2.7 × 10-42; χ2 test for independence 

of dimensions of tabulated data). Second, after binning the normalized distance within spike 

trains into 10 bins we considered the joint distribution of spike phase and normalized distance 

(Figure 2.4c). Here, we found that phase shifts caused by DG lesions were smoothly distributed 

between the beginning and middle of trains, but were particularly pronounced in the early bins. 

The circular variance of CA3 spike theta phase was selectively increased in the first half of a 

field traversal (Figure 2.4d, top; pairwise comparisons between CTRL(DG) and LESION(DG) p < 

0.01 for the first five bins, rank sum tests). In contrast, circular variance took on similar values in 

MEC control and lesioned rats (Figure 2.4d, bottom; pairwise comparisons between CTRL(MEC) 

and LESION(MEC) p < 0.05 only for the first bin, rank sum tests). Taken together, these findings 

thus favor the second possibility. In other words, the DG to CA3 input is critically involved in 

supporting late-theta phase (“prospective”) CA3 spiking by inhibiting spurious spikes in the 

early phases of the theta cycle. 
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Is the temporal profile of granule cell spiking precise enough to organize the onset phase 

of CA3 neurons? In rats where we were able to record single units from the dentate gyrus (N = 5, 

see Methods), both putative granule cells and putative mossy cells displayed phase precession 

(Figure 2S.3a,b). At the onset of trains, a striking theta phase preference was evident in putative 

granule cells, which gradually diminished with distance traversed through a cell’s place field 

(Figure 2S.3c). In contrast, putative mossy cells and CA3 pyramidal cells did not show a distinct 

pattern of theta phase variability as a function of distance through the place field (Figure 2S.3c). 

These findings are consistent with the results of the lesion experiments, suggesting that the DG 

granule cells play an active role in supporting the precise temporal coding of CA3 pyramidal cell 

population on the theta time-scale. 

If a lesion impairs phase precession via increasing the variance of the conditional phase 

probability (i.e., spread of the distribution of spikes at a given position), one should be able to 

rescue phase precession if one artificially reduces this variance by replacing, for each theta cycle, 

all spikes with their mean timestamp. However, if the lesion causes a reduction in the rhythmic 

spiking frequency (quantified by slope), replacing the spikes with their cycle mean should not 

rescue the effect. Indeed, when we did this, the effect could be largely rescued in MEC lesioned 

rats, evident both when all trains were considered together as well as in individual trains (Figure 

2S.4). On the population level, the median of the cells’ slopes in MEC lesioned rats was no 

longer distinguishable from control rats (CTRL(MEC) vs. LESION(MEC): z-value = -1.436, rank 

sum = 12285, p = 0.1509, Wilcoxon’s rank sum test), while it remained different from controls 

in DG lesioned rats (CTRL(DG) vs. LESION(DG): z-value = -4.226, rank sum = 5285, p = 2.37 × 

10-5, Wilcoxon’s rank sum test) (Figure 2.5a-c). Testing this directly by quantifying phase 

variability, we observed that the variance of the conditional phase probability over all trains of  
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Figure 2.5: Distinct mechanisms for temporal organization of CA3 spiking by DG and 
MEC networks. a-b, Phase-position plots of an example CA3 cell from an MEC lesioned rat 
using all train spikes (a) or only the theta cycle mean of the spikes (b). The opacity of points is 
reduced so that the presence of an underlying negative slope is more readily appreciated. 
Replacing spike times in each theta cycle with their mean leads to a negative precession slope by 
removing “noisy” spikes. c, Slope distribution of all-trains aggregate phase-position circular-
linear regression slopes for each group. Only in the case of MEC lesions did replacing each 
cycle’s spikes with their mean reduce the regression slopes to the point that they were no longer 
statistically distinguishable from controls, indicating that in MEC lesioned rats, broad spike 
spread over the theta cycle prevents the aggregate spike trains from being identified as phase 
precessing. In all cases, however, the median slope was statistically less than 0 (CTRL(DG): N = 
84, p = 2.15 × 10-14, LESION(DG): N = 68, p = 9.7 × 10-5, exact left-tailed sign tests; 
CTRL(MEC): N = 101, z-value = -7.7613, p = 4.2 × 10-15, LESION(MEC): N = 158, z-value = -
8.5125, p = 8.5 × 10-18, approximate left-tailed sign tests). Also note the reduction in the density 
of outlier slope values, especially on the positive end (compare with Figures 2.1d and 2.2d). d, 
Circular variance of theta phase either with all spikes (bar histograms) or only with the each 
cycle’s spike mean (line histograms). Top left: CTRL(DG), top right: LESION(DG), bottom left: 
CTRL(MEC), bottom right: LESION(MEC). In all groups, the circular variance decreases after 
replacing each cycle’s spikes with their mean, though the effect is less pronounced in the CA3 of 
DG lesioned rats. e, Schematic summary of mechanism by which DG lesions might disrupt CA3 
temporal coding. DG lesions appear to cause CA3 spiking to commence earlier in the theta cycle 
than it would under physiological conditions. This early commencement is manifested as the 
“addition” of new spikes early in the theta cycle, exclusively in the beginning of trains, thereby 
reducing the slope of the resulting circular-linear regression slope (top middle plot). Therefore, 
early phase CA3 spiking is effectively inhibited via the mossy fibers. Theta averaging is unable 
to rescue the phase precession effect because after theta averaging the slope remains diminished. 
f, Schematic summary of mechanism by which MEC lesions might disrupt CA3 temporal 
coding. Although the window of firing in a single theta cycle is slightly narrower in single trains, 
spike phase is more variable across multiple trains (i.e., greater variability around the mean spike 
phase at each position) at each position along the train. This lowers the probability of detecting a 
significant slope indicative of phase precession. MEC, thus, appears to support reliable theta 
phase coding of CA3 pyramidal cells upon successive visits to each cell’s place field. Theta 
averaging rescues phase precession because, effectively, it reverses the increase in the variability 
around mean spike phase at each position. p-values displayed are obtained via rank sum tests. 
Scale bars: horizontal: 200 ms, vertical: 200 µV.  
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each neuron was similar between the original and cycle-mean analyses specifically in DG 

lesioned rats (Figure 2.5d; compare, for each panel, the difference of medians indicated by the 

solid and dashed vertical lines). Taken together, these results suggest two distinct mechanisms by 

which DG and MEC circuits contribute to the organization of precise temporal profile of CA3 

spiking (Figure 2.5e-f). Accordingly, upon entry to the place field of a CA3 neuron, DG inputs 

effectively inhibit spiking that would have otherwise occurred early in the theta cycles (Figure 

2.5e). In contrast, in the middle and near the exit from the place field, MEC inputs ensure the 

start and end of CA3 spiking at an appropriate, consistent theta phase by driving CA3 neurons in 

tight windows around a monotonically decreasing mean theta phase (Figure 2.5f). 

DG, but not MEC, supports the preservation of CA3 cells’ behavioral 

order of firing on the theta scale 

It has been suggested that phase precession and hippocampal cell assemblies manifested 

in theta sequences are dissociable (Dragoi & Buzsáki, 2006; Feng et al., 2015). However, even 

though theta sequences have not been observed in the absence of phase precession, the question 

still remains whether phase precession is indeed a prerequisite for the formation of such 

sequences (Foster & Wilson, 2007). In previous experiments (Schlesiger et al., 2015) it was 

shown that cell pairs in CA1 lose their sequence information, accompanied by a concomitant 

decrease in the level of phase precession. We asked if in the CA3 network the temporal 

relationship on the theta time-scale reflect that on the behavioral time-scale in the absence of 

either of its two theta-modulated inputs. We measured this by calculating the correlation between 

the temporal shift in the spike cross-correlation of such pairs and the physical distance between 

their peak firing locations in physical space (Dragoi & Buzsáki, 2006). 

We found that in the DG-lesioned rats the simultaneously recorded cells did not preserve  
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Figure 2.6: DG, but not MEC, inputs are required for a matched order of CA3 coactive 
pairs in behavior and theta cycles. (a-d) Effect of DG inputs on CA3 pairwise spiking. a, The 
place field activity of two pairs of simultaneously recorded cells with shared theta cycle firing is 
displayed (1-2 pair from a control rat, and 3-4 pair from a DG lesioned rat, as labeled at the top). 
Each place field is delineated by its 20% max firing contour, with the peaks marked by filled 
circles inside each contour. The place field visited first in each pair (and the corresponding 
neuron) is always displayed in black, while the second place field (and the corresponding 
neuron) is in red. This pairwise ordering is also marked by a black arrow beside the place field. 
b, Session-aggregated phase-position plots of the spiking of cells in (a). Only those trains in the 
direction indicated by the horizontal arrows are selected and analyzed for each group. c, Cross-
correlation of the spikes from the two cells. The peak of the cross-correlation function nearest 0 
is indicated with a small arrow pointing down. The inset shows the cross-correlogram for a 
window of width of 4 seconds. d, Left: Phase shift of the theta firing of the two cells plotted 
against the physical distance of the peaks of the respective place fields. The dashed line is the 
linear regression. Right: proportion of pairs shown in the scatter plots to the where 0 (“neither”), 
1 (“one”), or 2 (“both”) neurons in the pair displayed phase precession. Although a substantial 
number of pairs in the DG lesion scatter were indeed phase precessing, this phase precession did 
not automatically guarantee the pairwise correlations between spiking order in behavior and theta 
cycles. (e-h) Same as (a-d) except the data are from the MEC lesion experiment. Despite marked 
deficits in phase precession, CA3 pairwise correlations are strong, indicating that, unlike DG, 
MEC does not seem to be necessary for CA3 pairwise correlations. ** p < 0.01, *** p < 0.001, 
n.s. not significant. 
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their behavioral order of firing within individual theta cycles (Figure 2.6a-d). While the 

correlation between the spatial separation and theta phase shift of place field peaks was 

significant in CTRL(DG) (N = 30 pairs, r = 0.651, p = 9.87 × 10-5, Pearson’s correlation), it was 

not so in LESION(DG) (N = 14 pairs, r = -0.187, p = 0.523, Pearson’s correlation) even though the 

proportion of neuron pairs with phase precession in DG lesioned rats was comparable to that in 

control rats (Figure 2.6d). Surprisingly, despite reduced phase precession in comparison to 

neuron pairs from control rats, the CA3 pairs in the MEC-lesioned rats maintained their spiking 

order in theta cycles according to their firing order on the maze (Figure 2.6e-h; CTRL(MEC) N = 

19 pairs, r = 0.654, p = 0.0024; LESION(MEC) N = 27 pairs, r = 0.624, p = 5.02 × 10-4; Pearson’s 

correlations), unlike what has been previously reported in CA1 (Schlesiger et al., 2015). These 

effects were not due to errors in spike sorting or low quality clusters (Figure 2S.5). Thus, it 

seems that though the MEC is critical in maintaining hippocampal phase precession, the 

recurrent CA3 network together with its reciprocal connections with the DG organizes fine 

ensemble-level temporal relationships within theta cycles to compress behavioral-scale 

sequences to time-scales suitable for encoding and retrieval of memories. 

Computational modeling supports distinct modulatory roles for DG and 

MEC to reproduce empirical CA3 phase precession measures 

To evaluate whether the interpretations of our findings are feasible, we devised a 

minimalistic phenomenological model based on oscillatory interference to simulate the spiking 

dynamics of a model CA3 pyramidal cell as the animal moved through the cell’s place field at 

constant velocity. Although our manipulations involved only two inputs to CA3, it should be 

noted that if a computational model based on oscillatory interference is to emulate the lesions, it 

must account for inputs beyond the inputs to be lesioned. Inhibition has been shown to mediate 
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input gain control, precise spike timing and enhanced coding in networks (Denève & Machens, 

2016; Klyachko & Stevens, 2006; Lytton & Sejnowski, 1991; Milstein et al., 2015) and could 

control the theta phase of pyramidal cell spikes (Losonczy et al., 2010). Therefore, we included 

an inhibitory oscillation. The model CA3 cell thus received three inputs. Two of these were 

excitatory waves oscillating at slightly above LFP theta frequency, analogous to the major theta 

modulated excitatory inputs (i.e., the MEC and DG granule cell afferents), while the third input 

was an inhibitory oscillation at the LFP theta frequency. We allowed the model to have three free 

parameters: a phase shift between excitation and inhibition denoted by φinh, the oscillatory 

amplitude of inhibition denoted by A, and a DC component for the inhibitory oscillation 

(baseline inhibition) denoted by IDC. We estimated and fixed the excitatory phase offset at place 

field entry (phase differential between the two excitatory oscillations that modeled DG and MEC 

inputs) from Mizuseki et al. (2009) (their Figure 3) to be ψ = -39°. The output of the model CA3 

cell was determined by the place modulated (Schmidt-Hieber & Nolan, 2017; Silver, 2010) 

difference between a combination of the three inputs and a membrane threshold value, constant 

across the place field. Spikes were generated stochastically via an inhomogeneous Poisson point 

process with an intensity measure defined by the total excitatory drive minus the membrane 

threshold. The simulated spike phases were extracted with respect to an 8 Hz oscillation 

representing the LFP theta oscillation (see Methods). 

We simulated CA3 model neuron spikes for a broad range of parameter values. We 

observed that when all three input components are present (Figure 2.7a), phase precession can be 

obtained for a wide range of parameter values (Figure 2.7b). Different values of the phase 

precession slope and onset phase could be obtained by an appropriate choice of inhibition phase 

offset for each excitatory phase offset value (Figure 2S.6). The peak of the simulated place field 
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was most sensitive to the phase shifts between the inputs (Figure 2S.7). However, when either of 

the two excitatory components was removed, we observed that phase precession was diminished 

(Figure 2.7c). This recapitulated the behavior of real CA3 neurons in the absence of either MEC 

or DG inputs. 

To determine which parameter values under this model would correspond to the 

underlying biological values, we selected for each of the four phase precession measures (i.e., 

slope, onset phase, offset phase, or explained variance r2) the middle two quartiles where slope, 

onset phase, and explained variance reasonably closely matched the empirical observations from 

the DG and MEC lesion experiments. This analysis revealed that the empirical values for the 

abovementioned four measures when the DG was lesioned took on a broader and shifted set of 

values compared to the controls along the φinh axis (Figure 2.7d). In contrast, the same measures 

from the MEC lesion data set took on a set of larger values of A, compared to controls (Figure 

2.7e). Interestingly, the third free parameter in the model did not influence the state space 

substantially as values as high as 25 times larger produced similar ranges of matching with 

empirical data (Figure 2S.8). Since the difference between the control and lesion data spread 

simulated by the model arises along two independent dimensions (φinh and A for DG and MEC, 

respectively), we conclude that, under our proposed model, the inhibition phase offset is mostly 

set by the DG population, whereas the inhibition amplitude is mostly set by the MEC population, 

corroborating our empirical findings on the distinct role of the DG and MEC inputs for CA3 

temporal precision (Figure 2.5e-f). By comparing model values matching either empirical control 

data or empirical lesion data (Figure 2S.9), we further note that the full-width at half maximum 

(FWHM) of the φinh distributions is most consistent with value ranges for feedforward inhibition 

due to DG input at 190°–225° theta phase offset with respect to DG excitatory input for controls.  
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Figure 2.7: A model of two oscillating excitatory inputs and an inhibitory input 
recapitulates the main empirical results. a,  Model construction. The three inputs are modeled 
after DG, MEC, and local inhibition converging onto the CA3 model neuron. The excitatory DG 
and MEC inputs oscillate at faster-than-LFP frequencies (ωDG = 8.6 Hz, ωMEC = 8.5 Hz). The 
inhibitory input oscillates at 8 Hz across the place field, corresponding to LFP theta. A small 
Gaussian noise is added to the inhibitory input to ensure robustness against small perturbations. 
The excitatory inputs contribute positively at phase differential y and spatial gain function, while 
the inhibitory input contributes negatively to the total drive at phase differential φinh relative to 
excitation at place field entry, before the sum-square step (see Methods for details). The total 
excitatory input is gain modulated (γ) and displayed at the bottom along with an 8-Hz oscillation, 
the LFP theta. Not all steps are displayed for brevity (see Methods for full details). b, Phase-
position relationship of spikes generated by the model show phase precession. The A (inhibitory 
oscillation amplitude), I (inhibition DC component) and ψ (excitatory phase differential) values 
are the same across the four plots as displayed at the top. However, the inhibition phase offset, 
φinh, varies in each panel. A broad range of phase precession profiles can be obtained, confirming 
the expressive power of the simple model. c, Lesion experiments were simulated by setting the 
DG input (left) or MEC input (right) to 0. In both cases phase precession is diminished and the 
slopes are reduced. d-e, The parameter space is shown for various values of A and φ, with fixed I 
= 0.5. The ranges for which the values of onset phase, offset phase, slope, and explained variance 
are similar to those of physiological values are delineated in black. The intersection of all four 
such zones is displayed in the Overlap plots and color coded from dark blue (1) to light blue (4) 
to indicate the number of overlapping measures at each parameter pair. An overlap of 4 is 
delineated in black (control) or pink (lesion), and repeated in the respective plots on the top left 
for comparison (high-frequency polygons removed to aid clear visualization). The light blue 
zone is the prediction of the physiological values for inhibition oscillatory amplitude and phase 
differential. To match empirical phase precession measures in the DG lesioned rats, the model is 
forced to take on a larger set of φinh values (d, compare black and pink outlines in Overlap plots). 
In contrast, to match empirical phase precession measures in the MEC lesioned rats, the model is 
forced to take on a larger set of Α values (e, compare black and pink outlines in Overlap plots). 
See Figure 2S.9 for the quantification of these comparisons. 
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For DG lesions, the range expanded to 95°–245°. A similar comparison for A is most consistent 

with a ratio of inhibitory amplitude between MEC lesions and controls between 1x to > 5x, 

possibly with great variability. Finally, to investigate whether higher frequency gamma 

oscillations found in the hippocampus play a role in modulating phase precession, we added a 

gamma component to each of the excitatory inputs (Figure 2S.10a). This modification, however, 

did not qualitatively change the state space of generated values or the value ranges of the model 

regarding the values of A and φinh (Figure 2S.10b,c). Taken together, these simulations 

demonstrate that phase precession in the CA3 circuit can, in principle, be generated by the 

interaction of the two major theta-modulated excitatory inputs and the local inhibitory neuronal 

population innervating the CA3 pyramidal cells. 

Discussion 

Causal experiments on the mechanism of the generation of phase precession outside CA1 

are rare. Previous studies on the modulation of GABA release by local cannabinoid release 

(Robbe & Buzsáki, 2009) and theta sequences (Wang et al., 2015) suggested a role for 

intrahippocampal synaptic computations in sustaining phase precession. The convergence onto 

CA3 of two major excitatory theta-modulated inputs (Hafting et al., 2008; Skaggs et al., 1996), 

from the dentate gyrus of the hippocampus and the medial entorhinal cortex, provides an 

opportunity to investigate the role of the two inputs in the generation of phase precession. 

Lesioning each input separately allowed us to uncover their distinct roles in generating phase 

precession in area CA3 of the hippocampus of rats. Specifically, we showed that both the dentate 

gyrus (DG) and medial entorhinal cortex (MEC) inputs to CA3 are necessary for phase 

precession in the CA3 area of the hippocampus. Furthermore, we found that DG lesions 

specifically altered the temporal organization of the prospective firing during the theta cycle by 



135 

 

selectively broadening the phase window of spikes early in the place field, thereby shifting the 

average onset of spikes to earlier phases in the cycle. We note that these phase shifts were 

unlikely to be a result of traveling wave theta phase differences due to tetrode placement (Muller, 

Chavane, Reynolds, & Sejnowski, 2018) as this would have shifted both onset and offset phases 

to the same extent without altering the shape of the distribution, both contrary to our 

observations. Interestingly, the MEC lesions did not alter the average onset or offset timing of 

CA3 spikes with respect to the theta rhythm but reduced phase variability. Finally, we showed 

that pairwise correlations between the behavioral- and theta-scale firing of CA3 cells were 

disrupted only when the DG, but not the MEC, input was abolished. Our findings, therefore, 

provide critical insights into the circuit mechanisms of phase precession and establish the dentate 

gyrus as a major contributor for organizing CA3 sequential computations during the theta-state. 

Even though the ablation of DG and MEC inputs reduced phase precession, many CA3 

pyramidal neurons in the lesioned rats retained normal phase precession. In addition to the fact 

that individual neurons in lesioned rats may have favorable parameter combinations that allow 

them to express temporal spiking profiles that appear normal, the remaining phase precession 

may also be due to mechanisms other than a simple combination of rhythmic excitatory and 

inhibitory drive, including interactions between neuromodulation and the ion channel-mediated 

biophysics of neurons (Losonczy et al., 2010; Magee, 2001; Robbe et al., 2006). Supporting this 

hypothesis, previous finding showed that the instantaneous firing rate of hippocampal cells is not 

predictive of their theta phase in the absence of MEC (Schlesiger et al., 2015). In addition to 

these mechanisms, it is important to note that the lateral entorhinal cortex (LEC) exhibits 

considerable, albeit significantly diminished (compared to MEC), spatial (Hargreaves et al., 

2005) and theta (Deshmukh et al., 2010) modulation. Furthermore, in our experiments the 
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recurrent projections of CA3 pyramidal population together with non-DG or MEC inputs could 

in principle support phase precession given that theta-modulated inhibition from the medial 

septum was intact. The specific mechanisms in this case, however, remain to be determined. 

Surprisingly, pairwise correlations of the sequential activation of CA3 cells in behavior 

found in controls were not detectable on the theta scale without the DG input, despite remaining 

phase precession in the analyzed neuron pairs. The versatility of the DG network in supporting 

prospective coding in different brain states as shown here and previously (Sasaki et al., 2018) 

suggests the intriguing possibility that the DG-CA3 feedback network is involved in sequence 

computations ascribed to CA3. In line with this, we also showed that pairwise correlations were 

sustained without the MEC despite a marked reduction in phase precession of the analyzed pairs, 

suggesting that the recurrent CA3 network together with its backprojections to DG support such 

associations. Although the interaction of CA3 with DG has been the subject of some interest 

(Hasselmo et al., 2002; Lisman et al., 2005; Treves & Rolls, 1992), elsewhere CA3 has often 

been considered in isolation from DG. This double dissociation highlights the unique role of DG 

in supporting CA3 sequential coding and suggest that the dynamics of DG-CA3 circuit should be 

considered a whole in analyzing processes thought to be important for memory storage (Sasaki et 

al., 2018). Furthermore, given the nuances of the roles of dentate granule and mossy cells firing 

patterns (Danielson et al., 2017; GoodSmith et al., 2017; Senzai & Buzsáki, 2017), identification 

of the role of specific cells in sequence coding remains an interesting future direction to be 

explored. 

To explain our empirical observations, we introduced a phenomenological model of CA3 

phase precession. We sought to model theta modulated inputs to a model CA3 cell which 

included the two excitatory inputs that we were able to experimentally manipulate, as well as the 
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oscillatory inhibition which we considered to be a latent factor not directly observed in our 

experiments, but which could be inferred by studying the results of changing input parameters on 

the output in a model. Studies of the role of inhibition in cortical computations have emphasized 

its importance and prevalence (Isaacson & Scanziani, 2011). Indeed, previous models of phase 

precession have concluded that phase precession can arise as the result of the oscillatory 

interference of a somatic inhibitory drive with dendritic excitation (Kamondi et al., 1998; 

Losonczy et al., 2010; O'Keefe & Recce, 1993). We arrived at a similar conclusion via a 

different logic. Given our simple oscillatory interference framework, the direct, monosynaptic 

effect of excitation from DG and MEC inputs should produce symmetric effects on observed 

measurements. Because DG affected prospective theta firing in CA3 whereas MEC did not, we 

reasoned that this effect must be mediated indirectly via local interneurons. Model parameters 

that gave rise to phase precession measures similar to the empirical observations included the 

theta phase shift between the excitatory and inhibitory inputs and the oscillatory amplitude of 

inhibition. Biologically, this effect could be mediated via two separate classes of interneurons 

with distinct connectivity patterns with the upstream inputs. Entorhinal cortex inputs impinge on 

apical dendrites of hippocampal cells, whereas the intrahippocampally sourced inputs tend to 

converge on their basal dendrites (Megı́as, Emri, Freund, & Gulyás, 2001; Steward & Scoville, 

1976). One possibility is that the dentate gyrus modulates the theta phase of cholecystokinin 

(CCK), soma-targeting basket cells (Klausberger et al., 2005), which in turn leads to the 

resulting interference pattern with the monosynaptic excitation to promote the prospective firing 

of CA3 pyramidal neurons during late parts of the theta cycle. Alternatively, parvalbumin 

positive (PV) interneurons could be the intermediary since the spikes of pyramidal cells 

occurring late in the theta cycle shifts to earlier phases when the PV interneuron drive is 
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diminished in the network (Royer et al., 2012). On the other hand, the MEC input could 

modulate the inhibition strength on CA3 cells via somatostatin (SOM) interneuron (Amilhon et 

al., 2015; Royer et al., 2012), contributing to the range of phase precession as suggested by our 

model. 

While many important scientific insights can be gained by studying how experimental 

manipulations alter the first moment (i.e., mean) of a parameter’s distribution, understanding 

how the second (central) moment (i.e., variance) of the parameter distribution is affected by the 

manipulations can provide additional novel insights. Indeed, we showed that DG and MEC 

lesions alter CA3 spike phase variability in different ways (Figure 2.3-2.4). Together with 

previous experiments, these findings suggest that phase precession is a result of phase delayed 

onset of spiking at low levels of excitation (corresponding to entry to place field) rather than a 

phase advance with increased excitation (corresponding to exit from place field) as both distal 

dendritic excitation alone (Losonczy et al., 2010) (that is, not paired with somatic inhibition) as 

well as proximal dendritic excitation paired with somatic inhibition (Magee, 2001) reproduce a 

time-advanced temporal profile of action potential initiation reminiscent of the phase-advanced 

spikes when distal dendritic excitation is paired with somatic inhibition. This suggests that spike 

initiation is a function of current integration biophysics of the cell which in turn could be altered 

by modulating the phase of the coincident excitation and inhibition. While in previous 

experimental setups the dendritic and somatic stimuli were always 180° out-of-phase (Harris et 

al., 2002; Kamondi et al., 1998; Losonczy et al., 2010; Magee, 2001), our computational model 

suggests that the dentate gyrus could regulate spike timing due to the phase differential between 

the respective inputs via its projections to the local inhibitory circuit. Computationally, delaying 

the early spikes in CA3 may serve to segregate entorhinal and DG signals over the theta cycle to 



139 

 

filter out the mismatched inputs thereby preventing their potentiation in the synaptic matrix. 

Thus, a lack of phase precession should lead to the saturation of the synapses and destructive 

interference among memories. 

The degree to which neural firing obeys the accurate ordering experienced in behavior 

correlates with the quality of subsequent replay sequences in sleep (Drieu et al., 2018). Our 

phenomenological model was not aimed at explaining how the DG-CA3 circuitry ensures that, 

over the course of an ordered visit to two overlapping place fields, the spikes of the first cell 

occur earlier in the theta cycle despite lack of phase precession. Mechanistically, it remains an 

open question how the dentate gyrus contributes to this phenomenon. In particular, the fine 

temporal structure of coordinated firing of the DG-CA3 network with regards to replay both in 

awake behavior (Sasaki et al., 2018) and sleep is yet to be elucidated. Moreover, future efforts 

are required to integrate our model with a model in which the temporal pattern separation by DG 

is mapped out.  
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Approvals 

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee at the University of California, San Diego, and conducted at the University of 

California, San Diego according to National Institutes of Health guidelines. 

Methods 

Subjects and Surgical Procedures 

Subjects 

All data used in the present study has been previously collected and published (Sabariego 

et al., 2019; Sasaki et al., 2018). We reanalyzed and compared these data from a total of 31 rats 

in the present report (Table 2S.1). These included 4 control and 9 lesioned rats in the DG lesion 

experiment with CA3 or dual CA3-DG (2 of 4 control rats) single-unit recordings; 7 control and 

8 lesioned rats in the MEC lesion experiment with CA3 single-unit recordings; and 3 control rats 

with only DG recordings. Neural data from DG recordings were analyzed exclusively for Figure 

2S.3. All subjects were male Long-Evans rats and between the ages of 3 and 6 months old at 

300-350g of weight. The animals were kept on a 12 hour light-dark cycle (7 AM to 7 PM dark) 

and housed individually. Once the animals were habituated to the laboratory environment and 

ready for the experiments, they were food deprived to obtain a body weight of 85% or more ad 

lib baseline. Water access was not restricted. 

Experimental Procedures and Brain Lesions 

The details of the DG lesion and MEC lesion experiments were published previously and 

should be consulted as needed (Sabariego et al., 2019; Sasaki et al., 2018). In brief, rats in the 

DG lesion experiment were trained on the 8-arm radial maze to perform a working memory task 
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(see below). Those rats that were initially designated to receive DG lesions (N = 9; LESION(DG)) 

underwent a surgical procedure during which colchicine was bilaterally infused into the dorsal 

and ventral dentate gyrus. The remaining rats (N = 4; CTRL(DG)) were subjected to a sham lesion 

procedure (infusion of vehicle). During the same surgical procedure, a hyperdrive of 14 

independently moving tetrodes was implanted above the right hippocampus for 

electrophysiology as described below. Rats in the MEC lesion experiment were trained on the 

figure-8 continuous spatial alternation task (described below). These rats underwent a single 

surgical procedure whereby the control rats (N = 7; CTRL(MEC)) received a sham lesion (injection 

of vehicle) and the experimental rats (N = 8; LESION(MEC)) received an excitotoxic lesion of 

MEC via the injection of NMDA. 

In post-mortem histological material, the final position of the recording tetrodes was 

confirmed by performing cresyl violet staining of the sectioned brain tissue. In the DG Lesion 

experiment, the loss of dentate granule input to CA3 cells was confirmed by TIMM stains as 

previously described in detail (Sasaki et al., 2018). The extent of DG granule cell damage was 

quantified in a localized fashion. Specifically, each tetrode ending location was scored based on 

the intensity of the TIMM-positive staining in histological sections. Scores of 0 (~0% TIMM-

positive signal), 1 (< 30% signal), or 2 (< 70% signal), 3 (> 70% signal) were assigned to 

tetrodes obtained from DG lesioned animals, and tetrodes with scores of 0, 1, and 2 were 

included in the LESION(DG) data set. A score of 4 was used for control data, which are included 

as CTRL(DG) data. The extent of MEC lesions was confirmed quantitatively (Sabariego et al., 

2019) to be 93.0% of total MEC volume (95.3% of layer II, 92.4% of layer III, and 91.4% of 

deep layers), with the majority of sparing in the most ventral portions of MEC. 

Hyperdrive Implants 
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An array of 14 independently moving tetrodes was implanted over the right hippocampus 

in all 28 rats (control group: 4.0 mm posterior and +2.7 to +2.9 mm lateral to bregma; DG lesion 

group: 3.5 to 4.4 mm posterior and +2.8 to +3.2 lateral to bregma; MEC lesion group: -4.0 mm 

posterior and +2.8 lateral to bregma). The hyperdrive was secured with skull screws and dental 

cement to prevent mechanical instability. The tetrodes (with tips platinum plated to 150-300 kΩ 

at 1 kHz) were slowly lowered each day over a period of 2-4 weeks to ensure recording stability 

and minimizing damage to the brain. Depth records, LFP signals, and neural spiking markers 

were used to estimate tetrode distance from the target region. After an initial period of larger 

advances, the tetrodes were moved only in small increments over several days until a satisfactory 

signal (i.e., low-amplitude multiunit activity) was observed. Once near CA3, the tetrodes were 

allowed to settle inside the stratum pyramidale of the CA3 of the hippocampus with no further 

active movement of the tetrodes to maximize recording quality (i.e., high-amplitude multiunit 

activity). 

Electrophysiological Recordings 

A Neuralynx Cheetah recording system with a multichannel head-mounted preamplifier 

was used for LFP and single-unit recordings. A signal from a skull screw was used as animal 

ground, and a reference signal from the neocortex was subtracted from the hippocampal signals 

to increase the hippocampal signal to noise ratio. Unit recordings were filtered at 600 Hz to 

6 kHz, and spike waveforms above an amplitude of 40 µV were time-stamped and recorded at 

32 kHz for 1 ms. LFP recordings were filtered between 1 and 425 Hz in the DG lesion 

experiment and between 1 and 450 Hz in the MEC lesion experiment. 

Behavioral Tasks 

DG Lesion Experiment (Spatial working memory on the 8-arm radial maze) 
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We trained the animals in the DG lesion experiment to perform a DG-dependent spatial 

working memory task (Sasaki et al., 2018). The task used a maze with a central platform and 8 

radial arms that each had a proximal segment that could be lowered and raised. The rats were 

first placed on the central platform (i.e., “stem”) of the 8-arm maze with all 8 arms lowered such 

that the reward cups at the end of each arm were inaccessible to the animal (Figure 2S.1a). Next, 

the experimenter raised one arm at a time, for four arms, following a previously generated 

pseudorandom sequence. The rat was allowed to run down each raised arm and upon its return to 

the stem that arm was lowered and the next arm in the sequence was raised. Once the rat had 

visited all four experimenter-forced arms (“forced choice” phase), all 8 arms were raised and 

available for the rat to visit (“free choice” phase). The optimal strategy would consist of the rat 

visiting every one of the four arms unvisited during the forced-choice phase without reentering 

any arm. A total of 13 rats (N = 4 CTRL(DG); N = 9 LESION(DG), dentate granule cell lesions) 

were trained and tested in this task while CA3 single-unit recordings were made. 

MEC Lesion Experiment (Figure-8 continuous alternation working memory task) 

In the MEC lesion experiment, the rats were trained to perform a hippocampus dependent 

alternation task on the figure-8 maze (Sabariego et al., 2019). In this task, a rat is placed in a 

delay zone at the base of the figure-8 maze (Figure 2S.1b) and is required to run up the “stem” of 

the maze toward a T-junction from where it can choose between reward locations on either the 

left or right before returning on a side arm to the delay zone. Blocks of trials with and without 

delays were performed. In non-delayed trial blocks the delay site is not actually used to restrict 

the animal’s movements. In delayed trial blocks a barrier restricted the rat’s progress for 2, 10, or 

60 seconds for each trial. These blocks were not distinguished for the analyses presented here. 

This first trial (“trial 0”) is discarded. However, it is used on the following lap to determine the 
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success of the animal in choosing the right or left reward. From the second trial onwards (trial 1 

and later), a trial is “correct” if and only if the animal chooses to visit the reward location not 

visited on the preceding trial. If the animal chooses the same side more than once, it will not 

receive a reward at the visited reward site. It will, however, continue to receive reward items at 

the appropriate reward sites as soon as it chooses the side not chosen on the previous trial. A 

total of 19 rats (N = 7 CTRL(MEC); N = 8 LESION(MEC), with complete lesions to the medial 

entorhinal cortex) were trained and tested on this task. 

Data Analysis 

All statistical tests were chosen to appropriately match the underlying data distributions. 

In the case of testing proportions, 𝜒2 tests were used. In the case of testing for means, first the 

normality and homoscedasticity were tested with Anderson-Darling and F-test, respectively. If 

the data were concluded to be normal, t-tests or ANOVAs were performed as appropriate. 

Otherwise, rank-sum or Kruskal-Wallis tests were applied as appropriate. For comparing the 

distributions, the Kolmogorov-Smirnov test was used. The 𝛼 level was set to 0.05 for all 

experiments and tests. 

Spike Sorting. 

Spike sorting was performed offline using a custom version of MClust (A. David Redish, 

University of Minnesota). Clusters were selected in the sleep sessions before and after a behavior 

and matched to the data recorded during the behavior to ensure consistency and reliability. The 

cross-correlogram was used as an additional criterion to ensure cluster independence. Only well 

separated clusters were retained for analysis. 

Spatial Firing Properties. 
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The measures included in Figure 2S.2 are defined as follows. Let N be the total number 

of spikes of a given cell, and the number of such spikes that were part of a detected train (as 

defined below) denoted Nt. The proportion of spikes assigned to a train is defined Nt/N. The 

firing rate is defined as λ =𝑁 / 𝑇 where T is the summed total duration in seconds of all 

behavioral trials in a given session. The number of spikes per train is calculated for each cell as 

the N / Ntr where Ntr is the number of detected trains for that cell. To calculate the train length we 

first found the physical position of the first and last spikes of a train on the maze (points P1 = (x1, 

y1) and PN = (xN, yN)). The train length L is calculated as 𝐿 =  ∑ ||𝑃𝑖 − 𝑃𝑖−1||𝑁
𝑖=2 , where || ∙ || is 

the L2 norm. The number of bins covered was calculated as the total number of square bins of 

size 2 centimeters that contained at least one point from the path of a detected train. The 

information content measure was adapted from (Skaggs, McNaughton, Gothard, & Markus, 

1992) and was calculated as 𝐻 =  ∑ λ(𝑥)log2
λ(𝑥)

λ
𝑝(𝑥)𝑑𝑑𝑥 , where λ is the mean firing rate and 

𝑝 is the probability mass function of the rat’s position over the spatial bins of the maze. The 

selectivity and sparsity measures were drawn from (Skaggs et al., 1996) and are defined, 

respectively, as 𝑆 = 𝐸[λ]
𝐸[λ2]

 and 𝑠 = λmax
λ

, where 𝐸 is the expected value over the spatial bins and λ 

is the mean rate as defined above. 

Rate map construction. 

First, those intervals during the periods delimited by trial timestamps in which the 

velocity of the animal exceeded 2 cm/s were selected. For each cell, all spikes that occurred 

outside these intervals were excluded for the purpose of rate maps construction. Next, the 

environment was divided into square bins of side length 5 cm and the spikes that occurred in 

each such bin were counted. The occupancy matrix was constructed similarly by counting the 

number of position tracking points falling in each spatial bin multiplied by the tracking 
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acquisition rate (29.97 FPS). The rate map was the result of the element-wise division of the 

spike count matrix by the occupancy matrix, spatially smoothed with a 2-d Gaussian of kernel 

size 15 cm. 

Spike Train Detection. 

A spike train was defined as the set of 5 or more consecutive spikes with a maximal inter-

spike interval of 500 ms. Additional criteria were imposed on the selection of spike trains for 

analysis as follows (Figure 2S.2c). A spike train (a.k.a. “pass”) was deemed valid for analysis if 

it was at least 300 ms and no more than 2500 ms in duration, its corresponding path was at least 

20 cm long (see above for the calculation of pass length), its corresponding path endpoints were 

at least 10 cm apart in physical space, and if the average velocity of the animal during the pass 

exceeded 2 cm/s. All of a cell’s detected trains were discarded if its mean firing rate over the 

duration of the behavior was smaller than 0.1 Hz or greater than 5 Hz. 

LFP Analysis and Theta Phase Extraction. 

Local field potentials were recorded from one of the electrodes for each tetrode. The raw 

LFP signal was filtered in the theta range (6-10 Hz) and the channel with the largest theta 

rectified RMS power was selected as the reference for phase precession analysis. The phase 

estimate was obtained by φ =  tan−1 Im(𝐻(𝑠))
Re(𝐻(𝑠))

 under linear interpolation, where 𝐻(∙) is the 

Hilbert transform and 𝑠 is the 6 Hz to 10 Hz filtered LFP signal. 

Quantification of Phase Precession. 

The distance and theta phase variables were extracted from the detected trains. For each 

train, the last tracked point before the first spike, and the first tracked point after the last spike 

were marked as the Start and the End of that train’s corresponding trajectory. Next, every spike 

timestamp was normalized with respect to the Start and End points’ timestamps, yielding vector 
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d of normalized distances. Taken together with the theta phase vector 𝜗 described above, the 

circular-linear regression was then computed on the (𝑑,𝜗) pairs for each train or cell, as 

described below. The circular-linear regression produced a slope value 𝑠 and the estimate of 

explained variance 𝑟2. The onset phase Φon was calculated for each train as the circular mean 

theta phase of the spikes occurring in the first (possibly truncated) theta cycle of the train. The 

offset phase Φoff was defined similarly, except over the last theta cycle of the train. These four 

values are referred to as phase precession “measures” in the modeling section. 

Population level quantification of remaining phase precession. 

Two methods were employed for the quantification of the phase precession in each data 

set. 

Slope-by-cell analysis. In this method, first the �𝑑(𝑖),𝜗(𝑖)� pairs were calculated for the 

𝑁 detected trains for a CA3 cell. Next, all such pairs were concatenated to obtain a single pair 

(𝑑,𝜗) of length equal to the total number of spikes from the CA3 cell. The circular-linear 

regression was then performed on this pair to obtain the slope and explained variance measures 

(described above) for the CA3 cell in question. This was then done for every qualifying CA3 

cell. The quantifications of proportions and cells were performed on the values thus obtained. A 

cell was deemed to exhibit “phase precession”, if the circular-linear regression p-value was less 

than 𝛼 = 0.05. 

Slope-by-train analysis. Here, the circular-linear regression was directly performed on 

the �𝑑(𝑖),𝜗(𝑖)� pairs to produce values of slope 𝑠(𝑖) and explained variance 𝑟2(𝑖). The statistics of 

proportions were then performed on the cell-averaged values (such that each cell contributed a 

single slope and 𝑟2 value regardless of the number of its trains). The Φon and Φoff values were 
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only defined for trains, though instead of averaging them per train, they were directly used to 

find the distributions used in Figure 2.3. 

Spike phase variance analysis. 

For Figure 2.5d, circular variance was calculated either across all spikes of each neuron 

or across the timestamps resulting from replacing each cycle’s spikes with their mean. Notice 

that even though this operation reduces the total number of spikes, it will not necessarily reduce 

the variance; this would depend on the distribution of spikes within the theta cycle and the phase 

reliability firing windows of a cell over multiple trains. This in turn is depends on the brain 

circuitry which is manipulated by experimental conditions (CTRL, DG lesions, or MEC lesions). 

For Figure 2S.3c, we used a similar binning scheme as for Figure 2.5d but the binning was 

performed on the actual place field of the neuron, defined as the area within the 20% contour of 

the place maps. We then calculated the circular standard deviation across all spikes of each cell 

in each bin and plotted the mean values together with the error bars representing the standard 

error of the mean. 

Onset, offset and binned theta phase estimation. 

The onset firing phase was defined as the circular mean phase of the spikes occurring in 

the first (partial) theta cycle of each train. The offset firing phase was analogously defined as the 

circular mean phase of the spikes occurring in the last (partial) theta cycle of each train. The 

histograms in Figure 2.3 are obtained from the single train onset and offset phase values for each 

group. To estimate firing probability in the binned theta cycle (Figure 2.4), we assigned a bin 

label (early, mid, or late, corresponding to [0, 2π/3), [2π/3, 4π/3), (4π/3, 2π), respectively) to 

each spike and plotted the resulting discrete probability distribution (panels a and b). This 
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approach was repeated for each of 10 equal bins of the normalized position of spikes within a 

train to get a “position-resolved” theta bin firing probability estimate (panel c). 

Cell pair sequence analysis. 

Let S = {tri} be the set of all spike trains detected in a given recording session, where tri 

is the ith spike train (ordering not important) with spike timestamps ts(i)
j where j = 1…ni, and ni is 

the number of spikes in tri. Let Ik(ts(i)
j) be an indicator function that assumes 1 if an l exists for 

which |ts(i)
j - ts(k)

l| < 125 ms when 𝑖 ≠ 𝑘, and 0 otherwise. Spike train pairs (tri, trj) were selected 

for inclusion in this analysis whenever 
∑ 𝐼𝑘(𝑡𝑡𝑗

(𝑖))𝑗 +∑ 𝐼𝑖�𝑡𝑡𝑙
(𝑘)�𝑘

𝑛𝑖+𝑛𝑘
≥ 0.15. The cross-correlogram was 

computed for such pairs and the relative time, τ, of the peak closest to the 0 time lag was found. 

The physical separation of the peaks of the two cells’ place fields, d, was computed and used to 

make the pair (d, τ). In the case of the 8-arm maze where runs in opposite outbound and inbound 

directions were possible, each pair was treated twice—once for the inbound run and once for the 

outbound. In all cases only one of the two run directions had enough spikes to reliably assess pair 

co-modulation (i.e., the unreliable direction did not contribute a (d, τ) pair). Once all (d, τ) pairs 

were obtained for each experimental group, a linear regression line was fit to the data to assess 

the significance of the relationship between place field separation and theta co-modulation, as 

reported in Figure 2.6. For the phase precession plots in Figure 2.6b and Figure 2.6f, trains from 

each cell are first mapped to the animal’s path and projected via dot product onto the line 

segment connecting the place field peaks of the of the two cells. The midpoint of this line 

segment was considered the origin (x = 0) and used on the x-axis of the phase-position plots. The 

sign of the direction of travel was defined to be positive if Cell 1’s place field was visited before 

Cell 2’s place field; otherwise, it was set to negative. 
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Computational model 

Model description. 

The model CA3 neuron received three distinct inputs. Two of these were excitatory (i.e., 

positively contributed to the model neuron’s total drive) and one was inhibitory (i.e., negatively 

contributed to the total drive). The excitatory inputs modeled the DG and MEC monosynaptic 

excitatory drive that CA3 principal cells receive, while the inhibitory input modeled the total 

inhibitory input that these neurons receive. The equations governing the value of each of the 

three functions took the following forms: 

𝐺𝐷𝐷(𝑡) = 𝛾𝐷𝐷 �
𝑔𝐷𝐷

2
�1 + 𝑐𝑐𝑐 �2𝜋𝜈1(𝐷𝐷)𝑡�� +

1
2
�1 + 𝑐𝑐𝑐�2𝜋𝜈2(𝐷𝐷)𝑡��� 

𝐺𝑀𝑀𝑀(𝑡) = 𝛾𝑀𝑀𝑀 �
𝑔𝑀𝑀𝑀

2
�1 + 𝑐𝑐𝑐 �2𝜋𝜈1(𝑀𝑀𝑀)𝑡�� +

1
2
�1 + 𝑐𝑐𝑐�𝜓 + 2𝜋𝜈2(𝑀𝑀𝑀)𝑡��� 

𝐺𝐼𝐼𝐼(𝑡) = 𝐼𝐷𝐷 + 𝐴𝐴𝐴𝐴(𝜙 + 2𝜋𝜈𝐼𝐼𝐼𝑡) 

where 𝜈1(𝐷𝐷) = 35𝐻𝐻, 𝜈1(𝑀𝑀𝑀) = 75𝐻𝐻, 𝜈2(𝐷𝐷) = 8.6𝐻𝐻, 𝜈2(𝑀𝑀𝑀) = 8.5𝐻𝐻,𝑔𝐷𝐷 = 0.25,𝑔𝑀𝑀𝑀 =

0.075, and 𝜈𝐼𝐼𝐼 = 8𝐻𝐻, and 𝐼𝐷𝐷 represented the DC (baseline) component of inhibition. The 

gamma oscillation frequencies were chosen to represent the mid points of generally accepted 

slow (20-50 Hz) and fast (50-100 Hz) gamma oscillations in vivo. Gain coefficients 𝛾𝐷𝐷 and 

𝛾𝑀𝑀𝑀 were chosen appropriately for each section of the experiments (see Results). In the above 

equations, 𝜓 controls the phase difference of the two excitatory inputs by essentially timing only 

the MEC input while the DG input remains the same. Effectively, this could cause the place field 

to shift around slightly which we shall ignore. Here, φ denotes the excitatory-inhibitory phase 

differential, which in the text is referred to by φinh for clarity. IDC was drawn from a Gaussian 

with a constant mean between 0.5 and 25 (with specific values given in Results) and variance 

0.025. 
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To produce the total drive, the inputs combined as follows: 

𝐺(𝑡) = 𝛾 �𝐻 ��𝑀𝐷𝐷(𝑡) ∙ 𝐺𝐷𝐷(𝑡) + 𝑀𝑀𝑀𝑀(𝑡) ∙ 𝐺𝑀𝑀𝑀(𝑡) − 𝐺𝐼𝐼𝐼(𝑡)�2�� 

where 𝛾(𝑥) = √𝑥34 , 𝐻 is the Heaviside function and M represents a spatial modulation function. 

A spatial modulation function to each of these inputs to mimic the influence of DG and MEC 

inputs to the early and late portions of place fields, respectively (see Figure 2.4) (Sanders et al., 

2015). These functions are defined as follows: 

𝑀𝐷𝐷(𝑥) =
𝑒𝑒𝑒 ��12 + 𝑁𝑥(0.3,0.65)�

𝜂𝐷𝐷
�

𝑚𝑚𝑚[0,1] �𝑒𝑒𝑒 ��
1
2 + 𝑁𝑥(0.3,0.65)�

𝜂𝐷𝐷
��

 

𝑀𝑀𝑀𝑀(𝑥) =
𝑁𝑥(0.7,0.45)𝜂𝑀𝑀𝑀

𝑚𝑚𝑚[0,1] (𝑁(0.7,0.45)𝜂𝑀𝑀𝑀) 

where 𝜂𝐷𝐷 = 2 and 𝜂𝑀𝑀𝑀 = 4 are concentration parameters and 𝑁𝑥(𝜇,𝜎) is the Gaussian 

distribution with mean 𝜇 and standard deviation 𝜎. The argument to the Heaviside function is 

referred to as the “sum-square” step in Figure 2.7. We set the GDG or GMEC terms to 0 to simulate 

DG or MEC “lesions”, respectively. 

Spike generation. 

The total drive obtained in the previous step was normalized to define a probability 

distribution and used as an intensity function for an inhomogeneous Poisson process to generate 

the spikes. The phase precession measures were calculated for these simulated trains as described 

for the empirical data. 

Mapping of model output to empirical data. 

The phase precession measures (slope, variance explained, onset phase, offset phase) 

obtained by simulating the model with various combinations of free parameters (A, IDC, and φinh) 
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were individually compared to those obtained by analyzing the experimental data from control, 

DG lesioned, or MEC lesioned rats. Each set of empirical phase precession measures was 

compared to the phase precession measures obtained from analyzing the corresponding model 

instantiation (CTRL to full model (no terms set to 0), LESION(DG) to “DG-lesioned” model, and 

LESION(MEC) to “MEC-lesioned” model). Each measure from the model that was within a 

quartile (in each direction) of the empirical median of the measures was considered admissible 

(blue regions in the binary plots of Figure 2.7d,e). Free parameter combinations that produced 

four admissible measures were accepted (Overlap plots in Figure 2.7d,e). Finally, the accepted 

free parameters were compared between lesion and control instantiations of the model by 

plotting the histogram of their distribution (Figure 2S.9). The model predictions were obtained 

by comparing full-width at half maximum (FWHM) intervals in these histograms. 
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Appendix 2.1: Supplementary Figures 

Figure 2S.1: Behavioral tasks and spike train detection. (a-b) Behavioral tasks. In rats, 
successful completion of these spatial working memory tasks depends on the hippocampus, 
making it possible to study effects of selectively DG and MEC lesions on CA3 information 
processing. The gray areas indicate the maze regions covered by a rat during an example trial. a, 
The radial 8-arm maze spatial working memory task. b, The figure-8 alternation spatial working 
memory task. c, Criteria applied to detect spike trains. The Train Detection step starts by 
extracting sets of at least 5 spikes whose inter-spike interval is 500 ms or less. Of these trains, 
those with duration ≥ 300 ms, path length ≥ 20 cm, path end points at least 10 cm apart, and an 
average velocity ≥ 2 cm/s were selected for further analysis. This results in 0 or more trains per 
cell. Cells with 0 qualifying trains or firing rate ≥ 5 Hz are excluded from further analysis. These 
criteria ensured that trains across recordings had statistically comparable behavioral 
characteristics with sufficient sampling to minimize artefactual findings. d, The train detection 
method visualized. Left, single trial with spikes from a cell in the CTRL(DG) group. The subset of 
spikes that meets the criteria is shown in red. The other spikes which do not qualify as a train are 
in light blue and dark blue. The spikes are mapped onto space and displayed on the path of the 
rat in the trial. The numbers in the rasters are in milliseconds. Two more example trains are 
shown to the right. The top example is excluded because the train length is less than 20 cm to 
reduce errors due to insufficient spatial and theta cycle sampling.  
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Figure 2S.2: Differences in the requirements of the two spatial working memory tasks had 
minimal effects on physiological neural coding. Control data in the two spatial working 
memory tasks were largely comparable, indicating that comparison of the respective roles of DG 
and MEC inputs to CA3 in the tasks was justified. blue: Control data from rats performing the 
radial 8-arm maze spatial working memory task, red: Control data from rats performing the 
figure-8 maze spatial working memory task. a, Proportion of the recorded spikes that were 
assigned to trains (p = 0.185). b, Average firing rate in the selected trains log-transformed to 
obtain normally distributed data (p = 0.142). c, The number of spikes per train was different 
between the two groups (t183 = -3.6226, p = 3.78 x 10-4; log-transformed two-sample t-test). d, 
The train length in cm was also different across the control groups (z-value = -2.3012, rank sum 
= 6977, p = 0.0214; Wilcoxon’s rank sum test). e, The spatial extent of the mazes was divided 
into a grid of 2 cm by 2 cm bins. The number of bins that contained any portion of a train’s 
corresponding path was counted and displayed (p = 0.941). f, Information content of the trains 
measured in bits per spike was not different (p = 0.183). g, Selectivity, as defined by Skaggs and 
colleagues [2], was not different (p = 0.209). h, Sparsity, as defined by Skaggs and colleagues 
[2], was not different (p = 0.375). All data tested for normality with the Anderson-Darling test. If 
both the original and log-transformed data were deemed not normal by the test, Wilcoxon’s rank 
sum test was used to test differences; otherwise, a two-sample t-test was used on the original data 
(not log-transformed). Error bars mean ± s.e.m.
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Figure 2S.3: Neurons recorded in the granule cell layer of the dentate gyrus increase their 
spike phase variability from the beginning to the end of place fields. a, Phase position plots 
of all neurons that were recorded on tetrodes confined by histology to end in the granule cell 
layer (N = 5 cells, 10 place fields, from 3 rats). The plots are sorted into a group with a clear 
pattern of increased phase variability later in the field (top) or little change in phase variability 
(bottom). b, Six examples of neurons recorded on tetrodes ending in the dentate gyrus but not in 
the granule cell layer (total recorded N = 13 neurons, 34 place fields, from 4 rats). From 
histology, tetrode endings in the hilar region or the subgranular zone are labeled “Hilus” here. c, 
Quantification of the variability (circular standard deviation) at various distances through the 
place field. These plots show that, compared to hilar and CA3 recordings, putative granule cell 
phase coding tends to be more reliable across multiple passes through the same place field. This 
is consistent with a role for granule cells’ controlling the onset phase of CA3 pyramidal cells. 
Data are grouped into 10 bins along the normalized position. GCL, granule cell layer. Hilus: hilar 
or subgranular zone.
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Figure 2S.4: Replacing each cycle’s spikes with their mean rescues CA3 phase precession in 
the absence of MEC, but not DG, inputs. a, Examples of a single train where replacing each 
cycle’s spikes with their mean converts a positive circular-linear phase-position regression slope 
to a negative value. Below each example phase-position plot pair, the spike train and the mean 
timestamp for each cycle are displayed alongside the simultaneously recorded LFPs and theta 
rhythm. The example train on the far right had a statistically significant slope when the theta 
cycle mean of the spikes was considered. b, Additional examples of single trains from MEC 
lesioned rats where replacing each cycle’s spikes with their mean led to a negative circular-linear 
regression slope. As in (a), below each phase-position plot pair the spike train and the mean 
timestamp for each cycle are shown along with the LFPs and theta rhythm. Scale bars: 
horizontal: 200 ms, vertical: 200 µV. 
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Figure 2S.5: Spike sorted clusters were of high quality and were well-separated. The 
clusters corresponding to the two members of each neuron pair shown in Figure 2.6 are marked 
in each panel. a, Clusters of the example pair for CTRL(DG) were simultaneously recorded on two 
different tetrodes and formed nice clusters. b, Clusters of the example pair for LESION(DG) were 
simultaneously recorded on two different tetrodes and formed nice clusters. c, Clusters of the 
example pair for CTRL(MEC) were simultaneously recorded on the same tetrodes but were well-
separated and formed nice clusters. d, Clusters of the example pair for LESION(DG) were 
simultaneously recorded on two different tetrodes and formed nice clusters.  
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Figure 2S.6: Shifts in the phase relationship among DG, MEC, and inhibitory inputs result 
in a variety of phase precession profiles. These examples demonstrate the model’s expressive 
power to capture a variety of possible scenarios arising in the analysis of phase precession, 
including both negative, zero, and positive slopes. (a-i) In each panel, the excitatory (ψ) and 
inhibitory (φ) phase shifts are indicated at the top. The slope and onset phase value pairs are, 
respectively, (-0.93, 50.9°), (+0.24, 123.9°), (-0.03, 189.3°), (+0.04, 114.3°), (-0.04, 150.9°), (-
0.07, 169.2°), (+0.17, 144.1°), (+0.14, 152.6°), and (+0.14, 158.7°). For all panels, A = 14, I = 
0.65.  



0 1
0

1

2
φ = 63°, ψ = 210°

0 1
0

1

2
φ = 126°, ψ = 210°

0 1
0

1

2
φ = 189°, ψ = 210°

0 1
0

1

2
φ = 126°, ψ = 90°

0 1
0

1

2
φ = 140°, ψ = 90°

0 1
0

1

2
φ = 150°, ψ = 90°

0 1
0

1

2
φ = 126°, ψ = 180°

0 1
0

1

2
φ = 140°, ψ = 180°

0 1
0

1

2
φ = 150°, ψ = 180°

a b c

d e f

g h i

PositionPositionPosition

Th
et

a 
ph

as
e

(c
yc

)
Th

et
a 

ph
as

e
(c

yc
)

Th
et

a 
ph

as
e

(c
yc

)

164



165 

 

Figure 2S.7: Relative phase shifts are the key parameters that determine the profile of 
virtual place fields. a, The color coded position of the largest peak resulting from the combined 
excitation and inhibition in the model, as a function of the excitatory (ψ) and inhibitory (φ) phase 
shifts with different spatial modulation concentration parameters (left, ηDG = 2, ηMEC = 4; right, 
ηDG = 8, ηMEC = 8). The peak is calculated separately for the relative phase shifts marked by 
black dots as a function of either the spatial modulation parameters or the gain coefficients and 
displayed below in b and c. b, Peak position is a fairly constant function of the concentration 
parameters (η). Peak position is calculated for various relative phase shifts and in all cases the 
variability is much less than in panel (a) where this is shown as a function of the relative phase 
shifts. c, Similar to b, peak position is a fairly constant function of the gain coefficients 
(manifested as large areas of constant color coding). The color bar above panel (a) applies to all 
panels. Thus, overall phase shifts drive a greater deal of variability in a virtual place field’s peak 
than do other parameters. 
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Figure 2S.8: Baseline inhibition level (I) does not qualitatively alter the model state space. 
Model state space was explored by linear search along the I parameter. Three instances for each 
experiment are shown as described: (a-b) The state space obtained at I = 4.5 (9x that shown in 
Figure 2.7) via comparisons to empirical CA3 data in DG lesioned rats and the associated control 
rats (a), or to empirical CA3 data in MEC lesioned rats and the associated control rats (b). (c-d) I 
= 8.5 (13x) with empirical data from the DG (c) or MEC (d) lesion experiments, and (e-f) I = 
12.5 (25x) with empirical data from the DG (e) or MEC (f) lesion experiments. The Overlap 
plots across all panels reveal state space matches that resemble those reported in Figure 2.7, 
indicating minimal effect of the baseline inhibition parameter (I). 
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Figure 2S.9: DG and MEC lesions alter CA3 phase precession along largely orthogonal 
dimensions. a, Distribution of parameter values A and φinh that reproduce the control (light blue) 
and lesion (dark blue) data in the DG lesion experiment. The histograms show the spread of 
regions of overlap in Figure 2.7d and Figure 2.7e for the φinh (top) and A (bottom) parameters, 
namely inhibitory phase shift and inhibitory amplitude. The DG lesions strikingly alter the 
profile of the φinh parameter (compare light and dark blue double arrows) while leaving the A 
parameter largely intact, up to a small shift (black arrow). Full-width at half maximum (FWHM) 
of the φinh histograms is indicated with stippled lines. b, As in (a) but for the MEC lesion 
experiment. In contrast to (a), the MEC lesions mainly affect the profile of A parameter spread 
(compare the yellow and orange double arrows), while leaving the φ parameter largely intact, up 
to a small shift (black arrow). FWHM of the A histograms is indicated with stippled lines. 
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Figure 2S.10: Addition of gamma oscillations to the model does not qualitatively change the 
results. a, Model construction with the inclusion of gamma components. These components 
account for the presence of slow and mid gamma oscillations in the DG and MEC input 
terminals in the hippocampus, respectively (35 Hz and 75 Hz; see Methods). The rest of this 
panel follows the conventions of Figure 2.7. b, Similar to Figure 2.7d, but with the simulated 
values generated by the model that includes gamma components. c, Similar to Figure 2.7e, but 
with simulated values generated by the model that includes gamma components. In (b) and (c) 
the regions in overlap plots delineated by pink resemble those in Figure 2.7 obtained without 
gamma oscillations. 
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Appendix 2.2: Supplementary Tables 

Table 2S.1: Summary of rats used in this study. 
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Rat ID Experiment Experimental 
Condition 

# Qualifying 
CA3 Units 

# Qualifying 
DG Units 

# 
Sessions 

122 DG CTRL N/A 5 1 
147 DG CTRL N/A 6 1 
194 DG CTRL N/A 4 1 
600 DG CTRL 50 N/A 2 
601 DG CTRL 19 2 2 
632 DG CTRL 7 1 2 
650 DG CTRL 8 N/A 1 
Total 84 18 10 
599 DG LESION 4 N/A 1 
633 DG LESION 5 N/A 2 
648 DG LESION 11 N/A 2 
649 DG LESION 4 N/A 2 
656 DG LESION 2 N/A 1 
669 DG LESION 20 N/A 2 
672 DG LESION 7 N/A 3 
675 DG LESION 7 N/A 1 
684 DG LESION 8 N/A 2 

Total 68 N/A 16 
3661 MEC CTRL 23 N/A 5 
3839 MEC CTRL 11 N/A 3 
3840 MEC CTRL 2 N/A 1 
3906 MEC CTRL 13 N/A 2 
3931 MEC CTRL 4 N/A 1 
3958 MEC CTRL 39 N/A 3 
3959 MEC CTRL 9 N/A 3 

Total 101 N/A 18 
3656 MEC LESION 5 N/A 1 
3754 MEC LESION 17 N/A 5 
3756 MEC LESION 10 N/A 2 
3837 MEC LESION 6 N/A 2 
3903 MEC LESION 9 N/A 2 
3928 MEC LESION 29 N/A 3 
3978 MEC LESION 48 N/A 3 
3979 MEC LESION 34 N/A 2 
Total 158 N/A 20 
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CHAPTER 3: CONCLUSIONS AND FUTURE DIRECTIONS 

 

By combining experiments, data analysis, and computational modeling, I was able to 

elucidate several aspects of the neural code that supports episodic memories. Specifically, I 

showed that the representations that develop in CA1 upon learning new spatial information 

follow a broad stability distribution, which suggests a mechanism for storing stable and unstable 

aspects of experience within the same population. Moreover, I showed how this could enable the 

hippocampus to implement an effective search algorithm to guide the animal’s behavior towards 

remembered goal locations. I next showed that the two major theta-modulated inputs to the 

sequence generating core of the hippocampal CA3 area played distinct roles in supporting its 

theta phase precession. Through computational modeling, I illustrated how the underlying 

circuitry might in fact be implemented to give rise to the observed experimental data. This 

involved demonstrating that differences in how each input stream influences the inhibition onto 

the CA3 circuit determine the phase precession profile, suggesting the distinct involvement of 

different inhibitory interneuron types. 

As neuroscientists we segregate behavioral epochs and the neural codes that support them 

for better experimental control and for breaking down a complex problem into manageable parts. 

The brain, however, is always active and continually performing its computations to support 

ongoing behavior, whether or not the rats are aware that they are being used in experiments. 

While my studies might appear to be focused on disparate phenomena, they were attempts at 

uncovering mutually interacting neural dynamics. From the point of view of the brain, the 

internal and external worlds are constantly influencing one another: the external world affects 

brain organization through sensation and additional internal processing, while the brain 
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influences the external world by driving the animal to perform different behaviors (e.g., via 

motor actions to actively sample the environment). By this perspective, the study of Chapter 2 

was concerned with the first half of this interaction, while the study of Chapter 1 investigated the 

second half of it. In neuroscientific terms, I first showed how a heterogeneous population with 

diverse levels of representational stability could enable an effective search algorithm to guide the 

behavior of the animals toward remembered goal locations. Conversely, I next shed light on how 

the hippocampus develops a new representation upon being presented with new information, and 

how it might determine which synapses to prime for strengthening and weakening in “offline” 

states to retain this information (i.e., once behavior is over). While these studies advance our 

understanding of learning and memory, they also pave the way for asking novel questions via 

targeted experiments. 

It is typical that once a scientific question is answered, multiple new ones emerge. One of 

the questions that my results raise is how sequences of ensemble activity get selected for further 

potentiation. As shown in the thesis, phase precession is observed across a large proportion of 

hippocampal neurons, and thus it is expected that a large number of ensembles coherently phase 

precess to form theta sequences. Of these, a subset will be more strongly potentiated as 

suggested by the results of the first chapter. How do such subsets get selected? It is possible that 

the reward centers of the brain contribute to this. Multiple such areas have been implicated in 

supporting long-term hippocampal memory stabilization, including ventral tegmental area 

(Mamad et al., 2017; Martig & Mizumori, 2011; McNamara et al., 2014; Rosen, Cheung, & 

Siegelbaum, 2015), locus coeruleus(Kempadoo et al., 2016; Takeuchi et al., 2016), nucleus 

accumbens (LeGates et al., 2018; Sosa, Joo, & Frank, 2020), ventral striatum(van der Meer & 

Redish, 2011), and the thalamic nucleus reuniens (Ito, Zhang, Witter, Moser, & Moser, 2015; 
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Vertes, 2015). It would be interesting to investigate how in the same hippocampus-dependent 

memory task (such as that used in Chapter 1), these diverse areas interact and coordinate to 

promote the selection of sequences for storage and maintenance of goal-related memories. 

Simultaneous recordings from multiple such areas could provide important insights. 

Another avenue for future research would be to develop a computational account of the 

observations reported in Chapter 1. A simple neural network model based on Hebbian learning 

can be developed in which neurons have diverse excitability profiles. In the setting of goal 

learning tasks, excitable neurons in the network become associated with the goal items. Using 

this model, questions about optimality of excitability profiles and how they should change across 

a battery of goal-directed tasks may be answered and compared to data. Importantly, in Chapter 

1 we saw that while the accumulation of neural responses at goal locations correlated with future 

behavior in the setting of goal learning, this was not the case when the task did not involve goal 

learning (Figure 1.5). What should the patterns of goal selectivity be to allow downstream 

networks to read out behaviorally relevant information from this network in order to guide 

behavior? The initial stages of such computations might take place in the entorhinal cortex 

(Ólafsdóttir, Carpenter, & Barry, 2016), which should provide some constraints on how the 

model is developed. Once the properties of this computational mechanism are worked out, one 

can search for their anatomical locus based on the roadmap obtained from the theoretical studies. 

Another future direction could involve causal experiments with optogenetics. For 

example, in Chapter 2 we used lesions to eliminate one or the other of CA3’s major theta-

modulated inputs to study how phase precession is generated. However, lesion studies suffer 

from poor temporal specificity as well as risking altering intrinsic network function by inducing 

compensatory plasticity. Using viral techniques, however, one could exert simultaneous 
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optogenetic control over these two inputs with different light wavelengths. This way, phase 

precession can be studied even at the level of single passes through place fields of identified 

cells. This would allow the experimenter to directly test the relationship between phase 

precession, theta sequences, and subsequent replay for memory performance. In the study of 

Chapter 1, optogenetics could be deployed to silence or activate either highly active cells or the 

less active population to identify the rules by which goal-selectivity is induced. This approach 

has been successfully applied to contextual fear memory paradigms in the dentate gyrus 

(Tonegawa et al., 2015), but it remains to be successfully applied to the CA1 in conjunction with 

the performance of a memory task over extended time periods. Optogenetic control of such 

populations might also allow one to imprint specific memory trajectories encoded in a sequence 

of CA3/CA1 ensembles and ask whether behavior would follow it. This would be a direct, causal 

test of the computational model developed in this thesis. A similar idea has successfully been 

implemented previously (de Lavilléon et al., 2015; Robinson et al., 2020), but the new results in 

the thesis can guide the design of a much more specific test of the model. 
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