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Abstract

Modeling 3D Laplace-Fourier domain acoustic wave equation with free-surface topography
using finite-difference

by

Hussain J AlSalem

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor James Rector, Chair

We develop embedded boundary methods to handle arbitrarily shaped topography to ac-
curately simulate acoustic seismic wave propagation in Laplace-Fourier (LF) domain. The
purpose is to use this method to enhance accurate wave simulation near the surface. Un-
like most existing methods such as the ones using curvilinear grids to fit irregular surface
topography, we use regular Cartesian grid system without suffering from staircasing error,
which occurs in the conventional implementations. In this improved embedded-boundary
method, we account for an arbitrarily curved surface by imposing ghost nodes above the
surface and approximating their acoustic pressures using linear extrapolation, quadratic in-
terpolation, or cubic interpolation. Implementing this method instead of using curvilinear
grids near the boundaries greatly reduces the complexity of preprocessing procedures and
the computational cost. Furthermore, using numerical examples, we show the accuracy
gain and performance of our embedded-boundary methods in comparison with conventional
finite-difference (FD) implementation of the problem.

In realistic 3D geological settings underlying topography surfaces with a large veloc-
ity contrast between shallow and deep regions, simulation of acoustic wave propagation
in LF domain using a spatially uniform grid can be computationally demanding, due to
over-discretization of the high-velocity material. We introduce a discontinuous mesh (DM)
method that exchanges information between regions, discretized with different grid spacings,
to improve efficiency and convergence. We present a 3D second- and fourth-order velocity-
pressure staggered-grid FD DM acoustic wave propagation method in LF domain for acoustic
wave estimation using any spatial discretization ratio between meshes. We evaluate direct
and iterative parallel solvers for computational speed, memory requirements and conver-
gence. Benchmarks in realistic 3D models with extreme and realistic topography examples
show more efficient and stable results for DM with direct solvers relative to uniform mesh
with iterative solvers.
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Chapter 1

Overview

1.1 Acoustic wave equation analysis
Frequency-domain modeling of wave propagation inside the earth has been studied ex-

tensively (see Lysmer and Drake (1972); Marfurt (1984); Pratt and Worthington (1990);
Zahradník and Urban (1984); Jo et al. (1996); Štekl and Pratt (1998); Hustedt et al. (2004);
Operto et al. (2007)). Most of the methods that have been developed for wave modeling in
the frequency domain are based on solving the acoustic wave equation by the finite-difference
(FD) method: on a uniform grid, the FD methods provide an excellent compromise between
accuracy and computational efficiency.

In Chapter 2, we solve the 3D acoustic wave equation analytically and numerically in
Laplace-Fourier (LF) domain. We find the analytical solution for two cases: a point source
in unbounded homogenous medium, and a point source in fluid half-space. The numerical
solution is achieved using second- and fourth-order FD approximation. We conclude the
chapter by comparing both solutions to test the accuracy of our FD numerical solutions.

1.2 Free-surface boundary
Special attention to the numerical treatment of the free-surface boundary for topography

is deserved because it does not follow naturally from a Cartesian grid. For acoustic forward
modeling, second- and fourth-order accurate FD methods do not implicitly satisfy the free-
surface condition as is the case with finite-element methods. Accurately implementing the
free-surface condition on an irregular interface is difficult due to the non-local nature of
the FD schemes. It implies that acoustic velocities above the free-surface are required to
compute the pressure at or immediately below the surface (Fichtner, 2011).

In Chapter 3, we describe an embedded-boundary method for simulating the three-
dimensional acoustic wave equation with irregular free-surface boundary on a Cartesian grid.
By computing pressure on both sides of the interface, we can satisfy a zero acoustic pressure
at the free surface, yielding superior results compared to conventional implementations.
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1.3 Numerical Simulations and Optimization
A significant challenge facing the numerical modeling of acoustic seismic wave propaga-

tion in LF domain is the increase in model size due to low near-surface velocities in arid
environments and usage of high frequency sources to collect seismic data. Hence, it is ex-
pensive to define a model, with enough resolution to achieve at least 8 points per wavelength
resolution, in these conditions. This often requires the models to be very large, with the
need of significant computational resources. This is especially true for full 3D models where
the required computational cost grows proportional to the size of the model cubed.

Recent advances in high-performance computing and a significant reduction in their cost
have allowed us to conduct this type of research. However, near-surface low-velocity regions,
which require a large number of grid nodes, make acoustic wave modeling an extremely
computationally challenging problem. Conventional seismic simulations either ignore the
relatively thin low-velocity regions or include them using a uniform grid size that is deter-
mined by the lowest velocity. The first simulation produces inaccurate results which causes
the simulated data to underpredict the true data. The second simulation results in oversam-
pling the deeper regions with higher velocity inevitably leading to a considerable increase
of computational time and memory. In Chapter 4, we develop a discontinuous mesh (DM)
method that uses different mesh discretizations for shallow and deep regions. This allows the
acoustic wave simulations, with realistic 3D heterogeneous velocity models, to be pushed to
higher frequencies to meet the requirements of gas and oil exploration in arid environments.
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Chapter 2

Analytical and numerical analysis of the
acoustic wave equation in LF domain

2.1 Governing equations
In acoustic seismic modeling, the objective is to describe the propagation of waves through

the earth. Here, we consider wave propagation that is solved in the LF Domain. We start
by discretizing the three-dimensional wave equation on a Cartesian grid xi,j = (ih, jh, kh) in
space, where h > 0 is the grid size. The solution to the forward problem is employed using
a single frequency for 3D acoustic wave simulation (Hustedt et al., 2004). It is reduced from
the 3D elastic wave field simulator developed by Petrov and Newman (2012).

We consider the first-order hyperbolic system in a velocity-pressure formulation in the
LF domain. Let the 3D isotropic acoustic medium with density ρ and incompressibility κ
(κ = ρ · Vp2) occupy the region Ω. The equations of motion inside Ω are given by:

sρvx(x, y, z, s) = ∂xP (x, y, z, s),

sρvy(x, y, z, s) = ∂yP (x, y, z, s),

sρvz(x, y, z, s) = ∂zP (x, y, z, s),

sP (x, y, z, s) = κ [∂xvx(x, y, z, s) + ∂yvy(x, y, z, s) + ∂zvz(x, y, z, s)] + sm(x, y, z, s),

(2.1)

where s is the complex number given by σ+ iω, σ is the Laplace damping factor, ω = 2πf is
the angular frequency, and i =

√
−1. The velocities vx, vy and vz are the velocity wavefield

components, P is the acoustic pressure, m is seismic moment density tensor, and the symbols
∂x, ∂y, and ∂z denote the partial differential operators ∂

∂x
, ∂
∂y
, and ∂

∂z
, respectively. The LF

equations of motion (equation 2.1) are obtained by transforming the time-domain system of
equations using the following LF transform:

f(s) =

∫ ∞
0

f(t)e−stdt, (2.2)
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where f(t) includes the functions vx(t), vy(t), vz(t), and P (t). The time-domain first-order
hyberbolic system (Virieux, 1986) is given by:

ρ∂tvx(x, y, z, t) = ∂xP (x, y, z, t),

ρ∂tvy(x, y, z, t) = ∂yP (x, y, z, t),

ρ∂tvz(x, y, z, t) = ∂zP (x, y, z, t),

∂tP (x, y, z, t) = κ [∂xvx(x, y, z, t) + ∂yvy(x, y, z, t) + ∂zvz(x, y, z, t)] + ∂tm(x, y, z, t),

(2.3)

where the symbol ∂t denotes the partial differential operator ∂
∂t

and t denotes time.
This system of equations must be augmented with boundary conditions. In the case of

infinite media, the non-reflecting condition for wavefield components is applied at the bound-
aries of region Ω. We used the perfectly matched layer (PML) boundary conditions (Hastings
et al., 1996; Kim and Pasciak, 2010). However, at a free-surface boundary, one needs to as-
sume vacuum pressure and hence incorporate zero acoustic pressure at the boundary. In
this chapter, we present the numerical analysis of the second- and fourth-order accurate LF
domain velocity-pressure staggered FD scheme to simulate acoustic wave propagation using
a uniform grid in the inner media.

2.2 Analytical solution of the acoustic wave equation in
a homogeneous medium

We start by differentiating the first three equations in the first-order hyberbolic system
(equation 2.3) with respect to space and the fourth equation is differentiated with respect
to time, leading to the second-order system:

∂x∂tvx(x, y, z, t) =
1

ρ
∂xxP (x, y, z, t),

∂y∂tvy(x, y, z, t) =
1

ρ
∂yyP (x, y, z, t),

∂z∂tvz(x, y, z, t) =
1

ρ
∂zzP (x, y, z, t),

∂ttP (x, y, z, t) = κ [∂x∂tvx(x, y, z, t) + ∂y∂tvy(x, y, z, t) + ∂z∂tvz(x, y, z, t)]

+ ∂ttm(x, y, z, t),

(2.4)

where the symbols ∂xx, ∂yy, ∂zz, and ∂tt denote the partial differential operators ∂2

∂x2
, ∂2

∂y2
,

∂2

∂z2
, and ∂2

∂t2
, respectively. By combining the time-domain second-order hyberbolic system

(equation 2.4) into one equation, we get the following second-order inhomogeneous acoustic
time-domain wave equation:

∇2P (x, y, z, t)− V −2
p ∂ttP (x, y, z, t) = −V −2

p ∂ttm(x, y, z, t) (2.5)
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Since the coefficients to the differential operators in equation 2.5 are independent of time,
the dimension of the wave equation can be reduced to three by use of the LF transform
(equation 2.2), leading to the LF wave equation, or Helmholtz equation,

(∇2 + k2)P (r, s) = k2m(r, s), (2.6)

where r = (x, y, z) and k is the homogeneous medium wavenumber at LF frequency s:

k = i
s

Vp
. (2.7)

Point source in unbounded medium

In a homogeneous medium, the Helmholtz equation (equation 2.6) is easily solved, with a
choice of coordinate system being imposed by the source and boundary geometry. In the case
of an omni-directional point source, the field only depends on the range from the source, and
the solution is conveniently described in a spherical coordinate system. The Laplace operator
in the Cartesian coordinate system r = (x, y, z) is given by:

∇2 = ∂xx + ∂yy + ∂zz, (2.8)

and it is equivalent to the Laplacian in the spherical coordinate system r = (r, θ, φ) that is
given by:

∇2 =
1

r2
∂rr

2∂r +
1

r2 sin2 φ
∂φφ +

1

r2 sinφ
∂φ sinφ∂θ. (2.9)

Since the omni-directional source changes only with r, the Helmholtz equation can be reduced
to: [

1

r2
∂rr

2∂r + k2

]
P (r, s) = 0, (2.10)

and hence the general solution to the point source Helmholtz equation is:

P (r, s) =

{
A
r
eikr

B
r
e−ikr

. (2.11)

The solution to the Helmholtz equation is a linear combination of the two independent
solutions in equation 2.11, but since we assume the sphere is the only source in the infinite
medium, we can apply the radiation condition of no incoming waves at infinity to require
that B = 0, i.e.:

P (r, s) = A
eikr

r
. (2.12)

Defining the source strength S(s) = −4πA as the volume-injection amplitude produced by
the source at LF frequency s, we then obtain the solution from equation 2.12 for the acoustic
pressure:

P (r, s) = −S(s)
eikr

4πr
. (2.13)
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The fraction in equation 2.13 is called the Green’s function. For a source at r = r0, it is
given by:

gs(r, r0) =
eikR

4πR
, R = |r− r0|. (2.14)

The Green’s function satisfies the inhomogeneous Helmholtz equation:

(∇2 + k2)gs(r, r0) = −δ(r− r0), (2.15)

which is easily verified by integrating equation 2.15 over a small volume containg the source
point at r0. By multiplying equation 2.15 by −S(s), we get the inhomogeneous Helmholtz
equation for a simple point source of strength S(s) at point r0:

(∇2 + k2)P (r, s) = S(s)δ(r− r0). (2.16)

Furthermore, the Green’s function of the time-domain wave equation is obtained by the
inverse LF transform of gs:

gt(r, r0) =
δ(t−R/Vp)

4πR
(2.17)

and can be thought of as the impulse response in an unbounded medium.

Point source in fluid half-space

As an example of the use of Green’s function to boundary value problems, we apply it to
the simplest possible example of a bounded acoustic medium, which is the halfspace shown
in Figure 2.1. The upper halfspace is assumed to be a vacuum, and the boundary condition
to be satisfied by the field in the fluid is that the pressure must vanish at the free-surface
(z = 0). In Figure 2.1, we introduce a Cartesian coordinate system with the origin on the
surface and with the z-axis perpendicular to the surface. A simple point source is assumed
to be placed at rs = (xs, ys, zs).

The pressure-release at the free-surface boundary is given by:

P (rB, s) = 0, rB = (x, y, 0). (2.18)

Hence, for this simple case, it is straightforward to choose a Green’s function which vanishes
on the free-surface z = 0:

gs(r, rB) =
eikR

4πR
− eikR

′

4πR′
(2.19)

with

R =

√
(x− xs)2 + (y − ys)2 + (z − zs)2,

R′ =

√
(x− xs)2 + (y − ys)2 + (z + zs)

2.

(2.20)
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R
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Vp, ρ

Vacuum

r = (x, y, z)

rs’ = (xs, ys, -zs)

rs = (xs, ys, zs)

z

x

Figure 2.1: Point source in a fluid halfspace illustrating the method of images.

The solution for the pressure now takes the form:

P (r, s) = −S(s)

[
eikR

4πR
− eikR

′

4πR′

]
, (2.21)

which corresponds to the superposition of the free-space solutions for the source at depth
z = zs and an image source at z = −zs in the vacuum halfspace. The solution is identical
to the mirror or image method found in electrostatics boundary-value problems (Griffiths,
2005; Jackson, 2007).

2.3 Second-order accurate FD discretization of the
acoustic wave equation

The layout of the three velocity components and acoustic pressure is shown in Figure 2.2,
indicating the most basic way to use a velociy-pressure staggered-grid. We discretize equa-
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Figure 2.2: Layout of pressure and velocity components for staggered-grid acoustic wave
propagation FD method. Updating (vx)i+1/2,j,k requires Pi,j,k, and Pi+1,j,k for second-order
FD and Pi−1,j,k, Pi,j,k, Pi+1,j,k, Pi+2,j,k for fourth-order FD approximation.
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tion 2.1 using the second-order accurate central FD formula in Appendix A.1 to get:

sρi+ 1
2
,j,kvx|i+ 1

2
,j,k =

Pi+1,j,k − Pi,j,k
h

,

sρi,j+ 1
2
,kvy|i,j+ 1

2
,k =

Pi,j+1,k − Pi,j,k
h

,

sρi,j,k+ 1
2
vz|i,j,k+ 1

2
=
Pi,j,k+1 − Pi,j,k

h
,

(2.22)

and

sPi,j,k =
κi,j,k
h

[
vx|i+ 1

2
,j,k − vx|i− 1

2
,j,k + vy|i,j+ 1

2
,k − vy|i,j− 1

2
,k + vz|i,j,k+ 1

2
− vz|i,j,k− 1

2

]
. (2.23)

We then substitute equations 2.22 into equation 2.23 and get the following relationship for
acoustic pressure:

Pi,j,k =
κi,j,k
h2s2

[
1

ρi− 1
2
,j,k

Pi−1,j,k +
1

ρi,j− 1
2
,k

Pi,j−1,k +
1

ρi,j,k− 1
2

Pi,j,k−1

−

(
1

ρi+ 1
2
,j,k

+
1

ρi− 1
2
,j,k

+
1

ρi,j+ 1
2
,k

+
1

ρi,j− 1
2
,k

+
1

ρi,j,k+ 1
2

+
1

ρi,j,k− 1
2

)
Pi,j,k

+
1

ρi+ 1
2
,j,k

Pi+1,j,k +
1

ρi,j+ 1
2
,k

Pi,j+1,k +
1

ρi,j,k+ 1
2

Pi,j,k+1

]
.

(2.24)

Using equation 2.24, we can generate the mass matrix A for the second-order accurate FD
LF domain acoustic wave equation with a size of Nx ×Ny ×Nz and solve the system as:

AP = m. (2.25)

Internal row [i + jNx + kNxNy] for the mass matrix A, with the first row starting at zero
(i = 0, j = 0, k = 0), is approximated by:

Ai+jNx+kNxNy ,i+jNx+(k−1)NxNy = − a

ρi,j,k− 1
2

,

Ai+jNx+kNxNy ,i+(j−1)Nx+kNxNy = − a

ρi,j− 1
2
,k

,

Ai+jNx+kNxNy ,(i−1)+jNx+kNxNy = − a

ρi− 1
2
,j,k

,

Ai+jNx+kNxNy ,i+jNx+kNxNy = 1 + b2nd · a,

Ai+jNx+kNxNy ,(i+1)+jNx+kNxNy = − a

ρi+ 1
2
,j,k

,

Ai+jNx+kNxNy ,i+(j+1)Nx+kNxNy = − a

ρi,j+ 1
2
,k

,

Ai+jNx+kNxNy ,i+jNx+(k+1)NxNy = − a

ρi,j,k+ 1
2

,

(2.26)
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where:

a =
κi,j,k
h2s2

,

b2nd =

(
1

ρi+ 1
2
,j,k

+
1

ρi− 1
2
,j,k

+
1

ρi,j+ 1
2
,k

+
1

ρi,j− 1
2
,k

+
1

ρi,j,k+ 1
2

+
1

ρi,j,k− 1
2

)
.

(2.27)

2.4 Fourth-order accurate FD discretization of the
acoustic wave equation

We start by discretizing equation 2.1 using the fourth-order accurate central FD formula
in Appendix A.2 to get:

sρi+ 1
2
,j,kvx|i+ 1

2
,j,k =

−Pi+2,j,k + 27Pi+1,j,k − 27Pi,j,k + Pi−1,j,k

24h
,

sρi,j+ 1
2
,kvy|i,j+ 1

2
,k =

−Pi,j+2,k + 27Pi,j+1,k − 27Pi,j,k + Pi,j−1,k

24h
,

sρi,j,k+ 1
2
vz|i,j,k+ 1

2
=
−Pi,j,k+2 + 27Pi,j,k+1 − 27Pi,j,k + Pi,j,k−1

24h
,

(2.28)

and

sPi,j,k =
κi,j,k
24h

[(
−vx|i+ 3

2
,j,k + 27vx|i+ 1

2
,j,k − 27vx|i− 1

2
,j,k − vx|i− 3

2
,j,k

)
+
(
−vy|i,j+ 3

2
,k + 27vy|i,j+ 1

2
,k − 27vy|i,j− 1

2
,k − vy|i,j− 3

2
,k

)
+
(
−vz|i,j,k+ 3

2
+ 27vz|i,j,k+ 1

2
− 27vz|i,j,k− 1

2
− vz|i,j,k− 3

2

)]
.

(2.29)
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We substitute equations 2.28 into equation 2.29 to get the following relationship for acoustic
pressure:

Pi,j,k =
κi,j,k

h2s2

[(
1

ρi− 3
2
,j,k

)
Pi−3,j,k +

(
−27

ρi− 3
2
,j,k

+
−27

ρi− 1
2
,j,k

)
Pi−2,j,k

+

(
27

ρi− 3
2
,j,k

+
729

ρi− 1
2
,j,k

+
27

ρi+ 1
2
,j,k

)
Pi−1,j,k

+

(
−1

ρi− 3
2
,j,k

+
−729

ρi− 1
2
,j,k

+
−729

ρi+ 1
2
,j,k

+
−1

ρi+ 3
2
,j,k

)
Pi,j,k

+

(
27

ρi− 1
2
,j,k

+
729

ρi+ 1
2
,j,k

+
27

ρi+ 3
2
,j,k

)
Pi+1,j,k

+

(
−27

ρi+ 1
2
,j,k

+
−27

ρi+ 3
2
,j,k

)
Pi+2,j,k +

(
1

ρi+ 3
2
,j,k

)
Pi+3,j,k

+

(
1

ρi,j− 3
2
,k

)
Pi,j−3,k +

(
−27

ρi,j− 3
2
,k

+
−27

ρi,j− 1
2
,k

)
Pi,j−2,k

+

(
27

ρi,j− 3
2
,k

+
729

ρi,j− 1
2
,k

+
27

ρi,j+ 1
2
,k

)
Pi,j−1,k

+

(
−1

ρi,j− 3
2
,k

+
−729

ρi,j− 1
2
,k

+
−729

ρi,j+ 1
2
,k

+
−1

ρi,j+ 3
2
,k

)
Pi,j,k

+

(
27

ρi,j− 1
2
,k

+
729

ρi,j+ 1
2
,k

+
27

ρi,j+ 3
2
,k

)
Pi,j+1,k

+

(
−27

ρi,j+ 1
2
,k

+
−27

ρi,j+ 3
2
,k

)
Pi,j+2,k +

(
1

ρi,j+ 3
2
,k

)
Pi,j+3,k

+

(
1

ρi,j,k− 3
2

)
Pi,j,k−3 +

(
−27

ρi,j,k− 3
2

+
−27

ρi,j,k− 1
2

)
Pi,j,k−2

+

(
27

ρi,j,k− 3
2

+
729

ρi,j,k− 1
2

+
27

ρi,j,k+ 1
2

)
Pi,j,k−1

+

(
−1

ρi,j,k− 3
2

+
−729

ρi,j,k− 1
2

+
−729

ρi,j,k+ 1
2

+
−1

ρi,j,k+ 3
2

)
Pi,j,k

+

(
27

ρi,j,k− 1
2

+
729

ρi,j,k+ 1
2

+
27

ρi,j,k+ 3
2

)
Pi,j,k+1

+

(
−27

ρi,j,k+ 1
2

+
−27

ρi,j,k+ 3
2

)
Pi,j,k+2 +

(
1

ρi,j,k+ 3
2

)
Pi,j,k+3

]
.

(2.30)

Using equation 2.30, we generate the mass matrix A for the fourth-order accurate FD LF
domain acoustic wave equation with a size of Nx ×Ny ×Nz and solve the linear system for
pressure P as in equation 2.25. Internal row [i + jNx + kNxNy] for the fourth-order mass
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matrix A, with the first row starting at zero (i = 0, j = 0, k = 0), is approximated by:

Ai+jNx+kNxNy,i+jNx+(k−3)NxNy = − a

ρi,j,k− 3
2

,

Ai+jNx+kNxNy,i+jNx+(k−2)NxNy = −a

(
−27

ρi,j,k− 3
2

+
−27

ρi,j,k− 1
2

)
,

Ai+jNx+kNxNy,i+jNx+(k−1)NxNy = −a

(
27

ρi,j,k− 3
2

+
729

ρi,j,k− 1
2

+
27

ρi,j,k+ 1
2

)
,

Ai+jNx+kNxNy,i+(j−3)Nx+kNxNy = − a

ρi,j− 3
2
,k

,

Ai+jNx+kNxNy,i+(j−2)Nx+kNxNy = −a

(
−27

ρi,j− 3
2
,k

+
−27

ρi,j− 1
2
,k

)
,

Ai+jNx+kNxNy,i+(j−1)Nx+kNxNy = −a

(
27

ρi,j− 3
2
,k

+
729

ρi,j− 1
2
,k

+
27

ρi,j+ 1
2
,k

)
,

Ai+jNx+kNxNy,(i−3)+jNx+kNxNy = − a

ρi− 3
2
,j,k

,

Ai+jNx+kNxNy,(i−2)+jNx+kNxNy = −a

(
−27

ρi− 3
2
,j,k

+
−27

ρi− 1
2
,j,k

)
,

Ai+jNx+kNxNy,(i−1)+jNx+kNxNy = −a

(
27

ρi− 3
2
,j,k

+
729

ρi− 1
2
,j,k

+
27

ρi+ 1
2
,j,k

)
,

Ai+jNx+kNxNy,i+jNx+kNxNy = 1 + b4th · a,

Ai+jNx+kNxNy,(i+1)+jNx+kNxNy = −a

(
27

ρi− 1
2
,j,k

+
729

ρi+ 1
2
,j,k

+
27

ρi+ 3
2
,j,k

)
,

Ai+jNx+kNxNy,(i+2)+jNx+kNxNy = −a

(
−27

ρi+ 1
2
,j,k

+
−27

ρi+ 3
2
,j,k

)
,

Ai+jNx+kNxNy,(i+3)+jNx+kNxNy = − a

ρi+ 3
2
,j,k

,

Ai+jNx+kNxNy,i+(j+1)Nx+kNxNy = −a

(
27

ρi,j− 1
2
,k

+
729

ρi,j+ 1
2
,k

+
27

ρi,j+ 3
2
,k

)
,

Ai+jNx+kNxNy,i+(j+2)Nx+kNxNy = −a

(
−27

ρi,j+ 1
2
,k

+
−27

ρi,j+ 3
2
,k

)
,

Ai+jNx+kNxNy,i+(j+3)Nx+kNxNy = − a

ρi,j+ 3
2
,k

,

Ai+jNx+kNxNy,i+jNx+(k+1)NxNy = −a

(
27

ρi,j,k− 1
2

+
729

ρi,j,k+ 1
2

+
27

ρi,j,k+ 3
2

)
,

Ai+jNx+kNxNy,i+jNx+(k+2)NxNy = −a

(
−27

ρi,j,k+ 1
2

+
−27

ρi,j,k+ 3
2

)
,

Ai+jNx+kNxNy,i+jNx+(k+3)NxNy = − a

ρi,j,k+ 3
2

,

(2.31)
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where:

a =
κi,j,k
h2s2

,

b4th =

(
1

ρi− 3
2
,j,k

+
729

ρi− 1
2
,j,k

+
729

ρi+ 1
2
,j,k

+
1

ρi+ 3
2
,j,k

+
1

ρi,j− 3
2
,k

+
729

ρi,j− 1
2
,k

+
729

ρi,j+ 1
2
,k

+
1

ρi,j+ 3
2
,k

+
1

ρi,j,k− 3
2

+
729

ρi,j,k− 1
2

+
729

ρi,j,k+ 1
2

+
1

ρi,j,k+ 3
2

)
.

(2.32)

2.5 Numerical solutions of the acoustic wave equation
in a homogeneous medium

We perform two simulations to test both second- and fourth-order numerical analysis
schemes. The first simulation is done by solving the acoustic wave equation in an unbounded
homogeneous media and the second simulation is done by solving it in a homogeneous half-
space. For both simulations, we use a point-source Ricker wavelet with frequency 10 Hz
and damping 11

s
. The homogenous medium’s constant velocity and density are 4500 m/s

and 2000 kg/m3, respectively. By implementing these design choices in addition to a 20 m
grid-spacing, we ensure having at least 8 points per wavelength according to the following
relationship (Petersson and Sjogreen, 2014):

PPW =
minVp

2.5 · f · h
, (2.33)

where PPW is the number of points per wavelength, f is the regular frequency, and h is the
grid-spacing. To measure the accuracy, we compare the numerical results with the analytical
solution by measuring the relative error between the two solutions.

Point source in unbounded medium simulation

For the FD solution of the point-source in unbounded medium simulation, we have PML
in all boundaries to represent the infinite media condition. We place the Ricker wavelet
point-source 500 m away from the left boundary. The receivers are placed parallel to the
source and measure the acoustic pressure P . The acquisition design is depicted in Figure 2.3.

We plot the real and imaginary results of the numerical second- and fourth-order FD
simulations with the analytical solution (Figure 2.4). The analytical and numerical solutions
are nearly identical to the naked eye in both the real and imaginary parts for second- and
fourth-order FD solutions. In Figure 2.5, we show that the numerical simulations have less
than 5% average error relative to the true analytical solution.
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Figure 2.3: Source (star) and receiver locations (inverted triangles) for the numerical mod-
eling of the infinite homogeneous media acoustic wave simulation.

Point source in fluid half-space simulation

In the fluid half-space simulation, we have PML in all boundaries except at the top
(z = 0), where we insert a zero pressure boundary to represent vacuum. We place a Ricker
wavelet point-source, at 500 m depth. The receivers are placed along the vertical source line
at the center of the system to measure the acoustic pressure P . The situation is depicted in
Figure 2.6.

We compare the real and imaginary results of the numerical second- and fourth-order FD
half-space simulations with analytical solution in Figure 2.7. The analytical and numerical
solutions are well correlated and show less than 5% average error (Figure 2.8).
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Figure 2.4: Comparison between analytical and numerical solutions for the acoustic wave
equation in an infinite homogeneous media using frequency 10 Hz and damping 11

s
.
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.
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Figure 2.6: Source (star) and receiver locations (inverted triangles) for the numerical mod-
eling of the half-space homogeneous media acoustic wave simulation.
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Figure 2.7: Comparison between analytical and numerical solutions for the acoustic wave
equation in an infinite homogeneous media with free-surface boundary using frequency 10
Hz and damping 11
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.
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Chapter 3

Embedded boundary methods

3.1 Introduction
A straightforward approach to the implementation of the free surface is to set the acous-

tic parameters at and above the free surface to zero. The method is commonly referred to
as vacuum formulation or staircase method. The free-surface boundary condition is thus not
treated explicitly; instead, it is assumed to be implicitly fulfilled. Staircase-method applica-
tions can be found in Zahradník and Urban (1984), Zahradník et al. (1993), and Ohminato
and Chouet (1997). The method is attractive because of its trivial implementation and the
possibility to model topography. Bohlen and Saenger (2006) concluded that to model to-
pography with a staircase method, more than 60 grid points per minimum wavelength are
required in a second-order scheme to obtain acceptable results.

Another solution is the curvilinear method which transforms the velocity-pressure formu-
lation system of equations from a curved to a rectangular grid (Tessmer et al., 1992; Tessmer
and Kosloff, 1994; Hestholm, 1999; Hestholm and Ruud, 2000). At the free surface, the
pressure and velocities are transformed into local systems in which the vertical coordinate
axis is parallel to the normal of the local surface element. The free-surface conditions are
then implemented by a ‘characteristic’ treatment of both the velocity and pressure compo-
nents, before they are rotated back to the original system. More recent studies applied the
embedded-boundary condition for 2D FD solution of the wave equation with success (Kreiss
and Petersson, 2006; Li et al., 2010). The studies applied the embedded-boundary method
to 2D frequency- and time-domain modeling problems. They investigated quadratic inter-
polation when computing the pressure above the free surface.

This chapter describes an embedded-boundary method for the three-dimensional acoustic
wave equation with irregular free-surface boundary on a Cartesian grid. By computing
pressure on either sides of the interface, we can satisfy a zero acoustic pressure at the
free surface, yielding superior results compared to conventional implementations that model
topography as a staircase approximation.

At a free-surface boundary, we assume vacuum pressure by incorporating zero acoustic
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Figure 3.1: Smooth curved free surface on a uniform Cartesian grid for a second-order FD
stencil. White squares denote ghost nodes required by the stencil. Black squares denote
the stencil interior grid nodes. Circles denote points on the free-surface that are boundary
points.

pressure P at the boundary using the following relation:

P = 0. (3.1)

In simple topography settings, where the free surface is a flat plane that coincides with
the top plane of the FD grid, the boundary condition may be realized without staircasing
error (Graves, 1996; Gottschammer and Olsen, 2001). However, when the free surface has
a more complicated geometric structure, incorporating the free-surface boundary condition
becomes more challenging because the FD stencil will cross over the free surface as illustrated
in Figure 3.1. In this setting, some algorithms perform adaptation of the FD grid to the free
surface (Hestholm, 1999; Hestholm and Ruud, 2000; Zhang and Chen, 2006; Zhang et al.,
2012a) or construct the values of the wavefield on the exterior nodes if one wishes to keep
the grid intact (Lombard et al., 2008; Kreiss and Petersson, 2006; Li et al., 2010).

3.2 Methodology
We consider a case where the free surface is immersed within a regular FD grid and

assume a homogeneous media around the boundary. The free surface can be defined by the
equation:

Zs = f(x, y). (3.2)
We define grid nodes as interior nodes if they inside the domain Ω and underneath the

free surface, as shown in Figure 3.1. Nodes outside the domain of interest, i.e., above the free



CHAPTER 3. EMBEDDED BOUNDARY METHODS 22

surface, are defined as exterior nodes, and points on the free-surface boundary are defined
as boundary points. The ghost nodes are defined to be grid points outside the domain of
interest but still being requested by stencils. For example, the second order FD scheme with
seven stencil points requires only one layer of nodes above the surface (Figure 3.1).

With the above definitions, the problem of free-surface boundary treatment becomes the
problem of updating the wavefield at the ghost nodes such that the wavefield at boundary
points is forced to be zero according to the boundary condition in equation 3.1. Because
we know the exact values of the pressure at the boundary, the boundary condition may
be realized as extrapolation or interpolation of the wavefield from the interior nodes to
the ghost nodes via the boundary points. This method is called the embedded boundary
method (Lombard et al., 2008; Kreiss and Petersson, 2006; Li et al., 2010).

The value of the pressure at the ghost nodes may be defined by the method of im-
ages (Jackson, 2007; Griffiths, 2005):

Pg = −Pg,m. (3.3)

For each ghost node Pg, we define a ghost mirror point Pg,m inside the surface medium.
For planar or spherical boundaries, the relationship ensures the boundary condition is ex-
act (Morse and Feshbach, 2010). For an arbitrary boundary, it becomes an approximation.
However, when the distance between the ghost node and the boundary is small (about one
or two grid spacings), the boundary may be considered as locally planar. In this case, we
can expect that equation 3.3 enforces equation 3.1 with good accuracy. Nodes above the
ghost nodes that are not required by stencils are set to zero.

Ghost mirrors location

To locate the position of the ghost mirror, we find the closest distance between each ghost
node at (xg, yg, zg) and its interpolated surface f(x, y) (see Appendix B). By considering the
normal vector from the surface and the vector between the closest point on the surface and
ghost node, we get the following system of non-linear equations:{

x− xg + ∂xf(x, y) [f(x, y)− zg] = 0

y − yg + ∂yf(x, y) [f(x, y)− zg] = 0.
(3.4)

By solving the system for x and y using the steepest-descent method, we attain the location
of the closest point at the surface relative to the ghost node (Rheinboldt, 1998). According
to Figure 3.2, the normal is extended a distance ξR from the closest point at the boundary
into the subsurface to locate ghost mirror Pg,m.

For a planar free surface, the distance ξR between Pg and the surface is equivalent to
the distance ξ′R between Pg,m and the surface. However, if the surface is curved, the two
distances (ξR and ξ′R) are not equal (Figure 3.3). Our algorithm accounts for curvature of
the surface and corrects the location of the ghost mirror Pg,m by assuming the free surface
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Figure 3.2: 2D y-axis slice from the three-dimensional second-order staggered grid: Blue
Line denotes irregular surface, Black Dashed Line denotes irregular surface normal at each
ghost point, Magenta Stars denote ghost nodes, Orange squares denote the closest point in
the surface that is normal to the ghost node, Black Stars denote ghost mirrors, Green and
Red Triangles denote known acoustic pressures, and ξR, ξD, and ξI are relative distances.
Nodes have 50 m grid spacing.

is spherical. Since we know the approximated topography f , we can find the mean radius
for the curvature using:

R =

∣∣∣∣ −2

∇ · n̂

∣∣∣∣
=

∣∣∣∣∣ 2 ·
(
1 + (∂xf)2 + (∂yf)2)3/2

(1 + (∂xf)2)∂yyf − 2∂xf∂yf∂xyf + (1 + (∂yf)2)∂xxf

∣∣∣∣∣ ,
(3.5)

where n̂ is the normal to the local surface f (Spivak, 1981). Hence, ξ′R can be found by:

ξ
′

R = R(1− R

a
), (3.6)
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Figure 3.3: Method of images implementation: Red Dot denotes the location of the ghost
node, Green Dot denotes the updated location of the ghost mirror due to the curved surface,
R denotes the radius of the curvature, a is the distance between the curvature origin O and
ghost node Pg, b is the distance between the curvature origin O and ghost mirror Pg,m, ξR
is the distance between ghost node Pg and the surface and ξ′R is the distance between ghost
mirror Pg,m, and the surface.

and the ghost node Pg is related to the ghost mirror Pg,m by:

Pg = −
( a
R

)
Pg,m, (3.7)

where R is the radius of the curvature and a is the distance between the curvature origin and
ghost node Pg. Assuming the surface is curved produces marginally better results compared
to assuming a planar surface. This is because topographic surfaces are not curved enough
for this method to have a huge impact. For both planar and curved surfaces, the acoustic
pressure value at the ghost mirror Pg,m is necessary.

Second-order scheme implementation

To calculate the acoustic pressure at the ghost mirror points Pg,m, we consider both
interpolation and extrapolation methods. Thus, the acoustic pressure at the first layer PI and
the acoustic pressure at the second layer PII below the surface are needed (see Figure 3.2).
We know the acoustic pressure at the surface to be zero, and the acoustic pressure at PI and
PII can be approximated using bilinear interpolation. We either use linear extrapolation,
quadratic interpolation, or a hybrid method to calculate acoustic pressures at ghost mirror
points Pg,m and hence their corresponding ghost nodes Pg (see Figure 3.2).
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Figure 3.4: Linear extrapolation (Blue Line) and quadratic interpolation (Red Line) are
used to approximate ghost node acoustic pressure Pg.

Quadratic interpolation needs three points to determine the ghost mirror acoustic pres-
sure Pg,m. Figure 3.4 shows that to approximate the acoustic pressure of ghost nodes Pg,
we use Lagrange quadratic interpolation on values 0, PI , and PII at locations 0, ξD, and
ξD + ξI (Li et al., 2010). To improve the accuracy of the quadratic interpolation, we use
linear extrapolation.

Linear extrapolation is considered to reduce perturbations caused by points further
below the surface such as PII . It needs two points to locally determine each ghost mirror
point acoustic pressure Pg,m, which is located a distance ξR from the surface. Following from
Figure 3.2, Figure 3.4 illustrates the linear extrapolation method. Thus, the ghost node’s
acoustic pressure Pg can be found using linear Lagrange extrapolation on values 0, and PI
at positions 0 and ξD. We call it extrapolation because the distance ξR can be larger than
ξD.

Hybrid method is a combination of the two previous methods. Depending on the loca-
tion of the ghost mirror Pg,m (Figure 3.2), grid spacing ∆z, and a tuning coefficient α, it
independently determines whether to use linear extrapolation or quadratic interpolation for
each ghost node. Algorithm 1 illustrates the hybrid method. The hybrid method uses linear
extrapolation if the ghost mirror is between the surface and PI . However, if the ghost mirror
is located between PI and PII , it decides whether to use linear extrapolation or quadratic
interpolation depending on α, which ranges between 0 and 1. From the geometry in Fig-
ure 3.2, the maximum distance between PI and ghost mirror is ∆z if the mirror is located
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between PI and PII . The hybrid method uses linear extrapolation if the ghost mirror is
located between PI and PI + α ∗ ∆z, otherwise if it falls between PI + α ∗ ∆z and PII , it
uses quadratic interpolation.

Algorithm 1: Hybrid method used to determine whether to use linear extrapolation
or quadratic interpolation for each ghost node
1 function Hybrid (α,∆z, ξR, ξD);
Input : 0 ≤ α ≤ 1, and real values ∆z, ξR, and ξD
Output: method

2 if ξR > (ξD + α ·∆z) then
3 method = ‘quadratic interpolation’;
4 return method;
5 else
6 method = ‘linear extrapolation’;
7 return method;
8 end

Fourth-order scheme implementation

Due to the accuracy demands of the fourth-order FD schemes, the acoustic wave equation
solution requires two layers of ghost nodes Pg above the surface. The first layer of ghost
nodes is approximated using the hybrid method. The second layer of ghost nodes is located
above the first layer. The acoustic pressures in the second layer are approximated using
quadratic interpolation. Thus, three points are used to calculate the acoustic pressure at
each ghost mirror Pg,m in the second layer. The first two points are PI , and PII , which are
found using bilinear interpolation. The third point PIII arises from extending the normal
line further in the subsurface. Similarly, we use bilinear interpolation to approximate PIII .
We also experimented using four points by including the zero acoustic pressure at the surface
in addition to the three acoustic pressures PI , PII and PIII . This will result in a Lagrange
cubic interpolation. These two methods will be called the two-layer hybrid quadratic and
cubic methods. We also experimented with only one hybrid layer by setting the second layer
above the surface to zero. We call this the one-layer hybrid method.

3.3 Results
We perform two simulations to test our embedded boundary methods for both second-

and fourth-order FD schemes (Petrov and Newman, 2012). The first simulation is done by
solving the acoustic wave equation in a homogeneous model with oblique planar topography.
To measure the accuracy, we rotate the solution and compare the results with the analytical
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solution for a flat free-surface model (Aki and Richards, 2002; Pujol, 2003). Relative error
e1 for the oblique planar topography is defined by:

e1(r∂Ω) =
||Psim(r∂Ω)| − |PA(r∂Ω)||

|PA(r∂Ω)|
× 100, (3.8)

where r∂Ω ∈ a surface ∂Ω that is parallel to the free-surface, Psim is the simulation result
and PA is the analytical solution.

The second simulation addresses a homogeneous model with hill topography. Unlike the
first simulation, there is no analytical solution for this case, and relative error e2 is calculated
relative to the maximum norm in the region Ω and is given by:

e2(r∂Ω) =
|Psim(r∂Ω)|

max
r∈Ω
|Psim(rΩ)|

× 100, (3.9)

where rΩ ∈ region Ω and the denominator denotes the maximum value in the region.

Oblique planar surface

In the oblique planar-surface case, we have a sloping surface in which we can rotate its
solution to compare it with the analytical solution (see Figure 3.5). The surface is sloping
42° clockwise from the horizontal. The minimum distance between the Ricker-wavelet source
and the sloping surface is 890 m. The complex frequency of the source is s = 1 + 2i. We use
relative error e1 and average error 〈e1〉 to measure the accuracy of the oblique planar surface
simulation.

For the second-order scheme, we will compare a FD solution that includes staircasing of
topography in the simulation, as well as the embedded boundary conditions, based on linear
extrapolation, quadratic interpolation, and hybrid method with α = 0.95. We use a high
tuning parameter α to bias the hybrid method to linear extrapolation. Most ghost mirror
points are located closer to PI than PII and thus linear extrapolation better approximates
the ghost mirror pressure Pg,m than quadratic interpolation. For this comparison, we will
implement a homogeneous media with P-wave velocity (VP ) of 2250 m/s, density (ρ) of
2300 kg/m3, and grid spacing of 50 m. Figure 3.6a shows the relative error in pressure for
the different simulation methods. All three embedded boundary methods provide accurate
and similar results for the oblique planar surface relative to the true analytical solution.
In general, the embedded boundary methods contain an average error of 1.3%, while the
staircase method have an average error of 28.5% (Table 3.1a).

To ensure our method is continuous and differentiable, we study the pressure gradient.
The results of the normal gradient (normal velocity component) will be specifically illustrated
since geophysical techniques measure normal velocity. Both Figures 3.6b and 3.6c show that
the average normal-velocity error for our embedded boundary methods is ∼ 1% with respect
to change in distance and depth.
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Figure 3.5: (a) The analytical free-surface case. The inline in Green is parallel to the flat
surface. (b) The oblique planar free-surface case. The inline in Green is parallel to the
oblique planar surface. The grid spacing is 50 m and the source denoted in red is 890 m
below the surface.

Bohlen and Saenger (2006) concluded that to model topography with a staircase method,
more than 60 grid points per minimum wavelength are required in a second-order scheme to
obtain acceptable results. In Figure 3.7, we implemented an extreme case with approximately
four points per wavelength at frequency 20 Hz with damping coefficient 11

s
. To account for

this increase in frequency, the velocity of the model was increased from 2250 m/s to 3250
m/s and the grid spacing reduced from 50 m to 15 m. The results show that our hybrid
method produces results with an average error of ∼ 3% when compared to the analytical
solution (Figure 3.8).

In the next numerical simulation, we demonstrate the solution of the acoustic wave
equation more accurately with a fourth-order FD scheme. We use the same model setup as
in the second-order FD scheme. The model is illustrated in Figure 3.5—it is homogeneous
with P-wave velocity (VP ) of 2250 m/s, density (ρ) of 2300 kg/m3, and grid spacing of 50
m. The complex frequency of the source is s = 1 + 2i. In this simulation, we compare
the relative error in pressure between the staircase, one- and two-layer hybrid methods with
α = 0.95. As shown in Figure 3.9, the two-layer method’s average error is 1.3%. The one-
layer method achieves an average accuracy of 5.4%. Similar to the previous simulation, the
average accuracy of the staircase method is 23.5% (Table 3.2a).

Hill model

To further measure the accuracy, we test our schemes on a hill surface. In terms of source
type, source location, P-wave velocity, and density, the same configurations will be used as
in the oblique planar simulations. As in the previous simulation, the complex frequency of
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Figure 3.6: Error for second-order FD scheme staircase and embedded boundary methods
relative to the true analytical solution.
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Figure 3.7: Absolute pressure for second-order FD scheme true, staircase and hybrid method
solutions. The plot demonstrates the solution 50 m below the surface for a frequency of 20
Hz with damping 11

s
.

Figure 3.8: Relative error e1 for second-order FD scheme staircase and hybrid method acous-
tic pressure relative to the true analytical solution. The plot demonstrates the error 50 m
below the surface for a frequency of 20 Hz with damping 11

s
.
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Figure 3.9: Relative error e1 for fourth-order FD scheme staircase and embedded boundary
methods relative to the true analytical solution.

Figure 3.10: (a) Hill topography with red line denoting central line profile. (b) Hill topogra-
phy with red line denoting edge line profile. The grid spacing is 50 m in all three components
and the source is located at (x, y, z) = (1200, 1200, 2600)m.

the source is s = 1 + 2i. We use relative error e2 and average error 〈e2〉 to measure the
accuracy of the hill-surface simulation. Figure 3.10 illustrates the hill surface used for this
experiment. The red lines denote profiles that will be studied in this section.

We use second-order FD scheme to the acoustic wave equation. The tuning constant used
for the hybrid method is α = 0.95. We first start by comparing the central line profile shown
in Figure 3.10a. Similar to the oblique planar simulation, all three embedded boundary
methods have two orders of magnitude improvement over the staircase method (Table 3.1b).
Furthermore, all three embedded methods show approximately the same improvement (see
Figure 3.11a). But for the edge line profile (Figure 3.10b), the linear extrapolation and
the hybrid method provide more than two times better accuracy compared to the quadratic
interpolation (Figure 3.11b and Table 3.1b).

Spacing has been reduced for the staircase solution to demonstrate that when spacing is
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Figure 3.11: Relative error e2 for second-order FD scheme embedded boundary methods at
the (a) central line shown in Figure 3.10a and (b) edge line shown in Figure 3.10b.
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Figure 3.12: Absolute pressure solutions for second-order FD scheme embedded boundary
methods with different spacings for the hill model central line at 50 m below the surface.

Figure 3.13: Relative error e2 for second-order FD scheme embedded boundary methods at
edge line for a stretched hill with height 1500 m.

reduced for the staircase method, the higher resolution solution converges to the embedded
method solution with spacing 50 m (Figure 3.12).

To study the effectiveness of our curvature method, we stretched the hill model to have
a height of 1500 m instead of the 700 m in Figure 3.10. In Figure 3.13, we show that when
the edge line curvature radius is small, the error for the solution with curvature correction
is reduced up to two times than error for the solution without the curvature correction.
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Figure 3.14: Absolute pressure for second-order FD scheme embedded boundary methods at
central line shown in Figure 3.10a at 100 m below the surface. The plot demonstrates the
solutions for a frequency of 20 Hz with damping 11

s
.

In Figure 3.14, we implemented an extreme case with approximately four points per
wavelength at frequency 20 Hz with damping coefficient 11

s
. The velocity and spacing have

been changed as in the oblique planar case. The results show that our hybrid method
produces results with two orders of magnitude improvement over the staircase method as
with frequency 2 Hz (Figure 3.15).

Now, the acoustic wave equation is solved using a fourth-order FD scheme. We compare
solutions for both the central line and edge line profiles shown in Figure 3.10. Contrary to
the oblique-planar model simulation, Figure 3.16 only shows marginal improvement when
using the two-layer hybrid methods over the one-layer hybrid method (Table 3.2b).

Solver convergence rates

Efficient convergence rates are essential for solving the forward problem because it is the
driving engine in the solution of the inverse problem. Thus, the forward problem will be
solved many times to reach the best-fit model for the data. Here, we study the convergence
rates to decide which embedded boundary method is more computationally efficient. All the
tests were conducted on a 2013 Macbook Pro with 2.4GHz dual-core Intel i5 processor, 3MB
shared L3 cache and 8GB of 1600MHz DDR3L onboard memory. We use a Krylov subspace
IDR iterative solver to solve the forward model at interior nodes (Sonneveld and van Gijzen,
2008). Direct solvers can also be used for small simulations or as a preconditioner for the
iterative solver.

We start the first set of tests with second-order FD schemes for a homogeneous medium.
We compare between different topographies and embedded boundary methods. For the
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Figure 3.15: Relative error e2 for second-order FD scheme embedded boundary methods at
(a) central line shown in Figure 3.10a and (b) edge line shown in Figure 3.10b. The plot
demonstrates the error for a frequency of 20 Hz with damping 11

s
.
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Figure 3.16: Relative error e2 for fourth-order FD scheme embedded boundary methods at
the (a) central line shown in Figure 3.10a and (b) edge line profile shown in Figure 3.10b.
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Table 3.1: Second order FD scheme for the acoustic wave equation in a homogeneous media
with mesh size 70× 74× 85. The source frequency is 2 Hz with damping coefficient 11

s
.

a. Oblique-planar

Topography type Topography method Iterations Time (s) Average
Error 〈e1〉 (%)

Flat free-surface — 980 ∼ 66 —
Oblique-planar Staircase 951 ∼ 71 28.5
Oblique-planar Linear extrapolation 1038 ∼ 57 1.3
Oblique-planar Quadratic interpolation 1221 ∼ 66 1.4
Oblique-planar Hybrid with α = 0.95 1038 ∼ 57 1.3

b. Hill Surface

Topography type Topography method Iterations Time (s) Average
Error 〈e2〉 (%)

Hill Surface Staircase 1079 ∼ 70 5.8× 10−2

Hill Surface Linear extrapolation 13 542 ∼ 718 8.1× 10−4

Hill Surface Quadratic interpolation 1432 ∼ 80 1.4× 10−3

Hill Surface Hybrid with α = 0.95 3768 ∼ 211 9.3× 10−4

oblique-planar surface, there is no considerable difference in terms of number of iterations
or convergence rate (Table 3.1). It is better to use the linear extrapolation method since it
is slightly more accurate. However, the hill irregular surface shows a spike in the number
of iterations and a corresponding increase in time for the linear extrapolation solution (Ta-
ble 3.1). We have observed that the linear extrapolation takes more time to converge when
there are more ghost points closer to PII than PI . Thus, it is more efficient to implement
the hybrid method with α = 0.95. The hybrid-method results are similar in accuracy to the
linear extrapolation but have better convergence rates as shown in Table 3.1. On the other
hand, the quadratic interpolation is faster but has marginally less accuracy.

Since linear extrapolation is accurate but inefficient and quadratic interpolation is effi-
cient but not as accurate, we experimented with different tuning ratios α to find the best
compromise in efficiency and accuracy. In Figure 3.17, we show that α = 0.95 provides a
good trade-off. It is accurate relative to linear extrapolation (α = 1) and also efficient as
shown in Table 3.1b.

We compare tests for the fourth-order FD schemes for a homogeneous medium. In these
tests, we compare between the one- and two-layer hybrid methods as shown in Table 3.2.
For the oblique-planar and hill surfaces, the two-layer hybrid quadratic method is approxi-
mately ten times slower than the one-layer hybrid method. Despite its slightly less accurate
solution, the one-layer hybrid method is substantially more time efficient than the two-layer
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Figure 3.17: Relative error e2 for second-order FD scheme hybrid method at edge line for
different tuning ratios α.

hybrid quadratic method. However, using a two-layer hybrid cubic method can reduce time
inefficiencies. In fact, for the central hill profile, the solution times for the two-layer hybrid
cubic are comparable with the one-layer hybrid method.
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Table 3.2: Fourth order FD scheme for the acoustic wave equation in a homogeneous media
with mesh size 70× 74× 85. The source frequency is 2 Hz with damping coefficient 11

s
.

a. Oblique-planar

Topography type Topography method Iterations Time (s) Average
Error 〈e1〉 (%)

Flat free-surface — 1328 ∼ 105 —
Oblique-planar Staircase 1084 ∼ 77 23.5

Oblique-planar One-layer
hybrid with α = 0.95

1531 ∼ 106 5.4

Oblique-planar Two-layer hybrid
quadratic with α = 0.95

12 012 ∼ 815 1.3

Oblique-planar Two-layer hybrid
cubic with α = 0.95

9590 ∼ 650 1.3

b. Hill Surface

Topography type Topography method Iterations Time (s) Average
Error 〈e2〉 (%)

Hill Surface Staircase 1395 ∼ 113 6.2× 10−2

Hill Surface One-layer
hybrid with α = 0.95

4281 ∼ 300 1.5× 10−3

Hill Surface Two-layer hybrid
quadratic with α = 0.95

40 002 ∼ 2800 1.0× 10−3

Hill Surface Two-layer hybrid
cubic with α = 0.95

4745 ∼ 309 1.0× 10−3
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Chapter 4

Discontinuous mesh method

4.1 Introduction
Finite-difference (FD) methods that solve the acoustic wave equation over a discrete set

of grid points have the great advantage of being able to handle realistic geological structures
of arbitrary complexity (Graves, 1996). However, their computational cost grows with the
number of required grid nodes making it a computationally challenging problem (Operto
et al., 2007; Fichtner, 2011). One of the important reasons is the high contrast of seismic-
wave velocities found in real earth structures, especially the near-surface low-velocity regions
in arid environments. Other reasons include requiring more grid points for 3-D models (vs.
2-D), and applying a high-frequency point source. Simulation of wave propagation either
ignores the relatively thin low-velocity regions or includes them using a uniform grid size
that is determined by the lowest velocity because it has the shortest wavelength. The first
simulation produces inaccurate results which causes the simulated data to misrepresent the
true data. The second simulation results in oversampling the deeper regions with higher
velocity inevitably leading to a considerable increase of computational time and memory.
For these reasons, it is preferable to use different discretizations in shallow and deep regions.

There are several other numerical solution methods naturally suited for modeling seis-
mic fields over complex surfaces. For example, finite element (FE) methods solve a system
of equations derived from a weak form of the wave equation. Using unstructured grids
(e.g. tetrahedral meshes), FE methods can accurately and economically discretize arbitrary
complex topography and horizons (Bao et al., 1998). Spectral element (SE) methods (Ko-
matitsch and Tromp, 1999) are similar to the p version of FE methods (Jin, 2015) and
can also discretize a computational domain into unstructured meshes adapted to irregular
surfaces.

However, their advantage over FD methods come with extra complications. For exam-
ple, it is not straightforward to develop an effective regularization matrix for tetrahedral
meshes (Zhang, 2017). Generation, visualization and analysis of tetrahedral meshes are also
cumbersome and difficult especially when fine scale elements for complex irregular surface
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and faults are mixed with large scale elements for regional geology (Casarotti et al., 2008).
Fast and accurate generation and display of large multi-scale tetrahedral meshes is currently
an active research area in computational mathematics and engineering. In contrast, the use
of the structured FD grids allows us to easily and rapidly construct, visualize and analyze
earth models. More importantly, from a practical point of view, most geoscience model-
ing tools are built on rectangular meshes. Thus, the use of rectangular meshes in seismic
modeling allows us to import and export velocity models to flow and reservoir simulators.

Several authors have developed FD methods with grid spacing changing in time-domain.
Moczo (1989) and Pitarka (1999) developed FD methods with grid spacing changing gradu-
ally over a distance separating a fine and coarse mesh, which are less efficient and less flexible
to apply as compared to discontinuous mesh (DM) methods. To accurately and efficiently
model realistic geological structures, other varieties of DM methods have been proposed
(e.g., Aoi and Fujiwara, 1999; Tessmer, 2000; Hayashi et al., 2001; Wang et al., 2001; Kris-
tek et al., 2010; Zhang et al., 2012b). The time-domain FD DM implementations suffer
inherently from stability problems after a large number of timesteps (Nie et al., 2017). Fur-
thermore, none of the authors assessed the DM method in the frequency or Laplace-Fourier
(LF) domain.

In this chapter, we introduce a DM into second- and fourth-order LF domain velocity-
pressure staggered FD scheme with topography to simulate acoustic wave propagation. The
uniform grid acoustic implementation from Petrov and Newman (2012) and AlSalem et al.
(2018) is now developed to be highly scalable using PETSc numerical libraries (Balay et al.,
2018). The implementation is currently an important forward modeling tool for the full
waveform inversion iterative simulations. These simulations are being pushed to higher
frequencies with realistic 3D heterogeneous velocity models to meet the requirements of gas
and oil exploration in arid environments. Here, we introduce an interface between fine and
coarse meshes and benchmark the method for accuracy, convergence and efficiency in a series
of tests. Furthermore, we evaluate direct and iterative parallel solvers that are included in
PETSc for computational speed, memory requirements and convergence. These validation
tests include a simple homogeneous model in a sloping free surface, a low contrast layered
velocity model underlying a hill free surface, and a high contrast layered velocity model
underlying realistic topography provided by Saudi Aramco.

4.2 Discontinuous mesh implementation

Theory

In typical seismic models, the velocity and density tend to increase with depth. Hence,
simulation of seismic wave propagation using a spatially uniform mesh can be computation-
ally very demanding due to the over-discretization of the high-velocity material. Thus, small
grid sizes can be used at the top and larger grid sizes can be used at deeper regions of the
model. This issue can be partly addressed by varying grid sizes (∆z) with depth. However,
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lateral grid sizes (∆x and ∆y) are still constrained by the global minimum velocity (Pasalic
and McGarry, 2010). One approach is to discontinuously vary ∆x, ∆y, and ∆z grid sizes
along the z direction to take advantage of variations in velocity. Figure 2.2 shows the layout
of the three velocity components and acoustic pressure, indicating that the most basic way
to implement a DM is to use a ratio of spatial discretization H/h between the coarse (H)
and the fine (h) grids. In this example, we consider the case of H/h = 3 to demonstrate the
advantage of the DM method. Updating vx in a high-velocity material using the uniform
second-order FD method requires pressure values at ±(1/2)h, while the DM method skips
the nearest pressure values and uses ±(3/2)h instead.

Since the velocity components are partial derivatives of acoustic pressure (equation 2.1),
we focus on only illustrating the acoustic pressure values in the DM FD approximation.
Our approach divides the model into a number of regions, separated by horizontal planes
(Figure 4.1). Within each region, ∆x, ∆y and ∆z are uniform and equal; however, they vary
from one region to another. In this way, discretization becomes a discontinuous function of
depth.

Communication across region interfaces

In each discontinuous region, the wave propagation FD discretization can be performed
as for the uniform mesh. However, we clearly need to have some communication across the
regions’ interfaces (Figure 4.1). To demonstrate the communication, we consider a fourth-
order FD example with two 1D regions as illustrated in Figure 4.2. The spacing ratio between
the coarse and fine regions is H/h = 1.5. The open nodes in the Figure are approximated
using fourth-order FD while the filled nodes are approximated using interpolation and down-
sampling to update the missing fine grid and coarse grid nodes, respectively. To realize these
approximations in one matrix, we provide the following steps:

1. Generate fine- and coarse-mesh 1D fourth-order FD matrices for each region with grid
sizes h and H, respectively:

Af =

[
Af21

Af11
Af22

Af12
]
, Ac =

[
Ac21

Ac11
Ac22

Ac12
]
. (4.1)

Here, Af and Ac are the fourth-order FD square matrices for the fine and coarse
regions, respectively. Af includes nf fine grid nodes (rows) in the fine region plus
three fine grid nodes (rows) in the coarse region. Similarly, Ac includes nc coarse grid
nodes in the coarse region plus three coarse grid nodes in the fine region as shown in
Figure 4.2. Using this information, we split Af to four submatrices where the size of
Af11 is (nf × nf ), Af12 is (nf × 3), Af21 is (3 × nf ), and Af22 is (3 × 3). Inversely, we
split Ac into four submatrices where the size of Ac11 is (3× 3), Ac12 is (3× nc), Ac21 is
(nc × 3), and Ac22 is (nc × nc).

2. Remove rows containing non-regional grid nodes (Af21 , Af22 , Ac11 , and Ac12) in the
square matrices (Af and Ac) and keep the regional grid nodes (Af11 and Ac22) and
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Figure 4.1: Communication between a fine and coarse mesh in 2D for fourth-order FD
scheme. Overlapped stencils for each region in 2D are found using simple bilinear interpola-
tion for three layers of stencils. The interface between the differently-spaced meshes is shown
as a bold horizontal line.
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their communication stencils (Af12 and Ac21). We end up with the following rectangular
matrices:

A′f =
[
Af11 Af12

]
, A′c =

[
Ac21 Ac22

]
. (4.2)

3. Generate the coarse to fine grid linear interpolation (trilinear interpolation in 3D)
matrix depending on the positions of the interpolated fine grid nodes (filled squares)
in Figure 4.2:

Afc =


0

1
3

1

2
3

2
3

0

1
3

0

0
 . (4.3)

4. Generate the fine to coarse grid linear downsampling (trilinear downsampling in 3D)
matrix depending on the positions of the downsampled coarse grid nodes (filled circles)
in Figure 4.2:

Acf =


0

0

1
2

0

0

1
2

0

1

0

1
2

0

0

1
2

0

0
 . (4.4)

5. Merge the matrices together to get the fourth-order DM FD square matrix for two
regions:

ADM =

[
Ac21 · Acf
Af11

Ac22

Af12 · Afc
]
. (4.5)

We call Af11 and Ac22 the forward modeling operators and Af12 ·Afc and Ac21 ·Acf the
interpolation and downsampling operators, respectively. We pad the right side of the
interpolation operator and the left side of the downsampling operator with zeros to
ensure the matrix is square. We can rewrite the linearlized problem for two regions as:[

Ac21 · Acf
Af11

Ac22

Af12 · Afc
] [

Pc

Pf
]

=

[
Fc

Ff
]
, (4.6)

where the size of each of Pf and Ff is nf , and the size of each of Pc and Fc is nc. We
observe from equation 4.6 that the communication stencils Af12 and Ac21 are linked to
the differently-spaced grid nodes using the interpolation Afc and downsampling Acf
matrices, respectively.

For the 3D case, this is done by simple trilinear interpolation and downsampling across
the relevant acoustic pressure values from one region to another for any H/h ratio. Hence,
using FD, the acoustic wave propagation in LF domain can be approximated by:

0

...
0
A2,1

A1

· · ·

. . .

. . .
A2

A1,2

0
An−1,n−2

. . .
A2,3

0

An,n−1

An−1

. . .

. . .
· · ·

An

An−1,n

0

...
0



Pn

...
P1

 =


Fn

...
F1

 , (4.7)
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Figure 4.2: Distribution of 4th-order FD acoustic pressure nodes on the z-axis in the overlap
zone between the fine and coarse meshes. Open symbols represent nodes that are 4th-order
accurate. Filled squares represent nodes that are interpolated from the coarse grid nodes
and filled circles represent nodes that are downsampled from the fine grid nodes.
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where Ai is the forward modeling operator for region i, Ai,j is the interpolation or down-
sampling operator from region j to region i, and Pi and Fi are the acoustic pressure and
source function for region i, respectively.

The proposed DM FD scheme is a flexible technique that brings significant savings in com-
putational effort and memory requirements. However, certain constraints must be observed.
The most important is the number of communication layers across the region interfaces (Fig-
ure 4.1). To ensure minimum reflection from the interface, the communication will occur
over two and six layers (planes for 3D case) in z-direction for second- and fourth-order FD
schemes, respectively. We call the communication layers overlapping planes because it is
where differently-spaced grid points overlap in 3D.

4.3 Accuracy of DM
To verify the accuracy of our DM with embedded boundary FD method, we present three

scenarios: a homogeneous velocity model with a sloping free surface, a layered velocity model
with a hill free surface, and a layered velocity model with realistic topography. For all the
tests, we use a point-source and receivers slightly below the surface. The accuracy of our
first test is compared with the analytical solution while the following tests are compared with
the uniform fine mesh solution that has been thoroughly verified with respect to analytical
solutions in AlSalem et al. (2018). For these comparisons, relative error is calculated by:

eDM(rΩ) =
||Psim(rΩ)| − |PR(rΩ)||

|PR(rΩ)|
× 100, (4.8)

where rΩ ∈ region Ω, Psim is the simulation result and PR is the reference solution.

Homogeneous model with a sloping free surface

The first experiment is performed on a homogeneous velocity model, with a velocity of
5000 m/s and a density of 2000 kg/m3. The excitation is applied 20 m below and normal
to the 10◦ sloping free surface. Grid spacing discontinuously increases with depth in such a
way as to ensure a minimum of 8 points per shortest wavelenghth. A Ricker wavelet with
a frequency of 20 Hz and damping 1 1

s
is used as the source waveform. Observation points

are placed 5 m below and normal to the sloping free surface. The situation is depicted in
Figure 4.3.

In the experiment, the DM with embedded boundary method is applied on a second-
order FD scheme to calculate the pressure response at observation points. Here, we use two
overlapping planes for communication since the FD scheme is second-order. In Figure 4.4,
we compare the absolute acoustic pressure values obtained by the analytical solution and
DM with embedded boundary. Overall, the average error for the DM method is less than
5% (Figure 4.5).
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Figure 4.3: Mesh consisting of a sloping free surface and two discontinuous regions. The
near-surface observation points are used for calculation of error caused by the embedded
boundary and DM methods for a homogeneous model.

Layered model with a hill as free surface

Here, we apply our DM scheme to a layered velocity model under a hill as the free surface.
The hill topography and two depth slices, illustrating the layered velocity model with source
and receiver locations, are shown in Figure 4.6. The density is 2000 kg/m3 for all the layers.
The uniform simulations have a constant grid size of 5 m. For the DM FD simulations, we
place the DM interface at a depth of 750 m, above which the grid size is 5 m, and below
which we use 10 m. The overlap zone contains 2 and 6 overlapping planes for the second-
and fourth-order DM FD simulations, respectively. The point source is located at (100, 500,
540) m, 40 m below the free surface (Figure 4.6b). We apply a Ricker-wavelet source with
a central frequency of 20 Hz. For both the fine- and coarse-grid regions, we sample the
minimum spatial wavelength by at least eight nodes.

We compare acoustic pressure solutions between the uniform and DM spatial discretiza-
tions at two receiver lines: one is aligned along and 10 m below the free surface and the other
is aligned along the z direction and located at x = 350 m (see Figure 4.6c). The uniform
and DM solutions are nearly identical to the naked eye in both the real and imaginary parts
for second- and fourth-order FD solutions (see Figures 4.7 and 4.8), with an average error
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Figure 4.4: Absolute pressure for second-order DM FD with embedded boundary at the
observation points in Figure 4.3. The plot demonstrates the solution for a frequency of 20
Hz with damping 11

s
relative to the analytical solution.

of less than 5% as shown in Figure 4.9.

Layered model with realistic topography

For our third accuracy test, we apply our DM scheme on a realistic topography surface
provided by Saudi Aramco (see Figure 4.10a). The provided model is large in size and
contains a high velocity contrast layered model. For the uniform simulations, we use a
constant grid size of 10 m. We place the DM interface at a depth of 720 m, above which the
grid size is 10 m, and below which we use 15 m. The overlap zone contains 2 overlapping
planes for the second-order DM FD simulations. We apply a Ricker wavelet point-source
with a central frequency of 10 Hz that is located at (1000, 3000, 340) m (see Figure 4.10b).
Similar to our previous tests, the 10 m grid size and 10 Hz frequency allows us to sample
the minimum spatial wavelength by at least eight nodes. The frequency is reduced in this
simulation to accommodate a larger grid spacing for this spatially large model.

We compare acoustic pressure solutions between the uniform and DM spatial discretiza-
tions at two receiver lines: one is aligned along and 10 m below the realistic free surface and
the other is aligned along the z directions and located at x = 3000 m (see Figure 4.10c).
Similar to previous accuracy tests, the solution from the DM is satisfactorily close to the
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Figure 4.5: Error for second-order DM FD scheme with embedded boundary relative to the
analytical solution.

uniform solution in both the real and imaginary parts (see Figures 4.11 and 4.12), with an
average error of less than 5% as shown in Figure 4.13. In Figure 4.13a, some points show
an inflated error that is caused by having a very small absolute acoustic pressure value near
the free surface for the reference uniform fine mesh solution.

4.4 Efficiency and convergence analysis of DM
As discussed above, computational efficiency and convergence is the justification for using

a discontinuous staggered-grid mesh instead of a uniform mesh. In this section, we explore
solution times for both spatial discretizations using direct and iterative solvers provided by
PETSc numerical libraries (Balay et al., 2018). For the direct solvers, we tested MUMPS
v5.1.2 (Amestoy et al., 2001, 2006), MUMPS Block Low Rank (BLR) with drop tolerance
10−7 (Amestoy et al., 2015) and SuperLU_DIST v5.1.3 (Li et al., 1999; Li and Demmel,
2003; Grigori et al., 2007) and for the iterative solver, we tested the Generalized Minimal
Residual (GMRES) method (Saad and Schultz, 1986), all via PETSc. We use NERSC’s
Cray XC40 supercomputer (Cori), which has 2, 388 Intel Xeon “Haswell” processor nodes.
Each node has 128 GB DDR4 2133 MHz memory and holds two sockets where each socket is
populated with a 16-core Intel® Xeon™ Processor E5–2698 v3 (“Haswell”) at 2.3 GHz. We
will test efficiency and convergence when implementing DM relative to uniform discretization
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Figure 4.6: (a) Topography of the hill free surface with two red lines for cross-sections (b)
at y = 500 m and (c) at y = 350 m. Cross-section (b) shows the source location and
cross-section (c) shows the receiver lines.
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Figure 4.7: Absolute real and imaginary parts of the pressure solution along the hill free
surface for uniform and DM spatial discretizations using second- and fourth-order FD sim-
ulations.



CHAPTER 4. DISCONTINUOUS MESH METHOD 52

500 600 700 800 900 1000 1100 1200 1300 1400 1500

z (m)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

A
b

so
lu

te
 r

ea
l 

p
re

ss
u

re
 a

m
p

li
tu

d
e

Uniform grid 2
nd

 order

DM grid 2
nd

 order

Uniform grid 4
th

 order

DM grid 4
th

 order

(a) Absolute real part

500 600 700 800 900 1000 1100 1200 1300 1400 1500

z (m)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
b

so
lu

te
 i

m
a

g
in

a
ry

 p
re

ss
u

re
 a

m
p

li
tu

d
e

Uniform grid 2
nd

 order

DM grid 2
nd

 order

Uniform grid 4
th

 order

DM grid 4
th

 order

(b) Absolute imaginary part

Figure 4.8: Absolute real and imaginary parts of the pressure solution along the z direction
of the hill surface model for uniform and DM spatial discretizations using second- and fourth-
order FD simulations.
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Figure 4.9: Absolute relative error in the pressure solution between uniform and DM spatial
discretizations along the (a) free surface hill and (b) z direction using second- and fourth-
order FD simulations. Here, the reference solution for the second-order DM FD is the
second-order uniform fine mesh FD solution and the reference solution for fourth-order DM
FD solution is the fourth-order uniform fine mesh FD solution.
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Figure 4.10: (a) Realistic topography free surface with two red lines for cross-sections (b)
at y = 3000 m and (c) at y = 5000 m. Cross-section (b) shows the source location and
cross-section (c) shows the receiver lines.
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Figure 4.11: Absolute real and imaginary parts of the pressure solution along the realistic
topography free surface for uniform and DM spatial discretizations using second-order FD
simulation.



CHAPTER 4. DISCONTINUOUS MESH METHOD 56

400 500 600 700 800 900 1000

z (m)

10
-3

10
-2

10
-1

10
0

A
b

so
lu

te
 r

ea
l 

p
re

ss
u

re
 a

m
p

li
tu

d
e

Uniform grid 2
nd

 order

DM grid 2
nd

 order

(a) Absolute real part

400 500 600 700 800 900 1000

z (m)

10
-4

10
-3

10
-2

10
-1

10
0

A
b

so
lu

te
 i

m
a
g
in

a
ry

 p
re

ss
u

re
 a

m
p

li
tu

d
e

Uniform grid 2
nd

 order

DM grid 2
nd

 order

(b) Absolute imaginary part

Figure 4.12: Absolute real and imaginary parts of the pressure solution along the z direction
of the realistic topography model for uniform and DM spatial discretizations using second-
order FD simulation.
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Figure 4.13: Absolute relative error in the pressure solution between uniform and DM spatial
discretizations along the (a) realistic topography line and (b) z direction using second-order
FD simulation. Here, the reference solution for the second-order DM FD is the second-order
uniform fine mesh solution and the reference solution for fourth-order DM FD solution is
the fourth-order uniform fine mesh FD solution.



CHAPTER 4. DISCONTINUOUS MESH METHOD 58

Table 4.1: Second-order uniform mesh and DM FD benchmarks of the hill free surface model
for several parallel direct and iterative solvers in PETSc numerical libraries.

Spatial
discretization Solver Nodes Cores

per node
Matrix
size Iterations Factor

time (s)
Solve

time (s)

Uniform GMRES 64 32 13,450,500 17,713 0.00 28.01
DM GMRES 64 32 8,228,000 16,222 0.00 15.88
DM MUMPS 64 16 8,228,000 1 792.75 28.98
DM MUMPS BLR 64 16 8,228,000 2 675.16 39.36
DM SuperLU_DIST 64 16 8,228,000 1 278.03 5.05

Table 4.2: Fourth-order uniform mesh and DM FD benchmarks of the hill free surface model
for several parallel direct and iterative solvers in PETSc numerical libraries.

Spatial
discretization Solver Nodes Cores

per node
Matrix
size Iterations Factor

time (s)
Solve

time (s)

Uniform GMRES 64 32 13,450,500 23,022 0.00 117.44
DM GMRES 64 32 8,228,000 20,908 0.00 86.96
DM MUMPS 64 8 8,228,000 1 2,673.10 30.20
DM MUMPS BLR 64 8 8,228,000 2 1,191.10 36.39
DM SuperLU_DIST 64 8 8,228,000 1 1,352.30 11.71

for a layered velocity model with the hill free surface, and the spatially large high-contrast
layered velocity model with realistic topography.

Layered model with a hill as free surface

In the first test, we benchmark uniform and DM second- and fourth-order FD simulations
of the layered hill free surface model (Figure 4.6). To measure the speed gain without bias,
we will use 64 nodes for all the simulations in this section and cap the number of cores
per node to 16 for second-order FD and 8 for fourth-order FD to meet direct solvers high
memory demands. The second-order FD scheme, which has approximately 7 non-zeros per
row in its matrix, shows a speed gain of 1.76 times for DM relative to the uniform fine mesh
when using the GMRES iterative solver (Table 4.1 and Figure 4.14a). The fourth-order FD
scheme, which has approximately 19 non-zeros per row, shows a speed gain of 1.35 times
(Table 4.2 and Figure 4.14b).

To measure the efficiency of direct solvers on DM simulations, we compare them against
the GMRES iterative solver on uniform simulations for a large number of sources, where
each source is one right-hand side (RHS) in our acoustic wave equation formulation. For the
second-order FD test, Figure 4.14a shows a speed gain of more than five times when using
SuperLU_DIST and a speed loss when using MUMPS for more than 1000 sources. The
speed loss can be attributed to the favorable iterative conditions, which are the low number
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Figure 4.14: Speedup of (a) second- and (b) fourth-order uniform and DM FD solutions for
different parallel direct and iterative solvers in PETSc numerical libraries.
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Table 4.3: Second-order uniform and DM FD benchmarks of the realistic topography model
for several parallel direct and iterative solvers in PETSc numerical libraries.

Spatial
discretization Solver Nodes Cores

per node
Matrix
size Iterations Factor

time (s)
Solve

time (s)

Uniform GMRES 128 32 39,070,500 The problem diverges
Uniform MUMPS 128 4 39,070,500 1 3,955.10 80.45
Uniform MUMPS BLR 128 4 39,070,500 2 2,229.00 106.97
Uniform SuperLU_DIST 128 4 39,070,500 Runs out of memory
DM GMRES 128 32 31,010,012 20,940 0.00 105.76
DM MUMPS 128 4 31,010,012 1 2,658.60 58.40
DM MUMPS BLR 128 4 31,010,012 2 1,614.60 97.41
DM SuperLU_DIST 128 4 31,010,012 1 1,272.22 57.45

of non-zeros and small condition number due to the low velocity contrast between layers.
The fourth-order simulation, which has a relatively higher number of non-zeros, shows a
speed gain of nine times for SuperLU_DIST and more than three times for both MUMPS
and MUMPS BLR when simulating for more than 1000 sources (Figure 4.14b).

Layered model with realistic topography

To examine the influence of the large condition number and high number of non-zeros
on solvers, we benchmark uniform mesh and DM second-order FD simulations of the high
velocity contrast realistic topography model (Figure 4.10). To keep the benchmarks fair, we
use 128 nodes for all simulations and cap the number of cores per node to four for direct
solvers.

Table 4.3 shows that the GMRES iterative solver diverges when using the uniform mesh
and converges when using our DM discretization. Here, our DM lowers both the number
of non-zeros and the condition number of the simulation matrix. We also observed that
MUMPS is more memory efficient than SuperLU_DIST for large simulations (Table 4.3).
In summary, our benchmarks indicate that DM discretization is faster and more stable than
uniform discretization, especially for large models with high velocity contrasts.
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Chapter 5

Conclusion

5.1 Embedded boundary methods
We report improved embedded boundary methods for 3D acoustic seismic wave prop-

agation modeling when arbitrarily free-surface topography is present. Unlike the classic
staircase method and finite-difference algorithms that use structured curvilinear body-fitted
grids, our embedded boundary methods; quadratic interpolation, linear extrapolation, and
one- and two-layer hybrid use a regular Cartesian grid system, which greatly simplifies mesh
generation and omits the need to change our current finite-difference formalizations. The
free-surface boundary is enforced at actual surface locations through the method of images,
allowing for an accurate representation of an arbitrary free-surface geometry. As demon-
strated with numerical experiments, our embedded methods significantly reduce the stair-
casing error. Our results showed that the hybrid method is efficient in terms of accuracy
and performance for second-order finite-difference while the two-layer hybrid cubic method is
more efficient for fourth-order finite-difference implementation. These methods are designed
to choose between linear extrapolation and quadratic interpolation according to a tolerance
variable without adversely affecting performance. We use a high tuning parameter α to bias
the hybrid method to linear extrapolation, for the increase in accuracy that linear extrapo-
lation achieves over quadratic interpolation. Previous published works only take quadratic
interpolation into consideration, which makes their embedded methods dependent on nodes
further below the surface. Our results show that linear extrapolation, which depends on
nodes close to the surface can produce better results. It achieves slightly more accurate
results when compared to quadratic interpolation for the oblique planar surface. For the hill
irregular surface, it is about two times better than quadratic interpolation. These algorithms
can handle any surface topography under a regular Cartesian coordinate system. Therefore,
they have significant potential to become a powerful part of a forward-modeling engine used
for full waveform inversion.



CHAPTER 5. CONCLUSION 62

5.2 Discontinuous mesh method
We implemented a DM with embedded boundary for second- and fourth-order accurate

staggered-grid velocity-pressure FD scheme. It approximates the solution of the LF acoustic
wave equation with any spacing ratio between the differently-spaced regions. Our method
applies trilinear interpolation to update pressure values at nodes needed by the fine mesh
from the coarse mesh and downsampling to update pressure values at nodes needed by
the coarse mesh from the fine mesh. We show that our DM with embedded boundary
scheme is accurate when using two and six overlapping planes for second- and fourth-order
FD approximation, respectively. For spatially large and high velocity contrast models, our
DM scheme lowers the condition number and the problem size allowing iterative solvers to
converge and direct solvers to require less memory. In any case, our DM with embedded
boundary FD scheme has the potential to significantly improve the efficiency of uniform FD
methods, especially for simulations with realistic topographies, 3D geological settings, and
near-surface low velocities. It is also an important step towards realizing a DM solution for
the elastic LF wave equation.
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Appendix A

Second- and fourth-order accurate first
derivatives approximation in a staggered
grid

A.1 Central formula of order O(h2)

If the function f(x) can be evaluated at values that lie left and right of x, then the best
two-point formula will involve abscissas that are chosen symmetrically on both sides of x.

Assume that f ∈ C3[a, b] and that x − h
2
, x, x + h

2
∈ [a, b]. The fourth degree Taylor
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After equation A.2 is substracted from equation A.1 and rearangement, the result is:

f ′(x) =
f(x+ h

2
)− f(x− h

2
)

h
+ O(h2). (A.3)

The first term on the right side of equation A.3 is the second-order accurate central-difference
formula and the second term is the truncation error.

A.2 Central formula of order O(h4)

If the function f(x) can be evaluated at values that lie left and right of x, then the best
four-point formula will involve abscissas that are chosen symmetrically on both sides of x.
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After equation A.2 is substracted from equation A.1, we get:
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and after equation A.5 is substracted from equation A.4, we get:
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By multiplying equation A.6 by 9
8
and equation A.7 by − 1
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and adding them, the result is:
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The first term on the right side of equation A.8 is the fourth-order accurate central-difference
formula and the second term is the truncation error.
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Appendix B

Piecewise free-surface equation

Using topography data points Ti,j, a piecewise quadratic topography equation fi,j(x, y)
is approximated. The quadratic approximation in multiple variables is given by:

fi,j(x, y) ≈ fi,j(x0, y0) + ∂xfi,j(x0, y0)(x− x0) + ∂yfi,j(x0, y0)(y − y0)+

1

2!

[
∂xxfi,j(x0, y0)(x− x0)2+ 2∂xyfi,j(x0, y0)(x− x0)(y − y0)+

∂yyfi,j(x0, y0)(y − y0)2] ,
(B.1)

where fi,j(x, y) is the approximated topography equation for the surface about the point
(x0, y0), and the symbols ∂x, ∂y, ∂xx, ∂xy, and ∂yy, respectively denote the partial differential
operators ∂

∂x
, ∂
∂y
, ∂2

∂x2
, ∂2

∂x∂y
, and ∂2

∂y2
, respectively. Furthermore, the piecewise Eq. B.1 is

bounded by: {
xi−1 < x < xi+1

yi−1 < y < yi+1.
(B.2)

where i and j are the indices of the topography nodes. Thus, xi corresponds to i · hx and yj
to j · hy. The coefficients of Eq. B.1 are found by the central finite-difference relationships.
We use topography data points to calculate the coefficients of the equation:

∂xfi,j(x, y) ≈ Ti+1,j − Ti−1,j

2hx
,

∂yfi,j(x, y) ≈ Ti,j+1 − Ti,j−1

2hy
,

∂xxfi,j(x, y) ≈ Ti+1,j − 2Ti,j + Ti−1,j

h2
x

,

∂xyfi,j(x, y) ≈ Ti+1,j+1 − Ti−1,j+1 − Ti+1,j−1 + Ti−1,j−1

4hxhy
,

∂yyfi,j(x, y) ≈ Ti,j+1 − 2Ti,j + Ti,j−1

h2
y

.

(B.3)
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The best-fit surface equation can then be approximated by:

fi,j(x, y) ≈ p00 + p10x+ p01y + p20x
2 + p11xy + p02y

2, (B.4)

where the coefficients are given by:
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2
∂xxfi,j(0, 0) =

1

2
· Ti+1,j − 2Ti,j + Ti−1,j

h2
x

,

p02 =
1

2
∂yyfi,j(0, 0) =

1

2
· Ti,j+1 − 2Ti,j + Ti,j−1

h2
y

,

p11 = ∂xyfi,j(0, 0)

=
Ti+1,j+1 − Ti−1,j+1 − Ti+1,j−1 + Ti−1,j−1

4hxhy
,

p10 = ∂xfi,j(0, 0) =
Ti+1,j − Ti−1,j

2hx
− 2x0p20 − y0p11,

p01 = ∂yfi,j(0, 0) =
Ti,j+1 − Ti,j−1

2hy
− 2y0p02 − x0p11,

p00 = fi,j(0, 0) = Ti,j − x0 ·
Ti+1,j − Ti−1,j

2hx
−

y0 ·
Ti,j+1 − Ti,j−1

2hy
+ x2

0p20+

x0y0p11 + y2
0p02,

(B.5)
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