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Aligned Image Sets and the Generalized Degrees of Freedom of

Symmetric MIMO Interference Channel with Partial CSIT

Arash Gholami Davoodi and Syed A. Jafar

Center for Pervasive Communications and Computing (CPCC)

University of California Irvine, Irvine, CA 92697

Email: {gholamid, syed}@uci.edu

Abstract

The generalized degrees of freedom (GDoF) of the two user symmetric multiple input mul-
tiple output (MIMO) interference channel (IC) are characterized as a function of the channel
strength levels and the level of channel state information at the transmitters (CSIT). In this
symmetric setting, each transmitter is equipped with M antennas, each receiver is equipped with
N antennas, and both cross links have the same strength parameter α and the same channel
uncertainty parameter β. The main challenge resides in the proof of the outer bound which is
accomplished by a generalization of the aligned image sets approach.

1 Introduction

The pursuit of progressively refined capacity approximations over the past decade has produced
numerous new insights into the fundamental limits of wireless networks. While degrees of freedom
(DoF) studies are often the starting point, a GDoF characterization is the natural next step forward
along this path. It is also a most significant step forward, because unlike the DoF metric which is not
capable of making distinctions based on channel strength levels (any non-zero channel carries 1 DoF)
or partial CSIT levels (finite precision CSIT is equivalent to no CSIT, both cause collapse of DoF
[1]), GDoF is sensitive to both channel strengths and channel uncertainty levels. As such, GDoF
characterizations are capable of shedding light on optimal yet robust interference management
schemes for settings where interference may be significantly weaker or stronger than desired signals,
and where the channel state information at the transmitters (CSIT) is neither perfect nor so weak
as to be ignored entirely.

A critical barrier for GDoF characterizations, especially under partial CSIT, has been the diffi-
culty of obtaining tight outer bounds for these settings. Notably, the 2005 conjecture of Lapidoth
et al. in [2], which claimed that the DoF of wireless networks should collapse under finite precision
CSIT, was only settled recently in [1] by introducing a novel aligned image sets (AIS) approach.
The original argument of [1] is based on a combinatorial accounting of the size of the aligned image
sets under finite precision channel knowledge. Several recent works have successfully built upon
the AIS argument to obtain new GDoF characterizations. The GDoF of the 2 user MISO BC are
characterized in [3] for arbitrary channel strength levels and arbitrary channel uncertainty levels

This work will be presented in part at IEEE GLOBECOM 2017.
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for each channel coefficient. The GDoF are obtained for the K user symmetric IC under finite
precision CSIT in [4], and for symmetric instances of K user MISO BC in [5]. Most recently, in
[6], the AIS approach is further generalized to present sum-set inequalities specialized to the GDoF
framework. Building upon these recent advances, in this work we explore the GDoF of the two
user MIMO interference channel (IC).

For the MIMO IC previous works have explored the impact of different channel strengths
through DoF and GDoF characterizations under perfect CSIT [7, 8]. The impact of limited CSIT
is explored through DoF characterizations under no CSIT [9, 10, 11]. Most recently, the DoF region
of the MIMO IC under partial CSIT with arbitrary antenna configurations is settled in [12] based
on the sum-set inequalities of [6]. As the next step, in this work we explore the joint impact of
channel strength levels and partial channel knowledge for the two user MIMO IC. To this end, we
characterize the GDoF of the symmetric MIMO IC, where each transmitter is equipped with M
antennas, each receiver is equipped with N antennas, and where each cross-channel has channel
strength parameter α and CSIT level β, for arbitrary values of M,N,α, β. While the restrictive
assumptions of symmetry are enforced to avoid an explosion in the number of parameters, the
key ideas from this work should generalize to asymmetric settings as well. Notably, this is the
first application of the AIS argument to jointly deal with multiple spatial dimensions at both
transmitters and receivers, in conjunction with different channel strengths and partial CSIT levels.

Notation: For n ∈ N, define the notation [n] = {1, 2, · · · , n}. The cardinality of a set A is de-
noted as |A|. The notationX1:i stands for {X1, X2, · · · , Xi} andX [n] stands forX(1), X(2), · · ·X(n).

Moreover, X
[n]
1:k also stands for {Xi(t) : ∀i ∈ [k], ∀t ∈ [n]}. For sets A,B, the notation A/B refers

to the set of elements that are in A but not in B. Moreover, we use the Landau O(·), o(·), and
Θ(·) notations as follows. For functions f(x), g(x) from R to R, f(x) = O(g(x)) denotes that

lim supx→∞
|f(x)|
|g(x)| < ∞. f(x) = o(g(x)) denotes that lim supx→∞

|f(x)|
|g(x)| = 0. f(x) = Θ(g(x)) de-

notes that there exists a positive finite constant, M , such that 1
M g(x) ≤ f(x) ≤ Mg(x), ∀x. We

use P(·) to denote the probability function Prob(·). We define bxc as the largest integer that is
smaller than or equal to x when x > 0, the smallest integer that is larger than or equal to x when
x < 0, and x itself when x is an integer.

2 Definitions

Definition 1 (Bounded Density Channel Coefficients) Define a set of real-valued random
variables, G such that the magnitude of each random variable g ∈ G is bounded away from in-
finity, |g| ≤ ∆2 <∞, for some positive constant ∆2 ≥ 1, and there exists a finite positive constant
fmax ≥ 1, such that for all finite cardinality disjoint subsets G1,G2 of G, the joint probability density
function of all random variables in G1, conditioned on all random variables in G2, exists and is

bounded above by f
|G1|
max.

Definition 2 (Arbitrary Channel Coefficients) Let H be a set of arbitrary constant values
that are bounded above by ∆2, i.e., if h ∈ H then |h| ≤ ∆2 <∞.

Definition 3 For any positive number αi, define alphabet Xαi as,

Xαi , {0, 1, 2, · · · , P̄αi} (1)
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where P̄αi is a compact notation for
⌊√

Pαi
⌋

. For X ∈ Xα, and 0 ≤ α′ ≤ α, define

(X)α
′

,

⌊
X

P̄α−α′

⌋
(2)

In words, (X)α
′

retrieves the top α′ power levels of X.

Definition 4 For real numbers v1, v2, · · · , vk and the vector V =
[
v1 v2 · · · vk

]T
define

the notations Lbj(V ) and Lj(V ) to represent,

Lbj(V ) ,
∑

1≤i≤k
bgjivic (3)

Lj(V ) ,
∑

1≤i≤k
bhjivic (4)

for distinct random variables gji ∈ G and hji ∈ H. We refer to the Lb functions as the bounded
density linear combinations.

Definition 5 For any vector V =
[
v1 · · · vk

]T
and non-negative integer numbers m and n less

than k, define

Vm,n ,

{ [
vm+1 · · · vm+n

]T
, m+ n ≤ k[

vm+1 · · · vk v1 · · · vm+n−k
]T
, k < m+ n

(5)

Moreover, for the two vectors V =
[
v1 · · · vk1

]T
and W =

[
w1 · · · wk2

]T
define V ;W as[

v1 · · · vk1 w1 · · · wk2

]T
.

3 System Model

For ease of exposition, in this work we will focus on the setting where all variables take only real
values. Extensions to complex settings are cumbersome but conceptually straightforward as shown
in [1].

3.1 The Channel

Define the random variables Xs(t) and Yr(t) for r, s ∈ {1, 2} as,

Xs(t) =
[
Xs1(t) Xs2(t) · · · XsM (t)

]T
(6)

Yr(t) =
[
Yr1(t) Yr2(t) · · · YrN (t)

]T
(7)

The channel uses are indexed by t ∈ N, Xsm(t), s ∈ {1, 2},m ∈ [M ] are the symbols sent from
m-th transmit antenna of the s-th transmitter and are subject to unit power constraint, while
Yrn(t), r ∈ {1, 2}, n ∈ [N ] are the symbols observed by the n-th antenna of the r-th receiver. Under
the GDoF framework, the channel model for the two user MIMO IC is defined by the following
input-output equations

Yi(t) =
√
PGii(t)Xi(t) +

√
PαGīi(t)Xī(t) + Γi(t), ∀i ∈ {1, 2} (8)
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Figure 1: Two user 5× 3 MIMO IC.

Here we have defined ī = 3 − i, so that ī = 1 if i = 2 and ī = 2 if i = 1. The N ×M matrix
Grs(t) is the channel fading coefficient matrix between the r-th receiver and the s-th transmitter
for any r, s ∈ {1, 2}. The entry in the n-th row and m-th column of the matrix Grs(t) is Grsnm(t).
Γ1(t) and Γ2(t) are N × 1 matrices whose components are zero mean unit variance additive white
Gaussian noise (AWGN). See Fig 1 for two user 5× 3 MIMO IC. P is the nominal SNR parameter
that approaches infinity for the GDoF characterizations. Channel state information at the receivers
(CSIR) is assumed to be perfect. However, the channel state information at the transmitters (CSIT)
is only partially available, as specified next.

3.1.1 Partial CSIT

Under partial CSIT, the channel coefficients are represented as

Grsnm(t) = Ĝrsnm(t) +
√
P−βrsG̃rsnm(t)

Recall that Grsnm(t) is the channel fading coefficient between the n-th antenna of r-th receiver and
m-th antenna of s-th transmitter. Ĝrsnm(t) is the channel estimate and G̃rsnm(t) is the estimation
error term. To avoid degenerate conditions, for each N×M channel matrix Grs(t), we require that
all its N ×N submatrices are non-singular, i.e., their determinants are bound away from zero. To
this end, if N ≤ M , then for all t ∈ [n], r, s ∈ {1, 2}, and for all choices of N transmit antenna
indices {m1,m2, · · · ,mN : mi ∈ [M ]} define the determinant D(t) as

D(t) ,

∣∣∣∣∣∣∣
Grs1m1(t) Grs1m2(t) · · · Grs1mN (t)

...
...

. . .
...

GrsNm1(t) GrsNm2(t) · · · GrsNmN (t)

∣∣∣∣∣∣∣ . (9)

Then we require that there exists a positive constant ∆1 > 0, such that |D(t)| ≥ ∆1, for all
t ∈ [n], r, s ∈ {1, 2}, {m1,m2, · · · ,mN : mi ∈ [M ]}. The channel variables Ĝrsnm(t), G̃rsnm(t) are

4



distinct random variables drawn from the set G. The realizations of Ĝrsnm(t) are known to the
transmitter, but the realizations of G̃rsnm(t) are not available to the transmitter. We also assume
that the channel coefficients |Grsnm(t)| are bounded away from zero, i.e.,

∆1 ≤ |Grsnm(t)|,∀t ∈ [n], r, s ∈ {1, 2},m ∈ [M ], n ∈ [N ] (10)

Note that under the partial CSIT model, the variance of the channel coefficients Grsnm(t) behaves
as ∼ P−βrs and the peak of the probability density function behaves as ∼

√
P βrs .

For any r, s ∈ {1, 2}, in order to span the full range of partial channel knowledge at the
transmitters, the corresponding range of βrs parameters, assumed throughout this work, is 0 ≤
βrs ≤ α. βrs = 0 and βrs = α correspond to the two extremes where the CSIT is essentially absent,
or perfect, respectively. Note that the value of β11 and β22 will not affect the GDoF.

3.2 GDoF

The definitions of achievable rates Ri(P ) and capacity region C(P ) are standard. The GDoF region
is defined as

D ={(d1, d2) : ∃(R1(P ), R2(P )) ∈ C(P ),

s.t. dk = lim
P→∞

Rk(P )
1
2 log (P )

, ∀k ∈ {1, 2}} (11)

4 Main Result

For M ≤ N , the GDoF of the MIMO IC with partial CSIT are the same as with perfect CSIT for
which the result is already known [8]. So, henceforth, N < M is assumed throughout this paper.

Theorem 1 The sum GDoF value for the two user symmetric MIMO IC for N < M is,

d1 + d2 =



2N(1− α) + 2N̂β, 0 ≤ α ≤ 1
2

2Nα+ 2N̂(1− 2α+ β)+, 1
2 < α ≤ 2

3

min(2Nα+ 2N̂(1− 2α+ β)+, 2N −Nα+ N̂β), 2
3 < α ≤ 1

min(2N,Nα+ N̂(1− α+ β)+), 1 < α ≤ 2
2N, 2 < α

(12)

where β ≤ α and N̂ is defined as min(N,M −N). Note that the sum GDoF value for β > α is the
same as with perfect CSIT, i.e., β = α.

5 Proof of Theorem 1: Converse

5.1 Equivalent Channel for Outer Bound

Without loss of generality, we can perform a sequence of invertible operations (specifically, multi-
plications of inputs and outputs by unitary matrices) that are inconsequential for GDoF, similar
to [13], at the transmitters and receivers to convert the channel to a simpler form. For instance,
the equivalent channel for a 5× 3 MIMO interference channel is depicted in Fig 2.
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Figure 2: Equivalent channel for two user 5 × 3 MIMO IC. The channel strength terms, e.g.,
P̄α−β represent the maximum received signal strength that can be delivered by the corresponding
channels.

In the equivalent channel, the transmitted symbol vector at time t for transmitter s ∈ {1, 2},
X′s(t) of size M × 1, is partitioned into X′sa(t) and X′sb(t) as,

X′sa(t) =[X′s(t)]0,N (13)

X′sb(t) =[X′s(t)]N,M−N (14)

For any i ∈ {1, 2}, the matrix Ĝīi(t) has M − N null space dimensions. So the i-th transmitter
can zero-force X′ib(t) into the null space of Ĝīi(t) in a way that the ī-th receiver sees only the top

α − β power levels of X′ib(t). Define N̆ = (2N −M)+. Note that N = N̆ + N̂ . In the equivalent

channel, the N × 1 output signal vector at receiver i, Y′i(t) is partitioned into two N̂ × 1 and N̆ × 1
vectors, Y′ic(t) and Y′id(t), i.e.,

Y′ic(t) =
√
PG′iia(t)X

′
ia(t) +

√
PG′′iia(t)X

′
ib(t) +

√
PαG′īia(t)X

′
īa(t)

+
√
Pα−βG̃′′īia(t)X

′
īb(t) + Γ′i(t), ∀i ∈ {1, 2}, t ∈ [n] (15)

Y′id(t) =
√
PG′iib(t)X

′
ia(t) +

√
PαG′īib(t)X

′
īa(t)

+
√
Pα−βG̃′′īib(t)X

′
īb(t) + Γ′′i (t), ∀i ∈ {1, 2}, t ∈ [n] (16)

where for any i ∈ {1, 2}, Xib(t) does not appear at Yid(t). Moreover, for any i ∈ {1, 2}, t ∈ [n],
G′iia(t), G′′iia(t), G′

īia
(t) and G̃′′

īia
(t) are N̂×N , N̂×(M−N), N̂×N and N̂×(M−N) matrices while

G′iib(t), G′
īib

(t) and G̃′′
īib

(t) are N̆ ×N , N̆ ×N and N̆ × (M −N) matrices respectively.1 Γ′i(t) and

Γ′′i (t) are also N̂×1 and N̆×1 matrices whose components are zero mean unit variance AWGN. Note

1For any i ∈ {1, 2} consider an invertible M ×M matrix Ui(t) with unit determinant where Ĝīi(t)Ui(t)’s right
M −N columns are zero. Note that this is possible because the matrix Ĝīi(t) has M −N null space dimensions. So,
we perform an invertible linear transformation at the transmitters by multiplying Ui(t) to the transmitted signal at
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that because the equivalent channel is obtained by simply rotating the input and output vectors
(multiplications by unitary matrices) at each transmitter and receiver, all the transmit power
constraints and the assumptions on the channel coefficients specified in Section 3 are inherited by
the equivalent channel as well.

5.2 Deterministic Model

As in [4], without loss of generality for GDoF characterizations, we will use the deterministic model
for the equivalent channel.

Ȳic(t) = Li1(t)
(

(X̄ia(t))
1
; (X̄ib(t))

1
; (X̄īa(t))

α
)

+ Lbi1(t)
(

(X̄īb(t))
α−β

)
(18)

Ȳid(t) = Li2(t)
(

(X̄ia(t))
1
; (X̄īa(t))

α
)

+ Lbi2(t)
(

(X̄īb(t))
α−β

)
(19)

where X̄i(t), Ȳic(t) and Ȳid(t) are integer-valued vectors. X̄i(t), X̄ia(t) and X̄ib(t) are defined
from (13) and (14) as,

X̄i(t) =[X̄i1(t) X̄i2(t) · · · X̄iM (t)]T (20)

X̄ia(t) =[X̄i(t)]0,N (21)

X̄ib(t) =[X̄i(t)]N,M−N (22)

and X̄im(t) ∈ {0, 1, · · · , P̄max(1,α)}, ∀m ∈ [M ]. For any i ∈ {1, 2}, the sizes of X̄ia(t), X̄ib(t),
Ȳic(t) and Ȳid(t) are the same as those of X′ia(t), X′ib(t), Y′ic(t) and Y′id(t) respectively. Note
that for any i ∈ {1, 2} and t ∈ [n], the coefficients in linear combinations Li1(t) and Li2(t) are
arbitrary realizations of channels, for which we allow perfect CSIT (does not hurt the outer bound
argument). However, since these are realizations of channels they must satisfy all assumptions that
channels are required to satisfy, e.g., D(t) ≥ ∆1 where D(t) is defined in (9) and the fact that
channel coefficients are bounded away from zero. Note that the transmitted symbols are allowed to
depend on the realizations of the channel coefficients that appear in Lij terms since these channel
coefficients are known to the transmitters. However, the realizations of the channel coefficients
that appear in the Lbij terms are not known to the transmitters. For these channel coefficients, the
transmitted symbols can only depend on their (bounded) probability density functions, but must
be independent of the actual realizations.

5.3 A Key Lemma

The essential challenge in interference channels is that information sent to one receiver causes
interference at the other receiver. Bounding the difference of these two terms in the GDoF sense
is the key to obtaining tight GDoF outer bounds. Suppose we only wish to send information
to receiver 2, while limiting interference at receiver 1 as much as possible. As the first scenario,
suppose we silence transmitter 1 entirely. Then how much larger could the entropy of the signal

the i-th transmitter, i.e., Xi(t) = Ui(t)X
′
i(t) and transmit X′i(t) instead of Xi(t). Moreover, consider an invertible

N ×N matrix U′i(t) with unit determinant such that U′i(t)GiiUi(t)(t)’s lower right N̆ × (M −N) block is the zero
matrix. From (8) we have,

Y′i(t) =
√
PU′i(t)Gii(t)Ui(t)X

′
i(t) +

√
PαU′i(t)Gīi(t)Uī(t)X

′
ī(t) + U′i(t)Γi(t), ∀i ∈ {1, 2} (17)

from (17), the equivalent channel (15) and (16) are concluded.
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seen at receiver 2 be made relative to the entropy of the signal at receiver 1? Furthermore, to
strengthen the bound, consider a second scenario where transmitter 1 is also allowed to participate
(cooperatively with transmitter 2) but in a way that it can only be heard by receiver 2, and not by
receiver 1. How large can the difference of entropies be made in this case? The following lemma
answers these two questions, which end up being useful to derive the tight GDoF outer bounds
needed for Theorem 1. Note that Ū and Ū′ stand for the effective received signals at receivers 1 and
2 respectively, and the two scenarios mentioned above correspond to γ = 0 and γ = α, respectively.

Lemma 1 Define the two random variables Ū and Ū′ as,

Ū =
(
U

[n]
1 , U

[n]
2 , · · · , U [n]

N

)
(23)

Ū′ =
(
U ′

[n]
1 , U ′

[n]
2 , · · · , U ′[n]

N

)
(24)

where for any j ∈ [N ] and t ∈ [n] we define,

Uj(t) =Lj1(t)
(
(X̄2a(t))

α
)

+ Lbj(t)
(

(X̄2b(t))
α−β

)
(25)

U ′j(t) =

 Lj2(t)
(

(X̄2a(t))
1
; (X̄2b(t))

1
; (X̄1a(t))

γ ; (X̄1b(t))
(γ−β)+

)
, 1 ≤ j ≤ N̂

Lj3(t)
(

(X̄2a(t))
1
; (X̄1a(t))

γ ; (X̄1b(t))
(γ−β)+

)
, N̂ < j ≤ N.

(26)

γ is an arbitrary positive number not greater than one. Further, let W be independent of G. Then,
we have,

H(Ū′ | W,G)−H(Ū | W,G)

≤ N̂ max(1− α+ β, γ)n log P̄ + (N − N̂) max(1− α, γ)n log P̄ + n o (log P̄ ) (27)

For proof of Lemma 1, see Appendix 8.1. The proof relies on the aligned image sets (AIS) approach
of [1], and involves rather non-trivial generalizations because of the combination of multiple receive
antennas and partial CSIT. For example, note that of the N spatial dimensions in Uj(t), only
N −M see bounded density linear combination terms, i.e., X̄2b(t), while all N see the arbitrary
linear combination terms X̄2a(t).

5.4 Intuitive understanding of Lemma 1

Let us use the two user 5× 3 MIMO IC setting to provide an intuitive understanding of Lemma 1.
Consider inequality (27). The left hand side of it is the difference of entropies H(Ū′ | W,G)−H(Ū |
W,G), i.e., the difference of entropies of signals seen by the two receivers as illustrated in Figure
3. We also suppress the time-index t in this section to simplify the notation.

Consider the first N̂ = 2 antennas at each of the two receivers, i.e., (U ′1, U
′
2) versus (U1, U2).

Based on the channel strengths, the inputs in X̄2a are capable of delivering N̂ GDoF to the signals
(U ′1, U

′
2) seen by receiver 2 while they contribute only N̂α GDoF to (U1, U2) at receiver 1. Thus,

these inputs can contribute a difference of entropies at most equal to N̂(1− α)+ GDoF. Similarly,
the inputs X̄2b are capable of delivering N̂ GDoF to (U ′1, U

′
2) seen by receiver 2 while they contribute

only N̂(α−β) GDoF to (U1, U2) at receiver 1. Thus, these inputs can at most contribute a difference
of entropies equal to N̂(1−α+ β)+ GDoF. Similarly, the inputs X̄1a can contribute a difference of
entropies at most equal to N̂γ and the inputs X̄1b can contribute a difference of entropies at most
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Figure 3: Specialization for Lemma 1 - Two User 5×3 MIMO IC. The channel strength terms, e.g.,
P̄α−β represent the maximum received signal strength that can be delivered by the corresponding
channels.

equal to N̂(γ − β)+. Taking the maximum across all these possibilities, the difference of entropies
that can be created between (U ′1, U

′
2) and (U1, U2) is at most N̂ max(1 − α + β, γ) in the GDoF

sense.
Now consider the remaining N − N̂ = 1 antenna at each receiver, i.e., U ′3 versus U3. Based

on channel strengths, the input X̄2a can contribute a difference of entropies that is at most (N −
N̂)(1 − α)+ GDoF, X̄2b at most 0 GDoF (because X̄2b is not heard by receiver 2), X̄1a at most
(N − N̂)γ GDoF and X̄1b at most (N − N̂)(γ−β)+ GDoF. Taking the maximum across all inputs,
the difference of entropies that can be created between U ′3 and U3 is at most (N − N̂) max(1−α, γ)
GDoF.

Finally, jointly considering all the N antennas at each receiver across all n channel uses, we
add the contributions from the first N̂ antennas and the remaining (N − N̂) antennas, so that
the difference of entropies H(Ū′ | W,G) − H(Ū | W,G) is at most N̂ max(1 − α + β, γ) + (N −
N̂) max(1−α, γ) in the GDoF sense. This is the intuitive understanding of the statement of Lemma
1.

5.5 Deriving the Outer Bounds

With the aid of Lemma 1, we are now ready to derive the required outer bounds for Theorem 1.
In particular we will derive bounds for the two intervals of α ≤ 1 and α ≥ 2

3 separately. All the
outer bounds needed for Theorem 1 will be recovered by combining these two cases.
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5.5.1 The case α ≤ 1

Starting from Fano’s inequality and omitting throughout terms that are of the order no(log(P ))
and thus inconsequential for GDoF, we have,

n(R1 +R2)

≤ H(Ȳ
[n]
1 | G)−H(Ȳ

[n]
2 | X̄

[n]
2 ,G) +H(Ȳ

[n]
2 | G)−H(Ȳ

[n]
1 | X̄

[n]
1 ,G) (28)

Now the term H(Ȳ
[n]
2 | G)−H(Ȳ

[n]
1 | X̄

[n]
1 ,G) is bounded as,

H(Ȳ
[n]
2 | G)−H(Ȳ

[n]
1 | X̄

[n]
1 ,G)

=H(Ȳ
[n]
2 | G)−H(Ȳ

[n]
1r | G) (29)

where Ȳ1r(t) is the signal seen by receiver 1 after the contribution from transmitter 1 is eliminated,
defined as,

Ȳ1r(t) =Li1(t)
(
(X̄2a(t))

α
)

+ Lbi(t)
(

(X̄2b(t))
α−β

)
(30)

From Lemma 1, substituting γ = α we conclude that,

H(Ȳ
[n]
2 | G)−H(Ȳ

[n]
1r | G)

≤
(
N̂ max(1− α+ β, α) + (N − N̂) max(1− α, α)

)
n log P̄ (31)

By symmetry H(Ȳ
[n]
1 | G) −H(Ȳ

[n]
2 | X̄[n]

2 ,G) is bounded similarly. Applying the GDoF limit we
have,

d1 + d2 ≤ 2
(
N̂ max(1− α+ β, α) + (N − N̂) max(1− α, α)

)
. (32)

Equivalently,

d1 + d2 ≤

{
2N(1− α) + 2N̂β, 0 ≤ α ≤ 1

2

2Nα+ 2N̂(1− 2α+ β)+, 1
2 < α ≤ 1.

(33)

5.5.2 The case α ≥ 2
3

Starting from Fano’s inequality and omitting throughout terms that are of the order no(log(P ))
and thus inconsequential for GDoF, we have,

n(R1 +R2) ≤ I(X̄
[n]
1 ; Ȳ

[n]
1 |G) + I(X̄

[n]
2 ; Ȳ

[n]
2 |X̄

[n]
1 ,G) (34)

≤ H(Ȳ
[n]
1 |G) +H(Ȳ

[n]
2 |X̄

[n]
1 ,G)−H(Ȳ

[n]
1 |X̄

[n]
1 ,G) (35)

≤ N max(1, α)n log(P̄ ) +H(Ȳ
[n]
2 |X̄

[n]
1 ,G)−H(Ȳ

[n]
1 |X̄

[n]
1 ,G) (36)

= N max(1, α)n log(P̄ ) +H(Ȳ
[n]
2r | G)−H(Ȳ

[n]
1r | G) (37)

where for any i ∈ {1, 2}, Ȳ1r(t) and Ȳ2r(t) are defined the same as Ui(t) and U ′i(t) in Lemma 1
with γ = 0. Thus, from the statement of Lemma 1 we have,

H(Ȳ
[n]
2r | G)−H(Ȳ

[n]
1r | G)

≤
(
N̂(1− α+ β)+ + (N − N̂)(1− α)+

)
n log P̄ (38)

10



Substituting into (37) and applying the GDoF limit we obtain,

d1 + d2 ≤ N max(1, α) +
(
N̂(1− α+ β)+ + (N − N̂)(1− α)+

)
(39)

Equivalently,

d1 + d2 ≤


2N −Nα+ N̂β, 2

3 < α ≤ 1

min(2N,Nα+ N̂(1− α+ β)+), 1 < α ≤ 2
2N, 2 < α

(40)

Note that 2N is the trivial upper bound for the two user MIMO IC with N antennas at receivers.
Combining (33) and (40), the proof of outer bound for Theorem 1 is complete.

6 Proof of Theorem 1: Achievability

6.1 A Useful Lemma

Consider a (M1 +M2)-user multiple access channel (MAC) where each transmitter is equipped with
a single antenna, the receiver has N antennas, N < M1 +M2, and the N × 1 received signal vector
Q is represented as,

Q =
√
P

M1∑
k=1

HkTk +
√
Pα

M1+M2∑
k=M1+1

HkTk +
N∑
m=1

√
PαmGmZm (41)

where T1, T2, · · · , TM1+M2 are the transmitted signals, and Zm are i.i.d. Gaussian zero mean unit
variance noise terms. The Hk,Gm are N × 1 generic vectors, i.e., generated from continuous
distributions with bounded density, so that any N of them are linearly independent almost surely.
The transmit power constraint is expressed as,

E|Tk|2 ≤ P−ηk , ∀k ∈ [M1 +M2] (42)

where for any k ∈ [M1 +M2], ηk is a non-negative integer. Further, define γk for k ∈ [M1 +M2] as,

γk =

{
(1− ηk)+, k ∈ [M1]

(α− ηk)+, Otherwise
(43)

Thus γk is the received power level of user k in the GDoF sense.
The GDoF region D′ is defined as

D′ ,{(d′1, d′2, · · · , d′M1+M2
) : ∃(R′1(P ), R′2(P ), · · · , R′M1+M2

(P )) ∈ C′(P ),

s.t. d′k = lim
P→∞

R′k(P )
1
2 log (P )

,∀k ∈ [M1 +M2]} (44)

where C′(P ) is the capacity region of the MAC described in (41).

Lemma 2 The GDoF tuple (d′1, d
′
2, · · · , d′M1+M2

) is achievable in the multiple access channel de-
scribed above if ∀k ∈ [M1 +M2], and ∀S ⊂ [M1 +M2] where |S| = k,∑

i∈S
d′i ≤ max

S2∈S,|S2|=min(k,N)

∑
i∈S2

γi − min
S1∈[N ],|S1|=min(k,N)

∑
i∈S1

αi (45)

Proof of Lemma 2 is relegated to Appendix 8.2.
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6.2 Proof of Achievability in Theorem 1

Now, let us achieve the bound (12). We will suppress the time-index t in this section to simplify the
notation. For any i ∈ {1, 2} user i’s message Wi is split into messages (Wic,Wiz,Win), representing
common message, zero-forced message, and private message, respectively. The common messages
Wic are decoded by both receivers and are encoded into the symbols Xi1c, Xi2c, · · · , XiNc. These
codewords are transmitted through N antennas along M×1 generic unit vectors Vi1,Vi2, · · · ,ViN .
For any i ∈ {1, 2}, Wiz is the sub-message to be decoded by user i and zero-forced (to the extent
possible with partial CSIT) for user ī. Wiz is encoded to Xi1z, Xi2z, · · · , XiN̂z and is transmitted

through N̂ antennas along the M × 1 generic unit vectors V′i1,V
′
i2, · · · ,V′iN̂ within the null space

of Ĝīi, i.e.,

Ĝīi

[
V′i1 V′i2 · · · V′

iN̂

]
= ON×N̂ (46)

where ON×N̂ is N×N̂ zero matrix. Finally, for any i ∈ {1, 2}, Win acts as private message to be de-
coded only by receiver i, which is below noise floor for user ī. Win is encoded toXi1n, Xi2n, · · · , XiNn

and is transmitted through N antennas along N generic unit vectors V′′i1,V
′′
i2, · · · ,V′′iN . The code-

words Xijn carry 1− α GDoF each for any j ∈ [N ]. The transmitted and received signals are,

Xi =
N∑
j=1

VijXijc +
N̂∑
j=1

V′ijXijz +
N∑
j=1

V′′ijXijn (47)

Yi =
√
PGiiXi +

√
PαĜīiXī +

√
Pα−βG̃īiXī + Γi (48)

1. α ≤ 1
2

Our goal here is to achieve N(1 − α) + N̂β GDoF per user. In this case for any i ∈ {1, 2},
user i’s message Wi is split to (Wiz,Win). Xikz and Xijn are transmitted with powers

E|Xikz|2 = P β−α (49)

E|Xijn|2 = P−α (50)

for any k ∈ [N̂ ] and j ∈ [N ]. The codewords Xikz carries β GDoF each and remember that
the codewords Xijn carries 1−α GDoF each. The received signals are the same as (48), while
the transmitted signals are,

Xi =
N̂∑
k=1

V′ikXikz +
N∑
j=1

V′′ijXijn (51)

for any i ∈ {1, 2}. Using Lemma 2 we claim that each receiver, e.g., receiver 1 can decode
the desired signals as a MAC. Note that the first receiver will not see the signals from the
second transmitter as the signals X2kz are zero-forced and X2jn are below noise floor. For all
m ∈ [N ] set αm = 0 and define the codewords T1, · · · , TN+N̂ as

Tj =

{
X1jz, 1 ≤ j ≤ N̂
X1(j−N̂)n, N̂ < j ≤ N + N̂

(52)

From the received signal in (48), T1, · · · , TN+N̂ are decoded by the first receiver as (45) is

satisfied for all k ∈ [N + N̂ ].
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2. 1
2 ≤ α ≤

2
3

In order to achieve Nα+ N̂(1− 2α+β)+ GDoF per user, for any i ∈ {1, 2}, j ∈ [N ], k ∈ [N̂ ],

the signals Xijc and Xikz are carrying 2α− 1− N̂ min(2α−1,β)
N and β GDoF respectively. The

independent Gaussian codebooks are sent with powers,

E|Xijc|2 = 1− P β−α − P−α (53)

E|Xikz|2 = P β−α (54)

E|Xijn|2 = P−α (55)

for any i ∈ {1, 2}, j ∈ [N ] and k ∈ [N̂ ]. Using Lemma 2 we claim that each receiver, e.g.,
receiver 1 can decode the desired signals as a MAC. For any m ∈ [N ] set αm = 0 and define
the codewords T1, · · · , T3N+N̂ as

Tj =


X1jc, 1 ≤ j ≤ N
X1(j−N)z, N < j ≤ N + N̂

X1(j−N−N̂)n, N + N̂ < j ≤ 2N + N̂

X2(j−2N−N̂)c, 2N + N̂ < j ≤ 3N + N̂

(56)

From (53)-(55), γ1, · · · , γ3N+N̂ are derived as,

γj =


1, 1 ≤ j ≤ N
1 + β − α, N < j ≤ N + N̂

1− α, N + N̂ < j ≤ 2N + N̂

α, 2N + N̂ < j ≤ 3N + N̂

(57)

From the received signal in (48), T1, · · · , T3N+N̂ are decoded by the first receiver as (45) is

satisfied for any k ∈ [3N + N̂ ]. For instance for k = 3N + N̂ , and the set S = [3N + N̂ ] we
have,

2N(2α− 1)− 2N̂ min(2α− 1, β) + N̂β +N(1− α) ≤ N (58)

which is true as 1
2 ≤ α ≤

2
3 .

3. 2
3 < α ≤ 1

In this case, min(Nα+ N̂(1− 2α+β)+, N − Nα−N̂β
2 ) GDoF per user is achieved. Solving the

inequality 2Nα+ 2N̂(1− 2α+ β)+ ≤ 2N −Nα+ N̂β leads us to define Se and Sq as,

Se = {(α, β), 0 ≤ β ≤ α, 2

3
< α ≤ 1} (59)

Sq = {(α, β), 0 ≤ β ≤ α, 2

3
< α ≤ 1, N(3α− 2) ≤ N̂(2α− 1),

N(3α− 2)

N̂
≤ β ≤ N(2− 3α)

N̂
− 2 + 4α} (60)

we will achieve Nα+N̂(1−2α+β)+ GDoF per user when (α, β) ∈ Sq and N− Nα−N̂β
2 GDoF

per user when (α, β) ∈ Se ∩ SqC . Now consider these two cases separately.
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(a) Nα+ N̂(1− 2α+ β)+ GDoF per user is achieved when (α, β) ∈ Sq.

The encoding and decoding follow the same as the case 1
2 ≤ α ≤

2
3 .

(b) N − Nα−N̂β
2 GDoF per user is achieved when (α, β) ∈ Se ∩ SqC .

This case follows similar to the case 1
2 ≤ α ≤

2
3 with the difference thatXijc carries α

2−
N̂β
2N

GDoF for any j ∈ [N ]. The decoding follows the same using Lemma 2 and defining
T1, · · · , T3N+N̂ the same as (56). T1, · · · , T3N+N̂ are decoded by the first receiver as (45)

is satisfied for all k ∈ [3N + N̂ ]. For instance for k = 3N + N̂ , and the set S = [3N + N̂ ]
we have,

2N(
α

2
− N̂β

2N
) + N̂β +N(1− α) ≤ N (61)

4. 1 < α

In this case, min(N, Nα+N̂mα
2 ) GDoF per user is achieved, wheremα is defined as (β + 1− α)+.

To do so, for any i ∈ {1, 2}, user i’s message Wi is split to (Wic,Wiz). Xijc and Xikz carry

min(α2 −
N̂mα
2N , 1− N̂mα

N ) and mα GDoF respectively and are transmitted with powers

E|Xijc|2 = 1− Pmα−1 (62)

E|Xikz|2 = Pmα−1 (63)

for any i ∈ {1, 2}, j ∈ [N ] and k ∈ [N̂ ]. The transmitted signals are,

Xi =

N∑
j=1

VijXijc +

N̂∑
k=1

V′ikXikz (64)

while the received signals are the same as (48). Note that the vectors Vij and V′ij are defined

in the case 1
2 ≤ α ≤ 2

3 . Finally, using Lemma 2 we claim that each receiver, e.g., receiver
1 can decode the desired signals as a MAC. For any m ∈ [N ] set αm = 0 and define the
codewords T1, · · · , T2N+N̂ as

Tj =


X1jc, 1 ≤ j ≤ N
X1(j−N)z, N < j ≤ N + N̂

X2(j−N−N̂)c, 2N < j ≤ 2N + N̂
(65)

From (53)-(55), γ1, · · · , γ2N+N̂ are derived as,

γj =


1, 1 ≤ j ≤ N
mα, N < j ≤ N + N̂

α, 2N < j ≤ 2N + N̂

(66)

From the received signal in (48), T1, · · · , T2N+N̂ are decoded by the first receiver as (45) is

satisfied for all k ∈ [2N + N̂ ]. For instance for k = 2N + N̂ , and the set S = [2N + N̂ ] we
have,

2N min(
α

2
− N̂mα

2N
, 1− N̂mα

N
) + N̂mα ≤ Nα (67)
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7 Conclusion

In this paper, we characterized the GDoF of the two user symmetric MIMO IC with partial CSIT
under the full range of the channel strength parameter α and the channel uncertainty parameter
β. The technical challenge of the paper resides in the outer bound which involves non-trivial
generalizations of the AIS approach to jointly account for multiple receive antennas and partial
CSIT. Generalizations of this work to the GDoF region and to more than 2 users are of the
immediate interest.

8 Appendix

8.1 Proof of Lemma 1

We are only interested in the difference of entropies of Ū′ and Ū conditioned on W and G, i.e.,
H(Ū′ | W,G)−H(Ū | W,G). Similar to [1] we start with functional dependence.

8.1.1 Functional Dependence and Aligned Image Sets

From the functional dependence argument, without loss of generality Ū can be made a function of
Ū′,W,G. So, we have,

H(Ū | W,G) +H(Ū′ | Ū,W,G)

= H(Ū, Ū′ | W,G) (68)

= H(Ū′ | W,G) (69)

where (68) and (69) follow from chain rule and the fact that Ū is a function of Ū′,W,G. For given
W and channel realization G, define aligned image set Sν[n](W = w,G) as the set of all Ū′ which
result in the same Ū. Note that Ū is a function of Ū′,W,G. Thus, this set is defined as the set of
all values of Ū′ which produce the same value for Ū, as is produced by Ū′ = ν[n]. Since uniform
distribution maximizes the entropy,

D∆ ,H(Ū′ | W,G)−H(Ū | W,G)

=H(Ū′ | Ū,W,G)

≤max
w

H(Ū′ | Ū,W = w,G) (70)

≤EG {log |Sν[n](W = w,G)|} (71)

≤ log {EG |Sν[n](W = w,G)|} (72)

where (70) and (72) come from independence of W and G and the Jensen’s Inequality. Now, the
most crucial step is to bound the cardinality of Sν[n] where we need to use the ‘Bounded Density’
assumption of G.

8.1.2 Bounding the Probability that Images Align

Given G, consider two distinct instances of Ū′ denoted as λ[n] = (λ
[n]
1 , λ

[n]
2 , · · · , λ[n]

N ) and

ν[n] = (ν
[n]
1 , ν

[n]
2 , · · · , ν[n]

N ) produced by corresponding realizations of codewords (X̄
[n]
1 , X̄

[n]
2 ) denoted
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by (Ē
[n]
1 , Ē

[n]
2 ) and (F̄

[n]
1 , F̄

[n]
2 ), respectively.

λi(t) =

 Li2(t)
(

(Ē2a(t))
1
; (Ē2b(t))

1
; (Ē1a(t))

γ ; (Ē1b(t))
(γ−β)+

)
, 1 ≤ i ≤ N̂

Li3(t)
(

(Ē2a(t))
1
; (Ē1a(t))

γ ; (Ē1b(t))
(γ−β)+

)
, N̂ < i ≤ N

νi(t) =

 Li2(t)
(

(F̄2a(t))
1
; (F̄2b(t))

1
; (F̄1a(t))

γ ; (F̄1b(t))
(γ−β)+

)
, 1 ≤ i ≤ N̂

Li3(t)
(

(F̄2a(t))
1
; (F̄1a(t))

γ ; (F̄1b(t))
(γ−β)+

)
, N̂ < i ≤ N

(73)

where for any i ∈ {1, 2} and t ∈ [n] we define,

Ēi(t) =[Ēi1(t) Ēi2(t) · · · ĒiM (t)]T (74)

F̄i(t) =[F̄i1(t) F̄i2(t) · · · F̄iM (t)]T (75)

From deterministic channel model in 5.2 we have Ēim(t), F̄im(t) ∈ {0, 1, · · · , P̄max(1,α)}, ∀m ∈ [M ].
P(λ[n] ∈ Sν[n]) is bounded from above in the following three steps.

1. Bounding the probability that Ū(λ[n],W,G) = Ū(ν[n],W,G).

For any i ∈ [N ] and t ∈ [n] we have,

Li1(t)
(
(Ē2a(t))

α
)

+ Lbi(t)
(

(Ē2b(t))
α−β

)
= Li1(t)

(
(F̄2a(t))

α
)

+ Lbi(t)
(

(F̄2b(t))
α−β

)
(76)

or in the other words, for any i ∈ [N ] and t ∈ [n] we have,∣∣∣∣∣
N∑
i=1

hi ((E2i(t))
α − (F2i(t))

α)

−
M∑

i=N+1

gi

(
(E2i(t))

α−β − (F2i(t))
α−β

)∣∣∣∣∣ ≤M (77)

where (77) follows from (76) as for any real number x, |x − bxc| < 1. Fix the values of i
and t. For any j ∈ {N + 1, · · · ,M} and any fixed values of gi, l ∈ (N + 1, · · · ,M) , l 6= j
the random variable gj{(E2j(t))

α−β − (F2j(t))
α−β} must take values within an interval of

length no more than 2M . If (E2j(t))
α−β 6= (F2j(t))

α−β, then gj must take values in an
interval of length no more than 2M

|(E2j(t))α−β−(F2j(t))α−β |
, the probability of which is no more

than 2Mfmax

|(E2j(t))α−β−(F2j(t))α−β |
. Thus, the probability of alignment is bounded by

P(λ[n] ∈ Sν[n]) ≤
N∏
i=1

n∏
t=1,A(t)6=0

2Mfmax

A(t)
(78)

where A(t) is defined as

A(t) = max
j∈{N+1,··· ,M}

|(E2j(t))
α−β − (F2j(t))

α−β| (79)
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2. Bounding |λi(t)− νi(t)| in terms of A(t).

Now, considering (77) as a system of linear equations with N inequalities and N variables of
(E2i(t))

α − (F2i(t))
α, we obtain,∣∣∣∣∣
N∑
i=1

hi ((E2i(t))
α − (F2i(t))

α)

∣∣∣∣∣ ≤ (M −N)∆2A(t) +M (80)

Following the argument presented in Appendix 8.3, we have,

max
j∈[N ]

|(E2j(t))
α − (F2j(t))

α| ≤ ((M −N)∆2A(t) +M)N !∆N−1
2

∆1
(81)

where n! is defined as
∏n
i=1 i. Define A′(t) as,

A′(t) = max

(
max
j∈[N ]

|(E2j(t))
α − (F2j(t))

α|, max
j∈{N+1,··· ,M}

|(E2j(t))
α−β − (F2j(t))

α−β|
)

(82)

From (81), A′(t) is bounded by ck + clA(t), i.e., A′(t) ≤ ck + clA(t), where ck and cl are
positive real numbers defined as

ck =
MN !∆N−1

2

∆1
(83)

cl =
(M −N)N !∆N

2

∆1
(84)

From (73) we bound |λi(t)− νi(t)| in terms of A(t) as follows,

|λi(t)− νi(t)| ≤2M +MP̄ γ∆2 +A′(t)P̌i∆2 (85)

≤∆ + clA(t)P̌i∆2 (86)

where ∆ and P̌i are defined as,

∆ =b2M +MP̄ γ∆2 + ckP̌i∆2c+ 1 (87)

P̌i =

{
MP̄

1−α+β
, 1 ≤ i ≤ N̂

NP̄
1−α

, N̂ < i ≤ N
(88)

3. P(λ[n] ∈ Sν[n]) is now bounded by |λi(t)− νi(t)| terms as,

P(λ[n] ∈ Sν[n])

≤

 N∏
i=1

∏
t:t∈[n],|λi(t)−νi(t)|≤∆

1

×
 N∏
i=1

∏
t:t∈[n],|λi(t)−νi(t)|>∆

2MclfmaxP̌i∆2

|λi(t)− νi(t)| −∆


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8.1.3 Bounding the Expected Size of Aligned Image Sets.

E(|Sν[n] |)

=
∑
λn

P (λn ∈ Sν[n])

=
∑
λn

 N∏
i=1

∏
t:t∈[n],|λi(t)−νi(t)|≤∆

1

×
 N∏
i=1

∏
t:t∈[n],|λi(t)−νi(t)|>∆

2MclfmaxP̌i∆2

|λi(t)− νi(t)| −∆

 (89)

≤
N∏
i=1

n∏
t=1

 ∑
λi(t):|λi(t)−νi(t)|≤∆

1 +
∑

λi(t):|λi(t)−νi(t)|>∆

2MclfmaxP̌i∆2

|λi(t)− νi(t)| −∆


≤

N∏
i=1

n∏
t=1

(
2∆ + 1 + 2MclfmaxP̌i∆2(2 + 2 log(1 + 2M∆2P̄ ))

)
(90)

≤(2Mclfmax∆2)nN P̄nN̂ max(1−α+β,γ)+n(N−N̂) max(1−α,γ) ×
(
log(P̄ ) + o(log(P̄ ))

)nN
(91)

where (89) follows from interchange of the summation and the product.2 (90) is true as the partial
sum of harmonic series can be bounded above by logarithmic function, i.e.,

∑n
i=1

1
i ≤ 1 + log n.

Substituting (91) back into (72) we have,

D∆ , log {EG |Sν[n](W = w,G)|}

≤
(
N̂ max(1− α+ β, γ) + n(N − N̂) max(1− α, γ)

)
n log(P̄ ) + n o(log(P̄ ) (95)

From (95), Lemma 1 is concluded.

8.2 Proof of Lemma 2.

Proof of Lemma 2 is similar to the proof of Lemma 1 in [14]. Consider Ti for i ∈ [M1 + M2] as
zero mean i.i.d. Gaussian random variables with power constraint defined in (42). A rate tuple
(R′1, R

′
2, · · · , R′M1+M2

) is achievable if for any k ∈ [M1 + M2], and any set S ∈ [M1 + M2] where
|S| = k, ∑

i∈S
R′i ≤ I({Ti,∀i ∈ S}; Q | {Tj , ∀j ∈ SC}) (96)

2 Note that for the arbitrary functions f1(x), f2(x), · · · , fn(x) and the arbitrary sets of numbers S1, S2, · · · , Sn we
have, ∑

a1∈S1,a2∈S2,··· ,an∈Sn

n∏
t=1

ft(at)

=
∑
a1∈S1

∑
a2∈S2

· · ·
∑

an∈Sn

n∏
t=1

ft(at) (92)

=
∑
a1∈S1

f1(a1)×
∑
a2∈S2

f2(a2)× · · · ×
∑

an∈Sn

fn(an) (93)

=

n∏
t=1

∑
at∈St

ft(at) (94)
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where SC is complement of the set S. (96) yields,∑
i∈S

R′i ≤ h(Q | {Tj , ∀j ∈ SC})− h(Q | T1, T2, · · · , TM1+M2) (97)

= max
S2∈S,|S2|=min(N,k)

∑
i∈S2

γi log P̄ + max
S3∈[N ],|S3|=(N−k)+

∑
i∈S3

αi log P̄

−
N∑
i=1

αi log P̄ + o(log P̄ ) (98)

(98) yields (45) in the GDoF limit.

8.3 Justification for (81)

Consider N variables of {x1, x2, · · · , xN} and N inequalities of,

|
∑
j∈[N ]

gijxj | ≤ ri,∀i ∈ [N ] (99)

where ri are non-negative real numbers and gij are arbitrary realizations of channels, for which we
allow perfect CSIT (does not hurt the outer bound argument). However, since these are realizations
of channels they must satisfy all assumptions that channels are required to satisfy, e.g., D(t) ≥ ∆1

where D(t) is defined in (9) and the fact that channel coefficients are bounded away from zero.
The set of solutions for (99) is equivalent to the union of the sets of solutions for∑

j∈[N ]

gijxj = si,∀i ∈ [N ] (100)

for all s1, s2, · · · , sN where |si| ≤ ri,∀i ∈ [N ]. From Cramer’s rule, any of these systems of N linear
equations has a solution as,

xi =
∑
j∈[N ]

(−1)i+jsj × Λji (101)

where Λji is defined as,

Λji =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g11 · · · g1(i−1) g1(i+1) · · · g1N
...

...
...

...
. . .

...
g(j−1)1 · · · g(j−1)(i−1) g(j−1)(i+1) · · · g(j−1)N

g(j+1)1 · · · g(j+1)(i−1) g(j+1)(i+1) · · · g(j+1)N
...

...
...

...
. . .

...
gN1 · · · gN(i−1) gN(i+1) · · · gNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g11 g12 · · · g1N

g21 g22 · · · g2N
...

...
. . .

...
gN1 gN2 · · · gNN

∣∣∣∣∣∣∣∣∣

(102)
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Note that from the definition of D(t) in (9), ∆1 ≤ D(t) and the fact that |gij | ≤ ∆2, for any
i, j ∈ [N ], |Λji| is bounded by

|Λji| ≤
(N − 1)!∆N−1

2

∆1
(103)

where (103) is true as absolute value of determinant of any n × n matrix with elements bounded
by some number c, i.e., absolute value of any element of the matrix is less than c, is bounded by
n!cn. From (101) and (103), |xi| is bounded as,

|xi| ≤
∑
j∈[N ]

rj
(N − 1)!∆N−1

2

∆1
(104)
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