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RESEARCH ARTICLE
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Abstract

Accurate modeling of enzyme activity and stability is an important goal of the protein engi-

neering community. However, studies seeking to evaluate current progress are limited by

small data sets of quantitative kinetic constants and thermal stability measurements. Here,

we report quantitative measurements of soluble protein expression in E. coli, thermal stabil-

ity, and Michaelis-Menten constants (kcat, KM, and kcat/KM) for 129 designed mutants of a

glycoside hydrolase. Statistical analyses reveal that functional Tm is independent of kcat, KM,

and kcat/KM in this system, illustrating that an individual mutation can modulate these func-

tional parameters independently. In addition, this data set is used to evaluate computational

predictions of protein stability using the established Rosetta and FoldX algorithms. Predic-

tions for both are found to correlate only weakly with experimental measurements, suggest-

ing improvements are needed in the underlying algorithms.

Introduction

Enzymes are proteins that have evolved to be the most proficient catalysts known [1]. It is

widely hypothesized that functional proteins such as enzymes must trade thermodynamic sta-

bility for properties such as pre-ordered active sites to achieve their extraordinary catalytic

proficiency [2,3]. Tradeoffs between stability and catalytic proficiency introduce additional

complexity to the computational design of enzymes because designed mutations must be com-

patible with both a targeted thermal activity (Tm) and a catalytic activity.

One major challenge to evaluating and improving the predictions made by current enzyme

design algorithms is the lack of large data sets for which enzyme functional parameters and

protein stability have been measured quantitatively. Studies that have explored mutagenesis of
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active sites in exquisite detail have sample sizes that are too small (n ~ 30) to allow for general-

izable predictions outside the few sequence positions mutated [4]. In contrast, studies that

cover>90% of possible point mutations to a particular enzyme measure activity only qualita-

tively or convolve independent parameters such as stability and activity into a single measure-

ment [5,6], reducing their utility in training enzyme design algorithms seeking to make

quantitative predictions of enzyme functional parameters. Large data sets such as the

ProTherm database [7], with roughly 10,000 characterized point mutations from nearly 1000

individual proteins, do not contain enzyme kinetic data. In addition, this data was collected

under a wide variety of experimental conditions without regard to standardization. Further-

more, the ProTherm database has been extensively used to parameterize force fields used in

molecular modeling [8,9], leading to a likely bias in assessment of current enzyme design algo-

rithms using this data set.

We previously reported soluble protein expression in E. coli and Michaelis-Menten con-

stants (kcat, KM, and kcat/KM) for 100 designed mutants of a β-glucosidase (BglB) from the bac-

terium Paenibacillus polymyxa on the reporter substrate 4-nitrophenyl-β-D-glucoside (pNPG)

[10]. The location of the sites mutated and the reaction (pNPG hydrolysis) used to determine

functional parameters is illustrated in Fig 1. The study of the 100 BglB variants revealed that

current algorithms do not enable robust and accurate prediction of kinetic parameters. How-

ever, machine learning analysis did indicate that algorithms that predict function based on cal-

culated structural features could be developed with more training data. Here we perform an

expanded study exploring the thermal stability of the original mutants in the BglB data set,

plus 29 additional mutations.

To evaluate the ability of molecular modeling software to predict thermal stability of

mutants in our data set, we modeled each of the 129 point mutations to the BglB sequence

using three approaches: 1) an enzyme-specific algorithm termed RosettaDesign [11], 2) an

algorithm for predicting ΔΔG of point mutations to proteins termed Rosetta ΔΔG [12], and 3)

an algorithm for predicting ΔΔG of mutations to proteins using FoldX [9]. The data set of pro-

tein expression, thermal stability, kcat, KM, and kcat/KM enabled us to evaluate the performance

of these three current force-field–based approaches to modeling stability changes caused by

mutations, building on previous work where we evaluated the ability of Rosetta to predict

changes in kinetic constants for this model system [10]. Similar to the original study, we found

only a weak correlation (PCC<0.3) between predicted and observed stability for each of these

established protocols. This highlights the need for further development of algorithms for pro-

tein function prediction and the importance of large data sets that are orthogonal to the data

sets used for training current algorithms.

Materials and methods

Mutant selection

A crystal structure of recombinant BglB in complex with the substrate analog 2-deoxy-

2-fluoro-α-D-glucopyranose (PDB ID: 2JIE) was used to build models of BglB using Rosetta

and FoldX. Family 1 glycoside hydrolase enzyme active sites position two like-charged resi-

dues in close proximity, creating an unfavorable electrostatic interaction, in order to present

pre-ordered geometry for catalysis [1]. In BglB, the carboxyl oxygens of two catalytic gluta-

mate residues, one functioning as a nucleophile and the other as an acid/base in a Koshland

double-displacement mechanism [13], are positioned at 3.1 Å in a crystal structure of a BglB-

inhibitor complex (2JIE) and 4.5 Å in the apo structure (2O9P) [14]. BglB relies on the prox-

imity of this pair of glutamate residues to cyclically perturb the pKa of E164 during catalysis,

allowing it to act as a general acid in the glycosylation step and a general base in the product
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release step [15,16]. In RosettaDesign simulations, functional constraints were used to

enforce catalytic distances, angles, and dihedral angles among a parameterized representa-

tion of reporter substrate pNPG, and protein side chains E164, E353, and Y295, as reported

previously [10]. In the other protocols, the apo structure of BglB (2O9P) was used to build

the initial models.

To select a subset of the 8,455 possible single point mutations to the native BglB sequence

that could be experimentally characterized, three approaches were taken. First, all residues

within 12 Å of the modeled pNPG were individually mutated to alanine. Second, a subset of

mutants was chosen at random by selecting a random mutation to residues within 12 Å of the

active site. Third, a model of the BglB-pNPG complex was loaded into Foldit, a graphical user

interface to Rosetta, point mutations to the protein were modeled, and a subset were chosen

by students learning about molecular modeling. In this approach, designed sequences had

energies no more than 5 Rosetta Energy Units (REU) higher than the modeled BglB-pNPG

complex, but no other rules were used to select mutations.

Fig 1. Overview of the modeled BglB-pNPG complex showing positions mutated in this study and

reaction used to determine functional properties of individual mutants. PyMOL rendering [32] of

modeled BglB in complex with pNPG showing the 68 sequence positions selected for mutation in this study

(teal spheres) and the modeled transition-state structure (white ball and stick model). Below, reaction scheme

of the hydrolysis of pNPG by BglB used to determine functional Tm and kinetic parameters kcat, KM, and kcat/

KM.

https://doi.org/10.1371/journal.pone.0176255.g001
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Molecular cloning and mutagenesis

The BglB construct from our previous study [10] was used to generate the 29 additional

mutants characterized in this study using an automated Kunkel mutagenesis procedure (Tran-

scriptic). Individual plasmid constructs were verified by Sanger sequencing (Operon, Gen-

script) and sequence-perfect clones were used for subsequent characterization.

Protein production and purification

Individual purified plasmid constructs were transformed into chemically competent Escheri-
chia coli BLR (DE3) cells and plated on selection plates containing 50 μg/mL kanamycin. Sin-

gle colonies were used to inoculate 5 mL Terrific Broth (Fisher BP24682) in 50 mL Falcon

tubes (Fisher 14-959-49A) with breathable seals (Fisher 12-567-05). After incubation at 37˚C

with shaking at 300 RPM for 24 hours, cells were pelleted and media replaced with 5 mL Ter-

rific Broth containing 1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) and 50 μg/mL

kanamycin to induce expression of BglB. After incubation at 18˚C with shaking at 300 RPM

for 24 hours, cells were pelleted, resuspended in enzyme storage buffer (50 mM HEPES, 150

mM sodium chloride, 25 mM EDTA, pH 7.50) and lysed with BugBuster protein extraction

reagent (EMD Millipore 70584–3).

After clarification of lysis mixture by centrifugation at 14,700 RPM for 30 minutes, His-

tagged BglB proteins were purified via immobilized metal ion affinity chromatography using

50 μL bed volume of Ni-NTA resin (Thermo 88221) and eluted in 300 μL enzyme storage

buffer (wash buffer was the same as enzyme storage buffer except substituting 25 mM imidaz-

ole for 25 mM EDTA). Protein purity was assessed using 4–12% gradient SDS-PAGE (Life

Technologies) and total protein yield determined by A280 using a BioTek Epoch spectropho-

tometer. All other reagents were purchased from Fisher Scientific.

Determination of Michaelis-Menten kinetics and thermal stability for

individual mutants of BglB

Kinetic constants for 10 new mutations beyond those previously characterized are included in

this data set. Michaelis-Menten parameters for each mutant are determined as described previ-

ously [10]. For previously characterized mutants, kinetic constants are drawn from the

publication.

For thermal stability assays, purified proteins diluted 1:10 in enzyme storage buffer (diluted

protein concentration: 0.01–0.1 mg/mL) were aliquotted in triplicate into 96-well PCR plates

(Fisher 14-230-232), using a volume of 50 μL per well. Proteins were thermally challenged for

30 minutes at 8 constant temperatures (lowest: 30˚C, highest: 50˚C, step size: 2.5˚C) in a ther-

mal cycler (BioRad) and 25 μL was immediately transferred to 96-well non-binding assay

plates (Corning 3884) containing 75 μL of 100 mM pNPG (Sigma N7006) in enzyme storage

buffer. Production rate of 4-nitrophenol was determined by monitoring A420 for 60 minute,

and fitting the linear portion of the observed reaction to a straight line (Gen5).

The functional parameter Tm was defined as temperature at which half of the protein mole-

cules were denatured after heat challenge. To determine the Tm for each BglB variant, the

product formation rates from samples that had been challenged at each of 8 temperatures were

fit to the logistic equation 1/(1+e-k(T–Tm)), where T is the incubation temperature measured in

degrees Celsius and k is the kurtosis of the melting curve.

For all mutants, kinetic constants and thermal stability measurements and statistical analy-

sis are provided in S1 Table. Additional information about experimental procedures is pro-

vided in S1 Text.
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Molecular modeling of BglB mutants

Three molecular modeling approaches were taken in this study. First, a model of BglB-pNPG

complex was generated using RosettaDesign as described previously [10]. Individual muta-

tions were generated by replacement of the target amino acid with the lowest-energy rotamer

of the designed amino acid, followed by 100 random combined translation and rotation moves

of the modeled pNPG and Monte Carlo optimization of the total system energy by 10 itera-

tions of rotamer repacking and gradient-based minimization. For each protein, 100 structures

were generated and the lowest 10 models in total system energy were selected for further analy-

sis. For the 10 low-energy models, 60 features (e.g., total system energy, protein-ligand inter-

face energy, hydrogen-bonding energy, and packing around the modeled pNPG) were

calculated and averaged (see S2 Table for a list of the features used and their Pearson correla-

tions to individual experimental values). This algorithm approximates protocols used in suc-

cessful enzyme design efforts using Rosetta [17–19].

Second, mutations were generated and scored using the Rosetta ddg_monomer application,

with recommended settings previously validated on experimental data [20], and the results

were averaged across all 50 iterations. The feature set for Rosetta ΔΔG contains 15 terms from

the Rosetta score function, which are reported in S2 Table. Details of the underlying algorithm

are given in [12].

Third, the FoldX position-specific scoring matrix (PSSM) algorithm was used. After adjust-

ing the crystal structure 2JIE to the FoldX force field using the RepairPDB application, point

mutations were modeled using the PSSM application [9] and scored on 17 score terms used by

the FoldX force field (S2 Table).

For each of the three modeling approaches, Pearson correlation between each calculated

feature (60 for RosettaDesign, 15 for Rosetta ΔΔG, and 17 for FoldX) and experimentally-

determined Tm was calculated after removing features with variance of< 0.05. All resulting

values are reported in S2 Table.

Results

Production of BglB mutants in E. coli and protein purification

Of 129 mutant proteins produced, 92 expressed and purified as soluble protein (Fig 2, “Expres-

sion” column). The remaining 37 mutants did not visibly appear after SDS-PAGE analysis

after at least 2 independent production attempts. Gel images of each protein used in this study

can be found as S1 Fig.

Mutants that did not express were broadly consistent with well-established rules of protein

folding [1], such as the large destabilizing effect of the introduction of proline into an alpha

helix (Y166P, Q19P), the mutation of topology-defining/helix-ending proline residues

(P329N), mutations from glycine (G12N, G355A), the introduction of charged residues into

the hydrophobic core (A236E, F72H, N293D, N293K), and extreme amino acid volume

changes in the core of the protein (e.g., small-to-large mutations like A227W).

Kinetic constants for 10 new variants of BglB build on previous data set

Building on our previous BglB data set, we report kinetic constants for 10 mutants for which

kinetic constants had not previously been determined. We found strong agreement (4% differ-

ence for kcat, 3% for KM, and 1% for kcat/KM) between values for batched replicates of the

native BglB sequence and the previous values produced by a different group of researchers a

year previously. The limit of detection of our assay for kcat/KM is 10 M–1min–1, and the maxi-

mum kcat/KM in the data set is 1,570,000 M–1min–1 (N220Y).

Thermal stability and kinetic constants for 129 variants of a glycoside hydrolase
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The most notable change in kinetic constants within the new mutants characterized in this

publication is the 10-fold decrease (indicating more sensitive enzyme response to substrate

concentration) for computationally-designed mutant N220Y. Interestingly, the structural

hypothesis (favorable molecular interaction between the aromatic ring of the designed tyrosine

and the aromatic ring of pNPG leading to a lower KM) for this mutation matched the intended

functional effect.

Together, data for soluble expression, kinetic constants (kcat, KM, kcat/KM), and melting

temperature are reported for 129 mutants of BglB. Fig 2 depicts the data set as a heat map, with

values relative to native BglB. (A table of kcat, KM, and kcat/KM values with statistical analysis

can be found in S1 Table, and Michaelis-Menten plots can be found as S2 Fig).

Functional protein melting temperature for 79 mutants of BglB

Of the 79 solubly-expressed mutants which have kinetic activity above our limit of detection

for kcat/KM of 10 M–1min–1, a functional melting temperature (Tm) was determined by fitting

observed rates collected from proteins incubated at 8 temperatures (30–50˚C) to the logistic

equation, as described in “Materials and methods”.

Fig 2. Relative effects on enzyme functional parameters for 129 mutants of BglB. Each mutant gets a bar with six colored

boxes, depicting 1) soluble protein expression, 2) Tm, 3) kcat, 4) KM, 5) kcat/KM, and 6) conservation within Pfam GH01. For

expression (box 1), a black box indicates soluble expression > 0.10 mg/mL, and a white box indicates expression < 0.10 mg/mL in E.

coli BLR (DE3). For Tm (box 2), a linear scale is used to depict change in Tm compared to wild type, with mutants with greater Tm in

green, and those with lower Tm in purple. For kcat, 1/KM, and kcat/KM (boxes 3–5), blue indicates lower values, and orange indicates

higher values relative to the wild type value, as indicated by the color legend (top). For conservation (box 6), the frequency of native

BglB residue in an alignment of the BglB sequence to 1,554 sequences from Pfam GH01 is shown, on a linear scale from 0% to

100%. The quantitative measurements used to produce this illustration are provided in S1 Table.

https://doi.org/10.1371/journal.pone.0176255.g002
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Ten wild type BglB replicates had an average melting temperature of 39.9 ± 0.1˚C. In the

mutant data set, the average melting temperature was 39.4 ± 1.8˚C, and the total range

observed was from 34.9 to 46.0˚C (a range of ~11˚C). Of 79 mutants for which Tm was deter-

mined, 43 mutants have a Tm that falls within 1˚C of the wild type Tm. Of the remaining 36 Tm

values, 26 exhibited a lower melting temperature and 10 displayed a higher melting tempera-

ture. The highest Tm observed in this data set is for the mutation E164A, which increased the

Tm to 46.0˚C (+6.1˚C), while the lowest Tm observed was for mutant E222H, which had a Tm

of 34.9˚C (–5.6˚C).

Overview of data for 129 mutants of BglB

All experimental data collected in this study is illustrated in Fig 2. This includes measured val-

ues for expression in E. coli, functional Tm, kinetic constants kcat, KM, and kcat/KM, and

sequence conservation within Pfam GH01 relative to the BglB wild type values as a heat map.

A table containing experimentally-determined Tm values and statistical analysis is available as

S1 Table, and diagnostic plots with statistical analysis as S3 Fig.

Some individual mutations not involving catalytic residues explicitly capture the concept of

function-stability trade-offs. For mutation N404C, the functional Tm increased by 2.75˚C

while kcat decreased by 10-fold. Similarly, the mutation W120F increased functional Tm by

2.6˚C, while decreasing kcat by 9-fold. Illustrations of the local area of these two mutants can be

found in Fig 3. Also pictured in Fig 3 are the two mutants that most significantly decreased

thermal stability: E222H (ΔTm –5.0˚C) and Q19S (ΔTm –3.1˚C). For E222H, molecular model-

ing indicates an unfavorable Coulombic interaction between the charged R240 and the mutant

E222H being responsible for the loss of stability in this mutant. For Q19S, it is unclear what

the major driving force is behind the destabilization.

Fig 3. Structural analysis of Rosetta models of designed point mutants of BglB with effects on thermal stability. Four mutant

panels are shown, sorted from left to right by increasing Tm. In the top panel, experimentally-determined change in Tm and kcat/KM are

given. For reference, the Tm for the wild type sequence is 39.9˚C, and the kcat/KM is 174,000 M–1min–1. In the next panel down,

sequence logos depict the local area of sequence conservation based on an alignment of 1,544 sequences from Pfam GH01. At

bottom, depictions of the local area of the mutation in the BglB WT protein (top) and RosettaDesign model of mutation (bottom).

https://doi.org/10.1371/journal.pone.0176255.g003
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Some mutations alter one functional parameter while leaving another unchanged. The

mutation R240A does not change Tm, but increases kcat by 10-fold (see Fig 2), while Q313R

increases Tm by 2.2˚C while leaving kcat within 10% of the kcat of native BglB. Some mutations

show greater Tm accompanied by a “better” functional parameter. For the Michaelis constant

(KM) a decrease of 10-fold in mutant N220Y is accompanied by an increase in Tm by 1.9˚C.

Relationship between Tm and kcat, KM, and kcat/KM for mutants of BglB

The Pearson correlation between linear Tm values and log-scale kinetic constants using SciPy

was –0.27, –0.07, and –0.24 for each of kcat, KM, and kcat/KM, respectively. Fig 4 illustrates the

correlations reported here as scatter plots. Individual mutants exhibiting function-stability

trade-offs were identified and tallied. Mutants having a Tm greater than that of wild type and a

kinetic constant less than that of wild type, and vice versa, of any magnitude, were counted as

exhibiting a function-stability trade-off. By this analysis, the percentage of mutants in our data

set that exhibit function-stability tradeoffs is 18.8% for kcat, 25.8% for KM, and 21.0% for kcat/

KM. The statistical independence of stability and functional parameters in the BglB data set

suggests that protein stability and enzyme kinetic constants can be separately designed in BglB.

Relationship between sequence conservation and functional parameters

of BglB mutants

Correlation to conservation within the Pfam GH01 was assessed between each of Tm, kcat, KM,

and kcat/KM. The percent conservation was defined as the percentage of sequences in an align-

ment of 1,544 proteins from Pfam GH01 matching the BglB native residue in the alignment

[10]. For the 129 variants reported here, the PCC between percent conservation and each of

kcat, KM, kcat/KM, and Tm is found to be –0.70, –0.16, –0.69, and 0.30, respectively. Fig 5 illus-

trates the correlations as scatter plots with their associated PCC values.

Assessment of current computational predictions of stability

Current algorithms for prediction of the stability effect of point mutations use published data

sets to assess performance [12]. Thus, large, novel data sets such as the one presented here

Fig 4. Relationship between protein melting temperature (Tm) and kinetic constants kcat, KM, and kcat/KM in the BglB

system. Tm values are on a linear scale in units of degrees Celsius and values for kinetic constants are on a log scale, with units of

min–1, mM, and M–1min–1, respectively. These parameters are not correlated in BglB (Pearson correlation < 0.25 for Tm versus each

of the kinetic constants kcat, KM, and kcat/KM). The independence of these parameters suggests that they can be separately

engineered in a rational manner.

https://doi.org/10.1371/journal.pone.0176255.g004
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present an unbiased evaluation of algorithm performance. The correlation between functional

Tm and calculated features from current algorithms designed to predict protein stability was

assessed by Pearson correlation (for a list of all features for which Pearson correlation was

assessed, see S2 Table). In Fig 6, the two most-correlated and the two least-correlated features

for RosettaDesign, Rosetta ΔΔG, and FoldX are illustrated. This assessment is “blind” in the

Fig 5. Correlations between conservation within functional protein family and enzyme functional parameters protein

melting temperature (Tm) and kinetic constants (kcat, KM, and kcat/KM) in the BglB system. Scatter plots showing conservation

analysis from an alignment of 1,554 proteins in Pfam family 1 (glycoside hydrolases) versus measured values for Tm (linear scale,

units of ˚C) and each of the kinetic constants kcat, KM, and kcat/KM (log scale) with units of min–1, mM, and M–1min–1, respectively.

https://doi.org/10.1371/journal.pone.0176255.g005

Fig 6. Correlations between experimentally-determined Tm and structural features from molecular

modeling algorithms. For each of the three computational protocols used for prediction of stability in this

study, the two most-correlated (black) and two least-correlated (gray) features are plotted against

experimentally-determined Tm. Pearson correlation between the two sets of values is provided above each

plot. For descriptions of individual features for each of the three algorithms, see references for RosettaDesign

[11], Rosetta ΔΔG [12], and FoldX [9].

https://doi.org/10.1371/journal.pone.0176255.g006
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sense that it is based on a novel data set of mutations not previously used to train current pro-

tein modeling algorithms. One caveat is that many of the mutations were selected using the

Foldit interface to Rosetta, and are predicted to be no worse than five Rosetta Energy Units

than the native. Therefore, this represents a set of mutations mostly predicted to be compatible

with the model of the BglB-pNPG complex in the Rosetta forcefield. Another caveat is that

current algorithms are largely trained on Tm values derived from direct physical measurements

of protein unfolding. The functional Tm used in this study is an indirect measurement of pro-

tein unfolding, and is derived from the amount of functionally folded protein remaining in

solution after heat challenge. The degree of correlation between a functional and thermody-

namic Tm measurement, which is currently unknown, may affect the predicative ability of

algorithms.

For each of RosettaDesign, Rosetta ΔΔG, and FoldX, the correlation between functional Tm

and the metric associated with total system energy was –0.0006, –0.16, and –0.18, respectively.

For RosettaDesign, the feature that was most strongly correlated to functional Tm was the

hydrogen bond energy of protein sidechains [11] (Pearson correlation –0.16). For Rosetta

ΔΔG, the feature from the Rosetta score function that was found to be most strongly correlated

with functional Tm was the energy of H-bonds between backbone and side chain atoms (Pear-

son correlation 0.35). For FoldX, H-bond energy between backbone atoms [9] and functional

Tm had a Pearson correlation of 0.30. The weak correlation between experimental data and

predictions reveal that the underlying algorithms require improvement in order to robustly

predict stability of enzyme mutants.

Discussion

It is widely hypothesized that enzymes must balance thermodynamic stability with functional

properties, and that there are explicit trade-offs between these properties [2,3]. This is sup-

ported by previous studies for a variety of enzymes, including ribonuclease (“Barnase”) [21],

T4 lysozyme [22], and β-lactamase [23] that show tradeoffs between protein stability and func-

tional parameters such as kcat/KM. The data set reported here reveals that, for BglB, it is not

generally true that individual residue identities are trade-offs between function and stability.

Pearson correlations between functional thermal stability and parameters kcat, KM, and kcat/

KM in the BglB data set are< 0.3.

For systems such as BglB, in which kinetics and thermal stability are independent biophysi-

cal properties, engineering efforts can avoid the multi-objective optimization problems associ-

ated with maximizing two parameters (such as kcat and thermal stability) simultaneously

[24,25]. However, there is an established relationship between the stability of functional pro-

teins and their ability to gain new functions through evolution [26]. In the context of living

organisms, it is possible that the independence of thermal stability and functional parameters

in enzymes such as glycosyl hydrolases leads to greater evolvability of new functions. This is

exemplified by mutations that enhance thermal stability while remaining neutral in regard to

the protein’s natural function, as these mutations, from an evolutionary perspective, could

increase tolerance to subsequent mutations that trade stability for features such as pre-ordered

active sites that give rise to new functions [27].

We found an inverse correlation relating protein function (kcat and kcat/KM) to conserva-

tion within Pfam GH01. This is consistent with the discovery that negative selection purges

natural functional proteins of destabilizing mutations [28]. Our finding is also in agreement

with a previous study of over 1 million systematically mapped variants of Bgl3, a homolog of

BglB, that found strong inverse correlation between mutational tolerance and conservation

when assaying for enzyme activity [6]. Neither KM nor functional Tm appeared to have a strong
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relationship with sequence conservation. This has significant implications for the field of

enzyme engineering, as conservation is commonly used to guide mutagenesis efforts [29].

Comparison of computational predictions of protein stability with experimental measure-

ments reveal only a very weak correlation (PCC< 0.4) between the single most correlated fea-

ture and observed functional Tm for the BglB system. Furthermore, the most strongly-

correlated feature to Tm was not found to be the total system energy for any of the three model-

ing protocols tested. While current algorithms perform well on some data sets, they are not

robust predictors for every protein system of interest. This highlights the complexity of protein

sequence-structure-function space and the need to continue expansion of data sets for training

protein modeling algorithms. In addition to “brute force” methods, such as the one presented

here, exciting advances in mapping protein sequence-functional space using experimental

techniques such as high-throughput assays, microfluidics, and deep sequencing [6,30,31] have

the potential to generate the transformative data sets need to develop a new generation of data-

driven protein design algorithms.

Supporting information

S1 Table. Table of protein expression (0 = no, 1 = yes), functional melting temperature

(˚C), kinetic constants kcat (min-1), KM (mM) and kcat/KM (M-1min-1), and statistical analy-

sis (1 standard deviation error, in the same units as for the value) for BglB and each of 129

mutants.

(CSV)

S2 Table. Table of single feature correlations between the computational algorithms and

experimentally-determined Tm values.

(CSV)

S1 Text. Additional information about experimental procedures.

(DOCX)

S1 Figs. Images of SDS-PAGE analysis for 129 mutants and batched replicates of the BglB

WT protein (ZIP file containing JPEG images).

(ZIP)

S2 Figs. Michaelis-Menten plots for each mutant for which kinetic constants are reported

for the first time (ZIP file containing PNG images).

(ZIP)

S3 Figs. Plot of protein melting curve for each mutant for which Tm is reported (ZIP file

containing PNG images).

(ZIP)

S1 Code. Details of computational protocols (ZIP archives containing text files).

(ZIP)

Author Contributions

Conceptualization: DAC JBS.

Data curation: DAC SH.

Formal analysis: DAC.

Funding acquisition: JBS.

Thermal stability and kinetic constants for 129 variants of a glycoside hydrolase

PLOS ONE | https://doi.org/10.1371/journal.pone.0176255 May 22, 2017 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176255.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176255.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176255.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176255.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176255.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176255.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176255.s007
https://doi.org/10.1371/journal.pone.0176255


Investigation: DAC SH BWC RWC ND MR BB.

Methodology: DAC SH RWC.

Project administration: DAC SH BWC.

Resources: JBS.

Software: DAC.

Supervision: DAC JBS.

Validation: DAC SH.

Visualization: DAC SH.

Writing – original draft: DAC.

Writing – review & editing: DAC JBS SH.

References
1. Fersht A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Fold-

ing. Macmillan; 1999.

2. Beadle BM, Shoichet BK. Structural Bases of Stability–function Tradeoffs in Enzymes. J Mol Biol. 2002;

321: 285–296. PMID: 12144785

3. Tokuriki N, Stricher F, Serrano L, Tawfik DS. How protein stability and new functions trade off. PLoS

Comput Biol. 2008; 4: e1000002. https://doi.org/10.1371/journal.pcbi.1000002 PMID: 18463696

4. Sunden F, Peck A, Salzman J, Ressl S, Herschlag D, Kuriyan J. Extensive site-directed mutagenesis

reveals interconnected functional units in the alkaline phosphatase active site. eLife Sciences. eLife Sci-

ences Publications Limited; 2015; 4: e06181.

5. van der Meer J-Y, Poddar H, Baas B-J, Miao Y, Rahimi M, Kunzendorf A, et al. Using mutability land-

scapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases. Nat

Commun. 2016; 7: 10911. https://doi.org/10.1038/ncomms10911 PMID: 26952338

6. Romero PA, Tran TM, Abate AR. Dissecting enzyme function with microfluidic-based deep mutational

scanning. Proc Natl Acad Sci U S A. 2015; 112: 7159–7164. https://doi.org/10.1073/pnas.1422285112

PMID: 26040002

7. Kumar MDS, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H, et al. ProTherm and Pro-

NIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Res.

2006; 34: D204–6. https://doi.org/10.1093/nar/gkj103 PMID: 16381846

8. Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes:

a study of more than 1000 mutations. J Mol Biol. 2002; 320: 369–387. https://doi.org/10.1016/S0022-

2836(02)00442-4 PMID: 12079393

9. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online

force field. Nucleic Acids Res. 2005; 33: W382–8. https://doi.org/10.1093/nar/gki387 PMID: 15980494

10. Carlin DA, Caster RW, Wang X, Betzenderfer SA, Chen CX, Duong VM, et al. Kinetic Characterization

of 100 Glycoside Hydrolase Mutants Enables the Discovery of Structural Features Correlated with

Kinetic Constants. PLoS One. 2016; 11: e0147596. https://doi.org/10.1371/journal.pone.0147596

PMID: 26815142

11. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D. De Novo Enzyme Design Using Rosetta3. PLoS

One. Public Library of Science; 2011; 6: e19230.

12. Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced

changes in protein structure and stability. Proteins. 2011; 79: 830–838. https://doi.org/10.1002/prot.

22921 PMID: 21287615

13. Koshland DE. STEREOCHEMISTRY AND THE MECHANISM OF ENZYMATIC REACTIONS. Biol

Rev Camb Philos Soc. 1953; 28: 416–436.

14. Isorna P, Polaina J, Latorre-Garcı́a L, Cañada FJ, González B, Sanz-Aparicio J. Crystal structures of
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