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Nonsense and Sensibility: Inferring Unseen Possibilities

Lauren A. Schmidt, Charles Kemp & Joshua B. Tenenbaum
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

{lschmidt, ckemp, jbt}@mit.edu

Abstract

How do we distinguish the sensible yet unlikely (blue ba-
nanas) from the nonsensical (hour-long bananas), given
observations only of what is true in the world (e.g., yel-
low bananas)? Judgments like these may be supported
by the M constraint: the assumption that ontological
categories are organized into a predicability tree, and
that properties apply to different subtrees within this hi-
erarchy. We provide a computational theory that shows
how the M constraint can be used to acquire predicabil-
ity trees given observations only of what is true. We also
suggest how the M constraint itself could be learned.

A friend comes home from the market exclaiming that
she has just seen the most interesting banana. She tells
you to guess what was so interesting about it. Which of
the following questions are you most likely to ask? “Was
the banana blue?” “Was the banana the shopkeeper’s
fault?” “Was the banana an hour long?” Probably you
are more likely to ask the first question. You may never
have seen or heard of a blue banana before, but it seems
like one might exist somewhere, and such a banana would
indeed be noteworthy. The other two questions, on the
other hand, do not make sense. Bananas are not the kind
of thing that can be someone’s fault or an hour long.

How can we judge so quickly that it is far more sen-
sible for bananas to be blue than an hour long, when
we have seen no direct evidence in the world regard-
ing either blue or hour-long bananas? We may never
have seen a blue banana, but we have seen many other
blue things—blueberries, bicycles, and bedspreads, for
example—which share many properties with bananas.
They are all visible objects, and we can touch them,
move them, or give them to our friends. If these objects
can sensibly be blue, then perhaps it would be sensible
for bananas to be blue as well. None of the other blue ob-
jects is an hour long, however, which might make us more
doubtful that bananas could sensibly have this property.

Kinds such as physical objects and events are examples
of ontological categories. The properties that apply to
the members of the ontological categories (“blue,” “hour
long”) are also known as predicates. When a predicate
can sensibly be applied to an object, and a truth value
can be assigned (“Bananas are usually blue” is sensible,
though false), that predicate is said to span the object
(Keil, 1979).

Predicates do not appear to span objects arbitrarily.
Instead, predicates seem to cluster together and apply
to whole categories of objects. In addition, these cate-

gories do not overlap arbitrarily, but also seem to follow
structural rules. Sommers (1971) proposed “the M con-
straint”: categories of objects are organized in a strict
hierarchy, and predicates must span subtrees of the hi-
erarchy (thus preventing any “Ms” within the tree). See
Figure 1 for an example of such a predicability tree, and
how it governs the set of pairs which are sensible to-
gether, which in turn governs which pairs may be true.

This hierarchical constraint could be extremely useful
in making inferences about what is sensible based on
limited evidence. If we know that soccer games cannot
sensibly be blue but can be an hour long, and bicycles
can be blue but cannot sensibly be an hour long, then
according to the M constraint, bananas cannot sensibly
have both properties. Knowing this, all we need to do
to make a quick inference is figure out whether bananas
are more like bicycles or soccer games. Observations that
bananas and bicycles can both be yellow and green, as
well as sharing other properties, can help us infer that
bananas could sensibly be blue, but not an hour long.

Keil (1979) provided some evidence that people do
follow the M constraint in reasoning about the world.
When asked to judge which statements about predicate-
object pairs were sensible, adults provided sets of an-
swers which showed a strict hierarchical organization.
This was true for children as well, though their pred-
icability trees were far simpler than those of adults.
Keil also showed that children can make quick infer-
ences based on hierarchical relationships of categories
and predicates. Most interestingly, Keil proposed that
the M constraint is a part of the innate core knowledge
that guides children in learning about the world.

If the M constraint (or a weaker statistical bias) does
exist as a psychological reality, how could we use it to
learn what is sensible? We propose a formal model that
incorporates the M constraint and can discover a predi-
cability tree given limited evidence about what is true in
the world. Our model takes the M constraint as given;
however, we also describe how Bayesian model selection
can be used to infer that a model with the M constraint
accounts better for the observed data than an alterna-
tive model with no hierarchical constraint. We therefore
suggest that the M constraint need not be innate.

A Structured Approach to Sensibility

Assume that we are working with a fixed collection of ob-
jects and predicates. We develop a computational the-
ory that assumes that the objects and predicates are
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Figure 1: (a) A predicability tree. The predicates located at a node of a tree span all the objects at that node and
all those in the subtree below it. (b) The corresponding predicability matrix, R. Squares in gray indicate predicable
pairs. (c) A truth matrix, T , indicating the predicable pairs that are actually true.

organized into a predicability tree (Figure 1a). Each
predicability tree can be represented as a predicability
matrix, R (Figure 1b). Some of the predicable pairs are
also true, and we represent these pairs using a truth ma-
trix, T (Figure 1c). We assume that a learner observes
a set of predication events (such as a yellow banana or
blue bicycle), where each event is an occurrence of a
predicate-object pair. The data can be arranged into a
frequency matrix D, where Dij indicates the number of
times that predicate i was paired with object j. Our
model assumes that the large entries in D correspond
mainly to pairs that are true: more precisely, our model
assumes that each predicate-object pair is observed with
a frequency that depends on the truth of the pair and
the individual popularities of both the predicate and the
object. Our ultimate goal is to work backward from the
data D to learn the predicability matrix R and truth
matrix T .

We take a generative approach, and define a joint dis-
tribution P (D, T, R) = P (D|T, R)P (T |R)P (R). This
generative model can then be inverted to search for the
R and T with maximum posterior probability:

P (T, R|D) ∝ P (D|T, R)P (T |R)P (R). (1)

To apply Equation 1, we need a prior P (R) on predi-
cability matrices. We assume that predicability satisfies
the M constraint, and that each candidate R corresponds
to a tree like the example in Figure 1. Each predicability
tree can be parameterized as a triple (zo, B, zp) where zp

is a partition of the predicates, B is a tree built using
the predicate clusters in zp, and zo is an assignment of
the objects to the nodes in B. Each triple (zo, B, zp)
uniquely specifies a tree with objects and predicates at-
tached, which in turn uniquely specifies a predicability
matrix R. The prior probability of any matrix R is

P (R) = P (zo, B, zp) = P (zo|zp)P (B|zp)P (zp)

We compute P (zp) by assuming that zp is generated
by a Chinese restaurant process with concentration pa-

rameter γ (Aldous, 1985). This prior on zp assigns some
probability to all possible partitions of the predicates,
including the partition where each predicate is assigned
to its own cluster, and the partition where all the pred-
icates belong to the same cluster. The prior, however,
favors partitions that use small numbers of clusters.

Suppose that |zp| is the number of clusters used by
partition zp. We assume that B is drawn uniformly from

all of the |zp|
|zp|−1 possible labeled trees with |zp| nodes,

and zo is generated by dropping each object at random
onto one of the nodes of B:

P (B|zp) =
1

|zp||zp|−1
(2)

P (zo|zp) =
1

|zp|n
(3)

To apply Equation 1, we also need to calculate
P (T |R), the probability of the truth matrix given the
predicability matrix. We assume that the truth of each
predicable pair is determined by flipping a coin with bias
η:

P (T |R) =

{

η|T |(1 − η)|R|−|T |, if T ⊂ R

0, otherwise

where |R| is the number of predicable pairs and |T | is
the number of true pairs.

Finally, we assume that each predication event v, con-
sisting of an occurrence of an object-predicate pair (o, p),
is drawn from a distribution given by

P (o, p) ∝ eπp+πo+λTpo (4)

where πp and πo are parameters representing the popu-
larities of predicate p and object o, and λ represents the
extent to which we penalize violations of the truth ma-
trix T . If T is uniformly one (i.e. every object-predicate
pair is both sensible and true) or λ is zero (i.e. we do not
penalize violations of matrix T , then the model reduces
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to a simple joint distribution where P (o, p) ∝ P (o)P (p),
P (o) = eπp and P (p) is similarly defined.

The popularity parameters could potentially be
learned, but we fix them using the frequencies of objects
and predicates in the matrix D:

πo ∝ log |πo| (5)

where |πo| is the proportion of events in D that involve
object o. πp is defined similarly.

The probability of the entire dataset is the product of
the probabilities of the individual predication events, v :

P (D|T ) =
∏

v∈D

P (v|T ). (6)

Searching for predicability matrices

We run a stochastic search to identify the R =
(zo, B, zp), T , λ, and η that maximize P (R, T |D). The
search problem is difficult, since the score for a matrix
R couples zo and zp: in other words, changing zp is un-
likely to improve the score unless zo is changed as well.
We overcome this issue by integrating out the object
locations zo, and searching for the B, zp and T that
maximize

P (B, zp|D) ∝ P (D|B, zp)P (B, zp) (7)

Suppose that Dj is the set of predication events that
involve object j. Then

P (D|B, zp) =
∏

j

P (Dj |B, zp)

and

P (Dj |B, zp) =

|zp|
∑

k=1

∑

tj

P (Dj , tj, z
j
o = k|B, zp) (8)

where zj
o is the location of object j in the tree, and tj is

a vector indicating which predicates are true of objects.
Computing the sum in Equation 8 is intractable, and we
approximate it as follows:

P (Dj |B, zp) ≈

|zp|
∑

k=1

P (Dj |t
∗
j (k))P (zj

o = k|B, zp) (9)

where t∗j (k) is the truth vector that maximizes P (tj |z
j
o =

k, B, zp). Equation 3 implies that P (zj
o = k|B, zp) =

1

|zp|
. We do not include the details here, but if we condi-

tion on the number of times each object appears in the
dataset, it is straightforward to compute P (Dj |t

∗
j (z

j
o =

k)): in particular, we avoid having to compute the nor-
malizing constant of the distribution in Equation 5.

Let us call (B, zp) an incomplete tree: that is, a pred-
icability tree without the objects attached. Using Equa-
tion 7, we run a search by starting from a random in-
complete tree and considering proposals that move the
predicates around the tree, possibly creating new nodes
in the process. For each incomplete tree, we use an ap-
proximation similar to the idea behind Equation 9 to
compute a candidate pair (T, R), where T and R are the
matrices that maximize P (T, R|B, zp, D). At the end
of the search, we return the best candidate pair encoun-
tered, where each pair is scored according to Equation 1.

Learning the right tree

We compared the performance of our model and two
alternate approaches on data sets meant to approximate
real world data.

The data sets We generated two data sets of observed
predication events based on a tree with the same struc-
ture as that shown in Figure 1. Our tree had six pred-
icates located at each node, and three objects located
at each node except for one internal node, which was
empty, yielding a total of 42 predicates and 18 objects.
This structure yielded the predicability matrix shown at
the top of Figure 2.

We then set parameters π, λ, and η, and sampled
data according to our model. We sampled |π| from a
uniform distribution. λ was set to 10. We used truth
matrices with η = {0.3, 0.5, 0.7, 0.9}. For each truth ma-
trix, we generated three different data sets, differing in
number of samples drawn, N , where N took the val-
ues {1000, 10000, 100000}. 1% of the samples were drawn
uniformly over all pairings, creating some noise in the
data. The average number of times each true predication
event was seen ranged from 3.63 to 1089 across condi-
tions; values are shown in Table 1. The generative pro-
cess and resulting data sets are illustrated in Figure 2.

The comparison methods We sought a comparison
model that would also learn a tree structure based on
clusters of objects and predicates and allow for inference
about predicabilities of unseen pairs. Hierarchical clus-
tering is a popular method for learning tree structures,
however, the standard algorithm is insufficient for our
needs. The same is true of Bayesian tree learning tech-
niques proposed in the past (Kemp, Perfors & Tenen-
baum, 2004). Instead of finding hierarchies based on
object categories, the trees recovered by both methods
branch maximally such that each object is alone at a leaf
node. Therefore, neither method can be used to identify
the large-scale ontological categories that we hope to re-
cover. Additionally, the predicates are not clustered to-
gether or placed at nodes within the tree.

Our comparison method is a modified version of hier-
archical clustering which overcomes some of the above
shortcomings and generates predicability predictions
that serve as a comparison for those of our model. We
used a standard hierarchical clustering algorithm to find
a hierarchical organization of objects based on the fre-
quency vectors of their occurrences with predicates in
the data. We then developed a metric for scoring pos-
sible predicate locations and then placed each predicate
at the best scoring node in the tree.

To score a potential predicate location, we looked at
what data would be predicted by that predicate being
placed at that node. Any objects not spanned by the
predicate were predicted never to occur. Any objects
spanned by the predicate were predicted to occur with
that predicate a number of times proportional to the
product of the object frequency and the predicate fre-
quency in the data set. The score of the location was
proportional to the inner product of the normalized pre-
dicted and actual data vectors.

In addition to this comparison method, we also tried a
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Predicability

Truth (η = 0.3) Truth (η = 0.5) Truth (η = 0.9)

Data

M constraint

Hierarchical
clustering

Figure 2: Data sets and results for the M constraint model and the hierarchical clustering model. The three truth
matrices were generated by selecting random subsets of predicable pairs. The input for each model is a frequency
matrix generated by sampling pairs from the truth matrix. Three data sets with increasing numbers of observations
are shown for each truth matrix. The final two rows show predicability judgments made by the two models.

simple thresholding method which predicted that exactly
those pairs that had been seen in the input data one or
more times were predicable.

Results The predicability matrices recovered by the M
constraint and hierarchical clustering models are shown
in Figure 2 (the predicability matrix from the other com-
parison method is not shown, as it is simply a thresh-
olded version of the data matrix). The binary matrices
recovered can be said to have high precision whenever
most of the predicability predictions made are correct:

precision =
H

H + FA

where H is the number of “hits”, or pairs that were cor-
rectly predicted to be predicable, and FA is the number
of “false alarms”, or pairs that were incorrectly predicted
to be predicable. The recovered matrices have high re-
call when most of the actual predicable pairs have been
successfully recovered:

recall =
H

H + M

where H is again the number of “hits”, and M is the
number of “misses”, or pairs that are actually predicable
but were not predicted. We measured overall success of
the models using the F-measure, the harmonic mean of
precision and recall. The F-measures of these results
with the true predicability values are shown in Table
1 (results are averaged across the two data sets). The
truth matrices recovered by our model were very close
to the actual truth matrices, having F-measures of 0.967
or higher in all cases; the details of those results are
omitted.

With relatively dense input data, the M constraint re-
covers a perfect or nearly perfect predicability matrix.
The M constraint model outperforms both the hierar-
chical clustering method and the thresholding method

on all data sets; however, with the sparsest data sets
none of the algorithms perform well. In those cases, the
M constraint drastically overgeneralizes, while the other
models do the opposite. Interestingly, the simple thresh-
olding model also outperforms the hierarchical clustering
model on all but some of the sparsest data sets.

We would suggest that the M constraint model is do-
ing something both intelligent and psychologically plau-
sible in the cases where it overgeneralizes based on sparse
data. When someone learning about the world has only
made a few observations, then her confidence about
the structure of the world should be very low. Such a
learner cannot yet distinguish between occurrences that
are likely, but have not yet been observed, and ones that
are extremely unlikely. She also does not know with any
confidence which of the observations she has made so
far are due to noise. Because of all this uncertainty, it

Table 1: F-measures when the results of the three models
are compared with original predicability matrix. SPT is
samples per true pair.

η Samples SPT M con. H.clus. Thresh.
0.3: 1000 10.89 0.58 0.45 0.47

10000 108 0.61 0.58 0.48
100000 1089 0.61 0.58 0.48

0.5: 1000 6.54 0.98 0.64 0.66
10000 65.4 0.99 0.65 0.66
100000 654 0.98 0.66 0.67

0.7: 1000 4.67 0.86 0.68 0.82
10000 46.7 0.97 0.72 0.83
100000 467 0.97 0.75 0.81

0.9: 1000 3.63 0.99 0.75 0.94
10000 36.3 0.98 0.83 0.95
100000 363 1.00 0.83 0.94
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Figure 3: A developmental progression showing the pred-
icability trees and corresponding predicability matrices
learned by the M constraint model as it receives increas-
ing amounts of data. The labels P1...P7 and O1...O6 rep-
resent clusters of predicates and objects, each of which
has two or three members.

would be unwise for the learner to speculate that the
structure of the world is some highly complicated tree-
structure that fits the handful of observations she has
made. It is better to postulate a simpler structure un-
til the learner has more information. Our M constraint
model captures this intuition, choosing relatively simple
trees until the data warrant otherwise. The hierarchical
clustering method, on the other hand, is like a learner
who creates maximally complex tree structures to fit ev-
ery data set, regardless of how much evidence she has
seen. The thresholding method does not learn a tree
structure to fit the data set, but it also undergeneralizes
in its predicability predictions in a way that does not
match the human developmental data.

To demonstrate in a more controlled way the behav-
ior of the M constraint model when operating on sparse
data, we generated simpler data sets. In these data sets,
η = 0.85. Every true pair is observed a fixed number of
times (N). Thus, for N = 1, every true pair has been
seen one time.

We ran the M constraint model on data sets generated
for N = 1, 2, and 3, and 6. The best scoring predicability
trees and matrices can be seen in Figure 3. The develop-
mental progression of our model is similar to the human
developmental progression reported by Keil. When the
M constraint model has seen very little evidence, it be-
haves like the younger learners, choosing simpler trees.
As more data are provided, the trees recovered by the
model grow to look more like those of Keil’s older sub-
jects, who also had more data about the world. The
similarity between these developmental curves argues for
the psychological plausibility of a model that develops
more complex theories only when sufficient evidence is
available.

Learning the M constraint

We have shown that our M constraint model can discover
predicability structures given only limited evidence. Our
model, however, assumes that the M constraint is true:

in other words, it assumes that the matrix R is tree-
structured. The corresponding cognitive assumption is
that the M constraint is innate, an assumption we may
not wish to make.

In previous work we have argued that Bayesian model
selection helps explain how learners can discover the
structural properties that best characterize a domain
(Kemp et al., 2004). Here we demonstrate that the M
constraint could be learned by comparing our model to a
closely related clustering model that does not include the
M constraint. The same method could be used to com-
pare a wider set of possible models, but here we choose
only between clustering with and without the M con-
straint.
A flat clustering model Our alternative model clus-
ters predicates and objects, as the M constraint model
does, but it does not impose any structural restrictions
(such as the M constraint) on how predicate clusters re-
late to object clusters.. For instance, predicate cluster 1
could span object clusters 1, 2, and 3, and predicate clus-
ter 2 might span object clusters 2, 3, and 4. This model,
which we refer to as the flat model, is identical to the M
constraint model except that it uses a different prior on
the predicability matrix R. We parameterize each ma-
trix as a triple (zo, C, zp). As before zp is a partition of
the predicates. C is a |zp| by |zp| matrix of constraint
vectors drawn uniformly from the space of binary matri-
ces of this size. Each row of the matrix corresponds to a
predicate cluster, and zo is a random assignment of the
objects to the columns of this matrix:

P (C|zp) =
1

2|zp|
(10)

P (zo|zp) =
1

|zp|m
(11)

Each triple (zo, C, zp) uniquely determines a predica-
bility matrix R where Rij takes the same value as the
entry in C corresponding to predicate i and object j.
Note that R need not satisfy the M constraint: the model
captures the idea that predicates and objects cluster, but
little more. As in the M constraint model, the flat clus-
tering model represents truth as a matrix T that is a
subset of R.

Bayesian model selection Using Bayesian model se-
lection, we can discover which of these models is best
supported by a given dataset. Let Mtree indicate the
M constraint model, and Mflat indicate the alternative.
Given data D, we search for the model M and pred-
icability matrix R that have maximum joint posterior
probability:

P (R, T, M |D) ∝ P (D|M, R, T )P (T |R, M)P (R|M)P (M)

We use equal priors on the two models: P (Mtree) =
P (Mflat) = 0.5. Let Rtree and Ttree indicate the
predicability matrix and truth matrix that maximize
P (R, T |D, Mtree), and Rflat and Tflat indicate the ma-
trices that maximize P (R, T |D, Mflat). If the data are
consistent with a tree structure, then Rtree and Rflat
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a) b) c)

Figure 4: a) The tree-consistent data used for model
selection. b) The tree-inconsistent data. c) The tree-
consistent predicability matrix recovered by the M con-
straint model, given the data in b).

should be identical (as well as Ttree and Tflat), since the
flat model is capable of representing all tree-consistent
predicability matrices. P (Rtree, Ttree|Mtree), however,
will be greater than P (Rflat, Tflat|Mflat), since the flat
model needs to assign some probability mass to the many
matrices that are not tree-structured. As a consequence,
Bayesian model selection will favor the tree model if the
data are consistent with a tree structure. If the data are
consistent only with the flat model, then the tree model
will be unable to represent a predicability matrix that
accounts well for the data, and the flat model will be
favored by model selection.

Model selection simulation We generated data sets
from two different predicability matrices. Each contains
the same number of predicates and objects, but one set
is consistent with a tree structure, and the other violates
the M constraint (see Figures 4a and 4b). Within the
second data set, predicates span overlapping sets of ob-
jects. The frequencies in the dataset were generated by
sampling each predicable pair 100 times.

Table 2 compares posterior probabilities
P (Rflat, Tflat, Mflat|D) and P (Rtree, Ttree, Mtree|D)
for the two datasets. As expected, the M constraint
model scores better than the flat model on the tree-
consistent data. The difference in performance may
appear subtle, but the scores are log-posteriors and
represent a difference of 22 orders of magnitude. For
the tree-inconsistent data set, the flat model performs
better than the M constraint model, because the M
constraint model is unable to find a tree that produces
predicability patterns that match the data. The M
constraint model recovers the appropriate truth matrix,
but must overgeneralize in order to find a tree that could
produce the observed data (see Figure 4c). These results
confirm the intuition that a learner with a hypothesis
space including several different representations could
choose the representation best supported by a given
dataset.

Conclusion

We have shown how a generative Bayesian model incor-
porating the M constraint can be used to learn a pred-
icability tree and infer what is sensible about the world
given sparse observations of what is true in the world.
Additionally, we have demonstrated how Bayesian model
selection can be used to learn the M constraint given a
hypothesis space including alternate models. If people
do organize predicates and objects hierarchically, this re-
sult suggests that the hierarchical bias could be learned
rather than innate.

Much work remains to be done in exploring this model

Table 2: Log-posterior scores for the best possible con-
figuration each model recovered in each condition.

Model Tree-consistent Tree-inconsistent
M constraint -94726 -94255
Flat -94748 -93933

further. Measuring model performance on real world
datasets is an important future step. As Carey (1983)
and others have pointed out, real world data may contain
many exceptions to the M constraint. One advantage of
a probabilistic model is that it can tolerate noise and ex-
ceptions; similarly, it may be possible that learners still
have a strong hierarchical bias, but can make exceptions
when there is sufficient evidence. Our model could be
adapted to do the same. The M constraint may also be
violated by cross-cutting systems of categorization (e.g.,
taxonomic vs. ecological categories in biology), but pre-
vious work suggests that multiple context-sensitive mod-
els, each representing a different hierarchical (or other)
structure, could be learned to capture reasoning about
different aspects of a complex domain (Shafto et al.,
2005). We have only begun to explore the learning prob-
lem of distinguishing nonsense from sensibility, but our
Bayesian model demonstrates that this distinction is a
statistically learnable one, even in a case with no direct
evidence, like that of the blue banana.
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