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ABSTRACT OF THE DISSERTATION 

 

Assessing the genetic architecture of metabolic diseases using candidate gene and genome-wide 

approach 

 

by 

 

Kei-hang Katie Chan 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2012 

Professor Eric Sobel, Co-chair 

Professor Simin Liu, Chair 

 

Much work has targeted the detection of disease genes through genetic mapping for 

metabolic diseases such as type 2 diabetes (T2D), cardiovascular diseases (CVD), and other 

diabetes-related traits such as body mass index (BMI) and hemoglobin (HbA1C) levels. 

However, the etiology of metabolic diseases remains partially understood hampering the 

development of more personalized diagnosis, treatment and prevention strategies. 

This dissertation examines the association between genetic variants with risk of 

metabolic diseases and diabetes-related quantitative traits in both candidate gene and genome-

wide scan settings. In particular, we assessed the association of genetic loci related to adiposity, 

inflammation, and lipid storage, with the risk of diabetes using a candidate gene approach. We 

also investigated biological pathways that may give rise to the development of vascular disease 
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(T2D and/or CVD) and also further investigated genetic variants related to BMI and HbA1C 

levels using a genome-wide approach. Chapter 1 introduces general background on the evolution 

of genetic research in the arena of metabolic diseases. Chapter 2 investigates common variants in 

the genomic region of FABP4, CRP, TNF, IL6 and PPARG in relation to diabetes risk among 

postmenopausal women enrolled in the Women’s Health Initiative Observational Study (WHI-

OS). Chapter 3 examines whether common variants involved in vascular disease risk are 

clustered in multiple pathways among African and Hispanic American participants in the WHI 

SNP Health Association Resource (SHARe) cohort. Chapter 4 examines the association between 

genetic variants with BMI and HbA1C levels using a family-based genome-wide association 

approach among participants in the Framingham Heart Study (FHS).  

Our main findings are: 1) Candidate gene-based studies indicate that variation exists 

across even the candidate gene regions. FABP4 genotypes were associated with reduced VCAM-

1 levels, though none of the common genetic variants in the FABP4 gene examined were 

associated with risk of T2D. We also observed modest associations between TNF genetic 

variants and circulating concentrations of TNF-α-R2, although common variants of CRP, TNF, 

and IL6 genes were not associated with T2D risk. Using the example of the PPARG gene with 

T2D risk, however, we replicated the association between the PPARG Pro12Ala genetic variant 

with diabetes risk and found that haplotype-based analysis is more powerful than single-SNP 

analysis for identifying genetic variants. 2) Using a pathway-based analytical approach and 

genome-wide scan data collected among African and Hispanic American postmenopausal 

women, we observed that genetic variants associated with vascular disease appeared to cluster 

into several biological pathways including the glycerolipid metabolism and PPAR signaling 

pathways. 3) We found strong associations between SNPs near the LOC100507205 locus and 
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BMI in the family-based Framingham Heart Study with three generations. We also replicated 

five well-validated genes that have been previously reported to be significantly associated with 

the BMI trait. These findings contribute to the growing body of literature in identifying genetic 

variants in the development of metabolic disease, further future work (e.g. in the area of structure 

and functional variants) are warranted to improve understanding of the genetic architecture for 

metabolic outcomes. Increasing integration of cutting edge genomic science into population-

based epidemiologic investigation will accelerate and improve our understanding of the genetic 

susceptibility of complex diseases.  The work described in this dissertation represents a tip of our 

effort toward the ultimate improvement of the diagnosis, treatment and prevention of metabolic 

diseases in human populations. 
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Chapter 1:  

Introduction 
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1.1 Background and Significance 

Genetic variants play an important role in the pathogenesis of metabolic diseases such as 

adiposity1 and T2D2-4. Type 2 diabetes (T2D) is a multifaceted metabolic disorder characterized 

by hyperglycemia fundamentally caused by impaired insulin action and secretion5. More than 

300 million people worldwide have diabetes6, which poses major challenges for public health. 

Multiple lines of evidence suggest the notion that genetic factors play a critical role in the 

etiology of metabolic diseases, particularly for T2D2,4. First, twin studies show that estimates for 

concordance rates for T2D have ranged from 0.26 to 0.76 in monozygotic twins7-10. Second, 

familial aggregation of the disease shows another source of evidence for a genetic role in the 

pathogenesis of T2D because families share both environments and genes. Third, the disease 

prevalence is observed to vary extensively among ethnic groups that share similar environment. 

Fourth, studies show a genetic basis for measures of some intermediate phenotypes leading to 

T2D, including insulin sensitivity and insulin secretion2. Therefore, an understanding of genetic 

determinants may contribute to better prevention, diagnosis, and treatment of disease. During the 

past several decades, linkage analysis and candidate gene approaches have been adopted to 

identify relevant disease genes, particularly for monogenic ‘Mendelian’ diseases11,12. Association 

approaches are powerful and have better resolution than linkage approaches.  A large body of 

research through the candidate gene approach has identified many novel genes and loci related to 

metabolic diseases including glucokinase hexokinase 4 regulator (GCKR), glucose-6-

phosphatase, catalytic, 2 (G6PC2) and ATP-binding cassette, sub-family B, member 11 

(ABCB11), a gene that influences fasting glucose levels; fat mass and obesity associated (FTO) 

and melanocortin 4 receptor (MC4R) known to be linked with obesity or adiposity, as well as 
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many other variants that affect diabetes, triglyceride, HDL-cholesterol, and low-density 

lipoprotein (LDL)-cholesterol levels13.  

In recent years, genome-wide association studies (GWAS), which do not require an 

initial hypothesis, have been utilized for identifying genetic variants associated with different 

disease phenotypes14. GWAS have provided insights about diseases, in particular: (1) there are 

single nucleotide polymorphism (SNP) variants common in the population (i.e. with allele 

frequency >5%) that are robustly associated with disease for many diseases that has been 

investigated; (2) most of these variants are located in genes that play a role in biological 

pathways that were previously not known to be related with disease or are not in a known 

protein-coding regions15,16; (3) the associated SNPs are typically of modest effect sizes with odds 

ratios of risk alleles in the range of 1.1 to 1.5; (4) cumulative effects of many different SNPs 

associated with a disease usually explain only a small fraction of the familial risk; (5) not all 

disease traits are similar in genetic architecture15,16. Typical process involved GWAS is shown in 

Figure 1. In the first step, SNPs across the genome are genotyped. Second, data are subjected to 

quality control and data cleaning procedure after the generation of SNP data. Third, each SNP is 

then tested for association with a disease trait in a form of Manhattan plot. Fourth, SNPs or loci 

are selected for replication in an independent sample set. Last, additional genotype and more 

functional and biological work may be needed in independent replication cohorts to determine 

whether an association with a disease is genuine or not. 
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Figure 1: General workflow of a GWAS 

 

 GWAS is known to have greater power to identify genetic variants that confer modest 

disease risks than linkage and candidate genes analysis, even when a large number of markers is 

tested across the genome14. In comparing different GWAS on the same disease, the most 

significant SNPs in one study may not necessarily show up as the most significant SNPs in 

another study. Also, SNPs that are genuinely associated with disease may not be detected by any 

GWAS because of the small effect sizes of the SNPs and the lack of power of any individual 

study. GWAS have extended the breadth of genetic information, but most published GWAS list 

only the 20-50 most-significant SNPs and their neighboring genes (i.e. the “most-significant 

SNPs” approach), while paying little attention to the rest17-23. 

 More recently, international efforts of GWAS have identified more than 40 genetic 

variants that affect T2D risk24,25, providing novel biological insight into the pathogenesis of 
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metabolic diseases. More work needs to be done in analyzing the genomic data that may shed 

some light on improving the understanding of genetic architecture of human diseases.  

   

1.2 Specific Aims 

The primary objective of this dissertation is to examine the genetic architecture of 

metabolic diseases, mainly T2D, by adopting both candidate gene and GWAS approach and 

investigating SNPs as well as structural variants, especially CNVs. In the chapters that follow, 

we will discuss the methodology and findings regarding our specific aims to: 1) examine the 

genetic associations of variants in the FABP, CRP, TNF-α, IL-6, and PPARG genes with T2D 

risk and diabetes-associated biomarkers among postmenopausal women enrolled in the multi-

ethnic Women’s Health Initiative Observational Study (WHI-OS); 2) using a pathway-based 

GWAS approach, examine whether the common variants involved in Vascular Disease (VD, i.e. 

T2D and/or cardiovascular disease) risk are involved in multiple pathways among African and 

Hispanic American participants in the WHI SNP Health Association Resource (SHARe) cohort;  

3) investigate the association between genetic variants with two diabetes-related quantitative 

traits, i.e. body mass index and glycated hemoglobin levels, using a family-based GWAS 

approach among participants in the Framingham Heart Study (FHS).  
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Common Genetic Variants in Fatty Acid-Binding Protein-4 (FABP4) and Clinical Diabetes 

Risk in the Women’s Health Initiative Observational Study 
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2A.1 Introduction 

 Fatty acid-binding protein-4 (FAPB4), also known as adipocyte FABP (AFABP) and 

adipocyte P2, is highly expressed in adipocytes and macrophages. FAPB4 is regulated during 

adipocytes differentiation, and its mRNA is transcriptionally controlled by fatty acids, nuclear 

hormone receptors, perosisome proliferator-activated receptor-γ agonists, insulin and liver X 

receptor1-4, all of which have been shown to play an important regulatory role in inflammation 

and energy metabolism. Recently, deficiency of FAPB4 has been correlated with plasma lipid 

levels, especially as a protective factor against atherosclerosis and coronary heart disease risk5-9. 

In animal models, a modest increase in insulin sensitivity has been exhibited in obese mice with 

FAPB4 deficiency10-12. However, little is known about the association between the genetic 

variants in FAPB4 and diabetes (T2D) risk in human population.  

 Therefore, we comprehensively assess the genetic associations of variants in the FAPB4 

gene with T2D risk and diabetes-associated biomarkers in a nested case-control study of 

postmenopausal women aged between 50 and 79 years who enrolled in the Women’s Health 

Initiative Observational Study (WHI-OS). We selected and genotyped a total of 11 haplotype-

tagging single-nucleotide polymorphisms (tSNPs) spanning 41.3 kb across FAPB4 in all 

samples. 

 Furthermore, we investigated whether and to what extent the FAPB4 variants affect 

circulating levels of inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 

(IL-6), and high-sensitivity C-reactive protein] and endothelial adhesion molecules [including E-

selectin, intercellular adhesion modelecule-1 (ICAM-1), and vascular cell adhesion molecule-1 

(VCAM-1)]. These data may help to elucidate the relevant metabolic mechanisms underlying the 

FAPB4 gene and T2D13,14.  
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2A.2 Research Design and Methods 

2A.2.1 Study participants 

 The WHI-OS is a longitudinal study designed to examine the association between 

clinical, socioeconomic, behavioral, and dietary risk factors with subsequent incidence of health 

outcomes, including cardiovascular disease and diabetes. Details regarding the case-control study 

design have been described elsewhere15,16. The study has been reviewed and approved by human 

subjects review committees at each participating institution, and signed informed consent was 

obtained from all the participants.  

 Between September 1994 and December 1998, the WHI-OS enrolled 93,676 

postmenopausal women aged 50-79, and ~82,069 had no prior history of cardiovascular disease, 

cancer, or diabetes at baseline. WHI-OS participants were followed by annual mailed self-

administered questionnaires and completed annual medical histories. Incident diabetes cases 

were identified on the basis of clinical cases that were diagnosed during the follow-up, with 

primary selection from those reporting treatment with hypoglycemic medication (insulin or oral 

hypoglycemic agents) and hypoglycemic medication confirmed at the clinic visit at the 3rd year 

of follow-up. Following the principle of risk-set sampling, for each new case, controls were 

selected randomly from women who remained free of diabetes at the time the case was identified 

during follow-up. A total of 1,529 cases were matched with 2,147 controls on age (± 2.5 years), 

racial/ ethnic group, clinical center (geographic location), time of blood draw (± 0.10h), and 

length of follow-up. The ethnic groups represented in this study include whites (n=1,899), 

African Americans (n=1,117), Hispanic/Latino Americans (n=419), and Asian American/Asian 

Pacific Islanders (n=241). The 1:2 matching ratio was used for minorities to strengthen the 

power in these smaller samples16. 
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2A.2.2 Serum marker measurements 

 Serum inflammatory cytokines (TNF-α receptor 2, IL-6, and high-sensitivity C-reactive 

protein) and endothelial adhesion molecules (including E-selectin, ICAM-1, and VCAM-1) were 

measured for each participant13,14. Fasting blood specimens were collected from each participant 

at baseline and processed locally into separate aliquots including serum, plasma, and buffy coat 

according to a standardized protocol. The frozen aliquots were then shipped to a central 

repository, where they were held for long-term storage at -70oC. All biochemical assays were 

carried out by laboratory staff blinded to case/control status. Blood samples from cases and their 

matched controls were handled one and the same, shipped in the same batch, and assayed in 

random order in one run to reduce systematic bias and inter-assay variation. Tumor necrosis 

factor α receptor 2 (TNF-α-R2) was measured by an enzyme-linked immunosorbent assay (R&D 

Systems, Minneapolis, Minnesota). Interleukin 6 (IL-6 ) was measured by an ultrasensitive 

enzyme-linked immunosorbent assay (R&D Systems). High0sensitivity C-reactive protein 

(hsCRP) was measured on a chemistry analyzer (Hitachi 911; Roche Diagnostics, Indianapolis, 

Indiana) using an immunoturbidimetric assay with reagents and calibrators (Denka Seiken Co 

Ltd, Niigata, Japan)13.  Soluble E-selectin, ICAM-1 and VCAM-1 were measured by an enzyme-

linked immunosorbent assay (R&D Systems, Minneapolis, Minnesota)14.  The coefficients of 

variation were 3.5% for TNF-α receptor 2, 7.6% for IL-6, 1.61% for high-sensitivity C-reactive 

protein, 6.5% for E-selectin, 6.7% for ICAM-1, and 8.9% for VCAM-1. 

 

2A.2.3 SNP frequency estimation and tagging SNP selection 

 We implemented a two-stage approach to choose tSNPs for genotyping in our large case-

control samples17. The first stage consists of comprehensive common SNP discovery by 
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genotyping a total of 25 SNPs in 244 samples randomly selected from the WHI-OS source 

population. The second stage involved selecting the tSNPs on the basis of linkage disequilibrium 

(LD) patterns.  

 In the first stage, we surveyed common genetic variation using the National Center for 

Biotechnology Information database SN supplemented by HapMap database18. Our goal was to 

capture an initial set of SNPs with high SNP density covering the FABP4 gene as well as its 30-

kbp 5’-upstream and 30-kbp 3’-downstream regions. In total, an initial set of 25 SNPs was 

selected on the basis of the following criteria: (i) functionality priority: nonsynonymous coding 

SNPs (cSNPs) and splicing-site SNPs (ssSNPs) were kept in the following order: cSNPs > 

ssSNPs > 5’-upstream SNPs > 3’-downstream SNPs > intronic SNPs; (ii) minor allele frequency 

(MAF) ≥ 5% in at least one ethnic group; and (iii) relatively evenly spaced across the genomic 

region19.  

 In the second stage, we identified tSNPs on the basis of LD patterns of those 25 SNPs 

among 61 women from each ethnic population. Pairwise LD between SNPs was assessed using 

Lewontins D’ statistic and the squared correlation statistic r2 20. The Haploview program was 

used to calculate the LD coefficient and define haplotype blocks21,22. We chose all common 

tSNPs with special focus on African and white American samples. First, we selected tSNPs n the 

African-American sample using the r2-based Tagger program23. tSNPs in the African American 

sample were chosen by finding the minimum set of SNPs with r2 ≥ 0.08 and MAF ≥ 5%. We 

then used backward trimming to reach a minimum set of tSNPs for other ethnic groups to ensure 

a sufficient, yet nonredundant, parsimonious set of tSNPs. From the initial dense set of 25 SNPs, 

a total of 10 tSNPs were eventually selected and genotyped in all case-control samples. An 

additional functional SNP, T87C8,24,25, was also genotyped in all samples.  
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2A.2.4 SNP genotyping method 

 For these 11 SNPs, large-scale genotyping was performed using the TaqMan allelic 

discrimination method. Specific primers and probes were custom designed by Applied 

Biosystems (ABI, Foster City, CA). Following PCR amplification, end-point fluorescence was 

read using the ABI Primer 7900 HT instrument, and genotypes were scored using SDS 2.2.2 

Allelic Discrimination Software (Applied Biosystems). We genotyped 5% blind duplicated 

samples randomly selected to evaluate reproducibility. SNPs wit higher genotyping discordant 

rate, higher missing genotype rate or deviations from Hardy-Weinberg equilibrium at P < 0.001 

level were excluded. 

 

2A.2.5 Statistical Analysis 

 We first estimated the MAF in the control samples for each ethnic group. The Hardy-

Weinberg equilibrium test for each of the 11 SNPs was performed using the 

! 

"2  test (degrees of 

freedom = 1). We also tested for heterogeneity of genotype distributions across ethnicities by the 

! 

"2  test (degrees of freedom = 3; SAS, version 9.2, SAS Institute, Cary, NC). 

 In both single-SNP and haplotype-based analyses, we employed conditional multivariable 

logistic regression to calculate odds ratios and 95% confidence intervals for each genetic variant 

with T2D risk. We made adjustments for covariates and matching factors (such as age, clinical 

enter, time of blood drawn, and ethnicity), BMI, cigarette smoking (never, past, and current), 

alcohol intake (never, past, and current), hormone replacement therapy usage (never, past, and 

current), and total metabolic equivalent value (the energy expended by a person at rest; 1 

metabolic equivalent = 1 kcal/kg body weight/h) from recreational physical activity per week at 

baseline. 
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 In single-SNP analyses, each SNP was coded as an additive, dominant, or recessive 

genetic model; in the estimation of allelic association with T2D risk, the likelihood ratio test 

(LRT) was used to test the interaction effect between the genotypes and ethnicity on T2D risk. 

 In haplotype-based analyses, the Haploview program was sued to define the haplotype 

block patterns among SNPs21,22. Only haplotypes with estimated frequencies ≥ 5% in the 

combined cases and controls were included for analyses. We tested for ethnic differences in 

haplotype-associated risks by performing an LRT following the inclusion of an interaction term 

between the risk haplotypes and ethnicity in the multivariable model. To examine the association 

between the resulting haplotype/haplotype combinations and T2D risk, the estimate of haplotype 

dosage was treated as a surrogate variable for the true haplotype. Global LRTs were used to 

examine whether the frequency distributions of the common haplotypes differed between cases 

and controls. We also adjusted for covariates that were adjusted in single-SNP association test. 

To increase the genomic coverage, we employed a sliding-window (window width = 3 SNPs) 

haplotype-based analysis. For each window, an omnibus LRT was used, which was a 

! 

"2  test 

(degrees of freedom = number of haplotypes in a particular window = 1). The test used a 

measure derived on the basis of difference of the logarithmic likelihood of two conditional 

logistic regression models: (i) the reduced model that does not contain the haplotype covariates, 

and (ii) the full model that contains the haplotype covariates.  

 In association tests with serum biomarkers analyses, we transformed all serum biomarker 

levels in log scale o enhance compliance with normality assumption. We then calculated the 

geometric mean differences and standard error by genotypes. To determine the effect of the 

genetic variant on each phenotype level, we calculated the geometric mean difference of these 

phenotype levels by genotypes using general linear models. Because the inheritance model used 
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in the single-SNP analysis was the additive model, the result displayed a geometric mean 

biomarker level increase per copy of the minor allele. All the linear models included matching 

factors and some other covariates (as mentioned previously) in each f the four ethnic groups. The 

regression models were performed among cases and controls separately. An LRT was also used 

to test the interaction effect between the genotypes and ethnicity on serum biomarkers. We also 

performed some subgroup analyses (biomarker groups) for FABP4-T2D. 

 To account for potential false positive due to multiple comparisons in this study, we 

calculated the false discovery rate (FDR) by incorporating all P values from multiple tests 

performed for SNPs and haplotypes in the association tests. The FDR statistics were obtained for 

each P value, and the FDR statistics with q ≤ 0.05 were considered as significant26. Proc Multtest 

procedure in SAS 9.2 was used to obtain the adjusted P values. 

 

2A.3 Results 

2A.3.1 Estimations of MAF and LD structures of 11 tSNPs in the FABP4 gene among 

controls 

 Figure 1 and Table 1 showed the characteristics of the 11 SNPs (one of them did not 

have an rs number). A total of 4 SNPs (rs2290201, rs8192688, rs2305319, and rs1054135) out of 

11 (1 approximately every 1.3kb) were located within the FABP4 gene (5.3 kbp long). All of the 

genotyped SNPs did not show statistically significant deviation from Hardy-Weinberg 

equilibrium at P < 0.001 between white, Hispanic, and Asian American/ Asian Pacific Islanders 

controls. In addition, 2 out of 11 SNPs, that is, rs1486004 (5’ flanking region) and T87C (5’ 

promoter region), showed statistically significant deviation from Hardy-Weinberg equilibrium 

among African American controls. 
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 Figure 2 illustrates the LD structure and haplotype blocks, on the basis of 11 SNPs 

stratified by ethnicity among controls. With the exception of rs1054135, moderate to strong, 

pairwise LD was observed between most of the other genotyped SNPs. The locations and lengths 

of defined haplotype blocks varied slightly between ethnic groups. This partly reflects the 

differences in allele frequencies between groups. On the whole, three blocks with slightly 

different boundaries between four ethnic groups could be readily defined.  The LD pattern within 

Block 1 (rs1486004, rs7017115, rs1843560, and rs2200477) was similar across all ethnic groups; 

however, the block did not include rs1486004 among African Americans. There was evidence 

for high LD pattern within Block 2 (rs2290201, rs8192688, and rs2305319), which consisted of 

SNPs within the FABP4 genomic region. This pattern was similar among whites, African 

Americans, and American Hispanics. The LD pattern within Block 3 (rs7835371 and rs3824088) 

was similar between whites, American Hispanics, and Asian Americans/Asian Pacific Islanders. 

The following SNPs pairs were almost in perfect LD: rs1486004 and rs1843560 (each 5.92 kbp 

apart) among all groups (D’ = 0.969-0.976, r2 = 0.895-0.93), excluding African American (D’ = 

0.851 and r2 = 0.454); rs1486004 and rs2200477 (each 6.35 kbp apart) among all groups (D’ = 

0.982-1.00, r2 = 0.932-1.00), excluding African Americans (D’ = 0.986, r2 = 0.651); rs7017115 

and rs1843560 (each 4.34 kbp apart) among all groups (D’ = 0.974-1.00, r2 = 0.851-0.91), 

excluding African Americans (D’= 0.992, r2 = 0.577); and rs1843560 and rs2200477 (each 4.31 

bp part) among all groups (D’ = 0.967-1.00, r2 = 0.903-0.93), excluding African Americans (D’ 

= 0.994, r2 = 0.418). 
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2A.3.2 Single-marker association analysis 

 The association of each SNP with T2D risk in each ethnic group or in the pooled samples 

was investigated under the additive, dominant, and recessive genetic models. (The results under 

the additive genetic models are shown in Table 2). No evidence of significant associations 

between all SNPs and T2D risk were found in all ethnic groups. Similar null associations were 

observed under either the dominant or the recessive genetic model (data not shown). 

 

2A.3.3 Haplotype association analysis 

 We reconstructed haplotypes on the basis of haplotype block structure in each ethnic 

group. As shown in Supplementary Table S1, haplotypes with all major alleles, that is all 0, 

occurs most frequently among the participants. Apart from the haplotype with all the major 

alleles of four SNPs in Block 1 [rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-

rs2200477(C/G)], 1-1-1-1 is the next most frequent among whites (29.6%), African Americans 

(41.1%), Hispanic Americans (35.5%), and Asian American/Asian Pacific Islanders (13.4%) in 

Block 1. In Block 2 [rs2290201(C/T)-rs8192688(C/T)-rs2305319(A/G)], apart from the 

haplotype with all major alleles, only 1-0-0 had frequency larger than 5%. In Block 3 

[rs783537(A/T)-rs3824088(A/G)], 1-1 is the next most frequent among whites (9.2%), African 

Americans (21.2%), Asian American/Asian Pacific Islanders (52.2%), and Hispanics (17.2%). 

There was statistical evidence showing frequency difference of haplotype in Black 1 (0-0-0-0 

and 1-1-1-1), Block 2 (0-0-0 and 1-0-0), and Block 3 (0-0 and 1-1) between ethnic groups (P < 

0.05). Such ethnic differences still showed statistical significance after adjusting for multiple 

testing. 
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 We used 11 SNPs to deduce the common haplotype within each block with a frequency 

of ≥ 5% in the combined data of all controls, in spite of ethnicity. As shown in Table 3, we 

observed two common haplotypes in Block 1, three common haplotypes in Block 2, and three 

common haplotypes in Block 3. We first performed global tests to find differences in the overall 

haplotype frequency between cases and controls among each ethnic group and did not observe 

statistically significant haplotype effects in all blocks. The haplotypes in the table did not appear 

to be significantly associated with T2D disease risk. There was also no statistically significant 

interaction between different ethnic groups.  

 We also assessed the associations between ethnicity specific haplotypes of the gene and 

T2D risk. As shown in Supplementary Table S2, all odds ratios were not statistically significant 

among each ethnic group, with the exception of a marginally decreased T2D risk of the 1-0 

haplotype (odds ratio: 0.53, 95% confidence interval: 0.27-1.06, P = 0.07). This exception was 

observed for all carriers vs. all others in Block 3 [rs7835371(A/T)-rs3824088(A/G)] among 

Hispanics Americans. Matching-adjusted models were also analyzed, and the results were 

similar to the models adjusted for other covariates, as shown in the Supplementary Table S2. 

 In addition to the previous analyses, the sliding window (with window width = 3 SNPs) 

was used to analyze haplotype-disease associations. The 11 SNPs generated a total of 9 window 

frames. No significant association was found between the haplotypes and T2D risk. 

 

2A.3.4 Serum biomarkers 

 We also analyzed the genotype associations with inflammatory and endothelial 

biomarkers (including TNF-α receptor 2, IL-6, and high-sensitivity C-reactive protein) and 

endothelial adhesion molecules (including E-selectin, ICAM-1, and VCAM-1). With the 
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exception of VCAM-1, none of the inflammatory and endothelial biomarkers showed 

consistently significant associations. Tables 4-6 show the geometric mean differences in 

VCAM-1 levels according to the FABP4 genotype in each ethnic group for cases and controls 

separately. After controlling for the covariates (age, clinical center, time of blood draw, ethnicity, 

and other confounders, including hormone replacement therapy use, alcohol consumption, 

cigarette smoking, BMI, physical activity), we studied the genetic and lifestyle predictors of 

T2D. 

 Among incident cases of the African American group, plasma VCAM-1 level were -1.08 

ng/ml (s.e. = 1.03 ng/ml, P = 0.01) lower in subjects with SNP rs1486004 T allele, -1.07 ng/ml 

(s.e. = 1.03 ng/ml, P = 0.03) lower in subjects with rs7017115 G allele, -1.07 ng/ml (s.e. = 1.03 

ng/ml, P = 0.05) lower in subjects with rs1843560 G allele, -1.09 ng/ml (s.e. = 1.04 ng/ml, P = 

0.02) lower in subjects with rs2200477 G allele, and -1.12 ng/ml (s.e. = 1.04 ng/ml, P = 0.002) 

lower in subjects with rs2290201 T allele. After adjusting for multiple comparisons, rs2290201 

still showed a significant decreasing trend in the geometric mean differences of plasma VCAM-1 

level (adjusted P = 0.02). Among African American controls, plasma VCAM-1 level were -1.05 

ng/ml (s.e. = 1.02 ng/ml, P = 0.02) in SNP rs2200477. However, this decreasing trend was no 

longer significant after adjusting for multiple testing (Table 5). The interaction between SNP and 

VCAM-1 levels was significant ( P < 0.05) for both cases and controls, even after multiple 

testing adjustment. 

 Data from Tables 4 and 5 showed that only four SNPs in Block 1 [rs1486004(C/T)-

rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G)] were significantly associated with lower 

VCAM-1 levels among African American women. We further performed a haplotype-VCAM-1 

association analysis in this group (Table 6). The plasma VCAM-1 level was elevated by 1.09 
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ng/ml (s.e. = 1.04 ng/ml, P = 0.01) in haplotype 0-0-0-0, and the level was lowered by -1.08 

ng/ml (s.e. = 1.03 ng/ml, P = 0.01) in haplotype 1-1-1-1. After adjusting for multiple testing, 

both trends remained significant (adjusted P = 0.04). 

 

2A.4 Discussion 

 Based on association tests in 1,529 T2D cases and 2,147 matched controls from a 

multiethnic cohort of American postmenopausal women, there were little evidence supporting 

the influence of the FABP4 gene on T2D risk. None of the genotyped SNPs located near/within 

the FABP4 gene showed any significant association with T2D. Further, our haplotype-based 

analyses, as well as sliding window haplotype analysis did not reveal any significant findings. 

These null results were consistent across different ethnic groups, including whites, African 

Americans, Hispanics, and Asian American/Asian Pacific Islanders, which results strongly 

suggest that common genetic variants in FABP4 may not confer a susceptibility to T2D. 

 The SNPs genotyped in our study covered 7 kbp upstream and 29 kbp downstream region 

around the FABP4 gene. We may not have enough coverage to detect functional variants around 

the FABP4 genomic region. We selected the common variant on the basis of available genetic 

information, and we may not be able to identify potentially function variants, especially rare 

variants with relatively low frequencies (< 5%) that were also not in high LD with any chosen in 

our study. Sample sizes were relatively small in Hispanic Americans and Asian American/Asian 

Pacific Islanders, which may not afford sufficient power to detect any moderate association for 

the FABP4 variants and T2D risk27,28.  

 In addition to T2D, the variants in FABP have been associated with diseases (obesity1,7,29, 

atherosclerosis4,9, and cardiovascular disorders30) that share some metabolic traits (e.g. insulin 
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resistance) and molecular pathways (e.g. inflammatory activity and macrophage cholesterol 

trafficking) that also lead to T2D1,3. Biological data, mainly from animal models, highlight 

adipocyte P2 in several key pathways in the pathogenesis of T2D, such as lipolytic response, 

lipolysis-associated insulin secretion10,11, plasma glucose and insulin level12, and cytokine 

secretion3. Nevertheless, we should interpret these results cautiously because different cell types, 

experimental conditions, and quantitative methods were adopted in previous studies. The human 

FABP4 gene, located on chromosome 8q21, encodes a 131 amino-acid precursor protein, 

including at least two different isoforms regarding alternative translation or splicing processes31. 

It is possible that specific FABP4 protein isoform may function as a tissue-specific metabolic 

modulator. 

 In the literature, most studies regarding the association between FABP4 and T2D in 

humans have focused on the serum AFABP rather than its genotype. FABP4 plasma 

concentrations were reported to be increased with the early presence of metabolic syndrome 

(MS) components, inflammation, as well as oxidation markers in Spanish and white T2D 

individuals6,32. Serum AFABP has also been found to be associated with glucose dysregulation 

and predictive of T2D development in a Chinese cohort study24. One study reported a promoter 

polymorphism, T87C, of the AFABP gene. It reduced adipose tissue AFABP mRNA expression 

and was associated with lower risk for T2D and cardiovascular disease25. However, limited 

investigation has been done on the direct association of the FABP4 gene with T2D. Our findings 

on T87C were not consistent with previous studies25. This is likely due to limited sample size, 

especially after stratifying according to ethnic group. Our large multiethnic case-control study of 

postmenopausal women showed some suggestive evidence of the relation of the FABP4 

genotype and an intermediate phenotype, such as VCAM-1 levels. Endothelial activation, as 
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indicated by elevated levels of soluble adhesion molecules, has been associated with T2D33. In a 

prospective analysis with the same source population, high circulating levels of endothelial 

biomarkers, including VCAM-1, were significantly associated with risk of T2D14. In the present 

study, we found that T2D cases with polymorphisms at SNPs (rs1486004, rs7017115, 

rs1843560, rs2200477, and rs2290201) showed significantly lower VCAM-1 levels among 

African Americans alone. Consistent results were also shown in the haplotype analysis. The 

polymorphism at SNP rs2200477 showed significantly lower VCAM-1 level among African 

American controls as well. However, because the SNPs are intronic SNPs, it is likely that they 

are in LD with the nearby causal SNPs and also may simply represent false-positive associations 

because of multiple testing. Most P values for significant SNP and haplotype associations were 

above 5% after performing a false-discovery rate for multiple testing. Further studies are needed 

to confirm these findings28.  

 Our study demonstrated substantial heterogeneity in the frequencies of both the alleles 

and haplotypes in the FABP4 gene among different ethnic groups. Participants from different 

geographic locations might have different T2D risk, mainly due to their different environmental 

exposures or different genetic background. Ethnicity may contribute to the FABP4 genetic 

variants, affecting T2D risk differently. Thus, it has been suggested that population stratification 

may lead to false-positive results17,34. We have cautiously selected the control women to be 

representative of the WHI-OS source population. We have also conducted stratified analyses on 

the basis of ethnicity, in order to address the potential bias from population stratification. 

However, at the same time, these ethnicity-stratified analyses lack the power to detect potential 

associations for the FABP4 SNPs and haplotypes with T2D. Due to the comprehensive screening 

of SNPs, this may be the first study to determine the haplotype structure of FABP4.  



	   24	  

 We performed our comprehensive association analyses of informative SNPs (MAF ≥ 

5%), as well as haplotypes based on the LD patterns in each ethnic group constructed from the 

HapMap database. The analyses provided powerful evidence against a main-effect association 

between the overall risk of T2D and variants in FABP4 that are common among the four ethnic 

groups, although the lack of association between FABP4 variants and T2D may also be due to 

insufficient power and inability to detect changes in phenotypes. If the effect size of each FABP4 

variant or haplotype is modest, it would require very large samples to achieve sufficient power 

for detection. Further studies, like large-scale association and genome-wide association studies, 

will be necessary to confirm the null association between genetic variants of FABP4 and T2D 

risk and examine the potential effect modification from biomarkers.  

 The strengths of our study include the well-established T2D incidence ascertainment 

methods, which employed standard protocols to define cases and controls following the principle 

of risk-set sampling; excluded all the prevalent cases from the original case-control sampling set; 

and matched each case-control pair on age, ethnicity, clinical center, time of blood draw, as well 

as follow-up time. Finally, our findings may be generalizable to women of similar age and 

ethnically diverse background because our study included ethnically diverse women from 40 

states in the United States. 

 In conclusion, our large, multiethnic, case-control study of postmenopausal women did 

not provide evidence to support the notion that common genetic variants in FABP4 may 

contribute significantly to the pathogenesis of T2D. However, we cannot exclude the possibility 

of a modest genetic effect as well as genotype-phenotype association. There is some suggestive 

evidence for an association between the FABP4 genotypes and VCAM-1 levels in African 

American women alone, although further replication studies are warranted. 
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Table 1. The location, relative distances, minor allele frequencies (MAFs) of 11 SNPs chosen in FABP4 genomic region. 

SNP ID Location a 

Relative 
distance 
(bp) a Alleleb   Minor allele frequency (MAF%)       

P-value for 
heterogeneity 

across 
ethnicity     White Black Asian Hispanic Pooled 

         (n=939)  (n=746)  (n=165)  (n=279)  (n=2129) 
rs1486004 5' flanking 0 C/T 31.2 67.3 14.1 39.1 43.5 <0.0001 
rs7017115 5' flanking 1584 A/G 30.5 43.5 13.5 35.1 34.4 0.001 
rs1843560 5' flanking 5919 C/G 31.4 56.9 14.6 38.0 39.9 <0.0001 
rs2200477 5' flanking 6349 C/G 31.6 75.8 14.1 40.4 46.9 <0.0001 

T87C 5' promoter 29811 T/C 2.05 0.75 0 1.09 1.31 0.70 
rs2290201 Intron 1 30645 C/T 28.8 65.3 68.2 41.5 46.4 <0.0001 
rs8192688 Intron 1 32498 C/T 16.6 9.12 0.30 10.8 12.0 0.002 
rs2305319 Intron 2 33473 A/G 17.0 16.6 7.01 16.6 16.0 0.17 
rs1054135 Exon 4 34587 A/G 6.8 24.3 11.8 9.64 13.7 0.003 
rs7835371 3' UTR 60172 A/T 17.0 30.1 67.4 29.6 27.2 <0.0001 
rs3824088 3' UTR 64218 A/G 8.7 23.0 51.6 17.2 18.2 <0.0001 

a Location and relative distance between SNPs are based on the contig position of contig NT_008183.18. 
b Major/minor allele. 
c P-values were estimated by a chi-square test (df=3) for genotype distribution across the four ethnic groups. 
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Table 2. Single-SNP association studies of the 11 SNPs in the FABP4 genomic region with T2D risk. 

  
  Adjusted OR (95% CI) a 

SNP ID Allele White (947/952) 
Black 

 (366/751) 
Asian 

 (76/165) 
Hispanic 
 (140/279) 

Pooled 
 (1529/2147) 

rs1486004 T/C 
0.98  

(0.80-1.19) 
0.91 

 (0.74-1.12) 
0.99  

(0.49-1.99) 
0.86  

(0.59-1.25) 
0.95 

 (0.83-1.07) 

rs7017115 A/G 
1.01 

 (0.82-1.24) 
1.07 

 (0.85-1.35) 
1.39  

(0.72-2.67) 
0.84  

(0.58-1.24) 
1.01  

(0.89-1.16) 

rs1843560 G/C 
0.98  

(0.80-1.20) 
0.96 

 (0.77-1.21) 
1.00 

 (0.51-1.96) 
0.79 

 (0.54-1.15) 
0.95 

 (0.83-1.08) 

rs2200477 G/C 
0.94  

(0.77-1.15) 
0.79  

(0.62-1.01) 
1.22 

 (0.64-2.32) 
0.89 

 (0.62-1.27) 
0.90 

 (0.79-1.03) 

T87C T/C 
1.80  

(0.87-3.75) 
0.62 

 (0.14-2.65) ---b 
0.69 

 (0.11-4.17) 
1.26 

 (0.74-2.16) 

rs2290201 C/T 
0.95  

(0.77-1.17) 
1.04  

(0.84-1.30) 
1.46  

(0.90-2.38) 
0.98  

(0.69-1.40) 
1.02  

(0.90-1.16) 

rs8192688 C/T 
0.92  

(0.72-1.18) 
1.15 

 (0.80-1.65) ---b 
0.83  

(0.46-1.51) 
0.97 

 (0.81-1.17) 

rs2305319 A/G 
1.04 

 (0.82-1.34) 
1.02 

 (0.77-1.35) 
1.41 

 (0.57-3.52) 
0.76 

 (0.47-1.23) 
0.99 

 (0.84-1.17) 

rs1054135 G/A 
0.85  

(0.59-1.24) 
1.07 

 (0.84-1.37) 
1.26  

(0.62-2.55) 
0.67 

 (0.35-1.27) 
1.01 

 (0.84-1.22) 

rs7835371 T/A 
1.02  

(0.79-1.31) 
1.02 

 (0.81-1.28) 
1.32 

 (0.82-2.12) 
0.85 

 (0.55-1.33) 
1.03  

(0.89-1.19) 

rs3824088 A/G 
1.08 

 (0.76-1.54) 
0.98 

 (0.75-1.28) 
1.26 

 (0.75-2.12) 
1.38 

 (0.76-2.49) 
1.09 

 (0.91-1.31) 
a ORs are estimated using conditional logistic regression adjusted for age, clinical center, time of blood draw, ethnicity and other confounders including  HRT 
use, alcohol consumption, cigarette smoking, BMI, and physical activity. The numbers of participants (cases/controls) were included in the parenthesis. 
b Result is difficult to interpret because of small sample within strata. 
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Table 3. Haplotype-based associations between FABP4 common haplotypes and T2D risk. 

  Haplotype specific OR(95% CI) a, b, c 
P-value 

for 
ethnic 

interact
ion Haplotype White (947/952) 

Black 
 (366/751) 

Asian 
 (76/165) 

Hispanic 
 (140/279) 

Pooled 
 (1529/2147) 

Block 1       
rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G)   

0-0-0-0 
1.04  

(0.85-1.27) 
1.21  

(0.96-1.53) 
0.77  

(0.42-1.41) 
1.13  

(0.79-1.62) 
1.08 

 (0.95-1.23) 0.61 

1-1-1-1 
1.01  

(0.82-1.24) 
1.07 

 (0.86-1.33) 
1.09 

 (0.55-2.17) 
0.85  

(0.58-1.24) 
1.00 

 (0.88-1.14) 0.61 
P-values for global testing 0.51 0.33 0.93 0.53   
       
Block 2       
rs2290201(C/T)-rs8192688(C/T)-rs12305319(A/G)   

0-0-0 
1.05  

(0.86-1.29) 
0.98  

(0.79-1.22) 
0.76 

 (0.47-1.21) 
1.04 

 (0.73-1.48) 
0.99 

 (0.87-1.13) 0.84 

1-0-0 
0.90  

(0.66-1.22) 
1.02  

(0.83-1.25) 
1.18 

 (0.76-1.83) 
1.18 

 (0.77-1.81) 
1.04 

 (0.90-1.20) 0.65 

1-1-1 
0.98  

(0.76-1.26) 
1.16  

(0.81-1.67) −−−b 
0.79 

 (0.43-1.45) 
1.01 

 (0.84-1.22) 0.54 
P-values for global testing 0.54 0.89 0.37 0.80   
       
Block 3       
rs7835371(A/T)-rs3824088(A/G)    

0-0 
0.96  

(0.75-1.23) 
0.98  

(0.78-1.22) 
0.77 

 (0.48-1.23) 
1.17 

 (0.75-1.83) 
0.96 

 (0.83-1.11) 0.86 

1-1 
1.07 

 (0.77-1.49) 
1.06  

(0.82-1.38) 
1.29 

(0.77-2.15) 
1.20  

(0.70-2.06) 
1.11 

 (0.93-1.32) 0.89 

1-0 
1.01 

 (0.70-1.47) 
0.92  

(0.62-1.38) 
1.12 

 (0.56-2.22) 
0.58 

 (0.30-1.10) 
0.91 

 (0.73-1.15) 0.36 
P-values for global testing 0.45 0.95 0.23 0.15   
a ORs are estimated using conditional logistic regression adjusted for age, clinical center, time of blood draw, and other confounders including HRT 
use, alcohol consumption, cigarette smoking, BMI and physical activity.   
b Result is difficult to interpret because of small sample size within strata   
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Table 4. Geometric mean differencesa in Vascular cell adhesion molecule levels according to tagged SNPs and ethnicity among cases. 
 White (n=947) Black (n=366) 

SNP 
mean difference 

(SE) 
P for 
trend 

 
mean difference 

(SE) 

 
P for 
trendb 

 

rs1486004 1.03 (1.02) 0.15  -1.08 (1.03) 0.01  
rs7017115 1.02 (1.02) 0.38  -1.07 (1.03) 0.03  
rs1843560 1.02(1.02) 0.35  -1.07 (1.03) 0.05  
rs2200477 1.02 (1.02) 0.29  -1.09 (1.04) 0.02  
T87C -1.04 (1.05) 0.46  1.20 (1.26) 0.43  
rs2290201 1.01 (1.02) 0.76  -1.12 (1.04) 0.002*  
rs8192688 1.01 (1.02) 0.55  1.00 (1.06) 0.95  
rs2305319 1.01 (1.02) 0.76  -1.04 (1.05) 0.41  
rs1054135 1.01 (1.03) 0.87  1.01(1.04) 0.76  
rs7835371 -1.02 (1.02) 0.37  1.01 (1.04) 0.84  
rs3824088 -1.00 (1.03) 0.99  -1.05 (1.04) 0.23  

 
Asian/Pacific Islanders 

(n=76) Hispanic (n=140) 

SNP 

mean 
difference 

(SE) 
P for 
trend 

 
mean difference 

(SE) 

 
P for 
trend 

 

rs1486004 -1.15 (1.09) 0.09  1.01 (1.06) 0.80  
rs7017115 -1.08 (1.08) 0.34  -1.04 (1.06) 0.48  
rs1843560 -1.09 (1.08) 0.31  -1.02 (1.06) 0.77  
rs2200477 -1.06 (1.08) 0.43  1.02 (1.05) 0.64  
T87C ---c .  -1.45 (1.50) 0.37  
rs2290201 1.03 (1.06) 0.67  1.01 (1.06) 0.80  
rs8192688 ---c .  -1.04 (1.10) 0.66  
rs2305319 -1.10 (1.14) 0.49  1.04 (1.08) 0.62  
rs1054135 -1.04 (1.09) 0.61  1.07 (1.11) 0.50  
rs7835371 1.04 (1.06) 0.48  1.01 (1.07) 0.84  
rs3824088 1.07 (1.06) 0.23  -1.02 (1.10) 0.82  
a Geometric mean difference (SE) for each SNP was calculated using general linear 
regression models with adjustment for matching factors (age, clinical center, and time of 
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blood draw), and other confounders including cigarette smoking, alcohol consumption, 
hormone replacement therapy, and physical activity.  Negative sign indicates decreasing 
level of plasma VCAM-1 with additional copy of risk allele in the corresponding SNP. 
b Adjusted p-value = 0.02 after FDR 
c Result is difficult to interpret because of small sample size within strata 
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Table 5. Geometric mean differencesa in Vascular cell adhesion molecule levels according to tagged SNPs and ethnicity among 
controls. 
               White (n=952)                   Black (n=751) 

SNP 
mean difference 

(SE) 
P for 
trend 

 
mean difference 

(SE) 

 
P for 
trend 

 

rs1486004 1.01 (1.02) 0.54  -1.03 (1.02) 0.10  
rs7017115 1.00 (1.02) 0.83  -1.01 (1.02) 0.55  
rs1843560 1.01 (1.02) 0.75  -1.03 (1.02) 0.11  
rs2200477 1.02 (1.02) 0.18  -1.05 (1.02) 0.02b  
T87C -1.02 (1.05) 0.68  1.02 (1.12) 0.89  
rs2290201 1.01 (1.02) 0.42  1.00 (1.02) 0.91  
rs8192688 -1.01 (1.02) 0.78  -1.01 (1.04) 0.81  
rs2305319 -1.00 (1.02) 0.83  -1.01 (1.03) 0.81  
rs1054135 1.06 (1.03) 0.07  1.02 (1.02) 0.36  
rs7835371 1.02 (1.02) 0.41  1.03 (1.02) 0.19  
rs3824088 1.01 (1.03) 0.62  1.02 (1.03) 0.38  

 
   Asian/Pacific Islanders 
(n=165) 

                        Hispanic 
(n=279) 

SNP 
mean difference 

(SE) 
P for 
trend 

 
mean difference 

(SE) 

 
P for 
trend 

 

rs1486004 -1.01 (1.06) 0.90  -1.02 (1.04) 0.55  
rs7017115 -1.02 (1.06) 0.70  -1.02 (1.04) 0.56  
rs1843560 -1.05 (1.06) 0.34  -1.01 (1.04) 0.74  
rs2200477 -1.01 (1.06) 0.88  -1.02 (1.04) 0.66  
T87C ---c .  -1.20 (1.23) 0.37  
rs2290201 1.00 ( 1.04) 0.93  1.05 (1.04) 0.17  
rs8192688 -1.38 (1.39) 0.33  1.01 (1.06) 0.80  
rs2305319 -1.03 (1.08) 0.72  1.01 (1.05) 0.87  
rs1054135 1.02 (1.07) 0.72  1.03 (1.06) 0.65  
rs7835371 1.02 (1.04) 0.67  1.07 (1.04) 0.10  
rs3824088 -1.00 (1.04) 0.90  1.07 (1.05) 0.15  
a Geometric mean difference (SE) for each SNP was calculated using general linear 
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regression models with adjustment for matching factors (age, clinical center, and 
time of blood draw), and other confounders including cigarette smoking, alcohol 
consumption, hormone replacement therapy, and physical activity. Negative sign 
indicates decreasing level of plasma VCAM-1 with additional copy of risk allele in 
the corresponding SNP. 
b Adjusted p-value = 0.23 after FDR 
c Result is difficult to interpret because of small sample size within strata 
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Table 6. Geometric mean differences in VCAM levels according to specific haplotype among black cases (n=417). 
Haplotype specific Geometric Mean Difference (95% CI)b 

Haplotypea mean differenceb,c  p for trend 
rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G) 
0-0-0-0 1.09 (1.02-1.17) 0.01* 
0-0-0-1 -1.02(-1.20- -0.87) 0.78 
1-0-0-1 -1.00(-1.11- -0.90) 0.95 
1-0-1-1 1.00 (0.90-1.11) 0.97 
1-1-1-1 -1.08 (-1.15- -1.02) 0.01* 
a Haplotype observed with ≥ 0.05 frequency in this ethnic group (0=major allele, 1=minor allele). 
* Adjusted p-value <0.05 after FDR 
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Supplementary Table 1. Haplotype frequencies reconstructed from SNPs. 

  Haplotype frequency (%) P-value for 
frequency 

difference of 
haplotype 

among ethnic 
groups b Haplotype a White (947/952) 

Black 
 (366/751) 

Asian 
 (76/165) 

Hispanic 
 (140/279) 

Pooled 
 (1529/2147) 

Block 1       
rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G)   
0-0-0-0 67.5 24.9 84.1 57.7 54.6 <0.0001***,c 
1-1-1-1 29.6 41.1 13.4 35.5 32.7 0.0025**,d 
       
Block 2       
rs2290201(C/T)-rs8192688(C/T)-rs12305319(A/G)    
0-0-0 71.8 33.9 30.9 59.2 56.1 <0.0001***,e 
1-0-0 11.0 49.0 61.8 24.4 27.5 <0.0001***,f 
       
Block 3       
rs7835371(A/T)-rs3824088(A/G)      
 0-0 83.2 67.8 31.7 72.0 73.9 <0.0001***,g 
 1-0 7.5 9.2 16.0 10.4 8.8 0.29 
 1-1 9.2 21.2 52.2 17.2 16.7 <0.0001***,g 
       
aOnly haplotypes with frequency > 5% are reported (0, major allele; 1, minor allele)    
b* p < 0.05 ; ** p < 0.01; *** P <0.001       
c P<0.0001 without adjusted for multiple testing; by setting the p-value as 0.00005, FDR q-value=0.0002  
d P=0.0025 without adjusted for multiple testing; FDR q-value=0.0069    
e P<0.0001 without adjusted for multiple testing; by setting the p-value as 0.00005, FDR q-value=0.0001  
f P<0.0001 without adjusted for multiple testing; by setting the p-value as 0.00005, FDR q-value=0.0001  
g P<0.0001 without adjusted for multiple testing; by setting the p-value as 0.0005, FDR q-value<0.0001  
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Supplementary Table 2. Association between ethnic-specific haplotypes of FABP4 and T2D risk. 
Haplotypea Haplotype frequency OR (95% CI) b 

P-values 
for global 
testingc   Cases Controls 

All carriers versus 
all others 

Homozygous versus 
all  
non-carriers 

White n=947 n=952    
Block 1  rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G) 
0-0-0-0 68.3 66.7 1.16 (0.78-1.72) 1.00 (0.59-1.69) 0.51 
1-1-1-1 29.8 29.4 1.03 (0.79-1.34) 0.89 (0.50-1.59)  
      
Block 2 rs2290201(C/T)-rs8192688(C/T)-rs12305319(A/G) 
0-0-0 72.6 71.0 1.08 (0.69-1.70) 1.14 (0.61-2.14) 0.54 
1-0-0 10.4 11.6 0.95 (0.68-1.32) 0.37 (0.12-1.19)  
1-1-1 15.9 16.2 0.97 (0.73-1.28) 0.75 (0.31-1.82)  
      
Block 3 rs7835371(A/T)-rs3824088(A/G)    
0-0 83.6 82.8 0.74 (0.37-1.49) 0.67 (0.30-1.51) 0.45 
1-0 6.7 8.3 0.95 (0.65-1.41) 1.60 (0.38-6.84)  
1-1 9.7 8.8 1.09 (0.76-1.55) 0.87 (0.36-2.09)  
      
Black n=366 n=751    
Block 1  rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G) 
0-0-0 26.4 24.1 1.25 (0.92-1.71) 0.99 (0.59-1.65) 0.24 
0-0-1 16.9 19.0 0.76 (0.55-1.05) 0.87 (0.35-2.16)  
0-1-1 12.0 13.4 0.77 (0.53-1.11) 0.98 (0.51-1.86)  
1-1-1 44.5 43.4 1.05 (0.75-1.47) 1.04 (0.55-1.96)  
      
Block 2 rs2290201(C/T)-rs8192688(C/T)-rs12305319(A/G) 
0-0-0 32.5 34.5 1.08 (0.80-1.45) 0.76 (0.44-1.31) 0.89 
1-0-0 49.7 48.6 1.20 (0.86-1.67) 1.31 (0.76-2.27)  
1-0-1 8.6 7.5 0.88 (0.58-1.33) 0.76 (0.38-1.51)  
1-1-1 9.0 9.0 1.18 (0.81-1.71) 0.49 (0.08-2.88)  
      
Hispanic n=140 n=279    
Block 1 rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G) 
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0-0-0-0 55.4 58.9 0.97 (0.50-1.87) 0.85 (0.31-2.36) 0.53 
1-1-1-1 38.1 34.2 0.72 (0.44-1.18) 1.13 (0.40-3.24)  
     
Block 2 rs2290201(C/T)-rs8192688(C/T)-rs12305319(A/G) 
0-0-0 61.0 58.3 1.34 (0.68-2.67) 0.99 (0.42-2.35) 0.80 
1-0-0 24.2 24.5 1.43 (0.82-2.49) 1.44 (0.57-3.61)  
1-1-1 9.2 10.4 0.78 (0.42-1.46) 0.98 (0.32-2.99)  
      
Block 3  rs7835371(A/T)-rs3824088(A/G)    
0-0 75.7 70.1 1.65 (0.71-3.86) 3.17 (0.35-29.0) 0.15 
1-0 8.0 11.6 0.53 (0.27-1.06) 0.56 (0.06-5.70)  
1-1 15.9 17.9 1.38 (0.74-2.56) 0.59 (0.15-2.26)  
 
 
      
Asian/Pacific 
Islander n=76 n=165    
Block 1 rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G) 
0-0-0-0 81.7 85.1 0.70 (0.19-2.59) 0.72 (0.18-2.87) 0.93 
1-1-1-1 13.6 13.3 1.11 (0.51-2.43) 0.89 (0.07-12.0)  
 
      
Block 2  rs7835371(A/T)-rs3824088(A/G)    
0-0 29.4 32.8 0.76 (0.39-1.47) 0.56 (0.14-2.25) 0.23 
1-0 16.3 15.9 1.55 (0.68-3.56) 0.71 (0.04-13.2)  
1-1 54.4 51.2 1.89 (0.79-4.50) −−−d  
            
a Haplotypes with ≥0.05 frequency within each block were inferred in each of four ethnic groups (0, major allele; 1, minor 
allele). 
b ORs for each haplotype was calculated using conditional logistic regression models with adjustment for matching factors 
(age, clinical center and time of blood draw) and other confounders including BMI, HRT, alcohol consumption, cigarette 
smoking and physical activity. 
c Analyzed by global permutation test adjusted for multiple testing 
d result is difficult to interpret because of small sample size within strata 
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Supplementary Table 3. Subgroup analysis for FABP4-T2D stratified by VCAM-1 among black. 
SNP/Haplotypea                                                 Haplotype specific OR (95% CI)b,c 
Low VCAM-1   High VCAM-1 
rs1486004 0.97 (0.74-1.27)  rs1486004 0.74 (0.43-1.26) 
rs7017115 1.13 (0.85-1.52)  rs7017115 0.58 (0.32-1.05) 
rs1843560 0.92 (0.69-1.23)  rs1843560 0.67 (0.37-1.22) 
rs2200477 0.82 (0.59-1.14)  rs2200477 0.71 (0.40-1.27) 
T87C ---d  T87C           ---d 
rs2290201 1.17 (0.87-1.57)  rs2290201 0.90 (0.50-1.61) 
rs8192688 1.11 (0.71-1.74)  rs8192688 1.10 (0.43-2.82) 
rs2305319 1.09 (0.77-1.54)  rs2305319 0.60 (0.30-1.20) 
rs1054135 1.24 (0.90-1.71)  rs1054135 0.93 (0.51-1.68) 
rs7835371 1.02 (0.76-1.38)  rs7835371 1.48 (0.81-2.71) 
rs3824088 1.03 (0.72-1.47)  rs3824088 1.08 (0.44-2.62) 
rs1486004(C/T)-rs7017115(A/G)-rs1843560(C/G)-rs2200477(C/G) 
0-0-0-0 1.25 (0.87-1.80)  0-0-0-0 1.04 (0.67-1.62) 
0-0-0-1 1.17 (0.56-2.45)  0-0-0-1 0.82 (0.30-2.20) 
1-0-0-1 0.78 (0.48-1.26)  1-0-0-1 1.40 (0.68-2.86) 
1-0-1-1 0.68 (0.41-1.15)  1-0-1-1 1.35 (0.59-3.06) 
1-1-1-1 1.09 (0.79-1.50)  1-1-1-1 0.76 (0.50-1.15) 
a Haplotype observed with ≥ 0.05 frequency in this ethnic group (0=major allele, 1=minor 
allele). 
b ORs are estimated using conditional logistic regression adjusted for age, clinical center, time 
of blood draw, and other confounders including HRT use, alcohol consumption, cigarette 
smoking, BMI and physical activity. 
c VCAM-1 level was catergorized by its median value among African American controls. 
d  Result is difficult to interpret because of small sample within strata. 
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Figure 1. The schematic presentation shows the position of 11 SNPs that spans the FABP4 genomic region. These markers within the 
FABP4 region consisted of one SNP in the 5’ promoter region (-87 T>C), one missense SNP (rs1054135) and three intronic SNPs 
(rs2290201, rs8192688, and rs2305319). The missense SNP was without high LD with other SNPs.
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Figure 2. The haplotype blocks shown above define the LD structures between the 11 tSNPs near 
or within the FABP4 gene from four ethnic groups (Caucasians, African Americans, American 
Hispanics, and American Asians/ Pacific Islanders). The upper diagram gives the relative 
physical position of each SNP. The pairwise LD between all tSNPs is indicated by the respective 
diamonds for each SNP combination (with red illustrating strong LD (D’ > 0.8) and logarithm of 
odds score (LOD) ≥ 2. LD strength between the selected SNPs is determined by the 90% 
confidence limits of D’ statistics.  
	  



	   39	  

 
This work was published in the Obesity journal on January 28, 2010.



	   40	  

 
2A.6 Reference 

1. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases 

and potential as drug targets. Nat Rev Drug Discov 2008;7:489-503. 

2. Lapsys NM, Kriketos AD, Lim-Fraser M, et al. Expression of genes involved in lipid 

metabolism correlate with peroxisome proliferator-activated receptor gamma expression in 

human skeletal muscle. J Clin Endocrinol Metab 2000;85:4293-7. 

3. Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS. The fatty acid-

binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. 

Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and 

IkappaB kinase activities. J Biol Chem 2005;280:12888-95. 

4. Makowski L, Hotamisligil GS. The role of fatty acid binding proteins in metabolic 

syndrome and atherosclerosis. Curr Opin Lipidol 2005;16:543-8. 

5. Boord JB, Fazio S, Linton MF. Cytoplasmic fatty acid-binding proteins: emerging roles 

in metabolism and atherosclerosis. Curr Opin Lipidol 2002;13:141-7. 

6. Cabre A, Lazaro I, Girona J, et al. Fatty acid binding protein 4 is increased in metabolic 

syndrome and with thiazolidinedione treatment in diabetic patients. Atherosclerosis 

2007;195:e150-8. 

7. Maeda K, Cao H, Kono K, et al. Adipocyte/macrophage fatty acid binding proteins 

control integrated metabolic responses in obesity and diabetes. Cell Metab 2005;1:107-19. 

8. Ordovas JM. Identification of a functional polymorphism at the adipose fatty acid 

binding protein gene (FABP4) and demonstration of its association with cardiovascular disease: 

a path to follow. Nutr Rev 2007;65:130-4. 



	   41	  

9. Yeung DC, Xu A, Cheung CW, et al. Serum adipocyte fatty acid-binding protein levels 

were independently associated with carotid atherosclerosis. Arterioscler Thromb Vasc Biol 

2007;27:1796-802. 

10. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM. 

Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte 

fatty acid binding protein. Science 1996;274:1377-9. 

11. Scheja L, Makowski L, Uysal KT, et al. Altered insulin secretion associated with reduced 

lipolytic efficiency in aP2-/- mice. Diabetes 1999;48:1987-94. 

12. Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS. Improved glucose 

and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 2000;141:3388-96. 

13. Liu S, Tinker L, Song Y, et al. A prospective study of inflammatory cytokines and 

diabetes mellitus in a multiethnic cohort of postmenopausal women. Arch Intern Med 

2007;167:1676-85. 

14. Song Y, Manson JE, Tinker L, et al. Circulating levels of endothelial adhesion molecules 

and risk of diabetes in an ethnically diverse cohort of women. Diabetes 2007;56:1898-904. 

15. Design of the Women's Health Initiative clinical trial and observational study. The 

Women's Health Initiative Study Group. Control Clin Trials 1998;19:61-109. 

16. Anderson GL, Manson J, Wallace R, et al. Implementation of the Women's Health 

Initiative study design. Ann Epidemiol 2003;13:S5-17. 

17. Hsu YH, Niu T, Song Y, Tinker L, Kuller LH, Liu S. Genetic variants in the UCP2-

UCP3 gene cluster and risk of diabetes in the Women's Health Initiative Observational Study. 

Diabetes 2008;57:1101-7. 

18. A haplotype map of the human genome. Nature 2005;437:1299-320. 



	   42	  

19. Wang L, Liu S, Niu T, Xu X. SNPHunter: a bioinformatic software for single nucleotide 

polymorphism data acquisition and management. BMC Bioinformatics 2005;6:60. 

20. Lee CC, You NC, Song Y, et al. Relation of genetic variation in the gene coding for C-

reactive protein with its plasma protein concentrations: findings from the Women's Health 

Initiative Observational Cohort. Clin Chem 2009;55:351-60. 

21. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and 

haplotype maps. Bioinformatics 2005;21:263-5. 

22. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the 

human genome. Science 2002;296:2225-9. 

23. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and 

power in genetic association studies. Nat Genet 2005;37:1217-23. 

24. Tso AW, Xu A, Sham PC, et al. Serum adipocyte fatty acid binding protein as a new 

biomarker predicting the development of type 2 diabetes: a 10-year prospective study in a 

Chinese cohort. Diabetes Care 2007;30:2667-72. 

25. Tuncman G, Erbay E, Hom X, et al. A genetic variant at the fatty acid-binding protein 

aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. 

Proc Natl Acad Sci U S A 2006;103:6970-5. 

26. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. J R Stat Soc Series B Methodol 1995;57:289-300. 

27. Song Y, Hsu YH, Niu T, Manson JE, Buring JE, Liu S. Common genetic variants of the 

ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), 

magnesium intake, and risk of type 2 diabetes in women. BMC Med Genet 2009;10:4. 



	   43	  

28. Song Y, You NC, Hsu YH, et al. Common genetic variation in calpain-10 gene 

(CAPN10) and diabetes risk in a multi-ethnic cohort of American postmenopausal women. Hum 

Mol Genet 2007;16:2960-71. 

29. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 

2005;115:1111-9. 

30. Xu A, Wang Y, Xu JY, et al. Adipocyte fatty acid-binding protein is a plasma biomarker 

closely associated with obesity and metabolic syndrome. Clin Chem 2006;52:405-13. 

31. Prinsen CF, de Bruijn DR, Merkx GF, Veerkamp JH. Assignment of the human 

adipocyte fatty acid-binding protein gene (FABP4) to chromosome 8q21 using somatic cell 

hybrid and fluorescence in situ hybridization techniques. Genomics 1997;40:207-9. 

32. Stejskal D, Karpisek M. Adipocyte fatty acid binding protein in a Caucasian population: 

a new marker of metabolic syndrome? Eur J Clin Invest 2006;36:621-5. 

33. Boulbou MS, Koukoulis GN, Makri ED, Petinaki EA, Gourgoulianis KI, Germenis AE. 

Circulating adhesion molecules levels in type 2 diabetes mellitus and hypertension. Int J Cardiol 

2005;98:39-44. 

34. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994;265:2037-48. 



	   44	  

 
 

 

 

 

 

 

 

Chapter 2B:  

Common Variations in the Genes Encoding C-Reactive Protein, Tumor Necrosis Factor-α , 

and Interleukin-6, and the Risk of Clinical Diabetes in the Women’s Health Initiative 

Observational Study 

 

 

 

 



	   45	  

 
2B.1 Introduction 
 

 Inflammatory markers such as high-sensitivity C-reactive protein (hsCRP), tumor 

necrosis factor-α (TNF-α), and interkeukin-6 (IL-6) have been implicated s possible etiologic 

factors in the development of obesity, diabetes, and cardiovascular disease1-10. One of our 

previous studies reported that among postmenopausal women enrolled in the Women’s Health 

Initiative Observation Study (WHI-OS) increased circulating concentrations of hsCRP, TNF-α, 

and IL-6 were significantly associated with an increased diabetes risk11. Recently, common 

genetic variants in the CRP (C-reactive protein, pentraxin-related) gene were associated with 

their corresponding plasma marker concentrations in Europeans12, European Americans13,14, 

African Americans1,13, and Pima Indians15. To date, relatively few studies have investigated the 

associations of common variants in the genes encoding TNF-α ad IL-6 with their plasma 

concentrations or looked for direct association of CRP, TNF (tumor necrosis factor), of IL6 

[interleukin 6 (interferon, beta 2)] gene variants with diabetes risk, especially in a multiethnic 

population.  

 We conducted a comprehensive assessment of the association of genetic variants for 

TNF-α and IL-6 with plasma concentrations of these 2 inflammation markers in a large case-

control study nested within the WHI-OS.  We also investigated the association of variations in 

the CRP, TNF, and IL6 genes with diabetes risk in the same group of women. 

 

2B.2 Research Design and Methods 

2B.2.1 Study Participants 
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 Details regarding the case-control study design of the WHI-OS have been described in 

the Section 2.2.1 in Chapter 2 (P.12-13)16,17.  

2B.2.2 Plasma marker measurements 

 Plasma concentrations of hsCRP, TNF-α receptor 2 (TNF-α_R2), and IL-6 were 

measured for each participant. TNNF-α-R2 is measured more reliably in frozen samples than 

TNF-α itself, and TNF-α_R2 concentrations correlate well with TNF-α concentrations18,19. In 

brief, the CVs were 1.6%, 3.5%, and 7.6% for hsCRP, TNF-α-R2, and IL-6, respectively11.  

 

2B.2.3 Haplotype-tagging single nucleotide polymorphism (SNP) selection and genotyping 

methods 

 Please refer to Section 2.2.3 in Chapter 2A (P.13-15) for details regarding the SNP 

selection and genotyping methods20-22. 

 

2B.2.4 Statistical Analysis 

 We first assessed the allele frequency and Hardy-Weinberg equilibrium (HWE) for each 

SNP among the controls for each ethnic group. Next, we used a 

! 

"2  test to test for heterogeneity 

in genotype distributions across ethnic groups (SAS 9.2; SAS Institute). In multivariable 

regression models, we adjusted for matching factors (age, clinical center, time of blood draw, 

and ethnicity) and other covariates [body mass index, cigarette smoking (never, past, and 

current), alcohol intake (never, past, and current), family history of diabetes, hormone 

replacement therapy use (never, past, and current), and the total metabolic equivalent (MET) 

value from the individual’s recreational physical activity per week at baseline]. To investigate 

the relationship between SNPs and plasma markers, we log-transformed the plasma marker data 
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with skewed distributions to improve compliance with the normality assumption. We calculated 

the differences in the mean logarithms of plasma marker concentrations according to each 

genotyped tSNP by fitting general linear models that treated plasma marker concentrations as 

dependent variables and tSNPs as independent variables. An additive model was used. The 

results of this analysis were expressed as an increase or decrease in the difference in the mean 

logarithms of the plasma marker per each additional copy of the reference allele. Likelihood ratio 

tests were used to test for the effects of genotype-ethnicity interaction on inflammatory marker 

concentrations. 

 In assessing the relationship between each SNP and diabetes risk, we used multivariable 

logistic regression (conditional on matching) to calculate odds ratios and 95% CIs. Each SNP 

was coded as an additive genetic model in estimating allelic association with diabetes risk; the 

likelihood ratio test was used to test the effect of genotype-ethnicity interaction on diabetes risk.  

 To account in the study for potential false positives due to multiple comparisons, we 

calculated the false-discovery rate (FDR) by incorporating all P values from multiple tests 

performed for the association of SNPs and plasma markers as well as the association of SNPs 

and diabetes risk23. The FDR statistics were obtained for each P value, and FDR statistics with q 

values < 0.05 were considered statistically significant.  

 

2B.3 Results 

2B.3.1 Estimation of allele frequencies 

 As shown in Table 1, the allele frequencies of 9 SNPs in the TNF gene and 13 SNPs in 

the IL6 gene differed significantly by ethnicity. The 13 SNPs in the CRP gene have been 

published in another study done by our group and is shown in Supplementary Table 113. Figure 



	   48	  

1 and 2 schematically present the locations of the SNPs along the TNF and IL6 genes according 

to the gene structure presented in NCBI Entrez Gene (http://www.ncbi.nlm.nih.gov/gene). 

Supplementary Figure 1 shows the schematic diagram of the CRP genomic region. In the TNF 

gene, rs2239704, rs1041981, and rs3093661 in white women deviated significantly from the 

HWE among the controls. None of the 14 SNPs in the IL6 gene showed any statistically 

significant deviation from HWE among the controls of each ethnic group.  

 

2B.3.2 Associations of genetic variants with plasma biomarkers and diabetes risk 

  In Table 2, half of the 16 SNPs in the TNF gene were associated with plasma TNF-α-R2 

concentrations in white women. For 4 SNPs, carriers of each additional copy of the reference 

allele had lower TNF-α-R2 concentrations [range for the decrease in mean logarithm per allele 

(SE), +0.03 (0.01) to -0.04 (0.02); all adjusted q values were < 0.05 after FDR]. In contrast, 

carriers of the reference alleles for the 4 other SNPs (rs909253, rs1041981, rs1800629, and 

rs2256974) had higher TNF-α-R2 concentrations [range of the increase in mean logarithm per 

allele (SE), 0.04 (0.01) to 0.05 (0.01); all adjusted q values were < 0.05 after FDR]. After 

adjusting for multiple testing, we found no significant association between any of the IL6 gene 

variants and IL-6 concentration.  

 After adjusting for matching factors, other covariates, and multiple comparisons, as 

shown in Table 3, we found no evidence of any significant associations between any of the 

SNPs among the 3 genes (CRP, TNF, and IL6) and diabetes risk (all q values were > 0.05). Our 

findings were confirmed in our analysis of 4 additional models with various covariates 

(particularly the effect of controlling for family history of diabetes and body mass index) to 
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investigate the potential independent associations of the inflammation marker variants of interest 

with diabetes risk, which are shown in Supplementary Tables 2a-d.  

 

2B.4 Discussion 

 In this large multiethnic cohort of postmenopausal women, 8 common variants of the 

gene encoding TNF were associated with the plasma TNF-α-R2 concentration in whites, whereas 

we found no association between common variants of the IL6 gene and the plasma IL-6 

concentration. No variants of the CRP, TNF, or IL6 genes were significantly associated with 

increased diabetes risk after we corrected for multiple comparisons.  

 One of the 8 SNPs (rs1800629) in the TNF gene that we found to be associated with 

plasma TNF-α concentrations in whites was associated in a prior study with TNR-α 

concentration in the same ethnic group24. The null findings for a relationship between common 

variants of the same gene and diabetes risk were consistent with results from previous studies of 

European and Chinese populations25-28. The presence of the A allele of SNP rs1800629 in the 

TNF gene among Brazilian individuals older than 48 years has been associated with increased 

hsCRP concentrations29. Although our results were not statistically significant, the direction of 

the association between this TNF variant and hsCRP concentration was the same in our samples. 

Furthermore, as we demonstrated in our prior study, increased hsCRP concentrations were 

associated with an increased diabetes risk11. Therefore, if this TNF variant is in fact associated 

with increased hsCRP concentrations, then it may play an indirect role in the pathogenesis of 

type 2 diabetes. A meta-analysis has indicated that individuals who carry this TNR-α variant are 

at higher risk of developing obesity than control individuals, suggesting that the TNF gene is 

involved in the pathogenesis of the metabolic syndrome30. Obesity is a well-known risk factor 
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for the development of type 2 diabetes. On the other hand, another study indicated that this TNF-

α variant was not associated with insulin resistance in young Asian Indians31. Taken together, the 

data indicate that the TNF gene may not lead directly to the development of diabetes, but it may 

play an interactive role with other factors, such as CRP, in the pathogenesis of diabetes. 

 We observed no significant associations in our samples between IL6 variants and the 

plasma IL-6 concentration. One study showed the genetic variant rs10499563 to be significantly 

associated with increased IL-6 concentrations in individuals in an acute inflammatory state30. 

The presence of acute inflammation may affect the association between this genetic variant and 

the plasma IL-6 concentration. In general, we presume that the women in our study did not have 

acute inflammation at the time of blood draw, which may account for this discrepancy. A study 

of 1953 Korean men and women found that the rs1800796 G/G genotype was associated with 

increased serum IL-6 concentrations32. This result is consistent with our analysis, which showed 

that carriers of each additional copy of the G allele in this SNP were associated with increased 

IL-6 concentrations in the Asian population, although our result was not statistically significant. 

Inconsistent findings regarding the association between this gene and diabetes risk have been 

reported previously in several case-control, prospective population-based studies and meta-

analyses33-37. A joint analysis of the data for the individual participants from 21 studies observed 

that the C allele of the rs1800795 SNP in the IL6 gene was associated with a reduced risk of 

diabetes34, whereas a meta-analysis indicated a null association between the same SNP in the IL6 

and diabetes risk36. In general, the literature lacks reports of studies that have examined the 

associations of common variants in the TNF and IL6 gene regions with the corresponding plasma 

marker concentrations and diabetes risk, particularly in a multiethnic cohort.  
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 Assuming an additive model, we observed no significant associations between the 

variants in the CRP gene and the risk of clinical diabetes, a result consistent with prior findings38. 

Although these genetic variants have substantial and independent associations with the plasma 

hsCRP concentration13, our prospective data do not support a direct heritable role for CRP in the 

development of diabetes.  

 The lack of significant genetic associations in the current study may be due to insufficient 

statistical power, especially among the Hispanic and Asian women. Nevertheless, our study was 

well powered to detect effects for alleles shared across all ethnic groups. In fact, we had > 80% 

power to detect a relative risk of ≥ 1.25 for risk alleles with frequencies from 10% to 70%. 

Additionally, our study included only postmenopausal women, and therefore our results may not 

be generalized to men or younger women. 

 In conclusion, 8 common genetic variants of the TNF gene were associated with the 

plasma TNF-α-R2 concentration among whites in this large multiethnic case-control study of 

postmenopausal women, although these common TNF variants were not associated with a risk of 

clinical diabetes. Common IL6 variants were not associated with IL-6 concentration or diabetes 

risk, nor were common CRP variants associated with the risk of clinical diabetes. Our data 

indicate modest associations between TNF gene variants and circulating concentrations of TNF-

α-R2. Common variants of the genes encoding CRP, TNF, and IL6 were not significantly 

associated with the risk of clinical diabetes in postmenopausal women.  
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Figure 1. Human TNF gene (chromosome 6p21.3) and SNP locations.  

 

 

Figure 2. Human IL6 gene (chromosome 7p21) and SNP locations.  
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Table 1. Location and allele frequencies of genotyped tSNPs in TNF and IL6 genes in controls. 

 

dbSNP ID a Location  Alleleb 

Minor allele frequency (%)  

Gene 
Whites 

 
Blacks 

 
Hispanics 

 

Asian/ 
Pacific Islanders 

 
Pooled 

 Pc 
TNF-α    (n=939) (n=737) (n=275) (n=156) (n=2,107)  

 rs2239705 5’ flanking C/T 18.12 13.07 25.63 20.00 17.48 <0.0001 
 rs2230365 5’ flanking C/T 15.09 6.68 17.63 25.15 13.26 <0.0001 
 rs2009658 5’ flanking C/G 16.02 13.11 18.18 17.38 15.39 0.048 
 rs2239704 5’ flanking G/T 41.77 28.21 39.96 40.30 36.71 <0.0001 
 rs909253 5’ flanking T/C 34.22 48.59 36.05 37.35 39.73 <0.0001 
 rs2857713 5’ flanking T/C 26.70 28.36 26.71 22.26 26.93 0.28 
 rs1041981 5’ flanking C/A 33.58 48.25 35.61 38.04 39.27 <0.0001 
 rs1799964 5’ flanking T/C 21.59 18.18 21.22 20.86 20.30 0.11 
 rs1799724 5’ flanking C/T 10.74 3.95 16.91 17.38 9.69 <0.0001 
 rs1800750 5’ flanking G/A 1.78 2.28 1.26 0 1.75 0.17 
 rs1800629 5’ flanking G/A 15.88 12.72 9.39 2.42 12.90 <0.0001 
 rs361525 5’ flanking G/A 5.67 4.62 3.06 3.44 4.80 0.22 
 rs3093661 Intron1 G/A 3.98 4.10 2.36 3.46 3.77 0.50 
 rs3093662 Intron1 A/G 8.15 8.67 6.27 3.61 7.73 0.045 
 rs769178 3’flanking C/A 10.15 4.03 17.33 16.67 9.45 <0.0001 
 rs2256974 3’flanking G/T 18.21 34.26 25.45 36.54 26.13 <0.0001 
          

IL-6    (n=928) (n=738) (n=276) (n=163) (n=2,105)  
 rs1880242 5’ flanking G/T 53.17 79.22 56.34 26.52 60.69 <0.0001 
 rs10499563 5’ flanking C/T 77.32 82.02 80.88 82.08 79.81 0.0069 
 rs2069824 5’ flanking C/T 91.08 85.79 91.82 99.08 89.92 <0.0001 
 rs1800797 5’ flanking A/G 62.2 90.34 78.88 96.04 76.88 <0.0001 
 rs1800796 5’ flanking C/G 93.66 90.39 78.52 30.49 85.59 <0.0001 
 rs1800795 5’ flanking C/G 61.29 90.19 78.68 97.26 76.58 <0.0001 
 rs2069830 Exon2 C/T 0.05 9.14 0.36 0 3.26 <0.0001 
 rs2069838 Intron3 C/T 0.32 6.65 1.08 0 2.62 <0.0001 
 rs2069840 Intron3 C/G 34.72 18.71 31.93 7.72 26.59 <0.0001 
 rs2069842 Intron4 A/G 99.79 92.81 99.09 100 97.26 <0.0001 
 rs2069845 Intron4 A/G 42.00 34.35 29.86 3.05 34.7 <0.0001 
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 rs2069861 3’ flanking C/T 8.27 1.96 3.97 0.31 4.88 <0.0001 
 rs1524106 3’ flanking C/A 67.4 47.1 45.31 8.84 52.84 <0.0001 
 rs1524103 3’ flanking G/C 25.54 41.6 31.52 19.63 31.5 <0.0001 
          

a From the NCBI dbSNP. 
b Reference alleles are indicated in parentheses. 
c P values were estimated by a  test (df=3) for genotype distribution across the 4 ethnic groups. 
	  

! 

"2
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Table 2. Differences in mean logarithms in plasma concentrations according to corresponding SNPs stratified by ethnicity. 

  
White Black Hispanics 

Asian/Pacific 
Islanders 

 
All 

 

Gene SNP ID 

Difference in 
mean 

logarithms 
(SE)a 

Difference in  
mean logarithms  

(SE) 

Difference in  
mean logarithms  

(SE) 

Difference in  
mean logarithms  

(SE) 

Difference in  
mean logarithms  

(SE) 
P-value for 

ethnic 
interactionb 

TNF-α  (n=1,592) (n=912) (n=328) (n=209) (n=3,041)  
 rs2239705 -0.02 (0.01) -0.03 (0.02) 0.002 (0.03) 0.04 (0.04) 0.003 (0.01) 0.03 
 rs2230365 -0.04 (0.01)c -0.04 (0.03) -0.02 (0.03) -0.06 (0.03) -0.02 (0.01) 0.86 
 rs2009658 -0.03 (0.01) -0.04 (0.02) 0.01 (0.03) -0.05 (0.04) -0.02 (0.01) 0.73 
 rs2239704 -0.02 (0.01) -0.002 (0.02) -0.005 (0.02) -0.01 (0.03) 0.001 (0.01) 0.25 
 rs909253 0.04 (0.01)d 0.01 (0.02) 0.02 (0.02) 0.06 (0.03) 0.02 (0.01) 0.70 
 rs2857713 -0.03 (0.01)e -0.02 (0.02) 0.001 (0.03) -0.07 (0.04) -0.03 (0.01)l 0.38 
 rs1041981 0.05 (0.01)f 0.003 (0.02) 0.01 (0.02) 0.06 (0.03) 0.02 (0.01) 0.51 
 rs1799964 -0.03 (0.01)g -0.02 (0.02) 0.01 (0.03) -0.07 (0.04) -0.02 (0.01) 0.65 
 rs1799724 -0.03 (0.02) -0.08 (0.04) -0.01 (0.03) 0.05 (0.04) -0.002 (0.01) 0.01 
 rs1800750 0.03 (0.04) 0.04 (0.05) 0.08 (0.08) -0.35 (0.31) 0.03 (0.03) 0.93 
 rs1800629 0.04 (0.01)h -0.01 (0.02) 0.03 (0.04) 0.01 (0.08) 0.02 (0.01) 0.07 
 rs361525 -0.03 (0.02) 0.02 (0.03) -0.02 (0.06) -0.09 (0.08) -0.02 (0.02) 0.58 
 rs3093661 -0.04 (0.02) -0.03 (0.04) -0.08 (0.08) -0.08 (0.08) -0.05 (0.02) 0.44 
 rs3093662 -0.04 (0.02)i 0.01 (0.03) -0.05 (0.05) -0.10 (0.08) -0.03 (0.01) 0.44 
 rs769178 -0.03 (0.02) -0.07 (0.04) -0.01 (0.03) 0.04 (0.04) -0.001 (0.01) 0.02 
 rs2256974 0.04 (0.01)j 0.01 (0.02) 0.02 (0.03) 0.05 (0.03) 0.01 (0.01) 0.54 

IL-6  (n=1,608) (n=918) (n=327) (n=207) (n=3,060)  
 rs1880242 -0.01 (0.01) -0.03 (0.03) -0.06 (0.04) -0.01 (0.05) -0.01 (0.01) 0.64 
 rs10499563 -0.003 (0.01) -0.003 (0.02) 0.003 (0.03) 0.02 (0.05) -0.002 (0.01) 0.69 
 rs2069824 -0.01 (0.02) -0.01 (0.03) -0.02 (0.05) -0.08 (0.09) -0.01 (0.01) 0.28 
 rs1800797 -0.05 (0.03) -0.05 (0.07) -0.10 (0.08) -0.28 (0.26) -0.04 (0.02) 0.02 
 rs1800796 0.03 (0.05) 0.06 (0.07) -0.10 (0.07) 0.02 (0.10) 0.04 (0.03) 0.07 
 rs1800795 -0.04 (0.03) -0.05 (0.07) -0.10 (0.08) -0.23 (0.27) -0.03 (0.02) 0.01 
 rs2069830 -0.32 (0.50) 0.05 (0.07) -0.06 (0.53) ---k 0.09 (0.06) 0.62 
 rs2069838 0.05 (0.27) 0.005 (0.08) -0.36 (0.38) ---k 0.04 (0.07) 0.57 
 rs2069840 -0.01 (0.03) 0.08 (0.05) -0.17 (0.06) -0.06 (0.17) -0.01 (0.02) 0.66 
 rs2069842 -0.16 (0.27) -0.05 (0.08) 0.46 (0.26) ---k -0.08 (0.06) 0.17 
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 rs2069845 0.04 (0.03) -0.001 (0.04) 0.12 (0.07) 0.10 (0.40) 0.04 (0.02) 0.01 
 rs2069861 0.05 (0.05) 0.13 (0.15) 0.21 (0.14) ---k 0.07 (0.04) 0.04 
 rs1524106 0.03 (0.03) 0.05 (0.04) -0.01 (0.06) -0.02 (0.15) 0.03 (0.02) 0.04 
 rs1524103 -0.03 (0.03) -0.03 (0.04) -0.05 (0.07) 0.002 (0.12) -0.01 (0.02) 0.50 

        
a Difference in mean logarithms and standard error per additional reference allele of each SNP was calculated using general linear regression 

models with adjustment for matching factors (age, clinical center, and time of blood draw), incidence of diabetes, and other confounders 
including BMI, hormone replacement therapy, alcohol consumption, cigarette smoking, family history of diabetes, and physical activity.  

b
 P-value was estimated based on a log-likelihood ratio test for interaction between each genotype and ethnicity on plasma concentrations. 

c P-value was 0.003 with q-value = 0.01 after FDR.  
d P-value was 0.000041 with q-value = 0.0003 after FDR.  
e P-value was 0.006 with q-value = 0.02 after FDR.  
f P-value was 0.000006 with q-value < 0.0001 after FDR.  
g P-value was 0.007 with q-value = 0.02 after FDR.  
h P-value was 0.006 with q-value = 0.02 after FDR.  
i P-value was 0.04 with q-value = 0.04 after FDR.  
j P-value was 0.004 with q-value = 0.01 after FDR.  
k
 Result is difficult to interpret because of small sample size within strata. 

l P-value was 0.0009 with q-value = 0.01 after FDR.  
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Table 3. The multivariable adjusted odds ratio (95% CI) for diabetes risk associated with genetic variants, as calculated with 
the additive effect model. 

  Adjusted OR (95% CI)a P-value 
for ethnic 
interactio

nc Gene SNP ID Whites Blacks Hispanics 
Asian/Pacific 

Islanders  All 
CRP  (n=870/865)b (n=303/638) (n=115/242) (n=67/154) (n=1355/1899)  

 rs4275453 0.87(0.71- 1.07) 0.85(0.67 - 1.09) 0.93(0.57 - 1.52) 1.04(0.51 - 2.15) 0.85(0.74 – 0.98)i 0.92 
rs2808634 0.82(0.66 – 1.03) 0.74(0.51 - 1.07) 0.84(0.48 - 1.49) 1.93(0.73 - 5.11) 0.81(0.68 – 0.97)j 0.34 
rs3093059 0.86(0.59 - 1.25) 1.17(0.88 - 1.56) 0.62(0.30 - 1.25) 0.76(0.32 - 1.80) 1.03(0.84 - 1.26) 0.38 
rs2794521 0.82(0.65 – 1.02) 0.78(0.54 - 1.14) 0.76(0.41 - 1.38) 1.66(0.66 - 4.19) 0.81(0.68 – 0.97)k 0.43 
rs1417938 1.03(0.84 - 1.28) 1.36(0.93 – 2.00) 1.07(0.65 - 1.76) 0.75(0.23 - 2.47) 1.09(0.92 - 1.28) 0.91 
rs1800947 1.25(0.85 - 1.84) 0.52(0.15 - 1.81) 1.46(0.40 - 5.31) 1.00(0.33 – 2.96) 1.18(0.86 - 1.63) 0.55 
rs1130864 1.09(0.88 - 1.35) 1.18(0.86 - 1.63) 0.91(0.56 - 1.48) 1.15(0.40 - 3.31) 1.09(0.93 - 1.28) 0.76 

rs1205 1.10(0.89 - 1.37) 0.80(0.59 - 1.10) 1.19(0.74 - 1.92) 0.82(0.43 - 1.56) 1.01(0.86 - 1.17) 0.61 
rs3093075 0.90(0.61 - 1.32) 1.17(0.88 - 1.55) 0.57(0.328- 1.16) 1.09(0.47 - 2.51) 1.06(0.87 - 1.31) 0.76 
rs3093068 0.81(0.59 - 1.13) 1.30(0.97 - 1.73) 0.84(0.42 - 1.66) 1.11(0.47 - 2.61) 1.05(0.86 - 1.28) 0.62 
rs2808629 1.15(0.93 - 1.43) 0.73(0.54 – 0.99)d 1.30(0.81 - 2.10) 0.72(0.39 - 1.35) 1.00(0.86 - 1.16) 0.34 
rs2369146 0.79(0.62 – 1.00) 0.96(0.74 - 1.24) 1.23(0.76 – 2.00) 2.19(0.80 – 5.97) 0.92(0.78 - 1.08) 0.02l 
rs1470515 1.21(1.99 - 1.48) 0.70(0.52 - 0.94)e 0.97(0.6 2- 1.53) 0.95(0.50 - 1.83) 1.01(0.87 - 1.17) 0.29 

TNF  (n=867/882) (n=306/638) (n=115/244) (n=68/155) (n=1356/1919)  
rs2239705 1.02(0.79-1.31) 0.74(0.50-1.09) 0.96(0.61-1.53) 0.75(0.31-1.79) 0.92(0.76-1.10) 0.39 
rs2230365 1.06(0.81-1.40) 0.91(0.53-1.54) 0.77(0.42-1.44) 0.86(0.47-1.55) 0.96(0.78-1.17) 0.79 
rs2009658 0.96(0.73-1.27) 0.90(0.60-1.33) 0.75(0.42-1.33) 0.92(0.44-1.94) 0.92(0.76-1.11) 0.75 
rs2239704 1.09(0.90-1.31) 0.79(0.59-1.07) 1.33(0.92-1.92) 0.66(0.35-1.23) 1.00(0.88-1.15) 0.36 
rs909253 0.99(0.81-1.21) 1.40(1.06-1.85) 0.83(0.54-1.28) 1.77(0.92-3.38) 1.09(0.95-1.25) 0.52 

rs2857713 0.84(0.67-1.05) 0.94(0.70-1.27) 0.90(0.55-1.46) 0.97(0.50-1.91) 0.90(0.77-1.05) 0.27 
rs1041981 1.02(0.83-1.24) 1.39(1.06-1.83) 0.84(0.55-1.28) 1.79(0.93-3.43) 1.11(0.97-1.28) 0.60 
rs1799964 0.89(0.70-1.13) 0.86(0.61-1.20) 1.01(0.60-1.72) 1.01(0.50-2.03) 0.91(0.76-1.07) 0.28 
rs1799724 1.04(0.76-1.43) 0.62(0.30-1.28) 1.14(0.67-1.94) 0.80(0.34-1.92) 0.97(0.77-1.23) 0.57 
rs1800750 0.51(0.24-1.09) 1.22(0.55-2.69) 2.58(0.55-12.2) ---g 0.90(0.54-1.50) 0.01m 
rs1800629 0.91(0.70-1.18) 1.24(0.86-1.78) 1.19(0.56-2.52) 6.29(1.14-34.8)h 1.04(0.85-1.27) 0.02n 
rs361525 0.74(0.49-1.11) 1.04(0.57-1.87) 2.23(0.77-6.46) 1.56(0.39-6.17) 0.93(0.69-1.26) 0.09 

rs3093661 0.79(0.50-1.26) 0.66(0.33-1.32) 1.56(0.44-5.50) 0.48(0.08-2.92) 0.79(0.56-1.12) 0.95 
rs3093662 0.87(0.62-1.23) 0.70(0.43-1.12) 1.09(0.47-2.52) 1.24(0.33-4.63) 0.84(0.66-1.08) 0.61 
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rs769178 1.06(0.77-1.47) 0.58(0.28-1.20) 1.09(0.64-1.86) 0.94(0.39-2.27) 0.98(0.77-1.24) 0.70 
rs2256974 1.10(0.85-1.42) 1.26(0.96-1.67) 0.80(0.49-1.30) 1.49(0.76-2.93) 1.14(0.97-1.34) 0.71 

IL6  (n=876/888) (v304/641) (n=115/244) (n=67/154) (n=1362/1927)  
 rs1880242 1.01 (0.90-1.13) 1.04 (0.89-1.22) 1.14 (0.74-1.76) 1.14 (0.81-1.60) 1.03 (0.95-1.12) 0.36 

rs10499563 0.97 (0.88-1.08) 0.96 (0.83-1.11) 0.97 (0.76-1.23) 0.80 (0.58-1.11) 0.95 (0.89-1.03) 0.36 
rs2069824 0.93 (0.81-1.08) 1.06 (0.89-1.27) 0.66 (0.45-0.98)f ---g 0.98 (0.89-1.09) 0.57 
rs1800797 1.10 (0.90-1.34) 0.84 (0.57-1.26) 1.12 (0.62-2.04) 0.66 (0.09-4.77) 1.04 (0.89-1.23) 0.82 
rs1800796 1.18 (0.79-1.76) 1.34 (0.88-2.04) 1.02 (0.60-1.73) 0.90 (0.52-1.55) 1.10 (0.89-1.37) 0.66 
rs1800795 1.06 (0.87-1.29) 0.93 (0.61-1.41) 1.35 (0.76-2.41) 0.31 (0.01-6.92) 1.05 (0.89-1.23) 0.77 
rs2069830 1.81 (0.09-38.7) 0.99 (0.62-1.56) ---g ---g 1.00 (0.64-1.57) 0.66 
rs2069838 0.76 (0.15-3.88) 1.22 (0.76-1.97) ---g ---g 1.08 (0.69-1.69) 0.76 
rs2069840 1.16 (0.93-1.43) 0.89 (0.65-1.23) 0.94 (0.61-1.44) 0.64 (0.24-1.69) 1.06 (0.91-1.23) 0.28 
rs2069842 1.07 (0.11-10.4) 1.43 (0.87-2.37) 1.07 (0.14-8.55) ---g 1.26 (0.79-2.02) 0.98 
rs2069845 0.91 (0.75-1.11) 1.13 (0.87-1.48) 0.82 (0.51-1.32) ---g 0.95 (0.82-1.09) 0.49 
rs2069861 0.88 (0.62-1.25) 1.12 (0.43-2.91) 1.16 (0.43-3.16) ---g 0.98 (0.73-1.33) 0.92 
rs1524106 0.86 (0.70-1.06) 1.13 (0.88-1.44) 0.87 (0.58-1.31) 0.97 (0.40-2.34) 0.95 (0.83-1.10) 0.53 
rs1524103 1.17 (0.93-1.47) 0.94 (0.73-1.20) 1.16 (0.73-1.85) 0.75 (0.38-1.47) 1.02 (0.88-1.18) 0.33 

a Odds Ratio (OR) per additional reference allele of each SNP was calculated for additive genetic effect model; ORs were estimated using 
conditional logistic regression models adjusted for matching factors (age, clinical center, time of blood draw, and ethnicity), BMI, cigarette 
smoking, alcohol intake, hormone replacement therapy, family history of diabetes and physical activity.  

b Sample size for each ethnic group was shown for each plasma marker in the format of (cases/controls). 
C 

P-value was estimated based on a log-likelihood ratio test for interaction between each genotype and ethnicity on diabetes risk. 
d P-value was 0.04 with q-value = 0.28 after FDR.  
e P-value was 0.02 with q-value = 0.25 after FDR.  
f P-value was 0.04 with q-value = 0.56 after FDR.  
g Result was difficult to interpret because of small sample size within strata. 
h P-value was 0.04 with q-value = 0.46 after FDR. 
i P-value was 0.03 with q-value = 0.12 after FDR.  
j P-value was 0.02 with q-value = 0.12 after FDR.  
k P-value was 0.02 with q-value = 0.12 after FDR.  
l The P-value became 0.24 after FDR.  
m The P-value became 0.15 after FDR.  
n The P-value became 0.15 after FDR.  
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Supplementary Figure 1. Human CRP gene (Chromosome 1q21-q23) and SNP locations. 
(Original source: Lee CC, You NC, Song Y, Hsu YH, Manson J, Nathan L, et al. Relation 
of genetic variation in the gene coding for C-reactive protein with its plasma protein 
concentrations: findings from the Women's Health Initiative Observational Cohort. Clin 
Chem 2009;55:351-60) 
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Supplementary Table 1. Location and minor allele frequencies (MAF) of genotyped tagging SNPs in CRP gene in controls. 
(Original source: Lee CC, You NC, Song Y, Hsu YH, Manson J, Nathan L, et al. Relation of genetic variation in the gene 
coding for C-reactive protein with its plasma protein concentrations: findings from the Women's Health Initiative 
Observational Cohort. Clin Chem 2009;55:351-60) 

dbSNP ID
a
 Location  Alleleb 

Minor allele frequency (%)  

Whites 
 

Blacks 
 

Hispanics 
 

Asian/ 
Pacific Islanders 

 
Pooled 

 Pc 
   (n=968) (n=732) (n=303) (n=195) (n=2,198)  
rs4275453 5’ flanking T/C 37.1 55.7 30.8 26.9 42.0 <0.0001 
rs2808634 5’ flanking C/T 29.7 17.9 21.3 14.0 23.3 <0.0001 
rs3093059 5’ flanking T/C 6.97 23.7 9.1 12.8 13.6 <0.0001 
rs2794521 5’ flanking T/C 30.1 17.6 20.9 12.9 23.2 <0.0001 
rs1417938 Intron1 T/A 29.9 11.7 30.5 7.8 21.9 <0.0001 
rs1800947 Exon2 G/C 6.00 1.75 3.3 8.3 4.3 <0.0001 
rs1130864 Exon2 C/T 29.3 16.6 31.9 8.2 23.5 <0.0001 
rs1205 Exon2 C/T 32.5 22.0 35.4 64.4 31.7 <0.0001 
rs3093075 3’ flanking C/A 6.77 24.3 9.6 11.8 13.7 <0.0001 
rs3093068 3’ flanking C/G 8.42 24.1 9.0 12.5 14.3 <0.0001 
rs2808629 3’ flanking G/A 32.5 22.9 36.1 64.9 32.1 <0.0001 
rs2369146 3’ flanking G/A 25.0 37.3 20.9 14.9 28.0 <0.0001 
rs1470515 3’ flanking G/A 37.5 28.8 40.8 62.6 36.8 <0.0001 

a From the NCBI dbSNP. 
b Reference alleles are indicated in parentheses. 
c P values were estimated by a  test (df=3) for genotype distribution across the 4 ethnic groups.	  

! 

"2
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SupplementaryTable 2a. The multivariable-adjusted odds ratio (95% CI) for diabetes risk associated with genetic variants 
using the additive effect model among whites. 

  Adjusted OR (95% CI)a 

Gene SNP ID Model 1c Model 2d Model 3e Model 4f Model 5g 
CRP 

(931/929)b 
rs4275453 0.88(0.76-1.01) 0.89(0.76-1.04) 0.88(0.72-1.07) 0.89(0.75-1.05) 0.87(0.71- 1.07) 
rs2808634 0.87(0.75-1.01) 0.88(0.74-1.04) 0.87(0.70-1.07) 0.84(0.70-1.00) 0.82(0.66 – 1.03) 
rs3093059 0.90(0.69-1.18) 0.96(0.72-1.28) 0.82(0.57-1.18) 0.96(0.71-1.30) 0.86(0.59 - 1.25) 
rs2794521 0.86(0.74-1.00) 0.88(0.74-1.04) 0.86(0.69-1.06) 0.85(0.70-1.02) 0.82(0.65 – 1.02) 
rs1417938 1.14(0.98-1.31) 1.15(0.98-1.34) 1.09(0.89-1.33) 1.10(0.93-1.30) 1.03(0.84 - 1.28) 
rs1800947 1.14(0.87-1.49) 1.18(0.88-1.59) 1.17(0.81-1.70) 1.23(0.90-1.68) 1.25(0.85 - 1.84) 
rs1130864 1.18(1.02-1.36) 1.20(1.02-1.40) 1.18(0.96-1.45) 1.13(0.95-1.34) 1.09(0.88 - 1.35) 

rs1205 1.00(0.87-1.16) 0.96(0.82-1.13) 1.03(0.84-1.26) 1.02(0.86-1.21) 1.10(0.89 - 1.37) 
rs3093075 0.96(0.73-1.26) 1.00(0.75-1.34) 0.85(0.59-1.24) 1.04(0.76-1.41) 0.90(0.61 - 1.32) 
rs3093068 0.83(0.66-1.06) 0.87(0.68-1.13) 0.76(0.56-1.04) 0.93(0.71-1.22) 0.81(0.59 - 1.13) 
rs2808629 1.02(0.88-1.17) 0.99(0.84-1.15) 1.05(0.86-1.28) 1.06(0.89-1.25) 1.15(0.93 - 1.43) 
rs2369146 0.88(0.75-1.03) 0.85(0.72-1.02) 0.84(0.67-1.05) 0.81(0.66-0.98) 0.79(0.62 – 1.00) 
rs1470515 1.04(0.91-1.19) 1.05(0.90-1.22) 1.12(0.93-1.36) 1.10(0.94-1.30) 1.21(1.99 - 1.48) 

TNF-α 
(929/952) 

rs2239705 0.97(0.81-1.15) 0.96(0.79-1.16) 0.99(0.77-1.26) 0.99(0.81-1.21) 1.02(0.79-1.31) 
rs2230365 1.08(0.90-1.30) 1.03(0.84-1.26) 1.16(0.89-1.51) 0.98(0.79-1.22) 1.06(0.81-1.40) 
rs2009658 0.96(0.80-1.16) 0.92(0.75-1.13) 0.99(0.76-1.30) 0.93(0.74-1.16) 0.96(0.73-1.27) 
rs2239704 1.02(0.90-1.17) 1.02(0.89-1.18) 1.04(0.87-1.24) 1.03(0.89-1.20) 1.09(0.90-1.31) 
rs909253 0.96(0.83-1.10) 0.99(0.85-1.15) 0.99(0.82-1.20) 1.00(0.85-1.18) 0.99(0.81-1.21) 

rs2857713 0.97(0.83-1.12) 0.93(0.79-1.09) 0.91(0.74-1.12) 0.89(0.75-1.07) 0.84(0.67-1.05) 
rs1041981 0.97(0.84-1.12) 1.00(0.86-1.17) 1.00(0.83-1.21) 1.02(0.87-1.20) 1.02(0.83-1.24) 
rs1799964 0.97(0.82-1.14) 0.92(0.77-1.11) 0.96(0.76-1.20) 0.90(0.74-1.10) 0.89(0.70-1.13) 
rs1799724 0.94(0.75-1.17) 0.97(0.76-1.23) 0.96(0.71-1.30) 1.04(0.80-1.35) 1.04(0.76-1.43) 
rs1800750 0.94(0.56-1.58) 1.00(0.57-1.73) 0.73(0.36-1.47) 0.81(0.43-1.52) 0.51(0.24-1.09) 
rs1800629 0.91(0.76-1.10) 0.88(0.71-1.07) 0.87(0.68-1.12) 0.89(0.72-1.11) 0.91(0.70-1.18) 
rs361525 1.00(0.76-1.32) 1.00(0.74-1.35) 0.89(0.61-1.29) 0.91(0.65-1.27) 0.74(0.49-1.11) 

rs3093661 1.06(0.77-1.46) 1.00(0.71-1.42) 0.92(0.60-1.42) 0.94(0.64-1.37) 0.79(0.50-1.26) 
rs3093662 1.06(0.84-1.33) 1.08(0.84-1.40) 0.99(0.72-1.37) 1.01(0.77-1.33) 0.87(0.62-1.23) 
rs769178 0.96(0.77-1.21) 0.99(0.77-1.27) 0.99(0.73-1.35) 1.07(0.82-1.40) 1.06(0.77-1.47) 

rs2256974 1.05(0.89-1.26) 1.12(0.93-1.36) 1.15(0.90-1.46) 1.12(0.91-1.37) 1.10(0.85-1.42) 
IL-6 rs1880242 0.96(0.88-1.03) 0.93(0.85-1.02) 0.99(0.88-1.10) 0.95(0.87-1.04) 1.01 (0.90-1.13) 
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(946/960) rs10499563 0.97(0.91-1.04) 0.97(0.90-1.04) 0.98(0.89-1.09) 0.96(0.89-1.04) 0.97 (0.88-1.08) 
rs2069824 0.87(0.79-0.96) 0.88(0.79-0.98) 0.89(0.77-1.02) 0.93(0.83-1.04) 0.93 (0.81-1.08) 
rs1800797 0.96(0.84-1.10) 1.01(0.87-1.17) 1.07(0.89-1.29) 1.03(0.88-1.21) 1.10 (0.90-1.34) 
rs1800796 1.05(0.79-1.41) 1.01(0.74-1.38) 1.14(0.77-1.68) 1.06(0.76-1.48) 1.18 (0.79-1.76) 
rs1800795 0.96(0.84-1.11) 1.00(0.86-1.16) 1.05(0.87-1.27) 1.01(0.86-1.18) 1.06 (0.87-1.29) 
rs2069830 0.96(0.06-15.49) 0.92(0.06-15.47) 1.40(0.08-25.7) 1.38(0.08-22.54) 1.81 (0.09-38.7) 
rs2069838 0.79(0.21-2.94) 0.68(0.18-2.63) 0.68(0.13-3.44) 0.69(0.17-2.88) 0.76 (0.15-3.88) 
rs2069840 0.96(0.83-1.11) 1.04(0.88-1.22) 1.09(0.89-1.34) 1.10(0.93-1.31) 1.16 (0.93-1.43) 
rs2069842 0.75(0.17-3.33) 0.72(0.15-3.42) 0.87(0.10-7.67) 1.09(0.21-5.56) 1.07 (0.11-10.4) 
rs2069845 1.02(0.89-1.17) 0.98(0.84-1.13) 0.92(0.76-1.11) 0.97(0.82-1.13) 0.91 (0.75-1.11) 
rs2069861 1.05(0.83-1.33) 1.02(0.78-1.32) 0.82(0.59-1.14) 1.15(0.87-1.53) 0.88 (0.62-1.25) 
rs1524106 0.87(0.75-1.00) 0.89(0.76-1.04) 0.87(0.72-1.06) 0.88(0.74-1.04) 0.86 (0.70-1.06) 
rs1524103 1.11(0.95-1.30) 1.10(0.93-1.30) 1.16(0.93-1.44) 1.10(0.92-1.32) 1.17 (0.93-1.47) 

a Odds Ratio (OR) of each single SNP was calculated for additive genetic effect model and  were estimated using conditional logistic regression 
models. 
b Sample size for each ethnic group was shown for each gene in the format of (cases/controls). 
c Model 1 was adjusted for matching factors (age, clinical center, and time of blood draw).  
d Model 2 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy and physical activity.  
e Model 3 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and BMI.  
f Model 4 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and family 

history. 
g Model 5 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity, BMI and 

family history. 
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Supplementary Table 2b. The multivariable-adjusted odds ratio (95% CI) for diabetes risk associated with genetic variants 
using the additive effect model among blacks. 

  Adjusted OR (95% CI)a 

Gene SNP ID Model 1c Model 2d Model 3e Model 4f Model 5g 
CRP 

(362/743)b 
rs4275453 0.95(0.79-1.13) 0.97(0.80-1.17) 0.90(0.73-1.11) 0.95(0.76-1.18) 0.85(0.67 - 1.09) 

rs2808634 0.72(0.56-0.93)* 0.74(0.56-0.97) 
0.68(0.51-

0.91)* 0.82(0.59-1.14) 0.74(0.51 - 1.07) 
rs3093059 1.08(0.88-1.33) 1.01(0.81-1.26) 1.08(0.85-1.38) 1.09(0.84-1.41) 1.17(0.88 - 1.56) 
rs2794521 0.74(0.57-0.96) 0.76(0.57-1.00) 0.72(0.53-0.98) 0.83(0.59-1.17) 0.78(0.54 - 1.14) 
rs1417938 1.16(0.88-1.52) 1.22(0.91-1.64) 1.38(1.00-1.90) 1.19(0.84-1.70) 1.36(0.93 – 2.00) 
rs1800947 0.47(0.19-1.18) 0.42(0.15-1.17) 0.49(0.17-1.43) 0.46(0.14-1.45) 0.52(0.15 - 1.81) 

rs1130864 1.20(0.95-1.51) 1.27(0.99-1.63) 
1.41(1.07-

1.86)* 1.08(0.80-1.46) 1.18(0.86 - 1.63) 
rs1205 0.78(0.62-0.99) 0.77(0.60-0.98) 0.77(0.59-1.00) 0.78(0.58-1.04) 0.80(0.59 - 1.10) 

rs3093075 1.08(0.87-1.32) 1.00(0.80-1.25) 1.06(0.83-1.35) 1.09(0.84-1.41) 1.17(0.88 - 1.55) 

rs3093068 1.44(1.18-1.77)** 1.46(1.16-1.82)* 
1.42(1.12-

1.81)* 1.37(1.05-1.78) 1.30(0.97 - 1.73) 

rs2808629 0.74(0.59-0.93)* 0.71(0.56-0.91)* 
0.71(0.54-

0.92)* 0.72(0.54-0.95) 0.73(0.54 – 0.99) 
rs2369146 0.89(0.74-1.08) 0.86(0.70-1.06) 0.86(0.69-1.07) 0.95(0.75-1.20) 0.96(0.74 - 1.24) 

rs1470515 0.77(0.62-0.96) 0.75(0.59-0.95) 
0.73(0.57-

0.95)* 0.72(0.54-0.95) 0.70(0.52 - 0.94) 
TNF-α 

(364/746) 
rs2239705 0.86(0.64-1.15) 0.80(0.58-1.09) 0.76(0.54-1.06) 0.80(0.56-1.15) 0.74(0.50-1.09) 
rs2230365 0.89(0.60-1.31) 0.93(0.62-1.40) 0.93(0.60-1.45) 0.96(0.59-1.56) 0.91(0.53-1.54) 
rs2009658 0.92(0.70-1.23) 0.96(0.71-1.30) 0.93(0.67-1.30) 1.00(0.70-1.44) 0.90(0.60-1.33) 
rs2239704 0.88(0.71-1.09) 0.81(0.64-1.02) 0.84(0.65-1.08) 0.76(0.58-1.00) 0.79(0.59-1.07) 
rs909253 1.19(0.98-1.45) 1.28(1.03-1.58) 1.33(1.06-1.68) 1.28(1.00-1.64) 1.40(1.06-1.85) 

rs2857713 0.91(0.73-1.13) 0.92(0.73-1.16) 0.86(0.67-1.12) 1.04(0.79-1.36) 0.94(0.70-1.27) 
rs1041981 1.16(0.95-1.40) 1.22(0.99-1.50) 1.28(1.02-1.61) 1.26(0.99-1.61) 1.39(1.06-1.83) 
rs1799964 0.90(0.71-1.15) 0.93(0.72-1.21) 0.87(0.66-1.16) 0.97(0.72-1.32) 0.86(0.61-1.20) 
rs1799724 0.72(0.43-1.23) 0.78(0.44-1.36) 0.65(0.34-1.21) 0.76(0.40-1.46) 0.62(0.30-1.28) 
rs1800750 1.21(0.67-2.17) 1.06(0.57-1.99) 0.96(0.48-1.92) 1.23(0.59-2.59) 1.22(0.55-2.69) 
rs1800629 1.08(0.82-1.41) 1.09(0.81-1.46) 1.10(0.81-1.51) 1.19(0.85-1.67) 1.24(0.86-1.78) 
rs361525 1.01(0.66-1.56) 1.06(0.67-1.67) 1.01(0.61-1.68) 1.09(0.63-1.86) 1.04(0.57-1.87) 
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rs3093661 0.82(0.50-1.36) 0.80(0.47-1.37) 0.70(0.39-1.25) 0.76(0.40-1.42) 0.66(0.33-1.32) 
rs3093662 0.80(0.56-1.14) 0.78(0.53-1.13) 0.65(0.43-0.99) 0.85(0.56-1.30) 0.70(0.43-1.12) 
rs769178 0.64(0.37-1.10) 0.69(0.39-1.22) 0.60(0.32-1.13) 0.67(0.34-1.31) 0.58(0.28-1.20) 

rs2256974 1.17(0.96-1.43) 1.26(1.01-1.56) 1.34(1.05-1.70) 1.15(0.89-1.47) 1.26(0.96-1.67) 
IL-6 

(365/753) 
rs1880242 1.12(0.99-1.27) 1.12(0.98-1.28) 1.11(0.96-1.28) 1.07(0.93-1.23) 1.04 (0.89-1.22) 

rs10499563 0.96(0.85-1.08) 0.95(0.84-1.08) 0.95(0.84-1.08) 0.98(0.85-1.12) 0.96 (0.83-1.11) 
rs2069824 1.02(0.88-1.18) 1.01(0.86-1.17) 1.01(0.86-1.19) 1.04(0.88-1.24) 1.06 (0.89-1.27) 
rs1800797 0.90(0.68-1.20) 0.86(0.63-1.17) 0.83(0.59-1.16) 0.92(0.64-1.32) 0.84 (0.57-1.26) 
rs1800796 1.25(0.91-1.74) 1.38(0.97-1.97) 1.30(0.90-1.89) 1.42(0.95-2.13) 1.34 (0.88-2.04) 
rs1800795 1.02(0.76-1.38) 0.98(0.71-1.36) 0.95(0.67-1.35) 1.04(0.70-1.52) 0.93 (0.61-1.41) 
rs2069830 0.94(0.68-1.30) 0.97(0.68-1.39) 0.98(0.67-1.44) 1.04(0.69-1.58) 0.99 (0.62-1.56) 
rs2069838 1.06(0.73-1.52) 1.11(0.76-1.63) 1.13(0.75-1.72) 1.21(0.78-1.89) 1.22 (0.76-1.97) 
rs2069840 0.89(0.70-1.13) 0.88(0.68-1.13) 0.87(0.66-1.14) 0.86(0.64-1.17) 0.89 (0.65-1.23) 
rs2069842 1.15(0.81-1.64) 1.28(0.88-1.88) 1.26(0.84-1.90) 1.53(0.96-2.44) 1.43 (0.87-2.37) 
rs2069845 1.03(0.85-1.25) 1.12(0.91-1.38) 1.08(0.86-1.36) 1.12(0.87-1.43) 1.13 (0.87-1.48) 
rs2069861 0.97(0.50-1.89) 1.03(0.52-2.07) 1.08(0.52-2.28) 0.98(0.43-2.23) 1.12 (0.43-2.91) 
rs1524106 1.03(0.86-1.24) 1.09(0.90-1.33) 1.05(0.86-1.30) 1.09(0.87-1.38) 1.13 (0.88-1.44) 
rs1524103 1.02(0.85-1.22) 0.96(0.78-1.17) 0.99(0.80-1.22) 0.98(0.78-1.23) 0.94 (0.73-1.20) 

a Odds Ratio (OR) of each single SNP was calculated for additive genetic effect model and  were estimated using conditional logistic regression 
models. 
b Sample size for each ethnic group was shown for each gene in the format of (cases/controls). 
c Model 1 was adjusted for matching factors (age, clinical center, and time of blood draw).  
d Model 2 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy and physical activity.  
e Model 3 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and BMI.  
f Model 4 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and family 

history. 
g Model 5 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity, BMI and 

family history. 
* Adjusted q-value<0.05 after FDR 
** Adjusted q-value<0.01 after FDR 
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Supplementary Table 2c. The multivariable-adjusted odds ratio (95% CI) for diabetes risk associated with genetic variants 
using the additive effect model among Hispanics. 

  Adjusted OR (95% CI)a 

Gene SNP ID Model 1c Model 2d Model 3e Model 4f Model 5g 
CRP 

(139/278)b 
rs4275453 0.95(0.66-1.35) 0.98(0.66-1.44) 0.91(0.60-1.38) 0.96(0.60-1.51) 0.93(0.57 - 1.52) 
rs2808634 0.80(0.52-1.22) 0.83(0.53-1.32) 0.81(0.50-1.34) 0.84(0.49-1.42) 0.84(0.48 - 1.49) 
rs3093059 0.79(0.46-1.36) 0.64(0.35-1.18) 0.63(0.33-1.20) 0.66(0.34-1.30) 0.62(0.30 - 1.25) 
rs2794521 0.76(0.49-1.18) 0.81(0.51-1.30) 0.75(0.45-1.25) 0.79(0.45-1.37) 0.76(0.41 - 1.38) 
rs1417938 1.04(0.74-1.46) 1.15(0.79-1.68) 1.18(0.77-1.80) 1.06(0.69-1.62) 1.07(0.65 - 1.76) 
rs1800947 0.90(0.34-2.38) 1.09(0.38-3.08) 0.87(0.29-2.58) 1.62(0.49-5.39) 1.46(0.40 - 5.31) 
rs1130864 0.94(0.67-1.33) 1.01(0.70-1.48) 0.97(0.64-1.49) 0.97(0.64-1.48) 0.91(0.56 - 1.48) 

rs1205 1.02(0.74-1.40) 0.97(0.68-1.38) 1.02(0.70-1.50) 1.09(0.71-1.66) 1.19(0.74 - 1.92) 
rs3093075 0.80(0.46-1.37) 0.69(0.38-1.27) 0.70(0.37-1.32) 0.62(0.32-1.21) 0.57(0.28- 1.16) 
rs3093068 0.96(0.56-1.65) 0.95(0.53-1.69) 0.86(0.47-1.59) 0.95(0.50-1.82) 0.84(0.42 - 1.66) 
rs2808629 0.99(0.73-1.36) 0.95(0.67-1.34) 1.07(0.73-1.57) 1.08(0.70-1.65) 1.30(0.81 - 2.10) 
rs2369146 1.19(0.83-1.71) 1.17(0.79-1.72) 1.19(0.79-1.79) 1.22(0.77-1.93) 1.23(0.76 – 2.00) 
rs1470515 0.92(0.68-1.25) 0.85(0.61-1.19) 0.87(0.61-1.25) 0.92(0.61-1.39) 0.97(0.6 2- 1.53) 

TNF-α 
(140/277) 

rs2239705 0.90(0.65-1.26) 0.98(0.68-1.43) 0.94(0.62-1.40) 1.00(0.65-1.54) 0.96(0.61-1.53) 
rs2230365 0.76(0.50-1.17) 0.75(0.46-1.23) 0.82(0.48-1.40) 0.72(0.41-1.25) 0.77(0.42-1.44) 
rs2009658 0.84(0.56-1.27) 0.90(0.58-1.42) 0.90(0.55-1.46) 0.77(0.46-1.32) 0.75(0.42-1.33) 
rs2239704 1.14(0.86-1.50) 1.23(0.91-1.66) 1.13(0.83-1.56) 1.38(0.98-1.95) 1.33(0.92-1.92) 
rs909253 0.94(0.69-1.27) 0.79(0.56-1.12) 0.89(0.61-1.28) 0.75(0.50-1.14) 0.83(0.54-1.28) 

rs2857713 0.91(0.64-1.28) 1.01(0.69-1.48) 0.96(0.64-1.44) 0.93(0.60-1.46) 0.90(0.55-1.46) 
rs1041981 0.95(0.71-1.29) 0.80(0.57-1.12) 0.89(0.62-1.28) 0.76(0.51-1.14) 0.84(0.55-1.28) 
rs1799964 1.03(0.70-1.51) 1.14(0.75-1.74) 1.08(0.69-1.69) 1.07(0.66-1.74) 1.01(0.60-1.72) 
rs1799724 1.02(0.69-1.50) 1.13(0.74-1.73) 1.02(0.65-1.60) 1.19(0.73-1.95) 1.14(0.67-1.94) 
rs1800750 2.08(0.67-6.47) 2.13(0.66-6.91) 1.41(0.38-5.22) 3.42(0.88-13.37) 2.58(0.55-12.2) 
rs1800629 1.10(0.66-1.84) 1.01(0.57-1.79) 1.17(0.63-2.18) 1.09(0.56-2.11) 1.19(0.56-2.52) 
rs361525 1.78(0.84-3.79) 2.06(0.88-4.82) 1.67(0.67-4.19) 2.56(0.95-6.93) 2.23(0.77-6.46) 

rs3093661 1.35(0.54-3.33) 1.53(0.54-4.34) 1.36(0.44-4.23) 1.52(0.46-5.06) 1.56(0.44-5.50) 
rs3093662 1.16(0.63-2.14) 1.21(0.61-2.40) 1.03(0.50-2.12) 1.22(0.56-2.65) 1.09(0.47-2.52) 
rs769178 0.96(0.65-1.41) 1.07(0.70-1.66) 0.97(0.61-1.54) 1.16(0.70-1.91) 1.09(0.64-1.86) 

rs2256974 0.93(0.65-1.32) 0.76(0.51-1.12) 0.77(0.51-1.19) 0.75(0.48-1.17) 0.80(0.49-1.30) 
IL-6 rs1880242 1.19(0.94-1.52) 1.09(0.85-1.40) 1.05(0.78-1.41) 1.12(0.79-1.58) 1.14 (0.74-1.76) 
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(140/279) rs10499563 1.01(0.85-1.21) 1.10(0.90-1.35) 1.06(0.83-1.35) 1.01(0.81-1.25) 0.97 (0.76-1.23) 
rs2069824 0.98(0.75-1.26) 0.95(0.72-1.25) 0.89(0.66-1.21) 0.77(0.54-1.11) 0.66 (0.45-0.98) 
rs1800797 1.22(0.83-1.81) 1.20(0.77-1.86) 1.10(0.68-1.79) 1.14(0.66-1.96) 1.12 (0.62-2.04) 
rs1800796 0.98(0.67-1.42) 0.94(0.62-1.43) 0.99(0.63-1.55) 1.04(0.64-1.70) 1.02 (0.60-1.73) 
rs1800795 1.25(0.84-1.87) 1.23(0.78-1.92) 1.19(0.73-1.96) 1.26(0.74-2.13) 1.35 (0.76-2.41) 

rs2069830 4.61(0.46-45.87) 1.06(0.06-17.81) 
2.11(0.10-

46.40) ---h ---h 
rs2069838 ---h ---h ---h ---h ---h 
rs2069840 1.08(0.78-1.49) 1.04(0.73-1.48) 1.12(0.77-1.62) 0.88(0.58-1.32) 0.94 (0.61-1.44) 
rs2069842 0.56(0.16-1.98) 0.98(0.23-4.22) 0.93(0.20-4.34) 0.94(0.15-5.98) 1.07 (0.14-8.55) 
rs2069845 0.80(0.57-1.12) 0.77(0.53-1.13) 0.77(0.52-1.16) 0.87(0.56-1.35) 0.82 (0.51-1.32) 
rs2069861 1.22(0.58-2.58) 1.21(0.53-2.75) 1.22(0.52-2.87) 1.15(0.45-2.94) 1.16 (0.43-3.16) 
rs1524106 1.00(0.73-1.36) 0.98(0.69-1.37) 1.01(0.71-1.45) 0.92(0.63-1.34) 0.87 (0.58-1.31) 
rs1524103 0.95(0.67-1.34) 0.95(0.66-1.37) 0.97(0.66-1.43) 1.07(0.70-1.65) 1.16 (0.73-1.85) 

a Odds Ratio (OR) of each single SNP was calculated for additive genetic effect model and  were estimated using conditional logistic regression 
models. 
b Sample size for each ethnic group was shown for each gene in the format of (cases/controls). 
c Model 1 was adjusted for matching factors (age, clinical center, and time of blood draw).  
d Model 2 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy and physical activity.  
e Model 3 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and BMI.  
f Model 4 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and family 

history. 
g Model 5 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity, BMI and 

family history. 
h Result is difficult to interpret because of small sample size within strata. 
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Supplementary 2d. The multivariable-adjusted odds ratio (95% CI) for diabetes risk associated with genetic variants using 
the additive effect model among Asians/Pacific Islanders. 

  Adjusted OR (95% CI)a 

Gene SNP ID Model 1c Model 2d Model 3e Model 4f Model 5g 
CRP 

(77/163)b 
rs4275453 0.88(0.53-1.47) 0.92(0.55-1.55) 0.96(0.55-1.70) 1.01(0.54-1.90) 1.04(0.51 - 2.15) 
rs2808634 1.05(0.53-2.07) 1.06(0.53-2.13) 1.09(0.49-2.40) 1.74(0.72-4.19) 1.93(0.73 - 5.11) 
rs3093059 0.90(0.48-1.68) 0.94(0.50-1.78) 0.99(0.49-1.97) 0.82(0.38-1.74) 0.76(0.32 - 1.80) 
rs2794521 1.05(0.52-2.12) 1.02(0.49-2.11) 1.19(0.53-2.68) 1.32(0.55-3.20) 1.66(0.66 - 4.19) 
rs1417938 0.84(0.36-1.96) 0.90(0.38-2.15) 0.79(0.29-2.16) 0.86(0.33-2.27) 0.75(0.23 - 2.47) 
rs1800947 0.77(0.36-1.68) 0.74(0.34-1.63) 0.61(0.26-1.43) 0.94(0.34-2.60) 1.00(0.33 – 2.96) 
rs1130864 0.96(0.44-2.08) 1.04(0.47-2.32) 1.02(0.41-2.53) 1.12(0.46-2.75) 1.15(0.40 - 3.31) 

rs1205 0.93(0.58-1.47) 0.87(0.54-1.40) 0.88(0.52-1.49) 0.83(0.47-1.48) 0.82(0.43 - 1.56) 
rs3093075 1.13(0.63-2.05) 1.15(0.63-2.12) 1.24(0.63-2.43) 1.10(0.53-2.27) 1.09(0.47 - 2.51) 
rs3093068 1.16(0.64-2.10) 1.18(0.64-2.17) 1.30(0.65-2.60) 1.02(0.49-2.13) 1.11(0.47 - 2.61) 
rs2808629 0.92(0.59-1.43) 0.88(0.56-1.38) 0.89(0.54-1.47) 0.78(0.45-1.34) 0.72(0.39 - 1.35) 
rs2369146 1.09(0.56-2.15) 1.10(0.55-2.18) 1.17(0.54-2.56) 1.86(0.75-4.59) 2.19(0.80 – 5.97) 
rs1470515 0.99(0.64-1.55) 0.96(0.61-1.53) 1.00(0.60-1.67) 0.95(0.54-1.67) 0.95(0.50 - 1.83) 

TNF-α 
(79/165) 

rs2239705 0.60(0.33-1.09) 0.60(0.33-1.10) 0.61(0.30-1.23) 0.65(0.32-1.35) 0.75(0.31-1.79) 
rs2230365 1.09(0.72-1.66) 1.04(0.68-1.60) 1.02(0.63-1.64) 0.98(0.59-1.63) 0.86(0.47-1.55) 
rs2009658 1.12(0.65-1.93) 1.02(0.59-1.79) 0.87(0.47-1.62) 1.11(0.58-2.11) 0.92(0.44-1.94) 
rs2239704 0.77(0.51-1.16) 0.79(0.52-1.20) 0.73(0.45-1.19) 0.76(0.46-1.26) 0.66(0.35-1.23) 
rs909253 1.36(0.91-2.04) 1.42(0.94-2.15) 1.71(1.04-2.79) 1.29(0.77-2.15) 1.77(0.92-3.38) 

rs2857713 1.00(0.61-1.65) 0.92(0.55-1.54) 0.81(0.45-1.45) 1.13(0.64-1.99) 0.97(0.50-1.91) 
rs1041981 1.37(0.92-2.06) 1.43(0.94-2.16) 1.70(1.04-2.77) 1.30(0.78-2.19) 1.79(0.93-3.43) 
rs1799964 1.14(0.68-1.91) 1.03(0.60-1.76) 0.87(0.47-1.62) 1.21(0.67-2.17) 1.01(0.50-2.03) 
rs1799724 0.67(0.37-1.20) 0.65(0.35-1.19) 0.70(0.34-1.43) 0.67(0.32-1.41) 0.80(0.34-1.92) 
rs1800750 ---h ---h ---h ---h ---h 

rs1800629 5.58(1.55-20.1) 6.28(1.73-22.80) 
6.12(1.54-

24.36) 6.50(1.40-30.28) 6.29(1.14-34.8)h 
rs361525 1.17(0.42-3.25) 1.09(0.38-3.07) 1.16(0.36-3.74) 1.55(0.47-5.14) 1.56(0.39-6.17) 

rs3093661 0.69(0.21-2.22) 0.67(0.20-2.24) 0.54(0.14-2.12) 0.88(0.21-3.64) 0.48(0.08-2.92) 
rs3093662 1.07(0.39-2.90) 1.00(0.36-2.75) 0.95(0.31-2.90) 1.46(0.46-4.68) 1.24(0.33-4.63) 
rs769178 0.73(0.40-1.32) 0.73(0.40-1.35) 0.82(0.40-1.66) 0.74(0.35-1.57) 0.94(0.39-2.27) 
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rs2256974 1.03(0.67-1.60) 1.03(0.66-1.60) 1.30(0.76-2.22) 1.02(0.59-1.75) 1.49(0.76-2.93) 
IL-6 

(77/165) 
rs1880242 1.25(0.95-1.66) 1.27(0.96-1.68) 1.21(0.88-1.67) 1.26(0.92-1.71) 1.14 (0.81-1.60) 

rs10499563 0.96(0.78-1.18) 0.97(0.79-1.19) 0.93(0.74-1.17) 0.87(0.66-1.16) 0.80 (0.58-1.11) 
rs2069824 ---h ---h ---h ---h ---h 
rs1800797 0.92(0.36-2.38) 0.79(0.30-2.08) 1.00(0.33-3.04) 0.46(0.11-1.94) 0.66 (0.09-4.77) 
rs1800796 1.18(0.77-1.81) 1.19(0.77-1.82) 1.04(0.65-1.65) 1.11(0.69-1.81) 0.90 (0.52-1.55) 
rs1800795 0.84(0.20-3.58) 0.79(0.18-3.40) 1.45(0.27-7.77) 0.17(0.01-1.99) 0.31 (0.01-6.92) 
rs2069830 ---h ---h ---h ---h ---h 
rs2069838 ---h ---h ---h ---h ---h 
rs2069840 1.08(0.51-2.29) 1.07(0.50-2.28) 0.80(0.35-1.82) 1.03(0.44-2.42) 0.64 (0.24-1.69) 
rs2069842 ---h ---h ---h ---h ---h 
rs2069845 ---h ---h ---h ---h ---h 
rs2069861 ---h ---h ---h ---h ---h 
rs1524106 1.23(0.63-2.41) 1.24(0.62-2.46) 1.00(0.47-2.13) 1.51(0.68-3.36) 0.97 (0.40-2.34) 
rs1524103 0.91(0.54-1.52) 0.92(0.55-1.55) 0.86(0.49-1.52) 0.86(0.48-1.55) 0.75 (0.38-1.47) 

a Odds Ratio (OR) of each single SNP was calculated for additive genetic effect model and  were estimated using conditional logistic regression 
models. 
b Sample size for each ethnic group was shown for each gene in the format of (cases/controls). 
c Model 1 was adjusted for matching factors (age, clinical center, and time of blood draw).  
d Model 2 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy and physical activity.  
e Model 3 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and BMI.  
f Model 4 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity and family 

history. 
g Model 5 was adjusted for matching factors , cigarette smoking, alcohol intake, hormone replacement therapy , physical activity, BMI and 

family history. 
h Result is difficult to interpret because of small sample size within strata. 
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2C.1 Introduction 

 The peroxisome proliferator-activated receptor γ (PPARG) is a ligand-activated 

transcription factor that plays an essential role in the regulation of lipid uptake, adipocyte 

differentiation, and energy balance1. It further acts as an anti-inflammatory molecular by 

hindering inflammatory reactions that are critical in the pathogenesis of type 2 diabetes (T2D)2. 

Thus, PPARG agonist is also the target of the thiazolidinedione (TZD) class of insulin-

sensitizing drugs for glycemic control3-5.  

 PPARG activates the expression of genes involved in glucose and lipid metabolism, 

which converts nutritional signals into metabolic consequences5. PPARG is also a nuclear 

receptor and transcription factor that controls the expression of many genes and plays a vital role 

in adipocyte differentiation6. The PPARG Pro12Ala (rs1801282) has been the most vastly 

investigated single nucleotide polymorphism (SNP), which was believed to alter transcriptional 

activity as a result of its location in the functional binding domain that has been associated with 

risk of diabetes and its intermediate traits7-19. 

 Therefore, we aimed to comprehensively assess all common variants in the PPARG gene 

in relation to T2D risk in two independent studies in the Women’s Health Initiative. We 

examined these genetic associations in a nested case-control study of postmenopausal women 

participated in the Women’s Health Initiative Observation Study (WHI-OS) and the WHI SNP 

Health Association Resource (SHARe) cohort respectively. 

 

2C.2 Research Design and Methods 

2C.2.1 Study Participants 
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 Details regarding the design of our case-control study nested in the WHI-OS have been 

described in the Section 2.2.1 in Chapter 2 (P.12-13)20-22. 

 

2C.2.2 Haplotype-tagging single nucleotide polymorphism selection and genotyping 

methods 

 Details regarding the SNP selection and genotyping methods are provided in the Section 

2.2.3 in Chapter 2A (P.13-15) 23,24. 

 

2C.2.3 Statistical Analysis 

 We first estimated the minor allele frequency (MAF) of the 24 tagSNPs among the 

controls in each ethnic group. We tested for heterogeneity of genotype distributions across 

ethnicities using the

! 

"2  test. 

 In both single-SNP and haplotype-based analyses, we employed multivariable logistic 

regression to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) for each 

genetic variant with diabetes risk. We made adjustments for matching factors (age, clinical 

center, time of blood draw, and ethnicity) and other covariates [body mass index, fasting glucose 

and insulin levels in logarithmic scale, cigarette smoking (never, past, and current), alcohol 

intake (never, past, and current), hormone-replacement therapy use (never, past, and current), 

family history of diabetes, and values of the total metabolic equivalent (MET) value from the 

individual’s recreational physical activity per week at baseline. 

 In single-SNP analyses, each SNP was coded as an additive, dominant, or recessive 

genetic model. In haplotype-based analyses, only haplotypes with estimated frequencies ≥ 5% in 

the combined cases and controls were included for analyses. To increase the genomic coverage, 
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we utilized a sliding-window (window width = 3 SNPs) haplotype-based analysis. For each 

window, we used an omnibus likelihood ratio test (LRT), which was a 

! 

"2  test (degrees of 

freedom = number of haplotypes in a particular window – 1). The test used a measure derived 

based on the difference of the logarithmic likelihood of two logistic regression models: (1) the 

full model that contains the haplotype covariates, and (ii) the reduced model that does not 

contain the haplotype covariates. A –log10P > 2.64 (P value < 0.0023) was used as the global 

significance threshold using Bonferroni correction for 22 window frames. By selecting those 

haplotypes that were significantly associated with diabetes risk in the combined population, we 

then evaluated the association between the resulting haplotype/haplotype combinations and 

diabetes risk.  

 Additional single-SNP analyses were conducted to validate results from the WHI-OS in a 

larger cohort, the WHI-SHARe. The WHI-SHARe cohort included 8,421 African American and 

3,587 Hispanic American postmenopausal women with raw genotyping data available (909, 622 

genotypes were produced by the Affymetrix Genome-wide Human SNP Array 6.0, Santa Clara, 

CA). Eight out of 24 tagSNPs were included in the WHI-SHARe data. After removing 234 

related individuals and 56 individuals with discordant race, we used multivariate logistic 

regression to calculate the estimates of OR and 95% CI per each additional copy of the reference 

allele of each SNP under additive genetic model (R, version 2.13), with adjustment for the set of 

covariates listed above as well as global ancestry using 3 principal components (PCs) computed 

with EIGENSTRAT25. We estimated ethnic interaction by fitting a model with race*SNP 

interaction term. The likelihood ratio test was used to compare model with SNP versus model 

without SNP. We also performed a statistical analysis of pathways using the Gene Set 

Enrichment Algorithm (GSEA) with the 871, 309 SNPs remained after genotype cleaning 
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provided by the GenGen suite. More details will be provided in Section 3.2.3 in Chapter 3 (P.108 

– P.109).  

 To account for potential false positives due to multiple comparisons, we calculated the 

false discovery rate (FDR) statistics with q values by incorporating all P values from multiple 

tests performed for the association of SNPs and diabetes risk using the method of Benjamini and 

Hochberg26. The FDR statistics with q < 0.05 were considered significant.  

 

2C.3 Results 

2C.3.1 Estimation of allele frequencies 

 24 tagSNPs were genotyped in 1,543 diabetes cases and 2,170 matched controls. Figure 

1 showed the characteristics of the 24 tagSNPs. A total of 19 SNPs were located within the 

PPARG gene (147kb) with two SNPs (rs1801282 [Pro12Ala] and rs3856806 [His477His]) 

resided in exon 4 and 12 respectively. The estimated MAFs in controls stratified by ethnicity 

were shown in Table 1. Except for rs10510411, rs12629293, and rs12636454 (with P values of 

0.10, 0.06, and 0.32), the genotype distributions of all other tagSNPs varied significantly across 

the four ethnic groups (P values ≤ 0.0001). 

 

2C.3.2 Single-SNP analyses 

 The association between each tagSNP with diabetes risk in each ethnic group, as well as 

in the combined population, was assessed under additive, dominant, and recessive genetic 

models. The results under the additive genetic model were presented in Table 2. After adjusting 

for matching factors and risk factors for T2D, the Pro12Ala (rs1801282) SNP was associated 

with T2D risk among Hispanic women (nominal P value = 0.04). Several other SNPs 
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(rs6809631, rs9817428, rs10510411, rs12629293, and rs12636454) were also found to have 

association with T2D risk among the combined group (all nominal P values < 0.05).  After 

adjusting for multiple comparisons, no significant associations between any of the SNPs and 

diabetes risk were obtained (all q values > 0.05). The results under the dominant and recessive 

genetic model are shown in Supplementary Table 1 and 2. As shown in Table 3, we further 

investigated the association between the non-synonymous SNPs (rs1801282) by genotype with 

T2D risk. Among Hispanic, individuals with CG genotype appeared to be protective to T2D risk 

(OR= 0.17, 95% CI= 0.04-0.77, P value=0.02) compared to individuals having CC genotype at 

the rs1801282 SNP.  

 

2C.3.3 Haplotype-based analyses 

 Figure 2 shows the results of the sliding-window (with width = 3) haplotype-based 

analyses. There were a total of 22 window frames for the 24 tagSNPs. Using the omnibus LRT 

for testing each window frame in the combined population, rs1175540 (SNP20), rs1175544 

(SNP21), and rs1797912 (SNP22) gave rise to the most significant P value [P value for LRT test 

= 5.9x10-4, -log10(P value for LRT test)=2.97]. An adjacent haplotype consisting of rs709157 

(SNP19), rs1175540 (SNP20), and rs1175544 (SNP21) also resulted in P value smaller than the 

Bonferroni correction threshold of 0.0023.  

 As shown in Table 4, there are three common haplotypes (i.e. haplotype frequency ≥ 1%) 

formed by rs1175540(C/A)-rs1175544(C/T)-rs1797912(A/C): h000 (51.7% in controls and 

53.7% in cases), h111 (22.9% in controls and 25.8% in cases), and h100 (18.2% in controls and 

12.8% in cases), where “0” and “1” denoted the major and minor alleles at each SNP locus. 

Using the most common haplotype h000 as the referent group, h100 is found to have significant 



	   80	  

association with diabetes risk (OR = 1.02, 95% CI = 1.00-1.03, P value 0.002). For another 

haplotype that is formed by rs1175540(C/A), rs1175544(C/T), and rs1797912(A/C), h010 is 

significantly associated with diabetes risk (OR =  1.45, 95% CI = 1.18-1.77, P value 0.0003) 

using h000 as the referent group. By combining four adjacent windows that are near to the 

Pro12Ala (rs1801282) SNP, a combined haplotype was formed, i.e. rs12629293(A/G)-

rs12636454(T/C)-rs4518111(C/A)-rs10510418(A/C)-rs1801282(C/G)-rs1373640(C/T). Using 

h001000 as the reference group, h000000 was significantly associated with diabetes risk (OR = 

1.47, 95% CI = 1.16-1.86, P value = 0.001). 

 

2C.3.4 Validation analysis in WHI-SHARe population 

Table 5 showed the additional analyses conducted in the WHI-SHARe to validate the 

single-SNP findings. Among Hispanic in the WHI-SHARe population, the rs1801282 SNP was 

also found to have association with T2D risk (nominal P value = 0.03). With adjustment for 

multiple comparisons, none of the eight tagSNPs were found to have significant association with 

diabetes risk using the additive genetic model (all q values > 0.05). The results under the 

dominant and recessive genetic model are shown in Supplementary Table 3 and 4. 

In the GSEA, the PPAR signaling pathway was among the top ten pathways (nominal p-

value = 0.002) among 5,729 African American women in the WHI-SHARe cohort.  

 

2C.4 Discussion 

 We replicated the association between the well-studied Pro12Ala (rs1801282) SNP and 

diabetes risk among the WHI-OS Hispanic population. However, none of our 24 tagSNPs in the 

PPARG gene were significantly associated with diabetes in the WHI-OS and WHI-SHARe 
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cohorts of postmenopausal women. Using a sliding-window width of 3, 2 haplotypes were found 

to have significant associations with diabetes risk after adjusting for multiple comparisons. We 

also observed the PPAR signaling pathway ranked among the top ten pathways in the GSEA 

among the WHI-SHARe African American population.  

 In the literature, the association between the PPARG locus and diabetes risk has been 

investigated in various ethnic populations. The PPARG Pro12Ala (rs1801282) was found to have 

significant association with diabetes risk among Swedish12, Finnish7,16, German9, North Indian15, 

and Chinese populations10,19. In our study, the rs1801282 SNP appeared to be associated with 

diabetes risk among Hispanic women in both WHI-OS and WHI-SHARe populations (with 

nominal P values <0.05).  Our null findings after multiple comparisons adjustment for a 

relationship between genetic variants of the PPARG gene and diabetes risk were consistent with 

results from previous studies of Denmark and European American13,27 as well as Chinese 

population11. This is likely due to limited power, especially after stratifying according to ethnic 

group. 

 Because haplotype-based analysis is arguably more powerful than single-marker 

analysis28,29, our comprehensive assessment of genetic variants in the PPARG genomic region 

allowed us to perform the global haplotype-based LRT as the main haplotype test, and also 

haplotype-specific analyses using a sliding-window approach. Two haplotypes (rs709157(G/A)-

rs1175540(C/A)-rs1175544(C/T) and rs1175540(C/A)-rs1175544(C/T)-rs1797912(A/C)) appeared to be 

associated with diabetes risk among women in the WHI-OS cohort. For example, individuals 

with the h010 haplotype combination, i.e. rs709157-G, rs1175540-A, and rs1175544-C, appeared 

to have higher diabetes risk (OR=1.45, 95%CI=1.18-1.77, P value=0.0003) comparing to those 

individuals having h000 combination, i.e. rs709157-G, rs1175540-C, and rs1175544-C.  
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Haplotype-based analysis allows the examination of the combined effect of several SNPs30. This 

analytical method offers the following advantages: it 1) captures epistastic interactions between 

SNPs at a locus; 2) allows testing between haplotype alleles by encapsulating information from 

evolutionary history; 3) reduces the number of tests as well as the type 1 error rate and therefore 

provide more power than single-SNP analyses31.   

 Thus far, several genome-wide scans for diabetes have been reported. For example, 

Wellcome Trust Case Control Consortium (WTCCC)32-35, Diabetes Genetics Initiative (DGI) 

scan33,34, Finland-United States Investigation of NIDDM Genetics (FUSION) scan35,36, and the 

Diabetes Genetics Replication and Meta-analysis (DIAGRAM) study. Two Genome-wide 

Association Study (GWAS) consortium diabetes and/or diabetes related conditions have been 

recently formed- Meta-analysis of Type 2 Diabetes in African Americans Consortium (MEDIA), 

and the Genomics and Randomized Trials Network, or Genome-wide Association Research 

Network into Effects of Treatments (GARNET). Recently, a HuGE review and meta-analysis 

showed a moderate level of heterogeneity attributable to genuine variation in gene effect size for 

the PPARG Pro12Ala genetic variant, which reflected the variation observed between ethnic 

populations as well as differences in body mass index8. This may be explained by the role played 

by ethnicity and differences in dietary and habits37. Our multiethnic population, which comprised 

of European, African, Hispanic, and Asian Americans with comprehensive assessment of 

demographic and lifestyle variables, may provide meaningful findings to the literature regarding 

the association between common variants of the PPARG gene and diabetes risk. 

 Candidate gene approach, particularly at common low penetrance susceptibility loci in 

complex diseases may become a major component of following up the genes emerging from 

GWAS to establish a functional rationale underlying the importance of allelic variation38. 
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Further, a candidate gene study takes advantage of both increased statistical efficiency of 

association analysis of complex diseases together with clinical and biological understanding of 

the phenotype. Because we employed a prospective design of a well-characterized source 

population, our study thus minimized selection biases and confounding.  

In conclusion, our multiethnic case-control study of postmenopausal women replicated 

the association between the PPARG Pro12Ala genetic variant with diabetes risk and also found 

that haplotype-based analysis is more powerful than single-SNP analysis for identifying genetic 

variants in the PPARG gene with diabetes risk.  
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Table 1. Minor allele frequencies (MAFs) of the 24 tagSNPs in the PPARG gene. 

dbSNP ID 
 

SNP 
ID 

Genome 
Coordinatea 

Major/
Minor 

Allele 

MAF (%)b 
P 

for 
heterogeneit

yc 

Europea
n 

America
n 

African 
America

n 

Hispanic 
America

n 

Asian 
America

n 

Combin
ed 

 
    (n=942) (n=744) (n=276) (n=162) (n=2,124

) 
 

rs9878908 SNP1 12242462 T/C 0.2022 0.1122 0.1178 0.3302 0.1695 <.0001 
rs6798713 SNP2 12245587 T/C 0.1812 0.1938 0.1137 0.3282 0.1881 <.0001 
rs6809631 SNP3 12275647 A/T 0.2607 0.2889 0.3073 0.4785 0.2934 <.0001 
rs9817428 SNP4 12280267 C/A 0.2593 0.3616 0.3147 0.4697 0.3186 <.0001 

rs10510411 SNP5 12286849 G/A 0.2603 0.3038 0.3105 0.2638 0.2822 0.1039 
rs12629293 SNP6 12291746 A/G 0.2641 0.2293 0.3011 0.2813 0.2581 0.0577 
rs12636454 SNP7 12300214 T/C 0.2611 0.2969 0.3032 0.2719 0.2799 0.3227 
rs4518111 SNP8 12317344 C/A 0.4033 0.1835 0.3859 0.5123 0.3328 <.0001 

rs10510418 SNP9 12328563 A/C 0.3259 0.111 0.2744 0.2284 0.2369 <.0001 
rs1801282 SNP10 12333125 C/G 0.1192 0.0255 0.0655 0.0494 0.0742 <.0001 
rs1373640 SNP12 12342601 C/T 0.339 0.1198 0.2591 0.1883 0.2403 <.0001 
rs2972162 SNP13 12364793 C/T 0.5207 0.3351 0.5345 0.4286 0.4505 <.0001 

rs10510419 SNP14 12366936 G/T 0.1457 0.1159 0.2527 0.0123 0.1391 <.0001 
rs2959272 SNP16 12382833 C/A 0.5277 0.4158 0.5469 0.4294 0.4837 <.0001 
rs709150 SNP18 12391337 C/G 0.4721 0.2255 0.4063 0.5648 0.3845 <.0001 
rs709157 SNP19 12402024 G/A 0.3047 0.0875 0.2364 0.0245 0.1983 <.0001 

rs1175540 SNP20 12405243 C/A 0.3607 0.6514 0.317 0.4146 0.4607 <.0001 
rs1175544 SNP21 12407044 C/T 0.3231 0.1292 0.2473 0.3742 0.2495 <.0001 
rs1797912 SNP22 12410239 A/C 0.3672 0.1523 0.2726 0.4146 0.2846 <.0001 
rs1152002 SNP23 12411871 G/A 0.4856 0.4298 0.3727 0.4479 0.4486 0.0001 
rs3856806 SNP24 12415557 C/T 0.1303 0.0643 0.074 0.1933 0.1047 <.0001 
rs1152003 SNP25 12417055 C/G 0.3383 0.6171 0.5163 0.5185 0.4725 <.0001 
rs1152007 SNP26 12427547 C/G 0.3455 0.1808 0.3327 0.4634 0.2955 <.0001 
rs709167 SNP28 12442955 A/C 0.4601 0.2917 0.4076 0.8025 0.4204 <.0001 

a: Genome coordinate was according to chromosome 3 genomic contig (reference assembly) NT_022517.18. 
b: MAF was estimated in the controls only (The minor allele was defined based on the entire control population). 
c: The P value was estimated based on a χ2 test (d.f. = 3) for genotype distribution across the four ethnicities. 
	  



	   85	  

 
Table 2. Single-SNP association studies of the 24 tagSNPs in the PPARG gene with diabetes risk under additive modela. 

SNP ID White Black Hispanic Asian Combined P value 
 (855/872)b (301/634) (113/241) (67/151) (1336/1898)  

rs9878908 0.85(0.55-1.32) 0.75(0.35-1.61) 1.18(0.45-3.06) 1.00(0.62-1.60) 0.89(0.65-1.21) 0.46 
rs6798713 0.75(0.47-1.17) 0.98(0.57-1.67) 1.40(0.52-3.74) 1.06(0.67-1.67) 0.89(0.66-1.20) 0.44 
rs6809631 0.71(0.46-1.10) 0.78(0.50-1.23) 0.66(0.32-1.38) 0.80(0.48-1.34) 0.76(0.58-0.99) 0.04e 
rs9817428 0.76(0.49-1.17) 0.80(0.53-1.21) 0.66(0.32-1.37) 0.78(0.47-1.30) 0.78(0.60-1.00) 0.05f 

rs10510411 0.68(0.44-1.06) 0.64(0.37-1.11) 0.78(0.38-1.60) 1.06(0.66-1.71) 0.68(0.52-0.91) 0.01g 
rs12629293 0.66(0.43-1.04) 0.78(0.49-1.24) 0.78(0.38-1.58) 1.05(0.65-1.70) 0.72(0.55-0.94) 0.02h 
rs12636454 0.68(0.44-1.06) 0.79(0.52-1.21) 0.76(0.37-1.54) 1.10(0.69-1.76) 0.73(0.57-0.95) 0.02i 
rs4518111 1.36(0.91-2.03) 1.06(0.65-1.75) 1.40(0.70-2.82) 1.18(0.74-1.89) 1.20(0.94-1.54) 0.15 

rs10510418 1.12(0.74-1.69) 0.75(0.43-1.33) 0.91(0.40-2.06) 0.69(0.38-1.27) 1.03(0.79-1.36) 0.81 
rs1801282 0.62(0.35-1.12) 0.59(0.15-2.31) 0.27(0.08-0.93)c 0.21(0.04-1.04) 0.55(0.35-0.86) 0.01j 
rs1373640 1.17(0.79-1.75) 0.86(0.49-1.49) 1.14(0.53-2.46) 0.56(0.27-1.12) 1.11(0.84-1.45) 0.46 
rs2972162 1.23(0.82-1.84) 1.19(0.79-1.80) 1.02(0.51-2.04) 0.98(0.58-1.67) 1.17(0.92-1.48) 0.20 

rs10510419 1.45(0.83-2.54) 1.25(0.69-2.26) 0.98(0.39-2.45) 1.49(0.19-11.51) 1.22(0.86-1.72) 0.26 
rs2959272 1.22(0.82-1.83) 1.12(0.75-1.68) 0.99(0.49-2.00) 1.08(0.64-1.80) 1.15(0.91-1.46) 0.24 
rs709150 0.67(0.44-1.03) 0.80(0.48-1.31) 0.99(0.50-1.96) 0.94(0.56-1.57) 0.80(0.62-1.03) 0.08 
rs709157 1.32(0.88-1.98) 0.67(0.34-1.31) 0.96(0.44-2.06) ---d 1.08(0.81-1.43) 0.61 

rs1175540 1.12(0.76-1.65) 1.04(0.68-1.60) 0.97(0.46-2.03) 1.18(0.69-2.02) 1.08(0.85-1.37) 0.53 
rs1175544 1.21(0.82-1.79) 0.81(0.45-1.47) 0.99(0.45-2.17) 1.25(0.74-2.10) 1.11(0.85-1.44) 0.44 
rs1797912 1.18(0.80-1.74) 0.91(0.56-1.49) 1.09(0.49-2.45) 1.00(0.60-1.65) 1.12(0.86-1.44) 0.40 
rs1152002 0.93(0.64-1.37) 0.94(0.62-1.43) 2.01(0.92-4.41) 0.84(0.51-1.37) 1.06(0.83-1.35) 0.65 
rs3856806 0.93(0.50-1.71) 0.52(0.22-1.22) 0.31(0.09-1.07) 0.83(0.47-1.48) 0.71(0.48-1.07) 0.10 
rs1152003 1.09(0.73-1.63) 0.96(0.65-1.41) 1.72(0.84-3.50) 1.01(0.62-1.64) 1.07(0.85-1.36) 0.56 
rs1152007 1.15(0.74-1.81) 0.74(0.45-1.24) 1.10(0.46-2.64) 0.88(0.56-1.37) 0.92(0.70-1.21) 0.55 
rs709167 1.06(0.73-1.55) 1.09(0.66-1.79) 1.12(0.49-2.54) 0.86(0.47-1.57) 1.06(0.82-1.36) 0.68 

a: Adjusted OR (95% CI) for each tagSNP was estimated under the additive genetic model, using conditional logistic regression models with 
adjustments for age, ethnicity (combined analysis only), body mass index (BMI), ln(fasting insulin), ln(fasting glucose), cigarette smoking (never, 
past and current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), diabetes family 
history (presence/absence), and physical activity per week at baseline. Due to the small Asian population size, BMI, ln(fasting insulin), ln(fasting 
glucose) were excluded to cause the model to converge. 
b: Sample size is presented as cases/controls. 
c: P-value = 0.04, with q = 0.65 after FDR using the method of Benjamini and Hochberg. 
d: Result is difficult to interpret because of small sample size within strata. 



	   86	  

e: P-value = 0.04, with q = 0.19 after FDR using the method of Benjamini and Hochberg. 
f: P-value = 0.05, with q = 0.21 after FDR using the method of Benjamini and Hochberg. 
g: P-value = 0.01, with q = 0.11 after FDR using the method of Benjamini and Hochberg. 
h: P-value = 0.02, with q = 0.12 after FDR using the method of Benjamini and Hochberg. 
i: P-value = 0.02, with q = 0.12 after FDR using the method of Benjamini and Hochberg. 
j: P-value = 0.01, with q = 0.11 after FDR using the method of Benjamini and Hochberg. 
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Table 3. Association between the non-synonymous SNP (rs1801282) and diabetes risk by genotypea. 
Genotype White 

(855/872)b 
Black 

(301/634) 
Hispanic 
(113/241) 

Asian 
(67/151) 

Combined 
(1336/1898) 

rs1801282      
CC 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 
CG 0.60(0.32-1.14) 0.59(0.15-2.31) 0.17(0.04-0.77)d 0.13(0.01-1.27) 0.51(0.31-0.83)e 
GG 0.58(0.03-10.8) ---c ---e ---c 0.77(0.07-8.02) 

      
a: Adjusted OR (95% CI) for each tagSNP was estimated under the dominant genetic model, using conditional logistic regression models with 
adjustments for age, ethnicity (combined analysis only), body mass index (BMI), ln(fasting insulin), ln(fasting glucose), cigarette smoking (never, 
past and current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), diabetes family 
history (presence/absence), and physical activity per week at baseline. Due to the small Asian population size, BMI, ln(fasting insulin), ln(fasting 
glucose) were excluded to cause the model to converge. 
b: Sample size is presented as cases/controls. 
c: Participants do not possess this genotype. 
d: P value = 0.02. 
e: P value = 0.006. 
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Table 4. Haplotype-specific analyses for the PPARG haplotypes and diabetes risk in the combined populationa.  

Haplotypeb 

 
Frequency in 
controls (%) 

Frequency in 
cases (%) 

All 
 

P value 

rs709157(G/A)-rs1175540(C/A)-rs1175544(C/T) 
h000 53.6 55.7 1.00 (ref) --- 
h111 18.8 22.7 0.95(0.78-1.16) 0.61 
h010 20.4 14.9 1.45(1.18-1.77) 0.0003 
h011 5.67 4.80 0.97(0.67-1.42) 0.88 

     
rs1175540(C/A)-rs1175544(C/T)-rs1797912(A/C) 

h000 51.7 53.7 1.00 (ref) --- 
h111 22.9 25.8 1.40 (1.13-1.72) 0.27 
h100 18.2 12.8 1.02(1.00-1.03) 0.002 

     
rs12629293(A/G)-rs12636454(T/C)-rs4518111(C/A)-rs10510418(A/C)-rs1801282(C/G)-rs1373640(C/T) 

h001000 31.2 33.3 1.00 (ref) --- 
h000101 21.5 24.0 1.03(0.84-1.26) 0.77 
h110000 17.7 16.6 1.14(0.91-1.44) 0.25 
h000000 15.9 11.5 1.47(1.16-1.86) 0.001 
h110010 6.55 7.45 1.21(0.87-1.68) 0.25 

a: Adjusted OR (95% CI) for each haplotype was estimated under the additive genetic model, using logistic regression models with adjustments  
for matching factors (age, ethnicity, clinical center, time of blood draw), body mass index (BMI), ln(fasting insulin), ln(fasting glucose), cigarette 
smoking (never, past and current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), 
diabetes family history (presence/absence), and physical activity per week at baseline. 
b: At each SNP locus, “0” and “1” denote the major and minor alleles, respectively. Only those haplotypes with frequencies ≥  5% are reported. 
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Table 5. Single-SNP association studies of the 8 tagSNPs (captured in WHI-SHARe) in the PPARG gene with diabetes risk 
under additive genetic modela (n=161/921)b. 

SNP ID SNP name Referenc
e allele 

Black  
(103/592)b 

Hispanic  
(58/329)b Combined 

P-value 
for ethnic 

interaction
c 

P-value 
for 

likelihood 
ratio testd 

rs9878908 SNP_A-1875778 C 0.84(0.52-1.38) 0.90(0.43-1.88) 0.90(0.61-1.34) 0.74 0.64 

rs9817428 SNP_A-1949196 A 0.99(0.73-1.34) 0.57(0.32-1.02) 0.89(0.68-1.16) 0.14 0.45 

rs10510418 SNP_A-1971789 C 0.98(0.61-1.57) 1.04(0.56-1.91) 0.94(0.65-1.35) 0.96 0.70 

rs1801282 SNP_A-1971790 G 0.83(0.28-2.41) 0.36(0.14-0.91)e 0.60(0.31-1.16) 0.46 0.16 

rs2972162 SNP_A-1946610 T 0.95(0.69-1.31) 1.06(0.64-1.76) 1.01(0.77-1.32) 0.57 0.94 

rs10510419 SNP_A-4209319 T 0.90(0.56-1.46) 1.64(0.85-3.17) 1.16(0.79-1.68) 0.14 0.53 

rs1175544 SNP_A-8304334 T 1.06(0.68-1.65) 1.37(0.74-2.55) 1.09(0.77-1.55) 0.74 0.69 

rs1152003 SNP_A-2140799 G 1.14(0.83-1.56) 0.76(0.47-1.23) 1.04(0.80-1.35) 0.22 0.78 
a: Adjusted OR (95% CI) for each tagSNP was estimated under the additive genetic model, using  logistic regression adjustments for global 
ancestry (3 PCs), age, ethnicity (combined analysis only), body mass index (BMI), ln(insulin), ln(glucose), cigarette smoking (never, past and 
current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), diabetes family history 
(presence/absence), and physical activity per week at baseline.  
b: Sample sizes for each ethnic group are presented as cases/controls. 
c: Ethnic interaction was estimated by fitting a model with race*SNP interaction term and adjusting for global ancestry using 3 PCs. 
d: The likelihood ratio test compared model with SNP versus model without SNP. 
e: P-value = 0.03, with q = 0.23 after FDR using the method of Benjamini and Hochberg. 
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Supplementary Table 1. Single-SNP association studies of the 24 tagSNPs in the PPARG gene with diabetes risk under 
dominant genetic modela. 

SNP ID White Black Hispanic Asian Combined P value 
 (855/872)b (301/634) (113/241) (67/151) (1336/1898)  

rs9878908 0.89(0.51-1.54) 0.78(0.35-1.76) 1.13(0.41-3.10) 1.04(0.53-2.06) 0.90(0.62-1.31) 0.58 
rs6798713 0.74(0.43-1.28) 0.98(0.53-1.80) 1.37(0.49-3.82) 1.10(0.55-2.20) 0.90(0.64-1.27) 0.55 
rs6809631 0.71(0.40-1.23) 0.67(0.36-1.22) 0.54(0.21-1.35) 0.57(0.25-1.30) 0.67(0.48-0.95) 0.03 
rs9817428 0.76(0.44-1.31) 0.61(0.34-1.12) 0.53(0.21-1.34) 0.55(0.24-1.24) 0.68(0.48-0.96) 0.03 

rs10510411 0.69(0.40-1.20) 0.63(0.33-1.22) 0.69(0.28-1.72) 0.98(0.51-1.88) 0.65(0.46-0.93) 0.02 
rs12629293 0.69(0.39-1.21) 0.78(0.45-1.36) 0.68(0.28-1.65) 0.97(0.51-1.85) 0.70(0.50-0.98) 0.04 
rs12636454 0.72(0.42-1.24) 0.74(0.43-1.29) 0.65(0.27-1.56) 1.08(0.57-2.04) 0.71(0.51-0.99) 0.05 
rs4518111 1.41(0.78-2.53) 1.15(0.64-2.09) 1.73(0.61-4.87) 1.07(0.50-2.27) 1.34(0.94-1.90) 0.10 

rs10510418 1.00(0.60-1.68) 0.68(0.35-1.32) 1.23(0.42-3.56) 0.83(0.41-1.64) 1.00(0.71-1.40) 0.99 
rs1801282 0.60(0.32-1.12) 0.59(0.15-2.31) 0.19(0.04-0.81)d 0.21(0.04-1.04) 0.51(0.32-0.83) 0.01h 
rs1373640 1.07(0.65-1.77) 0.83(0.43-1.60) 1.77(0.63-4.99) 0.59(0.27-1.28) 1.10(0.78-1.54) 0.58 
rs2972162 0.97(0.51-1.84) 1.09(0.64-1.87) 2.02(0.61-6.71) 0.99(0.45-2.16) 1.17(0.82-1.68) 0.38 

rs10510419 1.28(0.68-2.39) 1.13(0.58-2.21) 0.87(0.30-2.53) 1.49(0.19-11.5) 1.11(0.75-1.64) 0.60 
rs2959272 0.85(0.44-1.65) 1.03(0.56-1.88) 1.62(0.50-5.20) 1.20(0.54-2.66) 1.10(0.75-1.60) 0.63 
rs709150 0.43(0.22-0.85)c 0.78(0.43-1.43) 1.94(0.58-6.52) 0.93(0.38-2.29) 0.75(0.52-1.09) 0.13 
rs709157 1.29(0.78-2.14) 0.67(0.33-1.39) 1.18(0.45-3.06) ---g 1.04(0.74-1.48) 0.81 

rs1175540 1.03(0.61-1.73) 0.84(0.33-2.14) 1.42(0.55-3.65) 1.17(0.53-2.59) 1.12(0.78-1.62) 0.54 
rs1175544 1.18(0.70-2.00) 0.79(0.40-1.55) 1.42(0.53-3.79) 1.20(0.58-2.51) 1.18(0.83-1.66) 0.36 
rs1797912 1.13(0.67-1.92) 0.84(0.45-1.60) 1.57(0.56-4.34) 0.96(0.46-1.97) 1.16(0.82-1.63) 0.41 
rs1152002 0.84(0.45-1.57) 0.88(0.49-1.61) 1.57(0.56-4.34) 0.79(0.39-1.56) 1.12(0.78-1.60) 0.55 
rs3856806 0.94(0.50-1.77) 0.52(0.22-1.22) 4.51(1.28-15.9)e 0.79(0.39-1.59) 0.70(0.46-1.07) 0.10 
rs1152003 1.01(0.59-1.72) 0.75(0.36-1.58) 0.22(0.05-0.97)f 1.00(0.43-2.32) 1.01(0.70-1.45) 0.97 
rs1152007 1.14(0.64-2.04) 0.76(0.41-1.42) 1.77(0.59-5.33) 0.94(0.46-1.93) 0.94(0.66-1.35) 0.74 
rs709167 1.24(0.70-2.21) 1.28(0.70-2.36) 0.99(0.32-3.09) 0.75(0.17-3.27) 1.23(0.85-1.77) 0.27 

a: Adjusted OR (95% CI) for each tagSNP was estimated under the dominant genetic model, using conditional logistic regression models with 
adjustments for age, ethnicity (combined analysis only), body mass index (BMI), ln(fasting insulin), ln(fasting glucose), cigarette smoking (never, 
past and current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), diabetes family 
history (presence/absence), and physical activity per week at baseline. Due to the small Asian population size, BMI, ln(fasting insulin), ln(fasting 
glucose) were excluded to cause the model to converge. 
b: Sample size is presented as cases/controls. 
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c: P-value = 0.02, with q = 0.37 after FDR using the method of Benjamini and Hochberg. 
d: P-value = 0.03, with q = 0.30 after FDR using the method of Benjamini and Hochberg. 
e: P-value = 0.02, with q = 0.30 after FDR using the method of Benjamini and Hochberg. 
e: P-value = 0.05, with q = 0.37 after FDR using the method of Benjamini and Hochberg. 
g: Result is difficult to interpret because of small sample size within strata. 
h: P-value = 0.01, with q = 0.16 after FDR using the method of Benjamini and Hochberg. 
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Supplementary Table 2. Single-SNP association studies of the 24 tagSNPs in the PPARG gene with diabetes risk under 
recessive genetic modela. 

SNP ID White Black Hispanic Asian Combined P value 
 (855/872)b (301/634) (113/241) (67/151) (1336/1898)  

rs9878908 0.59(0.20-1.73) ---d ---d 0.91(0.35-2.36) 0.71(0.31-1.66) 0.43 
rs6798713 0.50(0.14-1.79) 0.91(0.17-5.00) ---d 1.07(0.44-2.62) 0.72(0.30-1.71) 0.45 
rs6809631 0.48(0.17-1.34) 0.93(0.33-2.64) 0.91(0.18-4.77) 0.98(0.45-2.16) 0.79(0.44-1.43) 0.44 
rs9817428 0.54(0.18-1.57) 1.05(0.46-2.39) 0.89(0.18-4.32) 0.96(0.44-2.08) 0.85(0.49-1.47) 0.56 

rs10510411 0.41(0.14-1.21) 0.49(0.14-1.76) 0.91(0.19-4.42) 1.43(0.48-4.24) 0.55(0.29-1.04) 0.07 
rs12629293 0.33(0.11-1.01) 0.54(0.14-2.00) 0.95(0.19-4.84) 1.39(0.47-4.12) 0.51(0.26-0.99) 0.05e 
rs12636454 0.33(0.11-1.02) 0.70(0.26-1.88) 1.00(0.20-5.09) 1.32(0.46-3.82) 0.55(0.30-1.03) 0.06 
rs4518111 1.66(0.79-3.48) 0.71(0.16-3.16) 1.32(0.36-4.87) 1.49(0.68-3.29) 1.15(0.70-1.87) 0.59 

rs10510418 1.83(0.70-4.81) 1.08(0.15-7.63) 0.38(0.06-2.33) ---d 1.23(0.63-2.41) 0.55 
rs1801282 0.60(0.03-11.3) 0.82(0.15-4.56) ---d ---d 0.79(0.08-8.37) 0.85 
rs1373640 1.87(0.73-4.76) 1.81(0.75-4.40) 0.38(0.06-2.30) ---d 1.27(0.66-2.42) 0.48 
rs2972162 1.76(0.92-3.39) 4.32(0.58-32.0) 0.53(0.16-1.78) 0.96(0.36-2.57) 1.30(0.85-1.99) 0.22 

rs10510419 14.4(1.71-121)c 1.40(0.67-2.94) 1.80(0.16-20.4) ---d 3.83(1.15-12.82) 0.03f 
rs2959272 1.90(1.00-3.62) 0.65(0.17-2.45) 0.58(0.17-2.00) 1.00(0.40-2.50) 1.35(0.90-2.00) 0.14 
rs709150 0.87(0.45-1.67) 0.30(0.02-5.56) 0.49(0.14-1.67) 0.92(0.42-2.03) 0.74(0.47-1.17) 0.20 
rs709157 1.98(0.73-5.43) 1.13(0.65-1.97) 0.44(0.07-2.85) ---d 1.34(0.65-2.75) 0.43 

rs1175540 1.64(0.67-4.02) 0.78(0.12-4.97) 0.24(0.04-1.55) 1.34(0.52-3.45) 1.09(0.71-1.65) 0.70 
rs1175544 1.67(0.68-4.10) 1.07(0.30-3.84) 0.28(0.04-1.94) 1.58(0.61-4.12) 1.05(0.58-1.90) 0.88 
rs1797912 1.59(0.69-3.69) 1.00(0.47-2.16) 0.33(0.05-2.37) 1.07(0.42-2.76) 1.16(0.66-2.04) 0.61 
rs1152002 0.99(0.54-1.83) 1.08(0.62-1.87) 0.83(0.18-3.78) 0.83(0.32-2.11) 1.02(0.67-1.54) 0.94 
rs3856806 0.46(0.01-23.8) 0.42(0.10-1.73) ---d 0.83(0.17-4.08) 0.62(0.06-6.13) 0.68 
rs1152003 1.44(0.63-3.34) 0.64(0.20-2.04) 2.43(0.73-8.07) 1.02(0.49-2.14) 1.21(0.81-1.80) 0.35 
rs1152007 1.37(0.51-3.65) ---d 1.45(0.28-7.48) 0.71(0.32-1.60) 0.79(0.43-1.45) 0.45 
rs709167 0.90(0.47-1.71) 0.91(0.17-5.00) 0.51(0.11-2.31) 0.85(0.39-1.83) 0.86(0.55-1.36) 0.53 

a: Adjusted OR (95% CI) for each tagSNP was estimated under the recessive genetic model, using conditional logistic regression models with 
adjustments for age, ethnicity (combined analysis only), body mass index (BMI), ln(fasting insulin), ln(fasting glucose), cigarette smoking (never, 
past and current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), diabetes family 
history (presence/absence), and physical activity per week at baseline. Due to the small Asian population size, BMI, ln(fasting insulin), ln(fasting 
glucose) were excluded to cause the model to converge. 
b: Sample size is presented as cases/controls. 
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c: P-value = 0.01, with q = 0.32 after FDR using the method of Benjamini and Hochberg. 
d: Result is difficult to interpret because of small sample size within strata. 
e: P-value = 0.05, with q = 0.40 after FDR using the method of Benjamini and Hochberg. 
f: P-value = 0.03, with q = 0.40 after FDR using the method of Benjamini and Hochberg. 
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Supplementary Table 3. Single-SNP association studies of the 8 tagSNPs (captured in WHI-SHARe) in the PPARG gene with 
diabetes risk under dominant genetic modela (n=161/921)b. 

SNP ID SNP name Referen
ce allele 

Black  
(103/592)b 

Hispanic  
(58/329)b Combined 

P-value 
for ethnic 

interaction
c 

P-value 
for 

likelihood 
ratio testd 

rs9878908 SNP_A-1875778 C 0.87(0.50-1.49) 0.82(0.37-1.81) 0.90(0.58-1.40) 0.92 0.67 

rs9817428 SNP_A-1949196 A 1.08(0.70-1.66) 0.61(0.30-1.28) 0.98(0.68-1.41) 0.24 0.98 

rs10510418 SNP_A-1971789 C 1.03(0.61-1.75) 1.03(0.50-2.15) 0.98(0.65-1.49) 0.89 0.91 

rs1801282 SNP_A-1971790 G 0.84(0.28-2.48) 0.30(0.11-0.82)e 0.57(0.29-1.14) 0.38 0.14 

rs2972162 SNP_A-1946610 T 0.98(0.50-1.92) 1.11(0.47-2.64) 1.07(0.64-1.80) 0.91 0.78 

rs10510419 SNP_A-4209319 T 10.8(0.54-213) ---f ---f ---f ---f 

rs1175544 SNP_A-8304334 T 1.16(0.71-1.92) 1.87(0.88-3.95) 1.28(0.86-1.92) 0.50 0.27 

rs1152003 SNP_A-2140799 G 1.01(0.57-1.78) 0.64(0.30-1.40) 0.90(0.57-1.41) 0.39 0.63 
a: Adjusted OR (95% CI) for each tagSNP was estimated under the dominant genetic model, using logistic regression adjustments for global 
ancestry (3 PCs), age, ethnicity (combined analysis only), body mass index (BMI), ln(insulin), ln(glucose), cigarette smoking (never, past and 
current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), diabetes family history 
(presence/absence), and physical activity per week at baseline.  
b: Sample sizes for each ethnic group are presented as cases/controls. 
c: Ethnic interaction was estimated by fitting a model with race*SNP interaction term and adjusting for global ancestry using 3 PCs. 
d: The likelihood ratio test compared model with SNP versus model without SNP. 
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e: P-value = 0.02, with q = 0.16 after FDR using the method of Benjamini and Hochberg. 
f: Result is difficult to interpret because of small sample size within strata 
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Supplementary Table 4. Single-SNP association studies of the 8 tagpSNPs (captured in WHI-SHARe) in the PPARG gene with 
diabetes under recessive modela (n=161/921)b. 

SNP ID SNP name Reference 
allele 

Black  
(103/592)b 

Hispanic  
(58/329)b Combined 

P-value 
for 

ethnic 
interact

ionc 

P-value 
for 

likelihoo
d ratio 

testd 

rs9878908 SNP_A-1875778 C 0.47(0.07-3.33) 2.48(0.21-29.0) 0.77(0.16-3.61) 0.34 0.78 

rs9817428 SNP_A-1949196 A 0.80(0.42-1.52) 0.30(0.01-1.10) 0.64(0.36-1.12) 0.22 0.13 

rs10510418 SNP_A-1971789 C 0.58(0.10-3.18) 1.09(0.22-5.44) 0.61(0.18-2.03) 0.68 0.37 

rs1801282 SNP_A-1971790 G ---e ---e 1.31(0.004-43.2) 0.98 0.88 

rs2972162 SNP_A-1946610 T 0.93(0.60-1.42) 1.05(0.48-2.31) 0.98(0.68-1.43) 0.68 0.92 

rs10510419 SNP_A-4209319 T 0.83(0.51-1.37) 1.51(0.74-3.09) 1.05(0.70-1.56) 0.16 0.92 

rs1175544 SNP_A-8304334 T 0.51(0.10-2.51) 0.28(0.002-3.16) 0.36(0.10-1.30) 0.68 0.08 

rs1152003 SNP_A-2140799 G 1.30(0.83-2.03) 0.75(0.34-1.66) 1.18(0.80-1.73) 0.32 0.41 
a: Adjusted OR (95% CI) for each tagSNP was estimated under the recessive genetic model, using logistic regression adjustments for global 
ancestry (3 PCs), age, ethnicity (combined analysis only), body mass index (BMI) ), ln(insulin), ln(glucose), cigarette smoking (never, past and 
current), alcohol intake (never, past and current), hormone replacement therapy (HRT) usage (never, past, current), diabetes family history 
(presence/absence), and physical activity per week at baseline.  
b Sample sizes for each ethnic group are presented as cases/controls. 
c Ethnic interaction was estimated by fitting a model with race*SNP interaction term and adjusting for global ancestry using 3 PCs. 



	   97	  

d The likelihood ratio test compared model with SNP versus model without SNP. 
e Result is difficult to interpret because of small sample size within strata. 
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Figure 1. The schematic presentation showed the position of 24 tagSNPs that spanned the peroxisome proliferator-activated 
receptor γ (PPARG) genomic region. 
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Figure 2. Sliding-window (window width = 3) haplotype-based analysis of 24 PPARG tagSNPs using additive genetic model. 
Haplotype effects were estimated for the combined multiethnic population, using an omnibus likelihood ratio test. The x-axis 
denoted the sliding window frames, and the y-axis denoted the –log10(P value). A –log10(P value) > 2.64 was employed as the 
global significance threshold using Bonferroni correction for 22 window frames (red line). 
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3.1 Introduction 

Genome wide association studies (GWAS) have been a commonly used method for 

disease gene discovery in recent decades. GWAS have also facilitated the detection of 

biological contributions to complex traits and diseases; for example, the principal pattern 

appears to be of many loci but with small effects individually on phenotype1. Additionally, 

GWAS findings provide critical information about the role of common genetic variants to 

disease traits. However, simply investigating single nucleotide polymorphism (SNP) with the 

trait of interest is likely to be inadequate to dissect the complex genetic architecture of many 

common diseases2-11. GWAS can provide primary genetic information that can be followed up 

by additional analysis via statistical procedures to accumulate evidence. These procedures may 

potentially provide helpful information to prioritize the most important group of results before 

further functional validation can proceed10,12,13. 

Recently, there is an increasing interest in utilizing pathways-based analysis to excavate 

the breadth of GWAS signals that may be collectively clustered in pathways of significance even 

though individually they may not reach genome-wide significance14. Biological pathways 

encapsulate molecular and biological processes and can be detected as clusters of genes that are 

related in a functional manner. In most pathway-based GWAS studies, a pathway usually refers 

to a group of biologically linked genes found in single or multiple databases15. GWAS pathway 

analysis (GWASPA) allows for assimilating GWAS signals in some known genetic and 

molecular pathways to investigate whether a cluster of related genes in the same functional 

pathway are associated conjointly with the specific disease trait of interest9.  For example, in 

studies of Crohn’s disease16-19, age-related macular degeneration20-22, Parkinson’s disease23, 

amyotrophic lateral sclerosis24, neuropsychiatric disorders25-28, and rheumatoid arthritis29,30,  
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pathway-based approaches have provided additional informative findings beyond  traditional 

single-SNP analysis in GWAS.  More recently, the Wellcome Trust Case Control Consortium 

(WTCCC) Type 2 Diabetes (T2D) study comprised of 4,862 Caucasian individuals reported that 

biological pathways are jointly associated with T2D and WNT signaling was the top pathway, 

filling in some portion of the ‘missing heritability’9,31-33. However, the literature lacks a 

comprehensive report of T2D GWASPA study in minority populations, especially among 

African and Hispanic American women.  

To take advantage of these recent developments, we proposed to characterize the SNPs 

effect using a pathway-based approach and investigate its role in the development of vascular 

disease (VD) in a prospective cohort of 12,008 African American and Hispanic American 

women enrolled in the Women’s Health Initiative SNP Health Association Resource (WHI-

SHARe).  

 

3.2 Research Design and Methods 

3.2.1 Study participants 

WHI-SHARe participants are women enrolled in the Women’s Health Initiative (WHI) 

whose self-reported ethnicity was African or Hispanic American. Please refer to the Section 

2.2.1 in Chapter 2 (P.12-13)34,35. The WHI-SHARe cohort included African (n=12,151) and 

Hispanic American (n=5,469) postmenopausal women. Among the eligible participants with 

available DNA, 8,515 African Americans and 3,642 Hispanic Americans were randomly chosen.  
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3.2.2 Vascular disease definition 

 The incident cases of CVD were classified based on any event of myocardial infarction 

(MI), stroke, deep vein thrombosis, and pulmonary embolism during the follow-up. The incident 

cases of T2D were also identified on the basis of those clinical cases that had no prior history of 

T2D at baseline and diagnosed during the follow-up period. Those women who were free of T2D 

and CVD were used as controls. We defined VD by diagnosis of cardiovascular (CVD) and/or 

T2D because the two traits have shared risk factors. Obesity, insulin resistance, endothelial 

dysfunction, dyslipidemia, proinflammatory and prothrombotic factors are common risk factors 

for both CVD and T2D. However, etiologic mechanisms underlying these factors are poorly 

understood36,37. We integrated information on genotypes using a pathway-based approach to 

construct association networks for VD risk.  

 

3.2.3 Genotyping, bioinformatics assessment of pathway databases, and statistical analysis 

 Genotyping was conducted on the Affymetrix Genome-wide Human 6.0 array 

(Affymetrix ®, Santa Clara, CA).  We adopted a gene-set enrichment analysis (GSEA) provided 

by the GenGen suite (http://www.openbioinformatics.org/gengen/)38. We formatted the 

genotyping data files using SNP and Gene mappings from the UCSC Genome Browser 

annotation (genome build: hg18). The human biological pathways were defined using Gene 

Ontology (GO)39, BioCarta, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)40 

databases. We utilized the most updated versions downloaded from the GenGen’s website at the 

time of conducting the analysis.  

 In brief, our GSEA involves the following five main steps. First, we conducted 

association analyses to generate P values for all 871, 309 SNPs that passed quality control 
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including relatedness and admixture checking. Second, we mapped specific SNPs to specific 

genes using those with the highest χ2 statistics within a 500 kb flanking window on both side of 

the gene to denote the overall test statistic. Thirdly, we ranked each gene and aggregate them into 

functional groups (537 and 475 pathways met the criteria of containing between 20 and 200 

GWAS-captured genes for the African and Hispanic American women respectively). Fourth, we 

identified over-representation of significant SNPs in clusters using a Kolmogorov-Smirnov-like 

running sum statistic with normalization to take into account different gene sizes. Finally, we 

conducted analyses to detect pathways associated with VD risk32,38.  

 

3.3 Results 

 A total of 45 pathways reached a nominal P value < 0.05 among 5,729 African American 

women; while 13 pathways reached a nominal P value < 0.05 in 2,869 Hispanic Americans. 

Table 1 and 2 shows the top 10 pathways associated with incident VD (T2D and/or CVD) for 

African and Hispanic women, respectively. No pathways were associated with VD after 

adjusting for multiple comparisons (false discovery rate q value < 0.05) in either African or 

Hispanic American women.  

 Among African American women, the top five pathways, ranked using nominal P values, 

were glycerolipid metabolism (hsa00561), regulation of ion transport (GO0043269), urea cycle 

and metabolism of amino groups (hsa00220), propanoate metabolism (hsa00640), and autophagy 

(GO0006914). 

For Hispanic group, the top ten pathways were mostly related to biological processes, 

including positive regulation of mononuclear cell proliferation (GO0032946), positive regulation 

of lymphocyte activation (GO0051251), regulation of mononuclear cell proliferation 
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(GO0032944), notch signaling pathway (hsa04330), and regulation of cell migration 

(GO0030334).  We plan to further examine the association between the genes among the top 

pathways with VD risk in future. 

Figure 1 and 2 are quantile-quantile (QQ) plots of the 537 and 475 pathways for both 

ethnic groups. There were modest deviations away from the null distribution, slightly outside the 

95% confidence intervals. This deviation may have been due to residual confounding because we 

were not able to adjust for covariates, including global ancestry, due to the limitation of the 

GenGen program, which used chi-squared test statistics and could not handle covariates9. We 

plan to further investigate other analytical options to overcome this limitation. However, we did 

partially account for population stratification by stratifying the analysis by ethnicity. 

 

3.4 Discussion 

The major finding from our study is that vascular diseases genes intersect in several 

pathways. This is consistent with a recent study that showed manifold T2D-related loci fall in 

differentiated biological pathways32. We still need to replicate this study with another 

independent study population.  

The top pathway (i.e. with the smallest nominal P value) among the African American 

group was glycerolipid metabolism (hsa00561). Glycerolipid acyltransfereases was known to 

play a critical part in pathophysiological processes of triglyceride (TAG) metabolism and energy 

balance. Monoacylglycerol (MGAT2) and diacylglycerol (DGAT1) acyltransferases are 

important enzymes linked with intestinal triglyceride absorption. These enzymes were shown to 

be involved in TAG metabolism and whole body energy homeostasis. The study also suggested 
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that inhibition of these enzymes may offer therapeutic benefits for metabolic diseases including 

T2D41. 

The PPAR signaling pathway was also among the ten top pathways. According to the 

KEGG pathway database, PPARs are nuclear hormone receptors being activated by fatty acids 

and their by-products. PPAR-α, PPAR-β, and PPAR-γ are the three subtypes of PPAR and they 

show various expression patterns in vertebrates. PPAR-α is mainly involved in the clearance of 

cellular or circulating lipids through regulating gene expression included in lipid metabolism in 

both skeletal muscle and liver. PPAR-β plays a role in cell proliferation and lipid oxidation. 

PPAR-γ disseminates adipocyte differentiation to augment blood glucose uptake42.  

Even though GWASPA is attractive, its analytical methods are still at an early 

development stage, and additional factors regarding statistics need to be addressed. For example, 

some biases related to gene-chip coverage, gene and pathway size, linkage disequilibrium (LD) 

pattern among SNPs, and adjustment for covariates such as population stratification remain to be 

solved43. First, the analytical approach we used (the GenGen program) was to choose a single 

SNP with the most significant association with VD from each gene among all the SNPs residing 

in that gene. This method may not be ideal because it does not sufficiently capture the gene 

effect with a single SNP. Instead, SNPs that are responsible for functionality should be used to 

represent a gene. Therefore, it would be better if a gene score can be defined by multiple SNPs 

that can characterize a gene rather than only using a SNP with the most significant statistics with 

the disease trait33. We plan to further investigate this analytical approach. Second, the 

significance of pathways that contain several genes with a few independent association signals 

may disappear. This may be part of the reason that our study did not yield any pathways that 

reach the FDR significance threshold of 0.05. It may be preferable if the pathways with genes of 



	   112	  

multiple independent associated SNPs are weighted according to the specific effect sizes. Third, 

we used all available SNPs to recapitulate information from a pathway. This can affect the power 

for pathway-based analysis because it includes some SNPs that are unrelated to VD. Instead, 

using a SNP screening step combining with some dimension reduction techniques may remove 

some of these irrelevant SNPs and thus improve the signal dilution artifact in a more efficient 

way13,44. Other approaches such as SNP/Variant set Enrichment Analysis have also been 

proposed to choose various SNPs to characterize each gene using some adaptive truncated 

product statistic10,33. Fourth, when several SNPs are involved in the enrichment score calculation 

such as in our case, LD patterns among these SNPs may affect the quality of the score. Wang et 

al. provided a partial solution to control for this bias in the GenGen program by introducing a 

normalization step in the calculation of the gene-set enrichment scores such as scaling using the 

mean score estimated from permutation tests33,38. With the improvements mentioned above, we 

may be able to identify biological pathways that are significantly associated with VD risk using 

the GWASPA. 

In spite of gene sets and pathways, the identified variants associated with VD risk in our 

analysis still explain only a small fraction of the heritability. Whether the so-called “missing 

heritability” will encompass rare variants, structural variants, epigenetic effects or some other 

unknown mechanisms remains to be seen14. 

To conclude, using WHI-SHARe GWAS data and a pathway-based analytical approach, 

our study observed that SNPs associated with vascular disease cluster into multiple biological 

pathways. We are also in the process of replicating this finding in another independent study 

population.
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Table 1. Top 10 pathways associated with incident vascular disease (T2D and/or CVD) 
among African American women in the WHI-SHARe cohort (n=5729). 
Database Pathway Gene Size Nominal  

P-value 
KEGG Glycerolipid metabolism 

(hsa00561) 
45 0.001 

GO Regulation of ion transport 
(GO0043269) 

21 0.001 

KEGG Urea cycle and metabolism of amino groups 
(hsa00220) 

21 0.001 

KEGG Propanoate metabolism 
(hsa00640) 

33 0.002 

GO Autophagy 
(GO0006914) 

21 0.002 

KEGG PPAR signaling pathway 
(hsa03320) 

65 0.002 

GO Nuclear transport 
(GO0051169) 

135 0.003 

KEGG Nucleotide excision repair 
(hsa03420) 

38 0.005 

GO Segmentation 
(GO0035282) 

31 0.006 

KEGG Mismatch repair 
(hsa03430) 

22 0.006 

*Pathways are ranked by nominal p-value. 
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Table 2. Top 10 pathways associated with incident vascular disease (T2D and/or CVD) 
among Hispanic American women in the WHI-SHARe cohort. (n=2869) 
Database Pathway Gene Size Nominal  

P-value 
GO Positive regulation of mononuclear cell proliferation 

(GO0032946) 
31 0.008 

GO Positive regulation of lymphocyte activation (GO0051251) 59 0.01 
GO Regulation of mononuclear cell proliferation 

(GO0032944) 
41 0.02 

KEGG Notch signaling pathway 
(hsa04330) 

35 0.02 

GO Regulation of cell migration 
(GO0030334) 

40 0.02 

BioCarta Cell cycle: g2/m checkpoint 
(g2Pathway) 

21 0.02 

GO Calcium-dependent cell-cell adhesion 
(GO0016339) 

24 0.02 

GO Limb development 
(GO0060173) 

42 0.02 

GO Phospholipid transport 
(GO0015914) 

21 0.04 

GO Oxidoreductase activity 
(GO0016712) 

24 0.04 

*Pathways are ranked by nominal p-value. 
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Figure 1. Q-Q plot that shows the P values based on the WHI-SHARe African American 
women data. Dashed lines denote 95% confidence interval. 
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Figure 2. Q-Q plot that shows the P values based on the WHI-SHARe Hispanic women 
data. Dashed lines denote 95% confidence interval. 
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4.1 Introduction 

 Obesity is a well-known predictor for metabolic diseases such as diabetes. Obesity may 

influence diabetes through pleiotropic genetic effects of obesity loci such as the well known FTO 

and TMEM18, or as an environmental effect by impairing insulin resistance and beta-cell 

dysfunction through secretion of free fatty acids and adipokines1. Apart from diet and lifestyle 

determinants, most of the population variation in body mass index (BMI), a commonly used 

measure of obesity, is governed by genetic factors2-4. Several loci such as INSIG2, FTO, MC4R, 

TMEM18, GNPDA2, BDNF, NEGR1, SH2B1, ETV5, MTCH2, KCTD15, LCT, and A2BP1, have 

been shown to be associated with BMI in multiple populations using a genome-wide approach3-9. 

However, some of these genes were not replicated in other independent studies. 

 Glycated hemoglobin (HbA1C) results from the nonenzymatic glycation of hemoglobin 

molecules. Due to the fact that the glycation process is irreversible and is directly proportional to 

intracellular glucose concentrations, HbA1C has become an index of the mean glycemic measure 

over the average life span of erythrocytes. Therefore, the American Diabetes Association has 

proposed HbA1C as a diagnostic criterion for diabetes10,11. HbA1C levels have also been 

reported to be a strong risk factor of diabetes development12,13. Possibly through the modulation 

of hematologic parameters or blood glucose, HbA1C levels are likely to be genetically 

determined because the heritability of HbA1C levels are comparatively high (47-59%)14,15. In a 

previous study, GCK, SLC30A8, HK1 and G6PC2 were the genetic loci identified to be 

associated with HbA1C levels in non-diabetic individuals. CAPN10, RETN, ADIPOQ, TCF7L2, 

SORCS1, FN3K, HFE, TMPRSS6, ATP11A/TUBGCP3, ANK1, SPTA1, BNC1, GSC, and WDR72 

have also been described with glycated hemoglobin in candidate gene studies, genome-wide 
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association studies (GWAS) and meta-analysis of GWAS11-13,15-17. However, relatively little is 

known about the role of genetic variations in the regulation of glucose concentrations.  

 In this study, we utilized data from the Framingham Heart Study (FHS) 500K Project to 

further investigate the association of two diabetes-related quantitative traits, i.e. BMI and 

HbA1C levels, using a new analytic method called Pedigree-based GWAS (unpublished) 

implemented in the Mendel software package18. We also planned to validate the SNPs among 

several genes that were known to be related to BMI in previous studies. 

 

4.2 Research Design and Methods 

4.2.1 Study Populations 

The FHS is a joint project of the National Heart, Lung and Blood Institute and Boston 

University. In 1948, the researchers recruited 5,209 men and women between the ages of 30 and 

62 from the town of Framingham, Massachusetts, and began the first round of extensive physical 

examinations and lifestyle interviews that they would later analyze for common patterns related 

to CVD development. Since 1948, the subjects have returned to the study every two years for an 

examination consisting of a detailed medical history, physical examination, and laboratory tests.  

In 1971, the study enrolled a second generation cohort, which consists of 5,124 of the original 

participants' adult children and their spouses, to participate in similar examinations. The second 

examination of the Offspring cohort occurred eight years after the first examination, and 

subsequent examinations have occurred approximately every four years thereafter. In April 2002 

the Study entered a new phase: the enrollment of a third generation of participants, the 

grandchildren of the original cohort. The first examination of the third generation study was 
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completed in July 2005 and involved 4,095 participants. Thus, the FHS has evolved into a 

prospective, community-based, three-generation family study.  

Participants from these three generations underwent genotyping with the Affymetrix 

500K GeneChip. Participants (n =6,852) from the three generations were genotyped for the 

Affymetrix GeneChip Human Mapping 500K SNP set. As shown in Table 1, there were 357 

participants from the original cohort, 2,584 participants from the second generation, 96 spouses 

of second generation including men and women, and 3,815 participants from the third 

generation. A total of 6,752 white participants (3,072 males and 3,680 females) had genotyping 

and BMI values available; whereas 2,533 participants, with 1,099 males and 1,434 females, had 

genotyping and HbA1C values available. 

 

4.2.2 Mean BMI and HbA1C levels definition 

 Body weight and height were measured from examination cycle 1 to examination cycle 

28 for the original cohort, examination cycle 1 to 8 for the second generation cohort, and 

examination 1 in the third generation cohort. BMI was then calculated using this equation:  

{Weight in pound/[(height in inch) x (height in inch)]} x 703. Mean BMI was then calculated by 

taking average of all available examination cycles. Among 6,752 participants without missing 

mean BMI values, the average of the mean BMI was 26.8 (range: 15.6-60.5) with a standard 

deviation of 5.07, as shown in Table 1.  

 HbA1C levels were measured in examination cycles 19/20 and 22 in the original cohort 

and examination cycle 7 in the second generation cohort. The mean HbA1C levels were obtained 

by taking the average of all available measurements. Among 2,533 participants without missing 

mean HbA1C levels, the average of the mean HbA1C levels was 5.6 (range: 3.58-13.2) with a 
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standard deviation of 0.88, as shown in Table 1. Age was also averaged over the examination 

cycles.  

 

4.2.3. Genotyping and Quality Control 

 Framingham participants were genotyped using the Affymetrix (Santa Clara, CA) 

GeneChip Human Mapping 500K Array Set19, which produced approximately 500,568 SNPs. 

370,563 SNPs remained after using a genotyping success rate per SNP of 0.90 and minor allele 

frequencies for founder > 0.05. 6,748 and 2,529 individuals remained for the BMI and HbA1C 

traits respectively after using a genotyping success rate per person of 0.90.  

 

4.2.4 Statistical Analysis 

 The association analyses for both BMI and HbA1C traits were performed using the 

pedigree-based GWAS option in Mendel 12 beta version (unpublished). This new method 

utilizes score tests instead of likelihood ratio tests to overcome the current computational 

bottleneck for dense marker mapping in pedigrees. Statistical models were adjusted for gender 

and age. We did not adjust for population stratification because our study participants are all 

whites. To account for multiple comparisons, we applied a Bonferroni threshold of 1.35E-07 (i.e. 

0.05/370563) and a false discovery rate (FDR) q value threshold of 0.05. 

 To validate this new analytical method, we tested the association between SNPs from six 

previously published genes (INSIG1, INSIG2, PPARG, ADIPOQ, ESR1 and LEP) that showed 

association with BMI6 using this new method. We first extracted 494 SNPs among these six 

genes and investigated their association with the BMI trait.  
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4.3 Results  

4.3.1 GWAS on mean BMI 

 Table 2 presents the top fifteen signals for the BMI trait, which includes relevant 

examination cycles and adjustment for gender and age. The top SNP rs17627690 is 3.02 kb 

upstream from the polycystic kidney disease 1 like 1 (PKD1L1) gene. From Refseq, this gene 

encodes a member of the polycystin protein family that contains 11 transmembrane domains, a 

receptor for egg jelly (REJ) domain, and a polycystin-1, lipoxygenase, alpha-toxin (PLAT) 

domain. The encoded protein may be involved in the male reproductive system. Alternative 

splice variants have been described, however their biological nature has not been determined.   

Among these signals, three SNPs (rs13373826, rs11163494, and rs211787) are located in a 

known gene, solute carrier family 44member 5 gene (SLC44A5), which is also known as CTL5. 

This gene is protein coding, however, not much has been published about this gene in the 

literature. Figure 1 shows the manhattan plot for all 370,563 SNPs that passed the quality 

control criteria. By employing FDR, the top SNP also reached a significant level of q value 

<0.05. 

We also ran the same analysis on BMI using the latest available measurements with the 

last observable age as covariate. The top 15 signals are shown in Table 3 and Figure 2. A top hit 

passed the Bonferroni threshold with a P value of 1.09E-07. However, this genetic variant has no 

known function. The other results are similar to what was obtained using the average BMI 

values, except that one top SNP (rs17629371) located in the EGF-like repeats and discoidin I-

like domains 3 (EDIL3) genomic region. The protein encoded by this gene is known to be an 

integrin ligand, which plays a role in angiogenesis. A deleted locus of this gene was also found 

in childhood obesity cases20. The top six SNPs passed the FDR threshold of q value < 0.05. 
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4.3.2 GWAS on mean HbA1C levels 

 The 15 top signals for the HbA1C trait after adjusting for gender and age are presented in 

Table 4.  One of the top SNPs rs7540760, residing in the LAX1 gene (also known as LAX gene), 

lied in the promoter or regulatory region.  The LAX1 gene is known to be protein coding. The 

manhattan plot for the mean HbA1C levels is shown in Figure 3.  

  

4.3.3 Validation results for known genes associated with BMI 

 In addition, we identified 494 SNPs in six genes (INSIG1, INSIG2, PPARG, ADIPOQ, 

ESR1 and LEP) that were previously shown to have association with BMI. Except for the 

ADIPOQ gene, 30 SNPs residing in or near to the INSIG1, INSIG2, PPARG, ESR1 and LEP 

genomic regions passed the nominal P value threshold of 0.05. Table 5 shows the association 

estimates and other relevant information for these 30 SNPs. We confirmed the association 

between five of the six genes that have previously been identified in the obesity field6 using the 

new analytical method, pedigree-based GWAS, implemented in Mendel.  

 

4.4 Discussion 

 In our analysis of the two diabetes-related quantitative traits, we found strong 

associations between SNPs near the LOC100507205 locus and BMI trait among 6,752 

participants from the original, the second generation, and the third generation cohorts in the 

Framingham Heart Study. We also replicated five well-validated genes that have been previously 

reported to be significantly associated with the BMI trait.  

 We also examined the genetic association with the most recent observation of BMI and 

adjusted for the most recent age observation (instead of means). Using a FDR q value threshold 
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of 0.05, we observed that six SNPs inside one single gene (LOC100507205) were significantly 

associated with BMI, a finding that is worth pursuing. We will look into it further for this 

potential significant finding. 

 One of the top SNPs for the HbA1C trait resides in the hedgehog acyltransferase (HHAT) 

gene. From RefSeq, this gene encodes an enzyme, which acts within the secretory pathway to 

catalyze amino-terminal palmitoylation of ‘hedgehog’ (OMIM, 2002).  The other top SNP 

rs1081487 lies in the GLIS family zinc finger 3 (GLIS3) gene, which encodes a nuclear protein 

with five C2H2-type finger domains. Its protein functions as both an activator and repressor of 

transcription and is involved in the development of pancreatic beta cells, thyroid, kidney, liver 

and eye. Mutations in this gene have been associated with neonatal diabetes21,22. Another top 

SNP rs1869699 is in the genomic region of ribosomal protein S6 kinase, 90k Da, polypeptide 

(RPS6KA2). This gene encodes a member of the ribosomal S6 kinase family of serine/threonine 

kinases. The activity of this protein has been associated with control of cell growth and 

differentiation. Genetic variants in this gene have been previously associated with risk of rectal 

cancer23. The associations with HbA1C levels might probably reach genome-wide significance if 

more participants had available HbA1C measurements.  

 New genetic loci have been identified in previous studies for the BMI and HbA1C traits3-

9,11-13,15-17. However, it is perplexing that some associations appear to replicate in one 

independent cohort but not the other10, although this may be due to the different genetic coverage 

between studies. For example, Patterson et al. discovered the rs1358030 in the SORCS1 gene, but 

this genetic variant was not replicated in the Meta-Analysis of Glucose and Insulin-related traits 

Consortium (MAGIC). The question whether this genetic variant actually represents the causal 

SNP or is simply linked with an ungenotyped causal variant in the region warrants further 
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detailed fine-mapping and functional studies13. The same procedure should also be conducted for 

all other “novel” genetic signals detected from recent GWAS, particularly for both the BMI and 

HbA1C traits.  

 With the availability of large collections of linkage data such as the Framingham Heart 

Study, the use of family-based design has become feasible1,24-27. Using families is an improved 

strategy for both genotype and phenotype data due to the reasons that will be discussed in the 

following. Family data can also offer other related information, for example, estimates of locus-

specific heritability and candidate regions based on linkage analysis26,28. Further, family-based 

GWAS presented several advantages over association testing among unrelated individuals. On 

one hand, family-based GWAS provides better genotype quality control because it allows 

genotyping errors to be identified by taking into account inconsistencies between a parent and 

his/ her child/children’s genotype, which estimates genotyping error rate in a direct manner. On 

the other hand, family-based designs are more robust to population stratification24,26. 

Additionally, family-based designs provide different genetic analyses that cannot be conducted 

using a sample of unrelated individuals such as testing the effect of imprinted genes on 

phenotypes29. 

To date, several genome-wide linkage or association studies have adopted the pedigree 

structure of study subjects in the analytical approaches5,6,30,31 such as what was used in this study. 

Apart from the family-based genome-wide linkage analysis using the LOD scores, generalized 

estimating equations (GEE) and family-based association testing (FBAT) are two commonly 

used methods32. New improvements have been made to the family-based analytical design in the 

genome-wide scan setting. First, Naylor et al. has adopted a Bayesian approach in family-based 

GWAS. This method constructed a Bayes factor that was conditional on the parental genotype 
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and offspring phenotype data to inform the prior odds for each genetic marker. Association 

testing for each marker was obtained by assessing its genetic effect size through fitting the 

conditional mean model33. Second, two-stage testing strategies have been proposed in family-

based GWAS34,35 such as using the Van Steen algorithm implemented in a PBAT software 

package34. The first (screening) step included assessing the association evidence at a population-

based level. The second step then prioritized the SNPs based on the results from the screening 

step for testing. This strategy claimed to achieve the statistical power level of population-based 

studies. To date, no methodological approach has adopted score tests in place of likelihood ratio 

tests to map dense markers in pedigrees like the pedigree-based GWAS option in Mendel. This 

score-test method reduced the arithmetic calculation in terms of the mean and variance 

component of the statistical model. This method provided several advantages: 1) it works for 

pedigree data, random sample data, or a mixture of both; 2) it allows correction for population 

stratification and covariates adjustment; 3) it accommodates both univariate and multivariate 

traits; and 4) it fosters both score and likelihood ratio tests. 

 To conclude, we found strong associations between SNPs near the LOC100507205 locus 

and BMI among participants from the original, the second generation, and the third generation 

cohorts in the Framingham Heart Study. We also replicated five well-validated genes that have 

been previously reported to be significantly associated with the BMI trait.  HbA1C levels are 

potentially associated with SNPs on the Affymetrix 500K SNP GeneChip. These data can serve 

as a replication resource as more genes become detected with BMI and HbA1C levels. Further 

studies in other populations are warranted to investigate the association between these possible 

genetic variants with both BMI and HbA1C levels.  
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Table 1. Characteristics of the three-generation FHS participants (n=6,842)a. 
 

 Original Cohort Second Generation Spouses Third Generation All 
N 305 2,412 96 3,812 6,852 

Gender      
Male 30.5 45.6 46.9 46.7 45.5 

Female 69.5 54.4 53.1 53.3 54.5 
      

Age      
Mean measurement 305 (61.7±3.73) 2,412 (53.0±9.17) 96 (65.1±9.78) 3,812 (41.6±9.09) 6,852 (47.3±11.2) 

Most recent measurement 305 (88.4±3.68) 2,412 (66.6±9.25) 96 (65.1±9.78) 3,812 (40.2±8.87) 6,852 (53.0±17.5) 
      

BMI (kg/m2)      
Mean measurement 305 (25.8±3.56) 2,412 (26.8±4.48) ---b 3,808 (26.9±5.56) 6,752 (26.8±5.07) 

Most recent measurement 305 (21.6±7.45) 2,412 (28.3±5.42) ---b 3,808 (26.9±5.56) 6,752 (27.1±5.80) 
      

HbA1C (%) 286 (5.56±0.66) 2,055 (5.60±0.91) ---b ---b 2,533 (5.60±0.88) 
      

Menopause      
Yes ---b 42.8 ---b 52.4 45.4 
No ---b 11.6 ---b 21.2 16.1 

Missing or not relevant ---b 45.6 ---b 26.4 38.5 
      

Current Smoking      
Yes 5.25 9.45 ---b 16.7 13.2 
No 94.8 90.5 ---b 83.3 85.3 

Missing 0 0 ---b 0.18 1.50 
a:Data are n (means ± SD) or %. 
b:Data are not available. 
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Table 2. Top 15 association results for mean BMI with adjustment for gender and age. (n=6,748) 

SNP Chromosome Physical Position 
(bp)a 

Regression estimate 
(95%CI) 

P value Gene (Gene Alias) 

rs17627690 7 47777759 -0.70 (-0.95 - 0.44) 1.38E-07* 3.02 kb from PKD1L1 
rs1601333 11 41771130 0.45 (0.27 - 0.63) 1.28E-06 395 kb from LOC100507205 
rs404089 11 41794057 0.44 (0.26 - 0.62) 1.88E-06 ---b 

rs5016183 11 41789771 0.44 (0.26 - 0.62) 2.28E-06 376 kb from LOC100507205 
rs4533028 11 41773933 0.43 (0.25 - 0.61) 3.11E-06 392 kb from LOC100507205 
rs437023 11 41794483 0.43 (0.25 - 0.61) 3.47E-06 371 kb from LOC100507205 

rs1843246 11 41771426 0.43 (0.25 - 0.61) 3.50E-06 394 kb from LOC100507205 
rs13373826 1 75743383 -0.56 (-0.81 - -0.32) 6.63E-06 SLC44A5 (CTL5) 
rs12807116 11 41790350 0.42 (0.23 - 0.60) 7.74E-06 376 kb from LOC100507205 
rs2862384 11 41788094 0.42 (0.23 - 0.60) 8.50E-06 ---b 
rs435075 11 41794856 0.40 (0.22 - 0.57) 9.95E-06 371 kb from LOC100507205 
rs391960 11 41792409 0.41 (0.23 - 0.59) 1.07E-05 373 kb from LOC100507205 

rs11163494 1 75731941 -0.55 (-0.79 - 0.31) 1.07E-05 SLC44A5 (CTL5) 
rs410148 11 41793041 0.42 (0.23 - 0.61) 1.19E-05 373 kb from LOC100507205 
rs211787 1 75765050 -0.54 (-0.78 - -0.29) 1.43E-05 SLC44A5 (CTL5) 

a Information is based on Genome Build 36.2. 
b No mapped gene can be found. 
* FDR q value < 0.05. 
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Table 3. Top 15 association results for BMI using the latest available measurement with adjustment for gender and age. 
(n=6,748) 

SNP Chromosome Physical Position 
(bp)a 

Regression estimate 
 (95%CI) 

P value Gene (Gene Alias) 

rs1601333 11 41771130 0.56 (0.36 – 0.77) 1.09E-07* 395 kb from LOC100507205 
rs4533028 11 41773933 0.55 (0.35 – 0.76) 1.85E-07* 392 kb from LOC100507205 
rs1843246 11 41771426 0.55 (0.34 – 0.75) 2.56E-07* 394 kb from LOC100507205 
rs404089 11 41794057 0.55 (0.34 – 0.75) 2.87E-07* 372 kb from LOC100507205 

rs5016183 11 41789771 0.54 (0.33 – 0.75) 4.44E-07* 376 kb from LOC100507205 
rs437023 11 41794483 0.53 (0.32 – 0.74) 6.54E-07* 371 kb from LOC100507205 

rs2862384 11 41788094 0.52 (0.31 – 0.74) 1.29E-06 378 kb from LOC100507205 
rs13373826 1 75743383 -0.70 (-0.98 - -0.41) 1.31E-06 SLC44A5 
rs17627690 7 47777759 -0.74 (-1.04 - -0.44) 1.32E-06 3.02 kb from PKD1L1 
rs12807116 11 41790350 0.52 (0.31 – 0.73) 1.33E-06 376 kb from LOC100507205 
rs1412715 1 75758255 -0.68 (-0.96 - -0.40) 2.07E-06 SLC44A5 

rs11163494 1 75731941 -0.68 (-0.96 - -0.40) 2.31E-06 SLC44A5 
rs17629371 5 83394558 0.56 (0.33 – 0.80) 3.10E-06 EDIL3 

rs391960 11 41792409 0.50 (0.29 – 0.70) 3.17E-06 373 kb from LOC100507205 
rs211787 1 75765050 -0.66 (-0.94 - -0.38) 3.60E-06 SLC44A5 

a Information is based on Genome Build 36.2. 
b No mapped gene can be found. 
* FDR q value < 0.05. 
 



	   135	  

 
Table 4. Top 15 association resultsa for mean HbA1C levels with adjustment for gender and age. (n=2,529n=) 

SNP Chromosome Physical Position (bp)b Regression estimate 
(95%CI) 

P value Gene 

rs6128254 20 56030413 -0.12 (-0.17 - -0.06) 1.14E-05 127 kb from MIR4532 
rs11061417 12 130314013 -0.14 (-0.20 -  -0.08) 1.18E-05 50.6 kb from LOC116437 
rs7540760 1 202001608 -0.13 (-0.19 - -0.07) 1.18E-05 LAX1 
rs2182766 1 81569056 -0.24 (-0.35 - -0.14) 1.27E-05 470 kb from LPHN2 
rs4504959 1 208868502 -0.18 (-0.26 - -0.10) 1.36E-05 HHAT 

rs10814874 9 4184762 0.11 (0.06 – 0.16) 1.49E-05 GLIS3 
rs847386 7 16941578 -0.10 (-0.15 - -0.06) 2.31E-05 53.4 kb from AGR3 

rs7543636 1 81602058 -0.20 (-0.30 - -0.11) 2.80E-05 437 kb from LPHN2 
rs7662934 4 13375175 -0.10 (-0.15 - -0.05) 2.87E-05 137kb from BOD1L 

rs10847096 12 125189182 -0.13 (-0.19 - -0.07) 3.01E-05 ---b 
rs2242575 6 167159750 -0.15 (-0.22 - -0.08) 4.79E-05 RPS6KA2 
rs1869699 11 11687578 -0.15 (-0.22 - -0.08) 4.81E-05 52.7 kb from MIR4299 
rs9355742 6 159997163 -0.11 (-0.17 - -0.06) 5.13E-05 23.0 kb from SOD2 
rs927030 20 20844942 -0.15 (-0.23 - -0.08) 6.26E-05 204 kb from RALGAPA2 
rs699618 12 61665150 -0.16 (-0.24 - -0.08) 7.18E-05 50.2 kb from PPM1H 

a Information is based on Genome Build 36.2. 
b No mapped gene can be found. 
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Table 5. Associationsa of mean BMI with all SNPs in or near genes (up to 500kb away) for a well replicated  
genes (INSIG1, INSIG2, PPARG, ADIPOQ, ESR1 and LEP)b in the published literature with a P value < 0.05.  
(n=6,750) 

Gene SNP Chromosome Physical Position 
(bp)c 

Regression estimate 
(95%CI) 

P value 

ESR1 rs851981 6 152068767 -0.42 (-0.62 - -0.22) 3.18E-05 
ESR1 rs851983 6 152066108 -0.33 (-0.50 - -0.16) 0.0002 
ESR1 rs7772579 6 152084195 -0.35 (-0.54 - -0.16) 0.0004 
ESR1 rs2982571 6 152054432 -0.30 (-0.47 - -0.13) 0.0006 
ESR1 rs2982554 6 152099703 0.29 (0.12 – 0.46) 0.0007 
ESR1 rs3020348 6 152099607 0.29 (0.12 – 0.45) 0.0007 
ESR1 rs2982565 6 152093547 -0.39 (-0.61 - -0.16) 0.0008 
ESR1 rs2982561 6 152094345 0.28 (0.12 – 0.45) 0.0008 

1.10 kb from ESR1 rs2982573 6 152052227 -0.29 (-0.46 - -0.12) 0.0009 
ESR1 rs3020306 6 152107579 0.28 (0.11 – 0.45) 0.001 
ESR1 rs1856057 6 152109562 0.26 (0.09 – 0.43) 0.003 
ESR1 rs851985 6 152062083 -0.26 (-0.44 - -0.09) 0.003 
ESR1 rs6899458 6 152093736 -0.31 (-0.51 - -0.11) 0.003 
LEP rs10244329 7 127675925 0.24 (0.08 – 0.41) 0.004 

383 kb from INSIG2 rs7570731 2 118967367 -0.38 (-0.65 - -0.12) 0.005 
351 kb from INSIG2 rs34271671 2 118935045 -0.29 (-0.50 - -0.09) 0.006 
30.8 kb from PPARG rs11917039 3 12481675 -0.30 (-0.52 - -0.09) 0.006 

7.88 kb from LEP rs10954175 7 127692793 0.22 (0.05 – 0.39) 0.01 
350 kb from INSIG2 rs41515249 2 118934464 -0.29 (-0.52 - -0.06) 0.01 

ESR1 rs2347759 6 152137153 0.26 (0.05 – 0.47) 0.01 
413 kb from INSIG2 rs17825729 2 118996974 -0.35 (-0.63 - -0.07) 0.01 

ESR1 rs9371552 6 152132228 0.29 (0.06 – 0.52) 0.01 
352 kb from INSIG2 rs41388348 2 118936266 -0.26 (-0.46 - -0.05) 0.01 

ESR1 rs6916835 6 152131717 0.25 (0.04 – 0.46) 0.02 
ESR1 rs6939257 6 152131738 0.25 (0.04 – 0.46) 0.02 

1.45 kb from LEP rs2060715 7 127686365 0.20 (0.03 – 0.37) 0.02 
ESR1 rs6930355 6 152413084 -0.30 (-0.57 - -0.03) 0.03 

1.12 kb from LEP rs12537573 7 127686036 0.22 (0.02 – 0.43) 0.03 
419 kb from INSIG2 rs17008564 2 119002661 -0.29 (-0.56 - -0.02) 0.04 

ESR1 rs3778089 6 152435454 -0.27 (-0.53 - -0.001) 0.05 
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a Models are adjusted for sex and age. 
b  No SNPs in or near ADIPOQ gene had a P value < 0.05. 
c Information is based on Genome Build 36.2. 
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Figure 1. Genome-wide association study to mean BMI in the Framingham Heart Study 500K Project with adjustment for 
gender and age. (n=6,748) Red dashed line indicates the Bonferroni threshold, whereas blue dashed line denotes FDR 
threshold (q value < 0.05). 
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Figure 2. Genome-wide association study to BMI using the latest measurement in the Framingham Heart Study 500K Project 
with adjustment for gender and age. (n=6,748) Red dashed line indicates the Bonferroni threshold, whereas blue dashed line 
denotes FDR threshold (q value < 0.05). 
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Figure 3. Genome-wide association study to mean HbA1C in the Framingham Heart Study 500K Project with adjustment for 
gender and age. (n=2,529)  
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5.1 Summary and Conclusions 

 In the past several decades, much effort has been dedicated to the identification of disease 

genes through molecular genetic analysis for metabolic diseases such as type 2 diabetes (T2D)1-3, 

cardiovascular diseases (CVD) 4,5 as well as other diabetes-related traits including body mass 

index (BMI)6 and glycated hemoglobin (HbA1C ) levels7. However, the pathogenesis of 

metabolic diseases remains incompletely understood,  hindering advancement of more effective 

diagnosis, treatment and prevention strategies8.  

 In this dissertation, we have sought to determine the association of several candidate gene 

loci related to adiposity, inflammation, and lipid storage, with diabetes risk using a candidate 

gene approach. We also aimed to discover biological pathways that may lead to the development 

of vascular disease (T2D and/or CVD) as well as detect genetic loci related to BMI and HbA1C 

levels using a genome-wide approach.  In our candidate gene-based analyses, we observed a 

significant association between FABP4 genotype and reduced VCAM-1 levels among African 

American women, a finding that warrants validation in future research. However our findings did 

not confirm the notion that common genetic variants in the FABP4 gene may be associated with 

risk of T2D in a multiethnic cohort of postmenopausal women, We also observed modest 

associations between TNF genetic variants and circulating concentrations of TNF-α-R2, although 

common variants of CRP, TNF, and IL6 genes were not significantly associated with T2D risk in 

postmenopausal women. Further, we replicated the association between the PPARG Pro12Ala 

genetic variant with diabetes risk and found that haplotype-based analysis is more powerful than 

single-SNP analysis for identifying genetic variants in the PPARG gene with risk of T2D.  

Second, using a pathway-based analytical approach and genome-wide scan data collected 

among African and Hispanic American postmenopausal women in the WHI-SNP Health 
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Association Resource (SHARe) cohort, we observed that SNPs associated with vascular disease 

cluster into several biological pathways including those related to glycerolipid metabolism and 

PPAR signaling pathways. Third, we also observed that diabetes-related quantitative traits, i.e. 

BMI and HbA1C levels, were potentially associated with SNPs in the family-based Framingham 

Heart Study cohort using a genome-wide scan with about 500,000 SNP probes. We found strong 

associations between SNPs near the LOC100507205 locus and BMI among the FHS. We also 

replicated five well-validated genes that have been previously reported to be significantly 

associated with the BMI trait.   

Despite the limitations of the candidate gene approach including the limited number of 

variants assayed, and associations that may be hard to replicate9, this approach can be regarded 

as a helpful first step in discovering potential biological pathways between genetic determinants 

and complex diseases such as metabolic diseases. If significant findings arise, these results may 

be useful in indicating biological mechanisms and suggest further experiments to test their 

functional roles in biochemical processes and metabolic diseases pathogenesis10,11. The selection 

of SNPs for genotyping in candidate gene study can be a challenging task during the design 

phase. It is important to focus on SNPs that are more prone to affect metabolic diseases risk by 

evaluating the linkage disequilibrium and potential haplotypes among the SNPs, as well as 

considering the potential function and location of each SNP11 such as using our haplotype-

tagging SNPs selection criteria: (i) cSNPs > ssSNPs > 5’-upstream SNPs > 3’-downstream SNPs 

> intronic SNPs; (ii) minor allele frequency (MAF) ≥ 5% in at least one of the four ethnic 

groups; and (iii) relatively evenly spaced across the genomic region12.  

GWAS represents an important development beyond family-based linkage studies and 

candidate gene approach. However, there are still areas for improvement in the GWAS field. 
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First, the genome-wide scan method utilized in this dissertation may only detect SNPs that are 

common ( >5%) in our study population and therefore may miss those SNPs are rare and with 

low allele frequency. Rare variants may play a critical role in fully understanding the etiology of 

metabolic diseases. Second, we have yet to identify an independent cohort to replicate our 

findings in both the GWAS Pathway Analysis and the family-based GWAS using a new score 

test.  

 

5.2 Future Research Directions 

The primary goal in this dissertation was to examine the association between genetic 

variants with risk of metabolic diseases (T2D and/or CVD) and diabetes-related quantitative 

traits in both candidate gene and genome-wide scan settings. As mentioned earlier, we plan to 

validate our findings in genome-wide approach in another independent cohort. Also, stronger 

summary statistics can be developed in GWASPA to assess the strength of association at the 

pathway level. For example, a gene score can be constructed by weighting the SNP association 

effect on vascular disease (our disease outcome of interest) according to the specific effect sizes 

to better capture the pathways with genes of multiple independent associated SNPs.  

Recently, a novel statistical approach has been adopted to take into account the 

correlations among SNPs within genes within a biological pathway13,14. A new multi-SNP 

analytical approach has also been applied to all candidate pathways of interest, for example 

pathways that linked with inflammatory and endothelial function15,16 for T2D, to identify those 

that contains SNPs for which the cases and controls are discriminated and deduce those 

pathways’ role in the development of metabolic diseases. It is based on the rationale that cases 

and controls will show more within-group similarity than across-group similarity for those SNPs 
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in the inflammatory and endothelial function related pathways if this set of SNPs is associated 

with the development of metabolic diseases17. These are possible analytical approaches that 

worth further investigation. In addition, more GWASPA method should be developed to 

incorporate epistastic effects among associated alleles in a pathway18,19 and include a collection 

of genes sets and pathways in metabolic diseases that makes use of the high-throughput 

functional genomics data20.  

In this post-GWAS era, combining primary results in meta-analyses has become a widely 

used approach to re-examine the association of SNPs among some candidate genes with certain 

phenotypic traits such as those related to metabolic diseases21-26. In the setting of genome-wide 

scan for phenotypic trait genetic loci, it was previously reported that pooling the primary raw 

data from independent genome-wide scans is preferable to meta-analyses combining the primary 

results for power considerations in identifying genetic loci and lessening sources of variation. 

The pooling approach would be more superior if heterogeneity of participants can be reduced by 

conducting analyses in subgroups where within-group variation can be diminished27. Therefore, 

it may worth further investigation into the association between genetic variants with our 

metabolic-disease-related outcomes by combining primary data from other cohorts that offers 

genome-wide data in future. 

Aside from genetic variation at the DNA level, epigenetic events and expression levels 

are also presumed to play a role in the development of metabolic diseases, especially obesity28-31. 

Epigenetic and expression research may play an important role in the development of obesity 

with the knowledge that family studies have offered vast evidence for moderate to high 

heritability of the traits. Further, complex gene-gene and gene-environment interactions may also 

shed some light on the development of these two traits29. Last but not least, it may also be 
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interesting to investigate the possibility of developing an analytical framework to evaluate both 

linkage and association at the same time. This approach would take the data from both pedigrees 

with relationship structures and case-control samples. This may be a powerful approach for 

detecting novel genetic factors related to trait loci beyond those that can be identified by case-

control genome-wide scans alone31. 

SNPs are one type of genetic variants that has been emphasized in this dissertation. 

However, SNPs only account for a fraction of metabolic diseases heritability and leave much 

“missing” variation in the genetic architecture of the disease. Emerging data now indicate that 

structural variants (SVs), particularly copy number variants (CNVs), are an important form of 

genetic variation that may impact individual susceptibilities to complex diseases9,32,33 and may 

explain some missing heritability.  Next-generation sequencing platforms have also launched the 

revolution of genomics and directed their effects on studies of association between genetic 

variations, including CNVs, with complex diseases34-36. This technology is expected to raise the 

read length to thousands of base pairs or more in order to facilitate SNPs, CNVs and other types 

of SVs detection via a complete assembly of human genomes. It may also be capable of 

discovering copy-invariant SVs such as inversions. On the other hand, it is also superior in 

detecting smaller events and in verifying the exact location of variation breakpoints, as well as 

providing improved breakpoint resolution, copy-number accuracy, sensitivity and specificity 

through increasing coverage36. 

With more available data and tools to detect diseases-related genes that contribute to the 

development of metabolic diseases, we may not be far from increasing the wealth and quality of 

genetic information to improve the diagnosis, treatment, and prevention of metabolic diseases, 

especially for T2D, in present and the coming decade. 
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