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Abstract: Importation biological control represents the planned introduction of a specialist natural
enemy from the region of origin of an invasive pest or weed. For this study, the author considered
why attempts to develop a predictive theory for biological control have been misguided and what
future directions might be more promising and effective. Despite considerable interest in the theory
of consumer–resource population dynamics, such theory has contributed little to improvements in
the success of biological control due to a focus on persistence and equilibrium dynamics rather than
establishment and impact. A broader consideration of invasion biology in addition to population
ecology offers new opportunities for a more inclusive theory of biological control that incorporates
the demographic and genetic processes that more specifically address the establishment and impact
of introduced natural enemies. The importance of propagule size and genetic variance for successful
establishment, and of contributions to host population growth, relative population growth rates,
interaction strength, and coevolution for suppression of host abundance are discussed as promising
future directions for a theory of biological control.
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1. Introduction

Biological control is an ecosystem service in which a pest or weed is effectively controlled through
interactions with its natural enemies, and in many cases the natural enemies are insects [1]. The control
of alien invasive species through the deliberate introduction of specialist natural enemies from their
geographic region of origin, known as importation biological control, serves as one of the clearest
examples of the value of biological control as an ecosystem service [2,3]. Classic cases include successful
control of the cottony cushion scale (Icerya purchasi Mask.) in California following the introduction of
the vedalia beetle (Rodolia cardinalis Muls.) from Australia [4], of the cassava mealybug (Phenacoccus
manihoti Matile-Ferrero) in Africa following the introduction of a parasitoid wasp (Anagyrus lopezi
De Santis) from South America [5], and of St. John’s wort (Hypericum perforatum L.) in New Zealand
following the introduction of the leaf beetle (Chrysolina hyperici [Först.]) from Europe [6]. Nonetheless,
failure to achieve at least some level of control has continued to be a frequent outcome for importation
biological control, for example, 74% (1764 of 2384) failure for natural enemy species used against
arthropod pests [2] and 62% (277 of 449) failure for those used against weeds [3].

Importation biological control, hereafter referred to simply as biological control, began as a very
pragmatic and empirical approach to pest and weed management in the late 1800s, and while we have
made great strides in terms of our knowledge of the ecological basis for this practice since then [1],
there is little evidence for a significant improvement in rates of success over time [2,3]. Perhaps the
most disappointing aspect of this historical record is that although a theoretical explanation for success
versus failure has been “a relentlessly pursued but elusive goal” [7], it has achieved “few if any, general
principles, or even rules of thumb, to guide the efforts of biological control” [8]. McEvoy [9] makes
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a compelling case for the potential of ecological theory to improve the effectiveness and safety of
biological control, and for this study, the author considered why attempts to develop a predictive
theory for biological control have been misguided and what future directions might be more promising
and effective.

2. Population Dynamics and the Paradox of Biological Control

The development of consumer–resource theory in ecology has a long history with a notable
bias toward parasitoid–host models as the simplest example of a tightly coupled consumer–resource
interaction [8,10]. When a host is successfully attacked by a female parasitoid, the host dies and
is converted into either a single (solitary parasitoids) or a mean number (gregarious parasitoids)
of offspring in the next generation, which greatly simplifies the coupling of host and parasitoid
populations in simple mathematical models. In contrast, the effects of predation and herbivory
on the dynamics of consumer and resource populations are more complex, as there is no simple
linkage for these interactions between resource and consumer fitness. Consequently, predator–prey
and herbivore–plant models have attracted rather less attention in the context of a theory for
biological control [11–13]. For example, most of the models developed for weed biological control
are stage-structured matrix models of the weed population alone with insect herbivory included as a
reduction in per capita seed production [14], and only a few models directly couple the interaction of
both herbivore and weed populations [15].

Successful biological control of pests and weeds has two important characteristics: (1) the
persistence of both natural enemy and host populations and (2) a sustained reduction in the size
of the host population. The simplicity of coupled parasitoid–host models has been a particularly
attractive framework for addressing these two characteristics of biological control because analytical
solutions can often be found for equilibrium abundance of host and parasitoid populations and for
the local stability of these equilibria. The Nicholson–Bailey model has played a pivotal role in the
theory of parasitoid–host population dynamics [10], but the inherent instability of this discrete-time
model (representing insects with a single generation each year) inevitably leads to the extinction
of one or both populations. This lack of persistence drove theoreticians to focus almost exclusively
on a quest to find life history traits and population structures that could account for local stability
and consequently the persistence of biological control interactions [16]. Although continuous time
models with neutral stability were also developed (representing insects with multiple overlapping
generations each year) [8], the quest to explain persistence remained strong and dominated the
theory of parasitoid–host interactions. Implicit in this theory are two key assumptions. The first
is that parasitism must introduce top-down density dependence to provide local stability for the
interaction, a notion that has also been applied to herbivore–plant interactions with a suggestion
that herbivores may need to alter the strength or form of density dependence in plant populations
to achieve successful biological control [17]. The second is that parasitoid–host interactions reach
equilibrium conditions under natural field conditions, a simplification that facilitates the analysis of
the local stability properties of the equilibria and comparison of host equilibrium densities among
nested models.

2.1. Local versus Regional Persistence

With regard to the first key assumption of parasitoid–host theory, it is well known that persistence
can also occur at a regional scale in the absence of local stability due to asynchronous dynamics
among subpopulations in a spatially fragmented environment [18]. Persistence can be increased either
by limited dispersal between a large set of subpopulations, by random dispersal decoupled from
subpopulation densities, or by suboptimal parasitoid foraging strategies (host-density-independent
aggregation). Irrespective of whether the persistence of parasitoid–host interactions under field
conditions is driven at a local or regional scale, however, theory presents a clear paradox for biological
control in that almost all models exhibit a tradeoff between persistence and host suppression [8,19].
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This is well illustrated by the Getz–Mills model [20] (Figure 1), a discrete-time model for a host with
no self-limitation and a parasitoid that varies between search and egg limitation combined with an
aggregated distribution of host encounters that is host-density-independent. The more aggregated the
parasitoid encounters with hosts ( k → 0), the stronger the stabilizing effect and the less effective the
parasitoid is in the suppression of host density. Or conversely, the more effective the parasitoid is in
suppressing host equilibrium density below the carrying capacity set by resource availability, the more
likely it is that the system will be unstable.
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Figure 1. The paradox of biological control as illustrated by the Getz–Mills model [20], a discrete-time
parasitoid–host model with aggregated (and host-density-independent) encounters between parasitoids
and hosts and an attack strategy that varies from search limitation to egg limitation. The paradox is
represented by the tradeoff between increased stability (greater aggregation of encounters, k → 0 ) and
host equilibrium density (N*).

Unfortunately, there has been very little support for follow-up studies, under field conditions,
of the difference between success and failure in biological control, and consequently there have been
few applications that provide sufficient data to be able to address the question of local stability
versus regional persistence. For two of the most detailed studies of biological control success,
the introduction of a parasitoid (Aphytis melinus DeBach) for control of California red scale (Aonidiella
aurantii Mask.) does provide evidence for local stability [21], but the introduction of the cinnabar
moth (Tyria jacobaeae (L.)) and the ragwort flea beetle (Longitarsus jacobaeae (Waterhouse)) for control
of tansy ragwort (Jacobaea vulgaris (Gaertn.)) provides evidence of instability at a local scale [9].
In addition, Murdoch et al. [22] found no evidence for local stability in the parasitoid–host interactions
associated with successful biological control of winter moth, olive scale, larch sawfly, and walnut aphid.
It is also interesting to note that Kean and Barlow [23] found that a spatially explicit metapopulation
model allowed for a greater level of host suppression at equilibrium than a corresponding non-spatial
model, suggesting that regional persistence may be more compatible with host suppression than local
stability. Consequently, if success in biological control is more generally represented by metapopulation
dynamics than by local dynamics, then a shift in the focus of biological control theory from local
population processes to natural enemy foraging behavior and the response of individuals to the patchy
distribution of hosts in a spatially fragmented environment may be needed [24].
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2.2. Transient versus Equilibrium Dynamics

With regard to the second key assumption of parasitoid–host theory, it is questionable whether
equilibrium dynamics ever exist in natural communities of interacting species due to both seasonal
and annual changes in environmental conditions. This may be further exacerbated for biological
control in agricultural systems due to frequent management disturbance. Under these circumstances,
shorter-term transient dynamics may better represent biological control than longer-term equilibrium
dynamics [25,26], and Kidd and Amarasekare [26] demonstrate that the parasitoid traits which promote
host suppression differ under transient and equilibrium conditions. For example, greater suppression
of transient host abundance results from a shorter handling time (or higher fecundity) which allows
saturation of the functional response at higher host densities. In contrast, greater suppression of
equilibrium host abundance results from a greater conversion efficiency of hosts attacked to parasitoid
progeny produced. Thus, the extent to which an equilibrium theory of parasitoid–host population
dynamics has general applicability to the practice of biological control is open to question.

The strong focus on persistence and equilibrium dynamics in models of parasitoid–host
interactions has led to a mismatch between theory and observation for biological control. Theory
predicts that the more successful a natural enemy is in suppressing the abundance of its host below
the carrying capacity of the environment, the less persistent it will be. In contrast, from the historical
record of biological control we can find many examples of persistent suppression of pest and weed
abundance by introduced natural enemies under field conditions. The consequence of this mismatch is
that there are few general principles, or rules of thumb, to guide the application of biological control to
greater levels of success. This is unfortunate, as it has delayed further progress in the development
of a theory for biological control success. Therefore, there may now be much to be gained from an
alternative perspective that is more inclusive of theoretical developments in other relevant fields
of study.

3. Invasion Biology and the Theory of Biological Control

In addition to its relevance for population ecology, biological control is an example of a planned
invasion of an exotic natural enemy for control of an invasive pest or weed [1,27]. Recent advances in
invasion biology provide theoretical developments that are directly applicable to biological control
and should be considered in the development of a more inclusive theory for biological control
(Figure 2). There are also several advantages that the integration of invasion biology and population
ecology can bring to the application of biological control. For example, invasion biology provides
a unified framework for the invasion process that not only includes biological control as a special
case, but also specifically addresses the barriers to successful establishment of an exotic species in
a novel environment [28]. In addition, the realization that evolutionary dynamics can occur over
ecological time scales, as exemplified by invasion events [29], has encouraged consideration of genetic
as well as demographic processes in invasion biology [30]. In contrast, population ecology has
continued to focus on how and why population densities change in time and space, demographic
processes such as regulation, and the dynamics of species interactions [31]. Population ecology is thus
central to understanding the impact of introduced natural enemies in the context of biological control,
but has contributed rather less to understanding establishment. Thus, the integration of theoretical
developments from both invasion biology and population ecology could better illuminate and inform
the practice of biological control.
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3.1. Dynamics of Natural Enemy Establishment

Invasive pests and weeds that become targets for biological control represent an abundant
resource for introduced natural enemies, but the success of natural enemy establishment in a novel
environment is influenced by both demographic and genetic processes that affect small founder
populations [30,32] (Figure 2). The most important demographic processes for founder populations
are demographic stochasticity, environmental stochasticity, and Allee effects. In addition, key genetic
processes such as drift and inbreeding depression can reduce the standing genetic variation among
individuals and consequently the mean fitness of a founder population in the absence of adaptation.
For both demographic and genetic processes, theory predicts that the probability of establishment
should increase with the size of the founder population by buffering stochastic effects and genetic
variation, and by reducing Allee effects and inbreeding [30,33–35]. There is strong empirical evidence
from the invasion biology literature that propagule pressure, namely, the total number of individuals
introduced to an area, is the most consistent predictor of establishment success [36]. Propagule
pressure has also been shown to influence the establishment of natural enemies used for biological
control introductions [37,38]. For example, an analysis of 515 releases of 254 parasitoid species used
for biological control introductions showed a significant positive influence of propagule pressure
on establishment success [37]. In a more detailed study, Duncan et al. [38] analyzed the success of
establishment of a psyllid (Arytainilla spartiophila (Först.)) for the control of broom (Cytisus scoparius (L.))
in New Zealand from a field experiment in which propagule pressure was manipulated across a series
of different release sites [39]. They found that the relationship between probability of establishment
and propagule pressure was well described by a model that included the effects of demographic
stochasticity and the net balance between the contributions of an Allee effect and heterogeneity in
environmental conditions. A stronger contribution from environmental heterogeneity obscured any
influence of an Allee effect and resulted in a disproportionate failure of establishments from psyllid
releases of larger rather than smaller propagule pressure.
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It is also important to recognize that propagule pressure consists of two interacting components:
propagule size, or the mean number of individuals per introduction event, and propagule number,
or the number of introduction events. Whereas some theoretical studies suggest that propagule size
is more important for establishment success, even in the presence of environmental variability [40],
others suggest that propagule number may be more important than size [41,42]. It can be argued that
the probability of at least one introduction event leading to establishment is a function of the average
per-release establishment rate and propagule number [41]. Consequently, for a natural enemy species
that readily establishes in novel environments, propagule size could be more important than propagule
number, whereas for a natural enemy species with a poor record of establishment, the reverse would
apply. In analyzing establishment records for 74 weed biological control agents in the state of Oregon,
USA, there was no evidence for an effect of propagule size, but good evidence that propagule number
was important in achieving a high probability of establishment, suggesting that it may often be
suboptimal in weed biological control programs [43].

The influence of genetic processes on the success of establishment has not been studied as
extensively as the influence of demographic processes. However, theory has suggested that inbreeding
depression is likely to be less important than demographic processes in influencing establishment [40],
and there is some supporting evidence from an experimental laboratory study with red flour
beetles [44]. In contrast, however, another recent experimental study with red flour beetles suggests
that either preadaptation to a novel environment, or increased genetic variation that includes at least
some individuals that are preadapted, can be more important than propagule size in increasing the
probability of establishment of founder populations [45].

These recent developments provide valuable guidelines for enhancing natural enemy
establishment by increasing propagule number and increasing the genetic variation among individuals
used for biological control introductions. The extent of preadaptation to climatic conditions can also
be enhanced through the use of species distribution models to assess the climatic match of source and
target regions for natural enemy introductions [46] or to select locations where surveys for natural
enemies should be conducted [47]. One question that has yet to be resolved in this context is whether
founder populations for introduction should be selected from sources with the closest genetic match
(similarity of host genetic backgrounds for the natural enemy) or the best climatic match (similarity of
host environments for the natural enemy) or under which conditions one or the other may lead to a
more successful establishment.

3.2. Dynamics of Natural Enemy Impact

Whether or not an established natural enemy has sufficient impact to suppress the abundance of
a target host seems to be determined primarily by characteristics of the interaction of natural enemy
and host populations. Setting persistence aside, we can then ask what factors are most likely to drive
the impact of introduced natural enemies (Figure 2). It is very clear, at least for plant populations, that
some of the best examples of strong impact arise from accidental introductions of exotic insect pests [48]
and result either from enemy release and/or the absence of coevolved plant defenses. In addition,
the current failure of a previously successful program to control Argentine stem weevil (Listronotus
bonariensis (Kushel)) in New Zealand with an introduced parasitoid (Microctonus hyperodae Loan) also
highlights the importance of coevolution [49]. In this case, the sexually reproducing weevil has been
able to respond to the strong selection pressure imposed by the asexually reproducing parasitoid
and to evolve resistance to parasitism over a period of as little as seven years. This clearly raises
the question of whether the lower level of standing genetic variation associated with asexual versus
sexual reproduction can compromise the coevolutionary arms race between virulence and resistance
in biological control. It may also account for why asexual reproduction in weeds has been identified as
one of the most important characteristics for success of weed biological control [50].

Theoretical studies of post-establishment processes in invasion biology have focused heavily on
rates of spread and, in the context of biological control, on the potential for an established natural
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enemy to reduce, stop, or even reverse the spread of an invasive host [51]. Although this is a valuable
aspect of biological control, it makes the assumption that an established natural enemy does have
sufficient impact on the abundance of the target host, at least at a local scale. To address the dynamics
of natural enemy impact more broadly in the context of the success and failure of biological control,
however, requires additional insights from population ecology. As discussed earlier, theoretical studies
of consumer–resource dynamics have been addressed extensively, but have provided few guidelines
for biological control. As a consequence, the author focuses here on three less well-known demographic
effects as potential drivers of success that deserve closer examination in the future: contributions to
host population growth, relative population growth rates, and interaction strength. The significance
of natural enemy impact as a contribution to the suppression of host population growth can often
be buffered by compensatory processes, such as weed regrowth and/or density dependence [52].
Consequently, the notion of vulnerability in the life cycles of target weeds and pests has become of
increasing interest [9,53–55] to ensure that the damage imposed by a selected insect herbivore or the
mortality caused by a selected parasitoid translates into the greatest reduction in population growth of
the target host. So far, such models have not incorporated the effects of density dependence [17,56],
but they represent an important step forward in addressing how best to maximize the impact of
introduced natural enemies on the suppression of host population growth. While it is too early to
know how valuable this approach might be in practice, it has been very informative in identifying the
importance of the simultaneous effects of herbivory from the ragwort flea beetle and the interspecific
competition from background vegetation in suppressing incipient outbreaks of tansy ragwort [9,55].

Another way in which the impact of a natural enemy can be maximized is through its relative
population growth rate. To have a substantial impact, a natural enemy must have some form of
numerical advantage over the host, such as a shorter generation time [8,57,58] or a greater reproductive
capacity [25], to allow its population to capitalize on host availability and respond rapidly to changes in
the host population growth rate. Despite the intuitive appeal of this simple notion, relative population
growth rate has only rarely been considered as a potential driver of biological control success and
deserves greater attention because it also provides a very simple criterion for the comparison and
selection of candidate natural enemies for introduction.

A third aspect of natural enemy–host interactions that has been neglected as a key influence on
the suppression of host population abundance is that of interaction strength and how it is affected
by temporal synchrony. Discrete-time models assume that natural enemy and host populations
are perfectly synchronized, and although continuous-time models often include stage structure and
stage durations [8,16], the analysis of these models has remained closely focused on persistence
rather than interaction strength. In contrast to theory, many of the natural enemies that are used
for biological control introductions utilize relatively short-lived stages in the life cycles of the insect
pests or weeds that they attack and so consequently are vulnerable to mismatches in phenology as
they respond to abiotic cues in novel environments [59–61]. Phenological synchrony has been of
increasing interest in recent years due to a need to understand the link between climate change and the
demography of trophic interactions [61–64]. Two interesting aspects of this work are that the tendency
for phenology to shift earlier in the year in response to climate warming declines with trophic level
from plants to predators [63], and that mismatches in phenology have been better documented for
insect herbivores [65] than for insect parasitoids [66]. From a theoretical perspective, phenological
asynchrony creates a partial temporal refuge from natural enemy attack and acts as a source of
stability in parasitoid–host models, such that greater asynchrony leads to increased equilibrium
density of the host population [67]. A more recent theoretical model suggests that a similar or slightly
earlier phenology for the consumer than the resource population (negative mismatch) leads to the
greatest level of resource exploitation and consequently the lowest equilibrium abundance for both
populations [68] (Figure 3). In contrast, too early a phenology for the consumer or a phenology that
is later than that of the resource population leads in both cases to larger consumer and resource
populations. Thus, an avoidance of mismatch in the temporal synchronization of introduced natural
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enemies with their target hosts in novel environments may prove to be one of the most important
challenges for biological control. Interaction strength may well drive the difference between success
and failure in the suppression of host abundance and be influenced by the breadth of the temporal
window of host vulnerability, its temporal match to natural enemy flight periods, and the variability in
phenology among individuals of both populations.
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4. Conclusions

Through the history of biological control, theory has been rather narrowly focused on the
demography of parasitoid–host interactions at equilibrium. In addition, undue attention to persistence
rather than impact in the dynamics of parasitoid–host interactions has limited the contribution of
theory to the improvement of success rates in biological control. A more inclusive theory for biological
control needs to embrace the importance of genetic as well as demographic processes as influences on
both the establishment of founder natural enemy populations and the suppression of host populations
in novel environments. Biological control can no longer afford to remain a largely pragmatic approach
to pest and weed management that is uninformed by a predictive and testable theory. For too long,
we have relied on the outcomes of individual case studies to guide the application of biological control.
To make further progress, there is a clear need not only to be informed by the insightful deductions
that can be made from realistic population and evolutionary models, but also to adopt an experimental
as well as observational approach to the application of biological control [9,69]. A stronger linkage
between theory and application will be needed for biological control to develop as a more predictive
science, and the integration of concepts from both invasion biology and population ecology offers an
alternative perspective that incorporates a broader range of theory and experimental methodology.
Greater emphasis on the importance of genetic as well as demographic processes as central components
of biological control is needed, and if more widely adopted, this could lead to substantial improvements
in the success and safety of future applications.
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