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ABSTRACT OF THE DISSERTATION 

 
Biological Controls and Biogeochemical Outcomes of Marine Elemental Stoichiometry 

 
By 

 
Allison Renee Moreno 

 
Doctor of Philosophy in Biological Sciences 

 
 University of California, Irvine, 2019 

 
Professor Adam C. Martiny, Chair 

 
 
 

   Redfield proportions (106C:16N:1P:138-O2) have been used to describe ocean 

biogeochemical patterns since the 1950s. However, recent research demonstrates variation 

in this ratio over latitudinal gradients, time, and seasons. As a result, determining the 

controls on, and predictability of, variable stoichiometry will improve our understanding of 

global biogeochemical cycle dynamics. To address these missing components, I examined 

the environmental and physiological conditions associated with changes in stoichiometry 

and performed predictive modeling to demonstrate the impact of variable stoichiometry on 

marine biogeochemical cycles.  

I examined the direct environmental and physiological effects on fluctuations in 

stoichiometry in two ways. First, I synthesized scientific literature and revealed that 

specific physiological mechanisms have a strong impact on stoichiometry in nutrient-rich 

environments, whereas biogeochemical interactions are important in the oligotrophic 

gyres. Second, I utilized the 2015 El Niño as an example of extreme environmental 

conditions, where high temperatures and low nutrient availability were expected to affect 

stoichiometric ratios. These conditions resulted in a reduction in POM concentrations and 
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an increase in C:N, C:P, and N:P ratios. El Niño conditions are representative of future 

scenarios, as such, this study provides evidence that stoichiometry is affected by extreme 

environmental shifts.  

To estimate the impact of variable stoichiometry on global biogeochemical cycles, I 

modelled and predicted future carbon and oxygen concentrations. First, I created a simple 

ocean box model to estimate the atmospheric CO2. I found that variation in allocation of 

cellular resources led to higher carbon export and declines in atmospheric CO2 compared 

to Redfield proportions. Second, I quantified the variability in the respiration quotient, or 

the oxygen required to oxidize one unit of carbon, 𝑟𝑟−𝑂𝑂2:𝐶𝐶 in marine organic matter. The 

𝑟𝑟−O2:C ratio was found to vary regionally due to temperature controls on plankton 

community composition and their physiological state. Deoxygenation, which had 

previously been estimated to occur during high temperature conditions, increased in 

regions where 𝑟𝑟−O2:C was low.  

 In summary, my work has demonstrated the importance of understanding, utilizing, 

and quantifying variable stoichiometry in order to better characterize global 

biogeochemical cycles.  
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INTRODUCTION 

In 1934, Alfred Redfield demonstrated that the surface plankton elemental 

composition is homogeneously similar to that of deep ocean dissolved nutrients, defining 

the Redfield ratio of 106C:16N:1P:138-O2 (following Eq. 1; Redfield 1958). Redfield 

proposed that microorganisms set the concentrations of nutrients in the deep ocean 

through their ability to fix C and N (Augueres & Loreau 2015; Lenton & Klausmeier 2007). 

Present ocean circulation models use the static Redfield ratio to estimate global carbon 

export and predict CO2 cumulative emissions over the next century (Dunne et al. 2005; 

Teng et al. 2014).  In recent years, studies have demonstrated systematic variation in the 

particulate C:N:P across ocean regions and seasons, challenging Redfield’s ratio. 

 

(CH2O)106(HN3)16(H3PO4) + 138 O2 ↔ 106 CO2 + 16 HNO3 + H3PO4 + 122 H2O  (1) 

  

 Variation in elemental stoichiometry stems from the celluar C, N, and P pools within 

a cell. To link biochemical regulation with the elemental stoichiometry of a cell, we must 

consider the molecular components (Geider & La Roche 2002; Sterner & Elser 2002). 

Molecules rich in C include carbohydrates and lipids. Molecules rich in N include proteins 

and photosynthetic components. Molecules rich in P include membrane lipids, 

polyphosphates, and nucleic acids. In addition to variation among the cellular component 

ratios, there is also variation in the abundance of each component within a cell. Anderson 

(1995) estimated the average cell contains 54.4% protein, 25.5% carbohydrate, 16.1% 

lipid, and 4.0% nucleic acid by organic dry weight. More recent predictions found that the 

median composition of microalgae is 32.2% protein, 15.0% carbohydrate, 17.3% lipid, 
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17.3% ash, 5.6% RNA, 1.1% chlorophyll-a and 0.98% DNA as percent dry weight (Finkel et 

al. 2016). Variations in biological components result in changes of stoichiometry, for 

instance, C:N in one study has ranged from 4.3 to 9.0 (Parsons et al. 1961) and 5.7 to 9.3 in 

another (Finkel et al. 2016).   

The variation in community elemental stoichiometry across ocean regions has been 

observed using two separate approaches: directly measuring the elemental stoichiometry 

of particulate organic matter (Martiny et al. 2013a,b) and using inverse models to 

indirectly infer this ratio from inorganic nutrient fields (DeVries & Deutsch 2014, Teng et 

al. 2014, Weber & Deutsch 2010). The elemental stoichiometry of marine particulate 

organic matter has been shown to be below or near Redfield proportions in high-latitudes 

and equatorial upwelling regions, but above Redfield proportions in the oligotrophic gyres 

(Martiny et al. 2016; Singh et al. 2015; Talarmin et al. 2016). This pattern is also observed 

across seasons, with ratios higher in the summer and fall (warm and nutrient depleted) 

and lower in the winter and spring (colder and nutrient replete).  

Declining oxygen levels, along with rising sea temperatures and increasing ocean 

acidity, is one of the “Big 3” threats to marine life in our ocean today (Falkowski et al. 2011; 

Gilly et al. 2013; Gruber 2011; Schmidtko et al. 2017). A further decline in oxygen levels 

will lead to reduced biological productivity and diversity, changes in animal behavior, 

declines in fisheries, and impacts on biogeochemical cycles (Deutsch et al. 2015; Falkowski 

et al. 2011; Stramma et al. 2010). Our understanding of the spatial extent and potential 

fluctuations of hypoxic (low-oxygen) regions in a changing climate are limited by sparse 

observations and unknown interacting effects of environmental conditions. Rising ocean 

temperatures are known to exacerbate ocean deoxygenation by lowering oxygen solubility 
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and stagnating ocean circulation, but potentially important effects on the stoichiometry of 

marine organic matter have not been assessed. The aim of my dissertation is to determine 

which biological processes control variability in elemental stoichiometric ratios and its 

influence on global biogeochemical cycles.   
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CHAPTER 1 
Ecological stoichiometry of ocean plankton 

Abstract 

Marine plankton elemental stoichiometric ratios can deviate from the Red- field 

ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that 

lead to the observed variation across lineages, regions, and seasons. Many models of 

ecological stoichiometry blend together acclimative and adaptive responses to 

environmental conditions. These two pathways can have unique molecular mechanisms 

and stoichiometric out- comes, and we attempt to disentangle the two processes. We find 

that interactions between environmental conditions and cellular growth are key to 

understanding stoichiometric regulation, but the growth rates of most marine plankton 

populations are poorly constrained. We propose that specific physiological mechanisms 

have a strong impact on plankton and community stoichiometry in nutrient-rich 

environments, whereas biogeochemical interactions are important for the stoichiometry of 

the oligotrophic gyres. Finally, we outline key areas with missing information that is 

needed to advance understanding of the present and future ecological stoichiometry of 

ocean plankton. 

Keywords: Redfield ratio, C:N:P, growth rate hypothesis, translation-compensation 

hypothesis, direct control, state factor 

Introduction 

 In the early part of the twentieth century, Alfred Redfield suggested that the 

elemental compositions of surface plankton are uniformly similar to the ratios of dissolved 

nutrients in the deep ocean and defined the Redfield molar ratio of 106C:16N:1P (Redfield 
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1958). He proposed three hypotheses to explain this similarity: (a) It is merely a 

coincidence, (b) phytoplankton have the ability to change their stoichiometry to match the 

environmental supply, and (c) phytoplankton control the ocean chemistry though the 

remineralization of exported material. Based on the available data, the first hypothesis 

seemed unlikely. Instead, Redfield proposed that microorganisms set the concentrations of 

nutrients in the deep ocean through their ability to fix C and N and thus supported the third 

hypothesis (Augueres & Loreau 2015; Lenton & Klausmeier 2007). Recent studies have 

demonstrated systematic variation in the particulate C:N:P across ocean regions and 

seasons, challenging the paradigm of a constant plankton elemental (Redfield) ratio (Figure 

1.1). The variation in community C:N:P across ocean regions has been observed using two 

separate approaches: directly measuring the elemental stoichiometry of particulate organic 

matter (Martiny et al. 2013a,b) and using inverse models to indirectly infer this ration from 

inorganic nutrient fields (DeVries & Deutsch 2014; Teng et al. 2014; Weber & Deutsch 

2010). The C:N, C:P, and N:P ratios of particulate organic matter are below or near Redfield 

proportions in the oligotrophic gyres (Figure 1.1). This pattern is also observed across 

seasons, with the three ratios higher in the summer and fall (warm and nutrient depleted) 

and lower in the winter and spring (colder and nutrient replete) at many sites (Martiny et 

al. 2016b; Singh et al. 2015; Talarmin et al. 2016). In addition, there appear to be some 

regional differences in ratios across the oligotrophic gyres: C:P is highest in the North 

Atlantic gyre, next highest in the North Pacific gyre, and only slightly above Redfield 

proportions in the Southern Hemisphere oligotrophic gyres (Figure 1.1). The C:N ratio also 

shows differences among oligotrophic gyres, with the highest ratio in the South Atlatntic 
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and eastern North Atlantic and the lowest in the North Pacific and western North Atlantic. 

This raises the question, which mechanism(s) can explain the observed field patterns? 

 Our review build on past excellent summaries of this topic (e.g., Flynn et al. 2010; 

Geider & Roche 2002; Sterner & Elser 2002). First, we aim to include recent research and 

modeling work. Second, we aim to put forward plausible mechanism describing the 

observed variation in elemental stoichiometry among marine plankton lineages, regions, 

and seasons. To achieve this, we borrow a framework from ecology covering direct control 

and state factor mechanisms (Chapin et al. 2012). A direct control mechanism provides an 

immediate connection between an environmental condition and the cellular or community 

C:N:P through regulation, acclimation, and selection/adaptation. External state factors 

control the ecosystem structure and function and associated community stoichiometry 

through external biogeochemical feedbacks. In this review, we introduce some general 

concepts about acclimation versus adaptation and provide an overview of how the detailed 

molecular biochemical of a cell can be linked to the stoichiometry. We then examine the 

stoichiometric outcomes based on physiological changes in growth rate, temperature, 

nutrient limitation, light, C source, interactions between said factors, and finally lineages 

identity via adaptation. Then we discuss how state factors via ocean nutrient cycles and 

biogeochemical feedbacks may lead to difference in the overall nutrient supply and 

associated elemental stoichiometry of ocean regions. Finally, we outline key areas with 

missing information that is needed to advance understanding of the present and future 

ecological stoichiometry of ocean plankton, communities, and particulate matter. We use 

examples of marine plankton but incorporate observations from other systems to support 

and illustrate the broader applications of our synthesis.  
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Acclimation versus Adaptation  

Many hypotheses of ecological stoichiometry interchange processes of acclimation 

and adaptation when describing the elemental stoichiometric outcome of environmental 

variation; however, these processes are not synonymous. Acclimation is the physiological 

process that modifies the cellular biochemistry and elemental requirements in response to 

an environmental change and occurs within an organism’s lifetime. Adaptation is the 

evolutionary process and occurs intergenerationally, leading to lineage-specific changes in 

physiological capabilities and elemental composition. Here, changes in the stoichiometry of 

a community occur through selection. Many ecological stoichiometry models blend the two 

responses and predict the same effect of an environmental change within (acclimation) and 

across (adaptation) organisms (Figure 1.2a). An example is temperature, which regulates 

the enzyme kinetics and physiology of an organism. In addition, there are clear differences 

in plankton diversity across a gradient of temperature. As a result, temperature affects the 

elemental composition of marine communities owing to a combination of changes in 

physiology and diversity (Hall et al. 2008). These contrasting responses may not lead to the 

same outcome if the underlying biochemical mechanism differs (Figure 1.2b,c). For 

instance, a heat shock response is not the same as shifting the optimal temperature for 

growth. Understanding when acclimative and adaptive responses differ is crucial for 

properly extrapolating from experimental studies of single lineages to whole communities. 

Biochemical Components 

To link biochemical regulation with the elemental composition of cells, we must 

consider the molecular components underlying the cellular C, N, and P pools and their 

stoichiometry (Geider & La Roche 2002; Sterner & Elser 2002). Molecules rich in C include 
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carbohydrates and lipids. Peptidoglycan and chitin are two carbohydrates that do contain 

N, but the specific carbohydrate chemistry in marine plankton is unconstrained. Lipids are 

also rich in C, but membrane-bound lipids often contain polar head groups with phosphate 

and/or N (Van Mooy & Fredricks 2010). Molecules rich in N include proteins and 

photosynthetic components. Protein is the most abundant cellular macromolecule and 

constitutes on average 32% of the cellular dry weight in phytoplankton (Finkel et al. 2016) 

and up to 63% in heterotrophic bacteria (Simon & Azam 1989). Thus, protein N is expected 

to correlate closely with the overall N cell quota (although there is some disagreement 

about the exact relationship)(Finkel et al. 2016; Lourenço et al. 2004). For phytoplankton, 

photosynthetic components such as chlorophyll and other pigments can also be important 

N pools. Molecules rich in P include membrane lipids, polyphosphates, and nucleic acids. 

Phospholipids are relatively P rich (39C:0.8N:1P) but are often a lesser part (<10%) of the 

P quota in marine organisms (Mouginot et al. 2015; Van Mooy & Devol 2008). Inorganic 

polyphosphates are an enigmatic component of the P pool, serving as a store of both P and 

energy (Kornberg et al. 1999). The absolute amount of inorganic P in a marine organism is 

poorly constrained but could be an important control on the P quota (Daines et al. 2014). 

Nucleic acids are relatively low in C but contain high N and especially P and have a C:N:P 

ratio of 9.5:3.7:1(Sterner & Elser 2002). The ribosome is a key component of cellular 

biosynthesis and contains a substantial fraction of cellular proteins and RNA (Geider & La 

Roche 2002; Sterner & Elser 2002). As such, biosynthesis is viewed as a key P-rich and to 

some extent N-rich process in relation to C. Thus, many ecological stoichiometry 

hypotheses describing C:P and N:P are based on the regulation of biosynthetic capacity and 

associated requirement for P. 
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Physiological Models for Elemental Stoichiometry  

The Growth Rate Hypothesis 

 The growth rate hypothesis (GRH) states that differences in organismal C:N:P ratios 

are generated by allocation changes in  biosynthetic machinery and associated P-rich 

ribosomes (Elser et al. 2000). The hypothesis is based on three presumptions: (a) cells 

achieve a higher growth rate by increasing the abundance of ribosomes containing P-rich 

rRNA, (b) P allocated to rRNA constitutes the majority of the P cell quota, and (c) the P cell 

quota controls the C:P and N:P of an organism. Thus, the N and C cell quotas should display 

less or no variation at different growth rates. There are two variants of this hypothesis—

namely, that the physiological regulation of the ribosomes of an individual organism is due 

to either (a) acclimation or (b) adaptive differences in allocation strategies that result in 

different C:N:P ratios among lineages (Elser et al. 2000). Thus, it is key to distinguish the 

two. Here, we first discuss the acclimation variant, which seeks to test the relationship 

between cellular components (RNA and ribosomes) and growth rate but not the absolute 

abundance of said components, as it relates to the three presumptions of the GRH. As will 

become apparent, it is important to keep track of the factor controlling growth (nutrients, 

temperature, light, etc.). 

 There is often experimental support for the first presumption, because increased 

growth rate generally correlates with an increase in the RNA content within many lineages 

(as shown in Table 1.1) (Elser et al. 2003). A clear relationship between ribosome counts 

and growth rate is well established in the model organism Escherichia coli (Gausing 1982; 

Schaechter et al. 1958b). A similar positive relationship has also been detected in many 

marine lineages. The marine cyanobacteria Synechococcus sp. WH8101 and WH8102 have a 
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positive relationship between RNA and growth rate under P-limited conditions (Garcia et 

al. 2016; Van Mooy & Devol 2008). A meta-analysis of diverse plankton found that the 

freshwater zooplankton species Daphnia pulicaria and Daphnia galeata, Drosophila 

melanogaster, E. coli, and lake bacteria demonstrate a clear linear relationship between 

RNA content and growth rate (Elser et al. 2003). Note that all species, with the exception of 

the freshwater zooplankton species, were grown under P-limited conditions; when grown 

in environments with sufficient P, D. pulicaria, Daphnia pulex, E. coli, and lake bacteria did 

not statistically show any relationship between RNA content and growth rate (Elser et al. 

2003). Under N-limited conditions, Synechococcus sp. WH8102 does show a linear 

relationship between RNA and growth rate (Garcia et al. 2016). 

In temperature-limited organisms, the link between growth rate and rRNA content 

is less clear. If temperature controls the growth rate in E. coli, there is little increase in RNA 

(Broeze et al. 1978; Schaechter et al. 1958b). When grown in chemostats with temperature 

as the controlling factor (14°C, 20°C, and 24°C), the freshwater bacterium Pseudomonas 

fluorescens displays a similar linear relationship between RNA content and growth rate, but 

only under medium- and high temperature conditions (Chrzanowski & Grover 2008). At 

14°C, P. fluorescens showed a statistically significant negative linear relationship with RNA 

content and growth rate. At 20°C and 24°C, the relationship appears to be quadratic: RNA is 

high at low growth rates (i.e., 0.03 h−1), has a minimum at a growth rate of 0.10 h−1, and 

then increases at high growth rates (i.e., 0.13 h−1). In the phytoplankton Scenedesmus, there 

is even a negative relationship between cellular RNA-P and growth controlled by 

temperature (Rhee & Gotham 1981). These results provide mixed support for higher RNA 

with growth under changing temperature conditions, but the data set is limited. 
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There is good support for a positive link between rRNA content and growth in 

marine phytoplankton when light controls growth (Flynn et al. 2010). Multiple strains of 

Synechococcus and Prochlorococcus show a three-phase relationship with growth rate: At 

low growth rates, rRNA content remains relatively constant; at intermediate growth rates, 

rRNA increases; and at extremely high growth rates, rRNA plateaus (Binder & Liu 1998; 

Kramer & Morris 1990; Worden & Binder 2003). However, another study of 

Prochlorococcus found a linear positive relationship (Lin et al. 2013). Thus, there appears 

to be some differentiation among closely related ecotypes. However, the experiments 

demonstrate a positive relationship between growth rate and rRNA content for most light-

controlled conditions. 

There are fewer experimental data supporting the second presumption in the GRH, 

which states that rRNA-P is the dominant fraction of the P cell quota. In a study of E. coli, 

RNA-P was commonly the majority of the overall P quota (Cotner et al. 2006). However, 

marine (phyto)plankton data addressing this question are scarce. Rhee (1973) quantified P 

allocation into RNA-P, DNA-P, lipids, and poly-P of the freshwater algae Scenedesmus across 

growth rates under P-limiting conditions (Figure 1.3). Rhee’s work showed an increase in 

RNA-P as well as total P cell quota with growth rate and thus appears to support the GRH. 

However, other P pools increased with growth as well, and rRNA-P constituted only 20–

30% of the P cell quota. A similar pattern was observed in marine Synechococcus 

sp.WH8102 (Garcia et al. 2016) and heterotrophic bacteria (Chrzanowski & Grover 2008). 

Again, RNA-P and total P increased with growth, but only 30% of the total P could be 

attributed to nucleic acids. Thus, rRNA-P may be only a partial contributor to the overall P 

cell quota, requiring a better empirical understanding of how other P pools (i.e., 
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polyphosphates, phospholipids, and DNA) are regulated to fully predict how growth affects 

the P cell quota.  

The third presumption in the GRH is that the P cell quota is the main control on C:P 

and N:P. Multiple experiments have shown that the C and N cell quotas are also sensitive to 

the growth rate, as many heterotrophic microbial lineages increase cell size with growth 

(Schaechter et al. 1958b; Vadia & Levin 2015). Additional support comes from the finding 

that the C and N cell quotas of phytoplankton increase up to 100% with growth (Garcia et 

al. 2016; Goldman et al. 1979; Laws & Bannister 1980). However, the exact change is 

dependent on the factor limiting growth (P source, N source, or light). Thus, it is important 

to consider changes in other quotas when predicting the outcome of growth on the 

elemental stoichiometry of marine plankton, and we have an incomplete understanding of 

how non-RNA biochemical pools respond to changing growth rates.  

Overall, there is support for the underlying biochemical mechanism in the GRH of 

increasing rRNA with growth under some conditions across marine plankton lineages. 

There is also support that changes in the P quota exert control on C:P and N:P. However, it 

appears—based on only a few studies—that RNA-P is typically a minor component of the 

overall P quota. If RNA-P is only a minor component of (and does not control) the P quota, 

the association between C:P or N:P and growth rate under P limitation could simply be due 

to a nutrient limitation effect on all P pools, including storage. This conclusion would 

severely limit the applicability of the GRH for marine systems, and we will further examine 

interactions between multiple factors and the GRH below (see the section titled 

Interactions). 

Temperature 
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 Temperature plays a key role in regulating cellular biochemical processes and 

elemental composition across all taxa. The relationship between temperature and 

phytoplankton N:P and C:P stoichiometry has been predicted to be positive based on 

decreasing cellular allocation to ribosomes at elevated temperatures. We term this idea the 

translation-compensation hypothesis, which states that as growth rate is held constant, 

organisms growing at higher temperature will have higher C:P and N:P ratios. The 

biochemical reasoning behind this hypothesis is that the ribosome-specific protein 

synthesis rate is temperature sensitive (Hochachka & Somero G.N 1984; Toseland et al. 

2013; Yvon-Durocher et al. 2015). As such, cells require higher ribosome content at colder 

temperatures than they do at warmer temperatures to achieve the same growth rate. 

Similarly to the GRH, this hypothesis relies on the assumption that the ribosome content is 

an important control on the overall cellular P pool.  

 There is considerable experimental support for the part that ribosome efficiency 

changes in response to temperature across a range of organisms (Broeze et al. 1978; 

Farewell & Neidhardt 1998; Toseland et al. 2013). The next question is, what happens to 

the ribosome concentration when temperature changes? To answer this question, it is 

essential to keep track of growth rate. In a batch culture experiment, a temperature 

increase led to increasing growth rate in E. coli but no clear changes in the RNA (or 

presumably the ribosome content)(Yun et al. 1996). In a chemostat experiment where 

growth was kept constant, the RNA content was negatively correlated with temperature in 

E. coli and Aerobacter (Tempest & Hunter 1965; Yun et al. 1996). However, another study 

of E. coli observed a more complex link between temperature and RNA under a constant 

growth rate (Cotner & Wetzel 1992). Toseland et al. (2013) observed that the protein 
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synthesis rates and ribosome counts of two phytoplankton species were sensitive to 

temperature and that phytoplankton growing in high-latitude environments increased 

their transcription of translationally linked genes, suggesting that their production of 

ribosomes was greatest at low temperatures. Thus, there is mixed support for a 

downregulation of RNA with temperature under constant growth. 

A limitation of the translation-compensation hypothesis is that temperature also 

affects many other cellular processes (e.g., represented by the Q10 factor) (Geider 1987). 

Thus, the outcome is driven by a rebalancing of allocations to all processes. For example, 

temperature influences the expression and function of photosynthetic proteins, including 

Rubisco (Mackey et al. 2013; Maxwell et al. 1994), whose activity can limit C fixation 

(Davison 1991). The Q10 of photochemistry, including all photochemical processes, ranges 

from 1.0 to 2.08 (Raven & Geider 1988) but can be higher. For example, the Q10 for the 

carboxylase activity of Rubisco from both Phaeodactylum tricornutum, a temperate diatom, 

and Nitzschia kerguelensis, a cold-water diatom, is 2.66 (Raven & Geider 1988). These 

changes in photosynthetic C fixation machinery could mitigate the decline in RNA-P 

predicted by the translation-compensation hypothesis. Other examples include the 

temperature impact on lipid and carbohydrate content, which influences the cellular C 

quota (Henderson & Mackinlay 1989; Thompson et al. 1992; Zhu et al. 1997). 

Several studies have examined how temperature influences the cellular nutrient 

quotas under constant growth. In E. coli, increasing temperature led to increased C and N 

and decreased P quotas (Cotner et al. 1997). Under nutrient-limited growth and a fixed 

growth rate, the P quota declined in Scenedesmus sp. and Asterionella formosa, as predicted 

by the translation-compensation theory (Rhee & Gotham 1981). The C and N quotas also 
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declined, but the slopes were dependent on nutrient availability (replete or limited by N or 

P), leading to a complex stoichiometric outcome. 

The majority of experiments that examine the influence of temperature on cellular 

nutrient quotas do not control for growth rate, making it challenging to determine the 

independent effects of temperature and growth rate on elemental composition. Thus, 

temperature can simultaneously change the growth rate and the elemental composition, 

but separating the two can be difficult. The P quota in Prochlorococcus under nutrient-

replete conditions and varying growth increased slightly with temperature (Martiny et al. 

2016a); however, the C and N quotas also changed positively. Quotas were also positively 

affected in Synechococcus sp. CCMP1334 and Prochlorococcus sp. CCMP1986 (Fu et al. 

2007) as well as in some larger phytoplankton. Thalassiosira pseudonana, Pavlova 

tricornutum, and Pavlova lutheri demonstrated a U-shaped pattern in the C and N quotas 

with increasing temperature (Thompson et al. 1992). Chaetoceros calcitrans showed a 

slight variation in the cellular C and N quotas, whereas Isochrysis galbana under an 

exponential growth rate demonstrated highly variable C and N quotas with increased 

temperature (Thompson et al. 1992). Berges et al. (2002) grew T. pseudonana in batch 

culture at three different temperatures and found that, as the temperature increased, there 

was an increase in the C quota but relatively no change in the N quota. In summary, it is 

clear that temperature affects all three cell quotas, but only a few studies provide direct 

support for the translation-compensation hypothesis. 

Temperature can lead to direct effects on stoichiometry. In E. coli, the elemental 

ratios behave as predicted by the translation-compensation hypothesis. By contrast, P. 

fluorescens showed little systematic change in C:N:P with temperature. In the only 
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temperature-dependence study in phytoplankton under constant growth, N:P and C:P 

declined, were constant, or even increased with temperature, depending on the condition 

(Yvon-Durocher et al. 2015). The effect of temperature on elemental stoichiometry has also 

been quantified without controlling for growth rate. Fu et al. (2007) and Martiny et al. 

(Martiny et al. 2016a) observed high variability in C:P and N:P in closely related strains of 

Prochlorococcus, but this variability did not obey a uniform trend. In a single study of 

Synechococcus sp. CCMP1334, there was a decrease in C:N and C:P, whereas temperature 

changes led to a decrease of ∼20% in C:N and an increase of ∼25% in C:P in Chaetoceros 

wighamii (Spilling et al. 2015). 

Temperature has a complex effect on cellular allocations and elemental 

stoichiometry. Laboratory experiments suggest that ribosomal biosynthesis has a high Q10, 

providing support for the translation-compensation hypothesis. However, we currently 

have a limited molecular biological understanding of how temperature leads to a system-

wide reallocation of metabolic networks in most marine phytoplankton. Thus, the 

translation-compensation hypothesis singles out an individual process with a clear 

temperature dependence but also relies on the weakly supported assumption that other 

processes are less dependent on temperature. For example, plankton C and N quotas often 

change with temperature, although systematic mechanisms explaining these observations 

are lacking. Additionally, our knowledge of the influence of temperature on elemental 

stoichiometry has been negatively affected by a paucity of experimental studies that 

control for the influence of temperature on growth rates. Thus, our current understanding 

of the influence of temperature on elemental stoichiometry is inadequate, and we cannot at 

this point identify a uniform effect. 
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Nutrient Limitation 

 A clear effect of nutrient limitation (i.e., the nutrient supply ratio) on cellular 

elemental stoichiometry has been documented extensively but shown to be dependent on 

the specific element limiting growth. Nutrient limitation has historically been described by 

a simple empirical hyperbolic relationship between cell quotas and growth rate (Droop 

1968). The Droop model assumes that cell resources are partitioned into two basic cellular 

components: a structural pool and a storage pool. The structural pool is linked to the 

lineage, whereas the storage pool is controlled by specific nutrient uptake rates that 

determine the growth physiology. In model studies that have tracked multiple nutrients 

and their stoichiometry, the cellular stoichiometry is predicted to match the environmental 

supply at low growth rates (the “you are what you eat” phase), and as the rate of nutrient 

input and associated growth increase, the cellular stoichiometry converges on an optimal 

ratio (the “you eat what you need” phase) (Klausmeier et al. 2004; Persson et al. 2010). At 

maximum growth rate, the elemental stoichiometry reaches an organism-specific single 

value (Bi et al. 2012; Klausmeier et al. 2004; Rhee & Gotham 1980; Sterner & Elser 2002). 

Thus, both the ratio and rate of the nutrient supply influence the elemental stoichiometry. 

As discussed above, in a balanced system, the latter is directly tied to the cellular growth 

rate and the associated growth rate effects on stoichiometry. In this section, we discuss 

only the impact of the nutrient supply ratio and restrict our attention to studies that 

specifically control for the effect of nutrient supply on growth rate. This should make it 

possible to disentangle the influence of the nutrient supply ratio from that of the growth 

rate. 
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 A non-Droop line of reasoning for how nutrients influence cellular allocations 

derives from molecular biology. Under P stress, most lineages induce a series of proteins in 

the phosphate regulon to increase inorganic P uptake or access P bound to organic 

molecules (Torriani-Gorini 1987; Wanner 1993). The proteins directly involved in 

transporting phosphate include an outer membrane porin (phoE), a phosphate-binding 

protein (pstS), and an ABC transporter (pstABC). To access organically bound P, cells can to 

varying degrees induce enzymes that cleave phosphoesters (e.g., phoA or phoX), 

phosphordiesters (e.g., phoD), phosphonates (phn), and so on. Some of these proteins—

especially phoA, phoE, and pstS—are highly induced under P stress in both heterotrophic 

bacteria and phytoplankton lineages (Martiny et al. 2006; Torriani-Gorini 1987). Assuming 

a constant growth rate, such induction of P acquisition proteins can greatly increase the 

total protein content of the cell, as seen in Scenedesmus (Rhee 1978). 

Cells may also respond to stress by reducing P pools, which can be accomplished via 

several molecular mechanisms, including substituting P located in lipids (Mouginot et al. 

2015; Van Mooy et al. 2006, 2009) or drawing down inorganic P storage. The mechanism 

for substituting lipids has been well documented, but phospholipids may contribute only 

up to 10% of total P (Mouginot et al. 2015; Van Mooy & Devol 2008; Van Mooy et al. 2006, 

2009). There is more uncertainty associated with the regulation of cellular inorganic P (e.g., 

polyphosphate) accumulation (Kornberg et al. 1999). This pool may not dominate the 

overall particulate P in marine environments (Diaz et al. 2016), although some studies 

show inorganic P as a large fraction of the cellular P quota (Rhee 1973). Most 

stoichiometric models assume that polyphosphates serve primarily as nutrient storage, but  

polyphosphate has a dual role in microbial metabolism because it can serve as both energy 
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and P storage. The energy storage role is closely tied to growth physiology, but the absolute 

level of polyphosphate can vary extensively among organisms, as many other compounds 

can store energy (Mino et al. 1998). In cells where polyphosphates serve primarily as 

energy storage, we would expect a stronger regulation by growth physiology. However, the 

regulation of polyphosphates is largely uncharacterized in abundant marine phytoplankton 

lineages, and the concentration shows an unexplained negative correlation with P 

availability in marine environments (Diaz et al. 2016; Martin et al. 2014). Thus, there may 

be unknown interactions between growth rate and nutrient limitation that influence 

cellular P pools. 

The molecular N mirrors to some extent the P stress response. Under N stress, cells 

can induce a series of proteins facilitating increased N uptake (Herrero et al. 1985; Tolonen 

et al. 2006). This includes upregulation of ammonia transport and utilization of alternative 

N sources, such as nitrite, nitrate, urea, and organically bound N (e.g., amino acids or 

nucleotides). However, it appears that, in contrast to P, N acquisition proteins are induced 

to a lower level and lead to a smaller change in protein content (Rhee 1978). The degree of 

N storage in many marine phytoplankton is poorly understood. Lineages may store N in 

pigment molecules (e.g., cyanophycin and phycocyanin) or amino acids, and N stress 

influences the cellular pigment content (Caperon & Meyer 1972; Collier & Grossman 1992; 

Geider et al. 1998; Harrison et al. 1976; Rhee 1978). In addition, some diatoms can store 

inorganic forms in the vacuole (Conover 1975). However, we lack data for N storage and 

allocation patterns across many marine lineages, including most of the dominant 

phytoplankton lineages in the ocean. 
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There is evidence that nutrient limitation affects the cellular biochemical makeup 

beyond simple partitioning between structural and storage components. The capacity of 

excess uptake of nutrients and the degree to which specific proteins are regulated vary 

both among and within phytoplankton lineages (Martiny et al. 2006; Tolonen et al. 2006) 

and depend on the limiting nutrient (Agren 2004; Bi et al. 2012). To capture some of the 

dynamics, models describing the elemental stoichiometry are just starting to consider such 

complex responses (Bonachela et al. 2013), but there are many unknowns. Studies have 

shown that the P cell quota is highly sensitive to P limitation. At a fixed growth rate, more 

than a quadrupling in the P cell quota can occur when shifting from P to N limitation in 

both large and small phytoplankton types (Elrifi & Turpin 1985; Geider & Osborne 1989; 

Leonardos & Geider 2004a; Mouginot et al. 2014; Rhee 1978) (Figure 1.4). The N quota can 

also be sensitive to N limitation, but the degree varies among lineages. In Scenedesmus, the 

N quota varies fivefold between N and P limitation under a constant growth rate (Rhee 

1978). By contrast, Synechococcus exhibits only a small variation in N quota (Garcia et al. 

2016; Mouginot et al. 2015). A shift in N source under constant growth rates appears to 

have little impact on cellular N quotas, and the P quota seems to be largely invariant under 

N limitation and constant growth (Goldman et al. 1979). 

The fact that cellular quotas are affected by the availability of inorganic nutrients 

leads to questions of whether the sizes of the N or P quotas are equally sensitive to nutrient 

limitation and whether a differential response could drive overall stoichiometric changes. 

In a large meta-analysis, Moore et al. (2013) proposed that P quotas are most sensitive to 

nutrient limitation. This may be because P storage is less costly owing to its simple format 

(inorganic chain) and takes up less cellular space than N storage. If this idea is correct, we 
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should expect more variation in C:P and N:P than in C:N. In support, the P quota is more 

variable in size in small phytoplankton, such as marine Synechococcus and the small diatom 

Chaetoceros muelleri (Garcia et al. 2016; Leonardos & Geider 2004a) (Figure 1.4). However, 

it is less clear whether this also applies to large phytoplankton (which may possibly have a 

larger storage capacity for both N and P). Here, several studies have observed wide 

variation in both N and P quotas depending on the type of nutrient limitation (Cotner et al. 

2006; Goldman et al. 1979; Lynn et al. 2000; Rhee 1978). Because only a few studies have 

carefully controlled growth rates while studying nutrient limitation, it is unclear whether 

such a distinction between large and small phytoplankton types is robust, but the 

possibility is intriguing (Caperon & Meyer 1972; Laws & Bannister 1980).  

Few studies have directly examined the impact of nutrient limitation on the C cell 

quota and cell size, but this additional effect on C can affect the overall C:nutrient ratios 

(Flynn 2008). For some lineages (Scenedesmus and Stephanodiscus minutulus), cells and C 

quotas are larger under P limitation than they are under N limitation (Lynn et al. 2000; 

Rhee 1978). By contrast, Synechococcus and C. muelleri show less variation in cell size and C 

quota across limitation types (Garcia et al. 2016; Geider et al. 1996; Leonardos & Geider 

2004a; Mouginot et al. 2015) (Figure 1.4a). Finally, Harrison et al. (1976) saw that a switch 

from Si to N limitation leads to a large decline in the C and N quotas. 

The impact of nutrient limitation on C:N:P under constant growth largely follows the 

expected outcomes from the analysis of individual quotas. P limitation uniformly leads to 

increased C:P and N:P across lineages (Figure 1.4d–f ). This is driven partly by a decline in 

the P quota, but the outcome is amplified by increases in the protein content and overall 

cell size in many phytoplankton (Figure 1.4). The outcome of N limitation is more varying. 
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For lineages with a sensitive N quota (e.g., Scenedesmus), the elemental ratios behave 

according to the model of Klausmeier et al. (Klausmeier et al. 2004), with a larger C:N and 

lower N:P under N limitation. However, Synechococcus, C. muelleri, and Dunaliella do not 

show this behavior, and the C:N:P can be largely constant in the N-limited range of nutrient 

supply ratios (Garcia et al. 2016; Goldman & Peavey 1979; Mouginot et al. 2015)(Figure 

1.4). Thus, it appears that the elemental stoichiometry of phytoplankton is uniformly 

sensitive to P limitation, but the response is lineage dependent for N limitation. 

So far, we have discussed only limitation by the two major nutrients, P and N. 

However, other nutrients, such as Fe and Si, also influence the growth rate and possibly the 

C:N:P stoichiometry of phytoplankton. In a study of the diatom Thalassiosira weissflogii, 

growth rate increased as expected with increasing Fe availability (Price 2005). This 

increase in Fe and growth rate led to increasing C:P and N:P but flat C:N. By contrast, 

studies of Synechococcus, Prochlorococcus, and Pseudo-nitzschia showed the opposite 

relationship with Fe availability and stoichiometry (Cunningham & John 2017; Marchetti & 

Harrison 2007). Si limitation may not affect the elemental quotas and stoichiometry 

beyond changing the growth rate. In S. minutulus, the C and N quotas were similar to those 

in fast-growing cells and cells growing under P limitation (Lynn et al. 2000). Furthermore, 

the C:N was similar to P limitation patterns and unlimited growth, and the C:P was similar 

to N limitation patterns and unlimited growth. Thus, Si and Fe may influence the elemental 

stoichiometry either directly or via a control on growth rate, but there are no data that 

allow differentiation of these two effects.  

Light 
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 Light availability can lead to phytoplankton photoacclimation and associated 

changes in cellular allocation strategies (Falkowski & LaRoche 1991; Leonardos & Geider 

2004b). The main biological components involved are the biosynthetic apparatus (P rich), 

light-harvesting apparatus (N rich), and energy storage reserves (C rich). At a fixed growth 

rate, cells can be nutrient limited at high light and light limited at low light. Under high light 

and nutrient limitation, the cellular light-harvesting apparatus is downregulated in order to 

minimize the risk of photooxidative stress (Geider et al. 1996). Furthermore, energy 

reserves are high (C-rich lipids and polysaccharides) (Kromkamp 1987). Under low light, 

the photosynthetic apparatus increases in size for light harvesting, and C storage 

compounds decrease. Thus, we expect a strong positive impact of light on C:N and a lesser 

positive effect on C:P. However, if P is the main limiting nutrient at high light, the P quota 

will be additionally affected and modify the proposed effects. 

 There is support for the overall mechanism in phytoplankton of low storage C but 

high pigment under low light and high storage C but low pigment under high light in 

cultures (Behrenfeld et al. 2002; Leonardos & Geider 2004a) and field populations 

(Bouman et al. 2006). Because light-harvesting proteins can constitute 18–50% of cellular 

proteins and lipids and carbohydrates constitute 32–43% of cellular biomass, changes in 

these two pools should affect the C and N quotas. In support of this idea, Leonardos & 

Geider (2004a) found that the N quota was ∼50% lower under high light than it was under 

low light in C. muelleri across a range of nutrient supply ratios. A similar pattern occurred 

in the cryptophyte Rhinomonas reticulata, but only under N limitation; under P limitation, 

the N quota was similar under both high and low light (Leonardos & Geider 2005; 

Thompson et al. 1991). 
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The effect of light on C:N:P can be viewed in two ways: One can either (a) identify 

the effect at a given growth rate and nutrient supply ratio or (b) examine the impact on the 

optimal C:N:P (i.e., C:N:P at μmax, sometimes also called critical C:N:P). From the first 

perspective, C:N is positively related to light availability in several large phytoplankton 

lineages (Leonardos & Geider 2004a) and less varying in others (MacIntyre et al. 2002). C:P 

is high under high light for Amphidinium carterae, whereas N:P decreases with increased 

light for T. weissflogii, Cyanothece sp., and A. carterae (Finkel et al. 2006). From the second 

perspective, the optimal N:P is negatively correlated with light across a range of 

phytoplankton lineages (Thrane et al. 2016). Thus, the impact of light on stoichiometry has 

a clear mechanistic basis that is well supported by observations.  

Light availability can also influence diel changes in cell quotas and elemental 

stoichiometry, as many cellular processes vary over a daily cycle in marine organisms 

(Olson et al. 1986; Waldbauer et al. 2012; Zinser et al. 2009) and communities (Ottesen 

2014). Photosynthetic and C fixation proteins are expressed during the day, cell division 

proteins near sunset, and carbohydrate metabolism (glycogen catabolism and pentose 

phosphate pathway) proteins at night. This leads to diel variability in cellular components 

such as nucleic acids, pigments, and protein concentrations (Lopez et al. 2016; Matallana-

Surget et al. 2014; Vaulot et al. 1995). Under a constant growth rate, the cellular C and N 

(and to a lesser extent P) quotas also exhibited diel cycling in Synechococcus (Lopez et al. 

2016). Here, the C quota followed fixation rates and exhibited strong cycling, with a daily 

maximum before sunset and a low in the early morning. The N and P quotas showed lower 

amplitude and reached maxima earlier in the light period. There was also an interaction 

with growth physiology, whereby oscillations were stronger at a high growth rate. As a 
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result, C:N and C:P were highest at the end of the light period, whereas N:P showed limited 

oscillation. The diatom Skeletonema exhibited a similar cycling for the C and N quotas as 

well as C:N (Anning et al. 2000). Thus, we expect that diel variation in elemental 

stoichiometry will occur in marine communities. 

Carbon Source 

The ability to fix CO2 (autotrophy) as opposed to assimilating organic C 

(heterotrophy) may also affect cellular allocation strategies. Heterotrophic organisms 

constitute a large fraction of overall marine biomass (Gasol et al. 1997) and thus an 

important contributor to the combined C:N:P of a community. It is hypothesized that 

heterotrophic organisms are mostly C limited and thus frugal with C (Godwin et al. 2016; 

Goldman & Peavey 1979; Tezuka 1990). Contributing to C limitation is the fact that at least 

half of the assimilated C is respired during growth (i.e., the yield or carbon use efficiency).  

In most marine regions, this should lead to a nutrient limitation of phytoplankton and a C 

limitation of heterotrophic organism. The outcome is low C:N and C:P in many 

heterotrophic organisms, such as bacteria, zooplankton, and possibly mixotrophs (Cotner 

et al. 2006; Fagerbakke et al. 1996; Zimmerman et al. 2014). In this way, C availability 

could behave as a nutrient and act like the N and P limitation presented above (Meunier et 

al. 2012; Sterner & Elser 2002). 

The exact underlying biochemical mechanism for how C limitation influences 

molecular pathways and macromolecules is not clearly elucidated. The simplest argument 

is that heterotrophic organisms under C limitation down regulate C storage molecules 

(Anderson & Dawes 1990; Holme & Palmsterna 1956). There may also be an upregulation 

of resource acquisition enzymes targeting complex C sources (Allison & Vitousek 2005; 
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Arnosti et al. 2011), which would lead to a currently unconstrained increase in the N quota. 

Considerable experimental evidence indicates that heterotrophic bacteria exhibit a 

nutrient-like behavior for C acquisition. Studies have shown that specific bacteria lineages 

as well as whole communities display clear changes in cellular C:P along a gradient of C to P 

limitation (Godwin & Cotner 2015; Godwin et al. 2016; Makino et al. 2003). Marine bacteria 

at exponential growth under non-nutrient-limitation conditions also exhibit a broad range 

of C:P ratios, from 35:1 (Vrede et al. 2002) to 80:1 (Zimmerman et al. 2014) and C:N ratios 

from 3.8:1 to 4.5:1 (Fagerbakke et al. 1996). Despite the variation, these ratios are 

generally lower than those observed in phototrophs. Another group of heterotrophic 

plankton in the ocean is the zooplankton. These are larger organisms and perhaps more 

homeostatic in their biomass composition and less sensitive than phytoplankton and 

bacteria to C limitation (Malzahn et al. 2010; Meunier et al. 2012). Thus, the available data 

and models suggest that the ratio of chemoheterotrophic to photoautotrophic organisms 

could have a negative influence on C:P and C:N (Talmy et al. 2016). 

Interactions 

In addition to understanding the individual effects, we also need to consider the 

interactive effects of environmental factors. Two types of interactions require special 

attention: interactions with growth rate and interactions with nutrient limitation. As 

alluded to above, an organism’s growth rate can have a strong modulating effect on the 

specific impact of an environmental factor (Hillebrand et al. 2013). This could be due to the 

presence of storage molecules and options for metabolic flexibility (Klausmeier et al. 2004), 

but many other molecular responses are possible. Thus, we need to consider these 
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interactive terms when predicting the impact of environmental changes on the elemental 

stoichiometry of plankton. 

The GRH states that differences in organismal C:N:P ratios are generated by 

variations in allocation strategies that increase the abundance of ribosomes with growth 

(Elser et al. 2000) (Figure 1.5a). As described above, the effect of growth rate on 

stoichiometry likely depends on whether temperature, a specific nutrient, or light controls 

growth (Figure 1.5b). If temperature is the growth-limiting factor, we would predict a 

(nearly) neutral response, as cellular processes simply run faster. Under N limitation, we 

have seen that organisms with limited N storage, such as Synechococcus and heterotrophic 

bacteria, show a slight (or no) increase in N:P or C:P with growth rate (the opposite of the 

response predicted by the GRH) (Garcia et al. 2016; Goldman et al. 1979). However, a 

different pattern is seen in larger organisms capable of elevated N storage (Caperon & 

Meyer 1972; Laws & Bannister 1980). When light is controlling growth, we expect slightly 

negative relationships among light, growth, and N:P. Here, C:N and C:P might show the 

opposite trend owing to C storage. Finally, we expect to see a strong negative relationship 

for N:P and growth when P is the controlling factor (Hillebrand et al. 2013). Thus, 

depending on the factor controlling growth and possibly the ability to store N, we predict 

unique relationships between C:N:P and growth rate. 

The specific impact of an environmental factor is also expected to be modulated by 

nutrient limitation and associated reduced allocation of this element. A chemostat 

experiment showed that Scenedesmus sp. and A. formosa N and P quotas increased with 

decreasing temperature (Rhee et al. 1981). Under nutrient limitation (both N- and P-

limited conditions, separately), this relationship continued to hold true with increased 
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temperature in Scenedesmus. However, the N-limited samples showed a higher cellular N 

quota, whereas the P-limited samples showed no difference in cellular P quota under 

nutrient-sufficient samples. In A. formosa, the opposite trend occurs: Under N limitation, 

the cellular N quota did not differ with increased temperature, and under P limitation, the 

cellular P quota was higher than it was in samples grown under nutrient-sufficient 

conditions (Rhee et al. 1981). 

Nutrient limitation also has a large impact on the relationship between light 

intensity and stoichiometry. Increased N:P ratios and decreased C:P ratios should 

correspond with decreased light. A laboratory experiment found that the N quota under N 

limitation was higher in low light than in high light and showed a similar relationship 

under P limitation (Leonardos & Geider 2004b). The P quota under N limitation was higher 

in low light than in high light, with a linear negative trend, but under P limitation, the P 

quota was not dependent on the light level (Leonardos & Geider 2004b). C:N increased 

during a transition from low-light, high-nutrient conditions to high-light, low-nutrient 

conditions in the same region (Geider et al. 1998). This is common in regions that 

experience spring blooms: Low-light, high-nutrient conditions occur before a bloom begins, 

and high-light, low-nutrient conditions occur after it has ended. However, the light-nutrient 

hypothesis is a good predictor with a strong positive relationship between the 

light:nutrient ratio and C:P ratio (Dickman et al. 2006). In sum, we find that both growth 

physiology and nutrient availability can have a large modulating effect on how a specific 

environmental factor influences C:N:P. 

The Role of Adaptation and Phylogeny in Controlling C:N:P in Marine Plankton 
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In the above sections, we have described how acclimation mechanisms can lead to 

variation in C:N:P. However, there is also considerable variation in C:N:P across taxa 

(Finkel et al. 2016; Geider & La Roche 2002; Ho et al. 2003; Zimmerman et al. 2014). Two 

main categories of mechanisms lead to taxon-specific C:N:P. The first, called acclimation 

extensions, follows the previously discussed acclimation mechanisms but now as the 

outcome of adaptation. The second category, called biological uniqueness, is based on the 

idea that the biochemical diversity among plankton is immense and can influence the 

cellular composition in a variety of ways. 

One can apply acclimation-extension ideas to all physiological hypotheses (i.e., 

growth rate, temperature optimum, nutrient uptake capabilities, etc.). The adaptive GRH 

variant proposes that fast-growing lineages have lower N:P than slow-growing ones (Elser 

et al. 2000). There is support for this hypothesis across large gradients in growth rate and 

organism size (Elser et al. 2000), but the hypothesis does not readily extend to marine 

phytoplankton (Edwards et al. 2012). 

An adaptive extension of the translation-compensation hypothesis can also be 

evaluated for organisms with different optimal temperatures, but there are few data for 

such tests (Yvon-Durocher et al. 2015). The only study to our knowledge to test the 

adaptive version showed that the stoichiometric variation among high- and low-

temperature-adapted ecotypes did not support an acclimation-extension version of the 

translation-compensation hypothesis (Martiny et al. 2016a). However, translation-related 

proteins appear to be expressed at higher relative proportions in cold-water plankton 

communities than in warm-water communities (Toseland et al. 2013). Thus, translation-

related macromolecules may be more common in cold-water-adapted lineages, but the 
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impact on stoichiometric outcome is unclear. There is evidence for adjustments of pigment 

concentrations to light availability (Chisholm et al. 1975; Geider 1987; Moore et al. 1998; 

Rocap et al. 1999). For nutrient availability, there is clear evidence for molecular 

adaptation, but the effect on cell quotas and stoichiometry is completely unknown (Martiny 

et al. 2006). Thus, there is some support for a general adaptive mechanism for how light 

and nutrients affect cellular stoichiometry, but there are no data to support or refute such 

adaptive stoichiometric models for how temperature or interactions will have an effect. 

All adaptive models have a strong covariance with phytoplankton cell size, as small 

cell types such as marine cyanobacteria dominate in warm, high-light, and low-nutrient 

environments (i.e., the oligotrophic gyres), whereas large cell types such as diatoms blooms 

in cold, low-light, and high-nutrient environments (and therefore are prevalent at high 

latitudes). This has led to a concept of slow-growing resource survivalists with high C:P and 

N:P and fast-growing bloomers with low C:P and N:P (Arrigo 2005; Klausmeier et al. 2004). 

Survivalists, such as Prochlorococcus and Synechococcus, dominate the stable, low-nutrient 

waters at low latitudes; have a low resource minimum; and have a high proportion of N-

rich resource acquisition machinery, such as enzymes and photosystems. Elevated C:P and 

N:P in small cyanobacteria are supported by both laboratory and field studies. In the 

laboratory, Prochlorococcus and Synechococcus consistently have high C:P and N:P 

(Bertilsson et al. 2003; Garcia et al. 2016; Martiny et al. 2016a). Cell sorting also showed 

that Prochlorococcus and Synechococcus field populations have higher C:P and N:P than 

coexisting larger picoeukaryotic phytoplankton (Baer et al. 2017; Martiny et al. 2013a). 

Bloomers, such as diatoms, are normally larger and have a higher proportion of P-rich 

biosynthesis machinery. Diatoms in the Southern Ocean have lower N:P than coexisting 
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slower-growing Phaeocystis (Arrigo et al. 1999; Weber & Deutsch 2010). These studies 

support the idea that bloomers and survivalists have unique stoichiometries. However, 

recent in situ estimates of Prochlorococcus and Synechococcus show high growth rates in 

tropical waters that rival those of many larger phytoplankton types (Hunter-Cevera et al. 

2016; Liu et al. 1998; Ribalet et al. 2015). Thus, a concept of slow growing, high-

temperature, nutrient uptake specialists versus fast-growing bloomers does not fully 

capture the ecological roles of marine plankton communities and their predicted 

stoichiometric regulation. 

The second category of taxon-specific C:N:P, biological uniqueness, is based on 

phylogenetically constrained elemental composition resulting from the myriad of 

biochemical behaviors found in marine plankton (Ho et al. 2003). Nearly all studies of both 

autotrophic and heterotrophic organisms have shown considerable differences of 

macromolecules, cell quotas, and ratios even among closely related marine taxa (Finkel et 

al. 2016; Geider & La Roche 2002; Zimmerman et al. 2014). The question is whether there 

are higher levels of phylogenetic organization that allow for an association of ratios with 

specific taxa, but limited data are available to fully evaluate this question. 

Linking Mechanisms to Observed Patterns of Stoichiometric Variability  

What mechanisms control the elemental stoichiometry in marine communities? The 

strong latitudinal covariance of light, temperature, nutrient availability, and biodiversity 

makes it difficult to answer the question at this point. Several papers have made competing 

claims for temperature, nutrient availability, and biodiversity as the dominating control on 

elemental stoichiometry (Galbraith & Martiny 2015; Martiny et al. 2013b; Yvon-Durocher 

et al. 2015). With the current data, it is impossible to statistically separate the effects of 
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these factors on the latitudinal gradients in C:N:P because all factors provide a fit to the 

regional patterns of stoichiometric variability (Martiny et al. 2013a; Toseland et al. 2013; 

Yvon-Durocher et al. 2015) (Figure 1.1). Thus, we need geographically (and 

environmentally) more diverse field observations to further tease apart these competing 

claims. 

It is unlikely that irradiance has a large effect on the horizontal variation in C:N:P of 

marine phytoplankton because such a model cannot explain the lower ratios in equatorial 

upwelling zones. However, irradiance could influence vertical shifts in elemental ratios. In 

support of an impact of irradiance, C:N does increase with depth, although this pattern 

could also be driven by temperature and nutrient recycling (Martiny et al. 2013b; 

Schneider et al. 2003). However, we currently have a limited understanding of any vertical 

changes in C:P and N:P within the photic zone, and more work is needed to understand 

water column variability for C:N:P. 

Based on current field observations, we propose a hypothesis that variation in 

community (all plankton, including autotrophic and heterotrophic species) C:N:P within 

different low-nutrient ocean gyres is driven mainly by the nutrient supply ratio, sourced 

from a combination of vertical and N fixation inputs. Plankton “are what they eat,” which 

suggests that a biogeochemical state factor mechanism controlling the total input of N and 

P should describe the stoichiometry in this biome. However, owing to a lack of N storage in 

small plankton types, we should never observe lower than Redfield proportions in C:P and 

N:P and little variation in C:N. N fixation resupplies bioavailable N into these regions, tying 

into the fluctuations of N:P ratios. The patterns of N fixation rate and phosphate 

concentration suggest that N fixation rates are highest and P concentrations lowest in the 
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North Atlantic subtropical gyre, followed by the North Pacific subtropical gyre (Lomas et al. 

2010; Wu et al. 2000). By contrast, N fixation rates are lower (and P higher) in the three 

Southern Hemisphere oligotrophic gyres (Mather et al. 2008; Moutin et al. 2007; Sohm et 

al. 2011). Based on our hypothesis and these apparent patterns of N fixation and P 

availability, we predict that C:P and N:P are highest in the North Atlantic, followed by the 

North Pacific subtropical gyres, and lowest in the Southern Hemisphere (but above 

Redfield proportions). In support of this prediction, the C:P and N:P ratios are greatest in 

the North Atlantic subtropical gyre, followed by the North Pacific gyre (Figure 1.1). By 

contrast, C:P and N:P are only slightly above Redfield proportions in the Southern 

Hemisphere gyres (Figure 1.1). The hypothesis would further suggest that the influence of 

Fe availability through N fixation on the N:P supply ratio (Mather et al. 2008) could serve 

as an important control on the elemental ratios in the oligotrophic gyres. Such variation in 

nutrient supply ratio and degree of P limitation would lead to a good fit between C:P and 

N:P and ambient phosphate concentration (Galbraith & Martiny 2015). 

In nutrient-rich high-latitude environments, we hypothesize that plankton “eat what 

they need” and suggest that a direct control mechanism is most applicable in such biomes. 

In the absence of (or at least reduced) nutrient limitation, factors such as light, 

temperature, and unique lineage dependent ratios may all influence the particulate organic 

matter ratios. Field and inverse model studies have suggested that, in the Southern Ocean, 

diatoms may have lower C:P and N:P than Phaeocystis (Arrigo et al. 1999; Weber & Deutsch 

2010). This is an intriguing observation but has not been fully explored in laboratory 

experiments. Such laboratory experiments would enable a disentanglement of the controls 

by individual environmental factors and controls by lineage specific behaviors. Limited 
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data are available on the elemental ratios in most high-latitude regions, but these 

observations suggest that the biogeography of specific plankton lineages could influence 

the elemental ratios. 

Implications for Ocean Biogeochemistry  

A variable C:N:P of plankton and particulate organic matter has broad 

biogeochemical implications, including for our understanding of nutrient limitation, the 

regulation of N fixation, C export, and ecosystem and food web model predictions that are 

tuned with Redfield stoichiometry. The N:P ratio of 16:1 is typically used to differentiate 

between N and P limitation; phytoplankton are said to be N limited when N:P < 16:1 and P 

limited when N:P > 16:1 (Falkowski 1997; Geider & Roche 2002; Tyrrell 1999).This 

concept becomes more fluid when different lineages have unique elemental compositions 

and N- and P-stressed cells coexist in the same water parcel (Alexander et al. 2015; Martiny 

et al. 2013b). There is also much debate between geochemists and biologists about the 

ultimate limiting nutrient for primary production: Geochemists argue that P is the ultimate 

limiting nutrient because of biological fixation of N, but biologists can demonstrate that 

many phytoplankton communities increase activity and biomass following N addition 

(Moore et al. 2013). Tyrrell (1999) tried to resolve this argument and presented a model 

suggesting that N is a proximate limiting nutrient and P is the ultimate limiting nutrient 

because of competition between regular phytoplankton and growth-penalized N fixers. 

However, his conclusion is dependent on the notion of a static elemental composition of 

phytoplankton communities. If the true elemental composition varies among lineages and 

environmental conditions, then the difference between proximate and ultimate limiting 

nutrients becomes more fluid. 
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Variation in the elemental composition of marine communities can also influence 

our understanding of how N gain and loss processes are regulated and geographically 

distributed. The biological source and sink of N reserves are N fixation and denitrification. 

N fixation is a costly process that requires a large amount of Fe, whereas denitrification is a 

process favored in low oxygen conditions. Deviations from the Redfield ratio in the relative 

concentrations of dissolved nitrate and phosphate have been used to map out regions of 

denitrification and N fixation. Based on this metric, Deutsch et al. (2001, 2007) suggested 

that gain and loss processes of N are spatially coupled in that upwelled waters that 

experience denitrification promote N fixation once the N-depleted waters are advected 

offshore. The spatial co-occurrence of N gain and loss processes was unexpected because in 

situ studies have suggested that water column denitrification occurs mostly within 

upwelling zones, whereas N fixation occurs mostly in the oligotrophic gyres (Sohm et al. 

2011). Later studies have examined the impact of phytoplankton variable stoichiometry on 

the N cycling patterns and found that the interpreted spatial distribution is highly 

dependent on the assumed cellular elemental ratio (Deutsch & Weber 2012; Mills & Arrigo 

2010). Allowing for high N:P and C:P in plankton growing in the gyres resulted in a much 

stronger correspondence between observed and predicted N fixation patterns (Weber & 

Deutsch 2012).  The elemental stoichiometry of total marine communities also influences 

the proportions of electron donors and acceptors in oxygen minimum zones (Babbin et al. 

2014) and associated N loss pathways (i.e., the dominance of denitrification versus 

anammox). Thus, knowing what sets the elemental composition of marine plankton and 

communities will likely affect our understanding of how marine N gain and loss processes 

are controlled.  
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The elemental compositions of marine plankton and communities may be important 

for how C export and the biological pump are regulated, both now and under future climate 

change conditions. The canonical view of C export is that rates are low in the gyres because 

of their low nutrient inputs and high in temperate and upwelling regions because of their 

elevated nutrient inputs. If one considers the surface ocean as a water parcel box and a 

constant C:P of particles, a mass balance dictates that C export must equal the nutrient 

influx times a C:P of 106:1 (Dugdale & Goering 1967; Tyrrell 1999). However, detailed 

studies using different metabolite mass balances and inverse models do not support higher 

C export fluxes in mid-latitude ecosystems than in low-latitude ecosystems, instead 

showing little variation in export rates between these biomes (Emerson 2014; Richardson 

& Jackson 2007; Teng et al. 2014). Higher C:P of exported material, however, can result in 

significant C export despite increased ocean stratification and reduced nutrient inputs. As 

was demonstrated recently using a simplified box-model simulation, variations in the C:P of 

phytoplankton and exported material can have a substantial impact on long-term changes 

in C export and atmospheric CO2 level (Galbraith & Martiny 2015) (Figure 1.6). Such 

studies lend support to the conclusion that the elemental composition of exported material 

can have a tangible impact on future predicted C export and possible long-term ocean 

feedbacks to atmospheric CO2 (Sterner 2015). 

Conclusions and Outstanding Issues  

It has become clear that the upper-ocean plankton and particulate organic matter 

elemental ratios are not constant but instead display spatial and temporal differences. The 

quantification of C:N:P, and especially of particulate organic P, is geographically biased, and 

many regions have been either sparsely sampled or not sampled at all (Martiny et al. 
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2013a). Thus, we need a much richer (geographically and environmentally) data set to 

better determine the field patterns of C:N:P and test specific models. Despite deficiencies in 

data coverage, there is good experimental evidence that nutrient limitation (especially P) 

exerts a strong influence on the elemental composition of marine plankton (Garcia et al. 

2016; Goldman et al. 1979; Mouginot et al. 2015; Rhee 1978). We hypothesize that the 

nutrient supply ratio is the primary control in the oligotrophic gyres. If our hypothesis is 

correct, a clear understanding of the ultimate controls on the supply of N versus P is critical 

for understanding differences in C:N:P across the oligotrophic gyres. By contrast, lineage 

differences in the elemental composition and physiological responses to light or 

temperature may control the elemental composition in high-latitude environments. 

It has become apparent that interactions between growth rate and specific 

environmental factors are important in setting the elemental composition. Thus, 

experiments that control growth rate (e.g., using chemostats) are critical for disentangling 

these interactions. Unfortunately, few such experiments have been performed, and the 

ones available have a disproportionate impact on current hypotheses. Furthermore, most 

work has been done on organisms that are not necessarily representative of a natural 

marine community and are rare or absent in the open ocean, and we need more 

experiments using abundant marine lineages. A parallel issue is that we currently have a 

limited understanding of the in situ growth rate for most marine phytoplankton lineages. 

For example, a temperature increase could lead to either increased growth rates (Eppley 

1972; Sherman et al. 2016) or a reallocation of cellular machinery, as suggested by the 

translation-compensation hypothesis (Toseland et al. 2013), and the outcomes of these two 
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scenarios will lead to distinct patterns of C:N:P. These issues leave many gaps in 

knowledge. 

The GRH has been an important guiding hypothesis for understanding ecological 

stoichiometry. However, it has become apparent that phosphate bound to RNA may not 

always be a dominant P pool, and we predict that changes in RNA will have a limited 

influence on C:P and N:P in many marine environments (Zimmerman et al. 2014). 

Nevertheless, the impact of a changing growth rate on C:N:P strongly depends on the factor 

controlling growth. Thus, changes in growth rates across ocean regions could be a strong 

moderator on how other factors influence the elemental stoichiometry and are still 

important to contend with. 

Many stoichiometric hypotheses are based on singling out the control of a single 

biochemical function (e.g., ribosomes and translation). However, most environmental 

factors affect multiple biochemical pathways. Various “-omics” techniques may prove 

valuable in addressing this issue, as -omics approaches can evaluate system-wide impacts. 

Furthermore, we need to quantify how specific environmental conditions affect 

macromolecular pools (Finkel et al. 2016) and, in particular, how inorganic phosphate 

pools are regulated. Such data would further facilitate an integrated view of cellular 

reallocations in response to environmental changes and enable us to move from 

hypotheses centered on single biochemical pathways to system-wide effects. This is 

already occurring with exciting new trait-based models, but they suffer from many 

biochemical unknowns (Daines et al. 2014).  

There is clear evidence that biological processes control the C:N:P of marine 

communities, leading to non-Redfield proportions in many regions and seasons, and such 
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processes will likely have a large impact on our understanding of many ocean 

biogeochemistry concepts. We propose that a linear relationship between phosphate 

concentration and C:P (and N:P) is a good first approximation for capturing the broad 

regional variation in these ratios (Galbraith & Martiny 2015). However, more sophisticated 

models are needed to cover the interactions among biogeochemical feedbacks, 

environmental conditions, growth physiology, and the biological uniqueness of marine 

plankton. 
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Figure 1.1 Regional variation in the elemental composition of exported organic matter and 
surface particulate organic matter. (a) C:P of exported matter across 11 regions classified 
based on the surface phosphate concentration (Teng et al. 2014). (b) A comparison of the 
C:P of exported organic matter (based on inverse model values) and the surface C:P of 
particulate organic matter (based on field measurements) of these 11 regions (Martiny et 
al. 2013a,b). 
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Figure 1.2 Influence of acclimation and adaptation processes on the relationship between 
an environmental change and the elemental composition. (a) In the first scenario, the 
environmental impacts on the N:P ratio in a cell that occur via acclimation and adaptation 
are aligned, and understanding the individual response provides a model for how 
communities are affected. (b) In the second scenario, the two processes are related but lead 
to a nonlinear interaction. (c) In the third scenario, the outcome of a physiological 
adjustment of the cellular chemistry is the opposite of how a cell adapts to a different 
environment; in this scenario, physiological models may be misguided when predicting the 
elemental stoichiometry across ocean gradients. Each colored line represents a different 
species being examined within an experiment or study. 
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Table 1.1 Relationship of RNA to growth rate in diverse species 

Species Controlling 
Mechanism 

Relationship Citation 

Escherichia Coli Replete Positive Linear (Gausing 1982; 
Schaechter et al. 1958a) 

Daphnia Pulicaria Replete No Relationship (Elser et al. 2003) 
Daphnia Pulex Replete No Relationship (Elser et al. 2003) 
Escherichia Coli Replete No Relationship (Elser et al. 2003) 
Lake bacteria Replete No Relationship (Elser et al. 2003) 
Freshwater 
zooplankton 

Replete No Relationship (Elser et al. 2003) 

Daphnia pulicaria P- limited Positive Linear (Elser et al. 2003) 
Dapnia galeata P- limited Positive Linear (Elser et al. 2003) 
Drosophila 
melanogaster 

P- limited Positive Linear (Elser et al. 2003) 

Escherichia Coli P- limited Positive Linear (Elser et al. 2003) 
Lake bacteria P- limited Positive Linear (Elser et al. 2003) 
Synechococcus sp. 
WH8101 

P- limited Positive Linear (Van Mooy & Devol 
2008) 

Synechococcus sp. 
WH8102 

P- limited Positive Linear (Garcia et al. 2016) 

Synechococcus sp. 
WH8102 

N- limited Positive Linear (Garcia et al. 2016) 

E. Coli Temp 
(0°C to 25°C) 

Positive Linear (Broeze et al. 1978; 
Schaechter et al. 1958a) 

Pseudomonas 
fluorescens 

Temp 
(20°C and 24°C) 

Positive Linear (Chrzanowski & Grover 
2008) 

Pseudomonas 
fluroescens 

Temp 
(14°C) 

Negative Linear (Chrzanowski & Grover 
2008) 

Scenedesmus Temp 
(5°C and 25°C) 

Negative Linear (Rhee & Gotham 1981) 

Prochlorococcus Light Positive Linear (Lin et al. 2013) 
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Figure 1.3 Breakdown of total P quota with increased growth rate. The dashed line 
represents the total P quota, and the colored regions represent the distribution of P among 
different cellular components. Data are from Rhee (1973). 
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Figure 1.4 Interactive effects of nutrient limitation and growth on cellular quotas and ratios 
(Garcia et al. 2016). Red circles represent P-limited conditions, and blue circles represent 
N-limited conditions. 
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Figure 1.5 The link between cellular biochemical composition and N:P. (a) The growth rate 
hypothesis (GRH) prediction based on a higher number of ribosomes (dashed line), high P 
quota, and lower N:P (solid line). (b) A modified GRH that considers the factor limiting 
growth. 
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Figure 1.6 Linking subtropical gyre nutrient availability, the elemental composition of 
surface particles and export flux, and atmospheric pCO2. To a first order, the C:P elemental 
composition of surface-ocean particles can be linked to nutrient availability (Martiny et al. 
2013a). Based on this relationship, a simplified box-model simulation demonstrates how 
varying the C:P of exported material from low-latitude regions can lead to substantial long-
term changes in atmospheric pCO2 (Galbraith & Martiny 2015). 
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CHAPTER 2 

Role of ENSO conditions on particulate organic matter concentrations and elemental 
ratios in the Southern California Bight 

Abstract 
 El Niño Southern Oscillation (ENSO) influences multi-year variation in sea-surface 

temperature and the intensity of upwelling in many Pacific regions. However, it is currently 

unknown how El Niño conditions will affect the concentration and elemental ratios of 

particulate organic matter (POM). To investigate this, we have quantified POM weekly for 6 

years (2012 to 2017) at the MICRO time-series station in the Southern California Bight. We 

found a strong influence of the 2015 El Niño on sea-surface temperature and phosphate 

concentration but to a lesser extent on nitrate availability. The 2015 El Niño also resulted 

in a short-term depression in POC and POP concentrations, whereas PON concentrations 

displayed an independent long-term decline regardless of the El Niño event. Reduced POM 

concentrations resulting from the 2015 El Niño occurred in parallel to high C:P and N:P 

ratios. Following the changes in PON, C:N continued to climb reaching ∼9.4 at the end of 

our sampling period. We suggest that an Eastern Pacific- vs. a Central Pacific-type El Niño 

as well as a switch in the Pacific Decadal Oscillation phase significantly altered the local 

response in POM concentrations and ratios. 

Keywords: MICRO, ecological stoichiometry, marine, ENSO, Redfield 
  
Introduction 
 El Niño Southern Oscillation (ENSO) is a recurring climate cycle leading to multi-

year variation in ocean environmental conditions (Dijkstra & Burges 2002; McPhaden 

2015). In the California Current System, ENSO regulates sea-surface temperature (SST), 

upwelling source and intensity, thermocline depth, and large-scale circulation patterns 
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(Chavez 2002; Checkley & Barth 2009; Mcgowan et al. 1998). In the southern part of the 

California Current Ecosystem (i.e., the Southern California Bight, SCB), El Niño conditions 

are typically manifested as periods of high temperature and low nutrient availability 

(Chavez 2002; King & Barbeau 2011; Tegner & Dayton 1987). ENSO variability may have a 

negative effect on plankton growth and biomass accumulation, however this link has been 

elusive (Kim et al. 2009). Thus, it is currently unclear how coastal plankton will respond to 

recent ENSO-driven changes in ocean conditions. 

There appears to be multiple modes of El Niño events including the Eastern-Pacific 

(EP) and Central-Pacific type (CP; Paek et al. 2017; Yu et al. 2012). The two types of El Niño 

conditions differentially regulate temperature anomalies including a shift in the regional 

location of maximum sea-surface temperature variability. A high positive temperature 

anomaly in the North Eastern Pacific Ocean is more indicative of an EP El Niño-type, 

whereas increased temperatures in the equatorial Pacific Ocean are typically associated 

with the CP El Niño-type (Paek et al. 2017). Furthermore, different El Niño modes result in 

spatially divergent patterns of declining vs. increasing phytoplankton biomass and growth 

(Racault et al. 2017). Generally a change in planktonic biomass and growth has an effect on 

the overall community structure. In the southern part of the California Current Ecosystem, 

the EP El Niño can result in significant shifts in community composition of phytoplankton. 

In contrast, CP El Niño has a proposed limited effect on phytoplankton in SCB. Thus, the 

mode of El Niño is predicted to differentially impact plankton communities in SCB. 

A core property of ocean biogeochemistry is the elemental composition and 

stoichiometric ratios of particulate organic matter (POM). C:N:P of marine communities 

have traditionally been considered static at Redfield proportions (106C:16N:1P; Redfield 
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1958). However, phytoplankton acclimation and adaptation to different ocean 

environmental conditions can have a large impact on C:N:P (Moreno & Martiny 2018). 

Temperature and nutrient limitation are currently thought to be the most important 

regulators of C:N:P in the surface ocean although the relative contribution of each factor is 

subject to much debate. Increasing temperature is predicted to correspond to higher C:P 

and N:P in phytoplankton due to a reduced allocation to P-rich ribosomes (Toseland et al. 

2013). Temperature is also known to affect microbial respiration rates (Pomeroy et al. 

1991), which could affect the concentrations of POC, PON and POP. Nutrient limitation is 

predicted to lead to a reduced use of the respective nutrient and higher carbon-to-nutrient 

ratio although the effect may be higher for P vs. N limitation (Garcia et al. 2016). 

Temperature and nutrients may also affect stoichiometry via changes in phytoplankton 

community composition and growth physiology. Smaller cells thriving in warm, nutrient 

deplete waters are proposed to have higher C:N:P ratios compared to large cell types like 

diatoms (Klausmeier et al. 2004). Similarly, slower growing cells need fewer P-rich 

ribosomes and have higher C:N:P (Sterner & Elser 2002). Thus, shifts in temperature and 

nutrient concentrations during El Niño conditions are expected to impact phytoplankton 

community composition, physiology, and associated C:N:P. Based on current theories for 

the regulation of phytoplankton elemental stoichiometry, we therefore predict elevated 

C:N:P during El Niño events. 

Recent studies have demonstrated considerable regional and temporal variation in 

C:N:P (Martiny et al. 2013b,a; Moreno & Martiny 2018). Higher C:N:P have been associated 

with warm, nutrient deplete ocean regions dominated by marine cyanobacteria and other 

small plankton. In contrast, colder, nutrient replete regions with high abundance of larger 
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phytoplankton like diatoms have depressed C:N:P. A parallel link between environmental 

changes and C:N:P was also observed in a past study in the Southern California Bight 

(Martiny et al. 2016). Here, variation in POM concentrations and ratios corresponded to 

seasonal oscillations in environmental conditions and phytoplankton abundances. 

Specifically, winter/spring periods with low temperature, high nutrient concentrations and 

a dominance of large phytoplankton resulted in low C:N:P and vice-versa for warmer 

periods during the summer and fall. Similar links between environmental conditions, 

phytoplankton community structure and C:N:P were also found on weekly and multi-year 

time-scales (Martiny et al. 2016). Based on these observations, we predict that El Niño 

conditions will positively impact C:N:P, but the strength of the C:N:P response will be 

modulated by the mode of El Niño. 

We quantify the changes in SST, macronutrient concentrations, POM concentrations, 

and POM elemental stoichiometric ratios at the MICRO time-series in the Southern 

California Bight weekly from the beginning of 2012 to the end of 2017 covering the large El 

Niño event in 2015. Based on these observations, we aim to quantify how El Niño 

conditions influence ocean POM concentrations and stoichiometric ratios. We predict 

annually temperatures would be at its highest and macronutrient concentrations are at the 

lowest due to an offshore damping in upwelling during the 2015 El Niño. Through the 

regulation of phytoplankton ecology, we should see low POM concentrations and high 

carbon-to-nutrient elemental ratios. The outcome of this study will allow us to further 

understand how climatic drivers of ocean environmental conditions affect the link between 

the C, N, and P biogeochemical cycles. 

Materials and Methods 
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Collection 

Surface water was collected weekly at the MICRO time-series (33.608°N and 

117.928°W; Martiny et al. 2016). Two autoclaved bottles are rinsed with ocean water and 

filled for processing in the lab. Water temperature data is collected from an automated 

shore station off of Newport Pier as part of the Southern California Coastal Ocean 

Observing Systems (SCCOOS). 

Triplicate 300 ml samples for POC/PON or POP from each bottle are filtered within 

an hour of collection through pre-combusted (500°C, 5 h) 25 mm GF/F filters (Whatman, 

MA). Each filter is rinsed with Milli-Q water before being fitted in order to remove potential 

P residues. The filtrate from the initial filtration is collected and used for macronutrient 

quantification. The filtrate is filtered through a 0.2 μm syringe filter into a 50 ml tube. 

Triplicates are collected for both macronutrient and stored in the -20°C freezer. 

Macronutrients 

Nitrate and phosphate samples were collected in prewashed 50 mL Falcon tubes 

and filtered through a 0.2 μm syringe filter and stored at -20°C until further analysis. 

Soluble reactive phosphorus (SRP) concentrations were determined using the magnesium 

induced co-precipitation (MAGIC) protocol and calculated against a potassium monobasic 

phosphate standard (Karl & Tien 1992; Lomas et al. 2010). Nitrate samples were treated 

with a solution of ethylenediaminetetraacetate and passed through a column of copperized 

cadmium fillings (Knap et al. 1997). Measurements were conducted using the same 

standards and protocols throughout the time series. 

Particulate Organic Carbon and Nitrogen 
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After thawing, POC/PON filters were allowed to dry overnight at 65°C before being 

packed into a 30 mm tin capsule (CE Elantech, Lakewood, New Jersey). Samples were then 

analyzed for C and N content on the same FlashEA 1112 nitrogen and carbon analyzer 

(Thermo Scientific, Waltham, Massachusetts), following the Sharp (1974) protocol. POC 

and PON concentrations were calibrated using known quantities of atropine. 

Particulate Organic Phosphorus 

Particulate organic phosphorus filters are placed in combusted glass vials. 

Potassium Monobasic Phosphate (1.0 mM-P) is used as a standard. 2 ml of Magnesium 

sulfate (0.017 M; Macron Fine Chemicals) are added to each vial, covered in tin foil, and put 

into an oven at 80°C overnight. The vials are wrapped in tinfoil and placed into a 500°C 

muffle oven for 2 h. Once cooled to room temperature, 5 ml HCl (0.2 M; EMD) is added to 

each vial and then capped with a Teflon coated cap and placed into the 80°C oven for 30 

min and placed into a 15 ml glass centrifuge tube. Each vial is then washed with 5 ml Milli-

Q water and then added to the tubes. 1 ml of mixed reagent is added to each of the tubes, 

centrifuged at 4000 rpm for 1 min and stored in the dark for 30 min. Each standard and 

sample is quantified at 885 nm. Quantifications were conducted using the same protocol, 

modified from Lomas et al., 2010, throughout the time series. 

Data Analysis 

All analyses were done on Supplementary Table S1 data in Matlab (Mathworks, MA). 

Using the smooth function, a four point moving average was overlaid onto the raw data 

time-series plots. Sum of square analysis was conducted on linear regressions to quantify 

the monthly and annual contributions. To detrend seasonality in our time series 

parameters, we apply a seasonal adjustment using a stable seasonal filter applying a 53-
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point moving average, representing our weekly sampling. To determine potential 

covariations, a Pearson’s correlation coefficient was calculated for each pair of variables, 

followed by a test of statistical significance (p-value ≤0.05). 

El Niño Impacts 

We used the ERSSTv5 estimate of the Oceanographic El Niño Index (ONI; Huang et al. 

2017). Regional temperature anomalies are derived by a linear interpolation of the weekly 

satellite SST optimum interpolation fields to daily fields then averaging the daily values 

over a month (Reynolds et al. 2002) from 1983 to 2018. To estimate the mean temperature 

anomaly for Southern California Bight region, we used satellite observations between 29°–

38°N and 115°–124°W. 

Results 

The ONI data indicate that a strong El Niño event followed La Niña in 2015 (Figure 

2.1). Generally, the ONI index data were significantly correlated with positive temperature 

anomalies at our MICRO site (Rpearson = 0.38, p < 1e-16) and more broadly in the SCB 

(Rpearson = 0.44, p < 1e-22). In support, El Niño periods including the 2015 event led to 

positive temperature anomalies of >2°C. One notable disconnect between ONI and the 

temperature anomalies at MICRO and in SCB was the period following the El Niño 2015 

event. Here, ONI suggested a slightly negative anomaly and La Niña conditions. However, 

SCB and our site still experienced strong positive temperature anomalies. This positive 

anomaly occurred during both the summer and winter periods and might be related to an 

unusually high temperature in the North Eastern Pacific Ocean (Di Lorenzo & Mantua 

2016). Thus, the 2015 El Niño event led to a positive temperature anomaly in SCB and 

MICRO, but the period following was unexpectedly warm. 



74 
 

To understand the impact of El Niño conditions on the composition of marine POM, 

we quantified weekly macronutrient concentrations, POM concentrations, and elemental 

stoichiometric ratios from the beginning of 2012 to the end of 2017. Temperature 

oscillated annually with a peak in August and trough in January (Figure 2.2A). In 2015, the 

average annual temperature was higher than any other year at 22.4°C, peaking to 23.7°C 

(Figure 2.2A). As described earlier, nutrient availability showed a strong seasonal anti-

correlation with temperature (Martiny et al. 2016) as well as some annual differences 

(Figure 2.2B). Nitrate concentrations also oscillated in parallel with phosphate and reached 

extremely low or undetectable levels during the summer (Figure 2.2C). In 2015, the nitrate 

level did not appear particularly low and stayed in detectable ranges through most of the 

year. POM concentrations all peaked during the spring bloom period and oscillated 

annually (Figure 2.2D–F). POC and POP concentrations did not show any consistent long-

term trends, whereas PON levels declined 26% throughout the time-series. Although a 

slight increasing trend in C:N appeared from the start of the time series, a clear increasing 

trend was obvious after 2014 (Figure 2.2G). Annually, C:P peaked during the summer/fall 

at ∼140 although we saw a big spike during the winter of 2014–2015 but this was not an 

annually re-occurring phenomenon (Figure 2.2H). N:P followed the annual oscillation in 

C:P with high values of 20 in the summer and also spiked during the same time periods 

(Figure 2.2I). Overall, we detected both seasonal and annual variation in both 

environmental conditions and POM concentrations and ratios. 

The MICRO study site experienced long-term shifts in oceanographic conditions 

(Figure 2.3). Seasonally detrended temperature concentrations have an increasing trend 

during the sampling period (Figure 2.3A). Macronutrient and POM concentrations have a 
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slight decreasing trend, whereas the C:N and C:P ratios have increasing trends. The 

strongest positive correlations seen in the seasonally detrended data is POC and PON with 

POP demonstrating that the POM concentrations are linked (Figure 2.3B). Temperature is 

positively correlated with macronutrient and POM concentration and negatively correlated 

with stoichiometric ratios (Figure 2.3B). Thus, temperature is most likely the leading 

contributor to overall trends seen throughout the time series. 

We sought to quantify the amount of variability for environmental conditions, POM 

concentration, and ratio that is attributable to monthly versus annual variance. In general, 

we found that monthly variability explained a higher proportion of variance in 

environmental metrics and POM concentrations than yearly variability (Figure 2.4). For 

temperature, monthly variability explained a large fraction of the total variance, 

representing over 60% of the variance. Monthly variability in nitrate and phosphate were 

the second and third highest proportion of variance explained among the environmental 

conditions. In contrast, yearly variability explained less than 10% of variance in 

temperature, nitrate, and phosphate. Similar to temperature and nutrients, monthly 

variability is greater among POM concentrations. As POM concentrations generally cycle in 

unison, there was less monthly variance in POM ratios. In contrast, we saw a larger 

proportion of variance in POM ratios between years. Monthly variation has more control on 

the environmental conditions and POM concentrations, whereas annual processes 

dominated for stoichiometric ratios. Thus, we should expect that POM stoichiometric ratios 

will be sensitive to El Niño events. 

Impact of the 2015 El Niño Event 



76 
 

The 2015 El Niño event had some impact on the POM concentrations and ratios at 

MICRO (Figure 2.5). Temperature was highest in 2015, 15.9°C (Figure 2.5A). The phosphate 

concentration was 0.15 μM lower than in 2015 compared to 2012, although 2016 had 

lowest levels with a change of 0.16 μM (Figure 2.5B). However, nitrate concentrations were 

not particularly low that year and both 2014 and 2017 had lower levels (Figure 2.5C). POM 

concentrations showed divergent annual trends. POC showed a decrease of 4.7 and 3.1μM 

in 2014 and 2015 compared to 2012. PON also decreased during these years by 0.8 and 

0.9μM, respectively. Both POC and POP displayed low levels in 2014 and 2015, which could 

be indicative of an El Niño effect. In contrast, PON showed a declining trend throughout the 

sampling period leading to a 26% drop in concentration (Figure 2.5E). The change in PON 

coincided with a continually rising C:N and a high average ratio of 9.4 in 2017 (Figure 

2.5G). In contrast, C:P and N:P were at their highest in late 2014 and all of 2015 (Figure 

2.2H,I). Thus, it appeared that the C:P and N:P were sensitive to the 2015 El Niño event, 

whereas C:N showed a divergent long-term increase. 

Discussion 

Our time-series data suggest that the 2015 El Niño event impacted SST, phosphate 

conditions, POM concentrations, and stoichiometric ratios in our study region. The El Niño 

event resulted in unusually high temperature conditions and lower phosphate 

concentrations. Such environmental conditions are starting to resemble open-ocean 

conditions although the POM concentrations are still much higher than common 

oligotrophic regions. The high C:P and N:P ratios during the El Niño event support our 

hypothesis although the underlying drivers are unclear. Due to the strong seasonal and 
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annual links between temperature, phosphate and phytoplankton community at our site, 

we are unable to identify the exact mechanism resulting in high C:P and N:P. 

The C:N ratio appeared to be regulated by different processes than C:P and N:P. At 

our study site, we saw a long-term decline in PON concentration that led to high C:N. We 

hypothesize that the observed trend in C:N is regulated by an overall N limitation, shown 

by the declining nitrate supply (Geider & Roche 2002; Moreno & Martiny 2018). The nitrate 

concentration followed a different multi-year trajectory in comparison to phosphate and 

temperature leading to lower nitrate concentrations in later years. It is unclear if changing 

nitrogen, i.e., nitrate and ammonium; levels were driven by differences in nutrient run-off 

or by offshore shifts in source water and upwelling strength. In 1998, the Santa Ana 

Regional Water Quality Control Board started regulating nitrogen run-off near our study 

site. This regulation has led to a decline in terrestrial nitrogen inputs (French et al. 2006). 

Furthermore, shifts in the source water for the SCB has led to declining phosphate:nitrate 

levels in subsurface waters (at the σθ = 26.5 kg m3 isopycnal surface; Bograd et al. 2014). 

Thus, there could be multiple ultimate causes for the observed declining nitrate level, but 

we predict that lower nitrate availability and plankton N stress has proximately led to 

higher C:N ratios. 

We expect that the observed correspondence between changing environmental 

conditions and C:N:P are at least in part driven by shifts in phytoplankton community 

composition and physiological state. Our past work has demonstrated that increasing 

temperature and declining nutrient availability as observed during the El Niño event lead 

to increasing abundance of picophytoplankton lineages at the expense of larger eukaryotic 

phytoplankton (Martiny et al. 2016). Several studies have suggested that smaller 
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phytoplankton lineages have higher C:P and N:P ratios (Klausmeier et al. 2004). 

Furthermore, phytoplankton will acclimate to increasing temperature and lower nutrient 

availability leading to higher cellular carbon-to-nutrient ratios. Both mechanisms could 

possibly explain the elevated C:P and N:P seen in late 2014 and 2015 but our data does not 

allow for a direct identification of the underlying mechanism controlling the shift in POM 

stoichiometry. 

El Niño events can vary in their expression leading to unique impacts on the 

environmental conditions and biogeochemical functioning of the SCB (Capotondi et al. 

2015; Jacox et al. 2016). The 2015 event is likely an ‘Eastern Pacific’ type leading to a 

temperature anomaly in the North Eastern Pacific Ocean (Paek et al. 2017). However, there 

was also a strong temperature anomaly in the equatorial section of the Pacific and a high 

overall warming of most of the eastern part of the basin. As such, the biogeochemical 

impact of the 2015 El Niño event may diverge from a traditional ‘Central Pacific’ event. In 

addition to the El Niño event, we also saw a strong positive temperature and negative 

nitrate anomaly in 2016 and 2017. Such a long term warming of the region may be caused 

by a shift in the Pacific Decadal Oscillation (PDO; Newman et al. 2016). A positive PDO leads 

to overall high temperatures in the central/eastern part of the Pacific Ocean (Mantua et al. 

1997) and a >2°C temperature anomaly in the SCB. The underlying physical driver of the 

PDO is currently not clear but a shift in the phase could suggest elevated temperatures in 

the SCB for years to come. This would further lead to low POM concentrations but high 

C:nutrient ratios. 

El Niño events can act as a natural ‘experiment’ to understand climate change effects 

on POM concentrations and stoichiometric ratios. Future climate scenarios predict 
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increased SST and more stratified waters, and El Niño events share these characteristics. 

Due to the offshore topography at MICRO, the local conditions share similarities with 

pelagic waters rather than typical coastal regions. Thus, our findings suggest that elevated 

temperature cause changes in phytoplankton ecology with clear implications for POM 

concentrations and ratios. However, it is unclear whether or not future El Niño events will 

superimpose on or blend into the already high ocean temperatures in the region. If the 

former, we predict large changes in the biogeochemical and ecosystem functioning of the 

SCB in the future. 
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Figure 2.7  Multi-year variation in temperature at MICRO and surrounding region. (A) The 
in situ daily temperature from 2005 to 2018 from the SCCOOS station on Newport Pier and 
the 2-year moving average (green line). (B) The temperature anomaly at the MICRO time-
series (estimated from satellite). (C) The temperature anomaly in the Southern California 
Bight. (D) Oceanographic El Niño Index (ONI). (E) Central Pacific Ocean temperature 
anomaly for August throughout the time-series. 
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Figure 2.8 Environmental conditions (A), macronutrient concentrations (B, C), POM 
concentrations (D–F), and elemental stoichiometric ratios (G–I) over time at MICRO study 
site in Newport Pier, Newport, CA. The solid black points represent the averaged data per 
week from the period of 1/1/2012 to 12/31/2017. The red line represents a 4-point 
moving average. Stoichiometric ratios are molar. 
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Figure 2.9 Seasonally detrended values and correlations in environmental conditions, 
macronutrients concentrations, POM concentrations, and stoichiometric ratios. (A) 
Detrended seasonal data over time for each factor. Statistical trends quantified using a 
Mann-Kendal analysis (p < 0.05). (B) Pearson correlation coefficient for each pair of factors. 
Redder squares signify a strong positive correlation between the two variables, while blue 
squares signify a strong negative correlation between the two variables. Large black 
squares represent a correlation of 1. The small black squares indicate that the correlation is 
statistically significant. 
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Figure 2.10 The contribution of monthly and annual variation for environmental conditions 
and POM concentrations and ratios. The remaining variance represents variance associated 
with short-term events and measurement errors. Proportions are calculated using the sum 
of squares from the linear regression data shown in Figure 2.5. 
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Figure 2.11 The average annual variability in environmental conditions (A–C), POM 
concentrations (D–F), and stoichiometric ratios (G–I). The annual variations in August 
quantified using a linear decomposition of annual and monthly variation. Error bars 
represent the standard deviation. The letters above each bar represent a post hoc Tukey 
multiple comparison test (p < 0.05), where similar letters show no statistical difference. 
The dashed lines across the stoichiometric ratios indicates the static Redfield ratio (C:N = 
6.6, C:P = 106, and N:P = 16), strictly used for comparison purposes. 
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CHAPTER 3 
Marine phytoplankton stoichiometry mediates nonlinear interactions between 

nutrient supply, temperature, and atmospheric CO2 
 

Abstract 

Marine phytoplankton stoichiometry link nutrient supply to marine carbon export. 

Deviations of phytoplankton stoichiometry from Redfield proportions (106C:1P) could 

therefore have a significant impact on carbon cycling, and understanding which 

environmental factors drive conditions, stoichiometry, and carbon cycling, we compared 

four different models of phytoplankton C:P: a fixed Redfield model, a model with C:P given 

as a function of surface phosphorus concentration (P), a model with C:P given as a function 

of temperature, and a new multi-environmental model that predicts C:P as a function of 

light, temperature, and P. These stoichiometric models were embedded into a five-box 

ocean circulation model, which resolves the three major ocean biomes (high-latitude, 

subtropical gyres, and tropical upwelling regions). Contrary to the expectation of a 

monotonic relationship between surface nutrient drawdown and carbon export, we found 

that lateral nutrient transport from lower C:P tropical waters to high C:P subtropical 

waters could cause carbon export to decrease with increased tropical nutrient utilization. It 

has been hypothesized that a positive feedback between temperature and pCO2,atm will play 

an important role in anthropogenic climate change, with changes in the biological pump 

playing at most a secondary role. Here we show that environmentally driven shifts in 

stoichiometry make the biological pump more influential, and may reverse the expected 

positive relationship between temperature and pCO2,atm. In the temperature-only model, 

changes in tropical temperature have more impact on the ΔpCO2,atm (41 ppm)  compared  to 
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subtropical temperature changes (4.5 ppm). Our multi-environmental model predicted a 

decline in pCO2,atm of 46 ppm when temperature spanned a change of 10°C. Thus, we find 

that variation in marine phytoplankton stoichiometry and its environmental controlling 

factors can lead to nonlinear controls on pCO2,atm, suggesting the need for further studies of 

ocean C:P and the impact on ocean carbon cycling. 

Keywords: Redfield ratio, traits, carbon cycling 

Introduction 

The discovery of large-scale deviations of phytoplankton stoichiometry from the 

Redfield ratio in the past decade (Martiny et al. 2013b,a; Weber & Deutsch 2010) has 

significant consequences for our understanding of the biological carbon pump and global 

carbon cycling (Galbraith & Martiny 2015; Moreno & Martiny 2018). Traditionally, the 

biological pump is thought to be controlled by a combination of the vertical nutrient flux 

and nutrient utilization efficiency (Sarmiento & Toggweiler 1984). Evidence that elemental 

stoichiometry is variable thus adds a new dimension to the biological pump, and may lead 

to higher than currently expected carbon export in subtropical regions (Emerson 2014; 

Tanioka & Matsumoto 2017; Teng et al. 2014). Global carbon export has been estimated to 

range between 5 and 12 Pg C yr-1 (Boyd & Trull 2007; Henson et al. 2011), but these 

projections have yet to incorporate the environmental controls on C:Pexport. Variation in 

C:Pexport from Redfield proportions can be linked to environmental conditions. There are 

two leading environmental parameters thought to control C:Pexport: nutrients, 

predominantly phosphate concentrations, and temperature. Galbraith and Martiny used a 

simple three-box model to show that variable stoichiometry driven by phosphate 

availability could enhance the efficiency of the biological pump in the low-latitude ocean 
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(Galbraith & Martiny 2015). In contrast, Yvon-Durocher et al. (2015) used a meta-analysis 

of global temperature and stoichiometric ratios to propose that C:P increased 2.6-fold from 

0 to 30°C. Thus, it is unclear if differences in nutrient supply or temperature, or some 

combination of them, control the global variation in C:P of plankton and exported material.  

 There are two important ingredients missing from published studies that could alter 

the interactions among phytoplankton stoichiometry, carbon export, and atmospheric pCO2 

(pCO2,atm). The first is the presence of two distinct low-latitude biomes, namely the 

equatorial upwelling regions and the macronutrient-depleted subtropical gyres. In direct 

observations and inverse model analyses, these two biome types appear to have unique 

elemental compositions (DeVries & Deutsch 2014; Martiny et al. 2013a; Teng et al. 2014). 

Thus, in order to properly represent global variations in surface plankton C:P and carbon 

export, it is essential to separately model macronutrient-limited subtropical gyres and 

equatorial upwelling zones.  

 The second missing ingredient is that environmental factors beyond nutrient 

availability may impact the elemental composition of surface plankton C:Pexport. 

Temperature, irradiance, and nutrient concentrations are all important environmental 

factors, which influence the physiology and stoichiometry of phytoplankton. However, 

surveys of phytoplankton C:P are insufficient to distinguish the separate effects of each 

factor on C:P due to strong environmental covariance. Cellular trait-based models use 

detailed studies of phytoplankton physiology to determine how phytoplankton cells should 

allocate their resources as a function of environmental conditions, allowing us to model the 

interactive influence of temperature, nutrient concentrations, and irradiance on C:P ratios 

(Clark et al. 2011; Daines et al. 2014; Shuter 1979; Talmy et al. 2014; Toseland et al. 2013). 
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Numerous physiological mechanisms have been proposed to explain variation in 

phytoplankton stoichiometry, including growth rate (Sterner & Elser 2002), 

photoacclimation (Falkowski & LaRoche 1991; Geider et al. 1996; Leonardos & Geider 

2004, 2005), nutrient-limitation responses (Garcia et al. 2016; Goldman et al. 1979; Rhee 

1978), and temperature (Rhee & Gotham 1981; Toseland et al. 2013; Yvon-Durocher et al. 

2015). Through incorporation of such physiological responses, a trait-based model has 

revealed that differences in ribosomal content and cell size between warm-water, 

oligotrophic environments and cold-water, eutrophic environments are important 

mechanisms driving stoichiometric variation in the ocean (Daines et al. 2014). Thus, linking 

biome-scale variations in environmental conditions with a detailed trait-based model of 

phytoplankton resource allocation and elemental composition may enable us to more fully 

explore interactions among multiple ocean environmental factors, the biological pump, and 

pCO2,atm.  

 Here, we create a five-box ocean circulation model, incorporating the three major 

ocean biomes, to study the feedback effects of variable stoichiometry on carbon export and 

pCO2,atm. We will explicitly address the following research questions: (1) How does 

environmental variability influence marine phytoplankton cellular allocation strategies and 

in turn the elemental stoichiometric ratio? (2) What are the effects of changing 

environmental conditions on stoichiometric ratios, carbon export, and pCO2,atm? (3) What is 

the influence of the environmental conditions among the three major surface biomes on 

carbon export and pCO2,atm? 

Methods 

Box model design 
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 To quantify the feedbacks between phytoplankton stoichiometry, carbon export, 

and pCO2,atm, we formulated a five-box ocean circulation model of the phosphorus and 

carbon cycles in the ocean coupled to an atmospheric box. The foundation of our model is 

based on the models introduced in Ito and Follows (2003) and DeVries and Primeau 

(2009). Phosphorus is used to represent the role of nutrient availability in controlling 

stoichiometry and C export. We chose this over N because, on long timescales, P is 

commonly considered the ultimate limited nutrient, whereas N is only limiting productivity 

and export on short timescales (Tyrrell 1999). On long timescales, nitrogen 

fixation/denitrification will presumably adjust the N inventory. Our modeling is focused on 

long-term steady-state outcomes and we would like to avoid issues associated with 

modeling the N cycle (like getting N-fixation and denitrification rates correct). Thus, we 

chose to use P as a representative for nutrient availability at long-term steady-state 

biogeochemical equilibrium. The model includes three surface boxes, each corresponding 

to one of the major biomes: the tropical equatorial upwelling regions (labeled T), the 

subtropical gyres (labeled S), and the high-latitude regions (labeled H) (Figure 3.1). We 

define the oligotrophic subtropical gyre regions where the mean annual phosphate 

concentration is less than 0.3 μM (Teng et al. 2014), with the remainder of the surface 

ocean assigned either to box T or box H based on latitude. We use these assignments to 

calculate the baseline physical properties of each region, including mean annual averaged 

irradiance and temperature. The subsurface ocean is divided into two regions: the 

thermocline waters that underlies the subtropical gyres and the equatorial upwelling 

regions (labeled M), and deep waters (labeled D) (DeVries & Primeau 2009).  
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 To simulate the global transport of water between boxes, our model includes a 

thermohaline circulation (Tc) that upwells water from the deep ocean into the tropics, 

laterally transports water into the subtropics and high latitudes, and downwells water 

from the high-latitude region to the deep ocean. Surface winds produce a shallow 

overturning circulation (Tw) that transports water from the thermocline to the tropics and 

then laterally into the subtropics. These circulations create teleconnections of nutrient 

supply in the surface ocean boxes. A bidirectional mixing term that ventilates the deep box 

directly through the high-latitude surface box (fhd represents deep water formation in the 

North Atlantic region and around Antarctica (Sarmiento & Toggweiler 1984). The 

parameters Tc, Tw and fhd are considered adjustable parameters, which we calibrate using 

phosphate data from WOA13 (Garcia et al. 2014a). In order to simulate the movement of 

particles, we included export fluxes (Pt, Ps, and Ph) of organic phosphorus out of each 

surface box. The conservation equations of phosphorus are as follows:  

 

𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

=
(𝑑𝑑𝑀𝑀 − 𝑑𝑑𝑇𝑇) ∙ 𝑇𝑇𝑇𝑇 + (𝑑𝑑𝑀𝑀 − 𝑑𝑑𝑇𝑇) ∙ 𝑇𝑇𝑇𝑇 − (𝑎𝑎 + 𝑏𝑏) ∙ 𝑑𝑑𝑑𝑑

𝑉𝑉𝑇𝑇
                                                     (1) 

 

𝑑𝑑𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

=
(𝑑𝑑𝑇𝑇 − 𝑑𝑑𝑆𝑆) ∙ 𝑇𝑇𝑇𝑇 + (𝑑𝑑𝑇𝑇 − 𝑑𝑑𝑆𝑆) ∙ 𝑇𝑇𝑇𝑇 − (𝑎𝑎 + 𝑏𝑏) ∙ 𝑑𝑑𝑃𝑃

𝑉𝑉𝑉𝑉
                                                       (2) 

 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

=
(𝑑𝑑𝑆𝑆 − 𝑑𝑑𝐻𝐻) ∙ 𝑇𝑇𝑇𝑇 + (𝑑𝑑𝐷𝐷 − 𝑑𝑑𝐻𝐻) ∙ 𝑓𝑓ℎ𝑑𝑑 − 𝑑𝑑ℎ

𝑉𝑉𝑉𝑉
                                                                    (3) 

 

𝑑𝑑𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑

=
(𝑑𝑑𝐷𝐷 − 𝑑𝑑𝑀𝑀) ∙ 𝑇𝑇𝑇𝑇 + (𝑑𝑑𝑆𝑆 −  𝑑𝑑𝑀𝑀) ∙ 𝑇𝑇𝑇𝑇 + 𝑎𝑎 ∙ 𝑑𝑑𝑑𝑑 + 𝑎𝑎 ∙ 𝑑𝑑𝑃𝑃

𝑉𝑉𝑉𝑉
                                              (4) 
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𝑑𝑑𝑑𝑑𝐷𝐷
𝑑𝑑𝑑𝑑

=
(𝑑𝑑𝐻𝐻 − 𝑑𝑑𝐷𝐷) ∙ 𝑇𝑇𝑇𝑇 + (𝑑𝑑𝐻𝐻 − 𝑑𝑑𝐷𝐷) ∙ 𝑓𝑓ℎ𝑑𝑑 + 𝑑𝑑ℎ + 𝑏𝑏 ∙ 𝑑𝑑𝑑𝑑 + 𝑏𝑏 ∙ 𝑑𝑑𝑃𝑃

𝑉𝑉𝑉𝑉
                                    (5) 

where P represents the concentration of phosphorus at a specific box, a represents 0.25 

remineralization, b represents 0.75 remineralization, and V represents the volume of the 

specified box.  

 Our box model simulates P, alkalinity, and various forms of C; total carbon in the 

surface boxes is partitioned into carbonate, bicarbonate, and pCO2. The global mean P is 

prescribed according to the observed mean value (Garcia et al. 2014a). The export of 

carbon is linked to phosphorus export using the C:Pexport ratio. To quantify the breakdown 

of carbon into these components, we model the solubility pump, using temperature and 

salinity to determine the partitioning of inorganic carbon among total carbon within a box. 

The global mean alkalinity is prescribed according to the observed mean ocean values but 

is also subject to transport (Sarmiento & Toggweiler 1984). Our box model simulates 

alkalinity and total inorganic carbon, which are conserved tracers from which the 

speciation of inorganic carbon in seawater can be calculated. Biome-specific salinity and 

temperature are used to prescribe the solubility constants of CO2 in seawater and the 

bromine concentration, which is taken to be proportional to salinity. CO2 cycles through the 

atmosphere via the air-sea gas exchange fluxes (fah, fas, fat). We use a uniform piston 

velocity of 5.5 x 10-5 m s-1 to drive air-sea gas exchange (DeVries & Primeau 2009; Follows 

et al. 2002). Quantifying the atmospheric concentration of carbon satisfies: 

 

𝑑𝑑𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= [(𝑑𝑑𝑇𝑇 − 𝑑𝑑𝐴𝐴) ∙ 𝑉𝑉𝑆𝑆𝑆𝑆𝑇𝑇(𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡, 𝑃𝑃𝑎𝑎𝑆𝑆) ∙ 𝑓𝑓𝑎𝑎𝑑𝑑 + (𝑑𝑑𝑆𝑆 − 𝑑𝑑𝐴𝐴) ∙ 𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉(𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡, 𝑃𝑃𝑎𝑎𝑆𝑆) ∙ 𝑓𝑓𝑎𝑎𝑃𝑃 + 
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(𝑑𝑑𝐻𝐻 − 𝑑𝑑𝐴𝐴) ∙ 𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉(𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡, 𝑃𝑃𝑎𝑎𝑆𝑆) ∙ 𝑓𝑓𝑎𝑎ℎ]/VA    (6) 

 

where C represents the concentration of total carbon in a specific box and Sol is the 

solubility constant in a specified box, calculated from temperature (temp) and salinity (sal). 

 We calibrated our model parameters (Tc, Tw, fhd) so that the macronutrients were at 

similar average values compared to World Ocean Atlas 2013 dataset for each location. We 

tested the sensitivity of modeled pCO2,atm to the fluxes Tc, Tw, and fhd and found that with Tc 

= 20 Sv and Tw = 5Sv (values that allowed the model to match P and alkalinity), pCO2,atm was 

sensitive to the value of fhd (Sarmiento & Toggweiler 1984). Guided by values previously 

used in the literature, we set fhd to 45.6 Sv (Table 3.1) but we also present results for thue 

nutrient-only stoichiometry model at two extreme values of fhd (18 and 108 Sv) (Figure 

3.2). The functional dependence of pCO2,atm with changing subtropical and tropical P for 

each extreme value of fhd was quite similar, though the value of pCO2,atm for the high-fhd 

simulation (Figure 3.2). We found that our value of 45.6 Sv provides a modern pCO2,atm 

value. Although the focus of this study is to determine the impact of low-latitude 

biogeochemistry on pCO2,atm, we point out that at Redfield stoichiometry, pCO2,atm increases 

by 100 ppm when fhd increased from its default value 45.6 to  108 Sv. For certain values of 

the parameters, the model produced excessive nutrient trapping in the thermocline. In 

order to dampen the nutrient trapping, we tuned the remineralization depth. As such, 25% 

of the total export is respired in the thermocline, with the remaining 75% exported into the 

deep ocean, leading to a better match between the modeled and observed P in the 

thermocline box.  

Stoichiometric models 
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 To quantify and understand the feedbacks between carbon export and pCO2,atm, we 

embedded four stoichiometric models into our five-box ocean circulation model. Each 

model differs according to its complexity and how much environmental information they 

utilize. These are a static Redfield model that assumes that C:Pexport is constant across 

environmental conditions, a nutrient-only model that uses surface P to predict C:Pexport 

(from Galbraith and Martiny, 2015) a temperature-only model that uses T to predict 

C:Pexport (modified from Yvon-Durocher et al., 2015) and a multi-environmental model that 

uses light, T, and P to predict C:Pexport.  

Static Redfield model 

 Our control model uses a static Redfield stoichiometry. The Redfield ratio is based 

on an average value of organic carbon to phosphorus of 106:1. 

Nutrient-only model 

 The nutrient-only stoichiometric model expressed phytoplankton C:P as a function 

of the ambient phosphate concentration: 

𝑑𝑑:𝑑𝑑 =
1

𝜅𝜅[𝑑𝑑] + [P]0
 (7) 

where the parameters 𝜅𝜅 = 6.9 x 10-3μM-1 and [P]0 = 6.0 x10-3 were obtained by regressing 

the reciprocal of C:P onto P (Galbraith & Martiny 2015).  

Temperature-only model 

 The temperature-only stoichiometric model expresses phytoplankton C:P as a 

function of temperature:  

𝑆𝑆𝑙𝑙(𝑑𝑑:𝑑𝑑) = 𝛱𝛱(𝑇𝑇 − 15°𝑑𝑑) + 𝑏𝑏, (8) 
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where the parameters 𝛱𝛱 = 0.037°C-1 and b = 5.5938 (Yvon-durocher et al. 2015). The 

temperature-only model was created to determine the temperature responses of log-

transformed C:P ratios centered at 15°C.  

Multi-environmental model 

 We created a multi-environmental model, which predicts how cell size, biomass 

allocations to biosynthesis and photosynthesis, and C:P ratios vary with temperature, light 

levels, temperature, and phosphorus concentrations. The multi-environmental factor 

model was derived from a non-dynamic physiological trait-based model. We used a 

theoretical cellular-allocation trait model based on phytoplankton physiological properties 

that divides the “cell” into several functional pools which represent cellular investments in 

biosynthesis, photosynthesis, and structure, and a storage pool, which represents 

variations in the level of P-rich molecules such as polyphosphates (full model equations can 

be found on GitHub: https://github.com/georgehagstrom/-bg-2017-

367/blob/master/CP.m, last access: 12 April 2018). The functional pools are composed of 

biological macromolecules such as ribosomes, proteins, carbohydrates, and lipids. The 

model predicts the size of each pool as a function of light, T, and P. The size of each 

functional pool is modeled by using subcellular resource compartments, which connect the 

fitness of a hypothetical phytoplankton cell in a given environment to its cellular radius and 

the relative allocation of cellular material to photosynthetic proteins, ribosomes, and 

biosynthetic proteins. We assume that real phytoplankton populations have physiological 

behaviors that cluster around the strategy that produces the fastest growth rate in each 

environment (Norberg et al. 2001), and use the stoichiometry of this optimal strategy to 

model the elemental composition of cellular material (Figure 3.1). 
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 Phytoplankton can accumulate large reserves of nutrients that are not immediately 

incorporated into the functional components of the cell (Diaz et al. 2016; Mino et al. 1998; 

Mouginot et al. 2015; Van Mooy & Devol 2008). This storage capability varies among 

phytoplankton species, and depends on the particular nutrient under consideration: the 

cost for storing physiologically relevant quantities of nutrients is low for nutrients with low 

quotas such as phosphorus, in comparison to nitrogen and carbon. Thus, the phosphorus 

storage is assumed highly plastic in comparison to carbon storage (Moore et al. 2013). 

Further, we assume that each cell dedicates a fixed fraction of its biomass to carbon 

reserves, and focus our modeling efforts on the variability of the stored phosphorus pool. 

To predict the size of the storage pool, we assume a linear relationship between stored and 

phosphorus and ambient environmental phosphorus levels and used statistical modeling of 

an oceanic C:P dataset (Martiny et al. 2014) to calculate the constant of proportionality . 

The result is a relatively simple model that both qualitatively and quantitatively predicts 

the variation of C:P in phytoplankton.  

 Phytoplankton physiology is modeled through allocations of cell dry mass to three 

distinct pools: structure (S(r)), biosynthesis (E), and photosynthesis (L) (Figure 2.3). 

Allocations satisfy 

1 = S(r) + E + L, 
(9) 

 

where the variables S, E, and L represent the specific allocations of cellular biomass.  

 The specific allocation of biomass to the cell membrane is inversely proportional to 

the cell radius (Clark et al. 2011), which accounts for the changing relative volume of the 

cell membrane with radius. The structure pool includes the cell membrane plus wall and 
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other components (γ), which are not related to photosynthesis or biosynthesis and is given 

by:  

𝑉𝑉(𝑟𝑟) =
𝛼𝛼
𝑟𝑟

+ 𝛾𝛾. (10) 

In an environment specified by T, [P], and light level (I), the growth rate of a cell using a 

given strategy is the minimum of the following growth rates: 

𝜇𝜇 = 𝑡𝑡𝑚𝑚𝑙𝑙(𝜇𝜇𝐸𝐸 , 𝜇𝜇𝐿𝐿 ,𝜇𝜇𝑃𝑃). 

 
(11) 

 Here μE is determined by the specific rate of protein synthesis, μL is determined by 

the specific rate of carbon fixation, and μP is determined by the specific rate of phosphorus 

uptake, or  

𝜇𝜇𝐸𝐸 = 𝑘𝑘𝐸𝐸(𝑇𝑇)𝐸𝐸, 𝜇𝜇𝐿𝐿 = 𝑓𝑓𝑃𝑃(𝐿𝐿,𝐼𝐼)−𝛷𝛷𝑀𝑀(𝑇𝑇)
1+𝛷𝛷𝑆𝑆

, 𝜇𝜇𝑃𝑃 = 1
𝑄𝑄𝑃𝑃(𝑟𝑟,𝐸𝐸)

𝑉𝑉𝑚𝑚(𝑟𝑟)[𝑃𝑃]
𝐾𝐾𝑃𝑃(𝑟𝑟)+[𝑃𝑃]. 

 
(12) 

We assume that part of the energy captured by a cell via photosynthesis is used for 

maintenance (ΦM), whereas the rest is used to drive the synthesis of new macromolecules 

(ΦM), whereas the rest is used to drive the synthesis of new macromolecules (ΦS), so that a 

cell growing at rate μL is in energy balance. The efficiency of biosynthesis kE and the carbon 

cost of maintenance ΦM are functions of T, whose dependence is modeled using Q10 = 2.0 

(Broeze et al. 1978; Shuter 1979; Van Bogelen & Neidhardt 1990). Uptake is regulated by a 

Monod function with kinetic parameters depending on the radius through the allometric 

scaling relationships derived from measurements of phytoplankton populations (Edwards 

et al. 2012):  
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𝑉𝑉𝑚𝑚(𝑟𝑟) = 𝑎𝑎𝑃𝑃𝑟𝑟𝑏𝑏𝑃𝑃 ,𝐾𝐾𝑃𝑃(𝑟𝑟) = 𝑎𝑎𝐾𝐾𝑟𝑟𝑏𝑏𝐾𝐾 . (13) 

 This use of allometric scaling relationships departs from the conventions adopted 

by Shuter (1979) or Daines et al. (2014), who assume that uptake rates are diffusion-

limited.  

 The phosphorus quota for functional elements of the cell (thus not including any 

storage) is determined by the allocation to biosynthesis E and the percentage pDNA of 

cellular dry mass allocated to DNA:  

𝑄𝑄𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏(𝐸𝐸, 𝑟𝑟) =
4
3
𝜋𝜋𝑟𝑟3𝜌𝜌cell𝑡𝑡dry

(𝛼𝛼𝐸𝐸𝐸𝐸𝑑𝑑rib + 𝑡𝑡DNA𝑑𝑑DNA)
31

. (14) 

Here, we assume that there is no contribution to the functional-apparatus P quota from 

phospholipids, which instead are merged with storage molecules. This differs from Daines 

et al. (2014), who assumes that phospholipids, occupy 10% of the cell by mass. 

Phytoplankton can substitute sulfoquinovosdiaglycerol (SQDG) for phospholipids in their 

cell membranes under low P conditions (Van Mooy et al. 2009). Similarly, P storage 

molecules are also regulated by P availability. Thus, we treat phospholipids and P storage 

as one pool.  

 The function fP is the cellular response to light levels and is chosen to capture the 

effects of both electron transport and carbon fixation on photosynthesis; it is also closely 

related to a previous model (Talmy et al. 2013). This prior model included four 

compartments: electron transport, carbon fixation, photoprotection, and biosynthesis. It 

was found that photoprotection allocation was not a large or greatly changing component 

of their allocations. We therefore do not include this within our model due to its high 
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complexity with little qualitative results. Our biosynthesis was also separately 

parametrized.  

 The decomposition of photosynthesis into light harvesting and carbon fixation 

components is critical and makes our model predictions agree much better with 

experiments studying the variations of C:P or N:P ratios with irradiance. Models that do not 

have their decomposition predict too large a decrease in cellular allocations to 

photosynthesis at high light levels. In a two-compartment model, increases in allocations to 

carbon fixation cause the overall allocation to light harvesting to have a more mild 

decrease. The two-compartment treatment also seems more physiologically realistic than a 

one-compartment treatment, which only models photosynthetic pigments. Thus, we used 

the functional forms and parameters that were derived (experimentally) previously for 

carbon fixation and light harvesting (Talmy et al. 2013).  

 Our model interprets light harvesting allocation, L, as being composed of proteins 

dedicated to carbon fixation (F1), such as RuBisCO, and proteins dedicated to light 

harvesting (F2), such as photosynthetic pigments. The rate of photosynthetic carbon 

fixation is a function of allocations to each of these, which satisfy F1 + F2 = L. The relative 

allocations together determine the overall photosynthetic rate:  

𝑑𝑑max = min�𝑘𝑘1𝐹𝐹1,𝑘𝑘2𝐹𝐹2�,𝑓𝑓𝑝𝑝 = 𝑑𝑑max �1 − 𝑡𝑡𝑒𝑒𝑡𝑡 �
−𝛼𝛼ph𝜙𝜙𝑀𝑀𝐹𝐹2𝐼𝐼

𝑑𝑑max
��. (15) 

 For a given I and L, there is a pair of values (F1,opt, F2,opt) that maximize the 

photosynthetic rate fP. We estimate the photosynthetic rate fP(L, I) under the assumption 

that cells assume the optimal allocations to carbon fixation and electron transport. Our 

model departs from the developed by Shuter (1979) and Daines et al. (2014), which 
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assume that energy acquisition is a linear function of light levels leading to functional 

responses linearly proportional to the cellular investment in light harvesting proteins. 

 We model photosynthesis as having Q10 = 1, which is consistent with physiological 

studies going back to Shuter (1979) that suggest that photosynthetic efficiency does not 

depend on temperature over physiologically relevant ranges. The discrepancy between 

photosynthetic and biosynthetic temperature dependence has traditionally been explained 

by referring to the differences in the chemistry and physics of the two processes. The 

electron transport chain relies on quantum mechanical processes, which are unaffected by 

variations in temperature in a physiologically relevant range (Devault 1980). Required 

maintenance respiration rates are also modeled as having a Q10 = 2.0 (Devault 1980). We 

model the phytoplankton community residing in a given environment by assuming it 

consists solely of the phytoplankton type using the highest growth rate strategy in that 

environment. This strategy is found by solving for the values of r and E and that make  

𝜇𝜇 = 𝜇𝜇𝐿𝐿 = 𝜇𝜇𝑃𝑃 = 𝜇𝜇𝐸𝐸 . (16) 

 We will now show that under two assumptions that will be true in nearly any 

realistic situation, a strategy maximizing μ always exists, is unique, and satisfies μ = μL = μP 

= μE (Figure 3.4). The function μL is a function of the chosen strategy (r, E), and it is an 

increasing function of r and decreasing function of E. The first assumption is that light 

levels are sufficiently high that there exists some rmin such that μL (rmin, 0) > 0, which means 

that light is sufficient for some phytoplankton to be able to overcome maintenance costs. 

The function μP is a monotonically decreasing function of both r and E. As there is a non-

zero amount of P contained in the structure pool, and because uptake rates decline to zero 

with r, there will be some rmax at which μP(rmax,0) > 0. The second assumption is that rmin < 
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rmax, which will be true for most realistic value of light levels. We note that fixed r, μE is a 

monotonically decreasing function of E. Since none of μE, μL, or μP have critical points, the 

function μ can only have a maximum at places where two or more of μE, μL, and μP are 

equal, or at the boundaries of the strategy space. On the boundaries of strategy space, E = 0 

or L = 0 so that μ ≤ 0. We can exclude the boundary and focus on places where two or more 

μE, μL, and μP are equal. We define two curves: one on which μL= μE and the other on which 

μE = μP. The curve for which μE= μL begins at the point r = rmin and can be described by a 

monotonically increasing function E = g(r) on the interval [rmin, ∞]. This curve exists 

because μE = 0 when E = 0, μL >0 when E = 0, so that there is always a solution to μL = μE for 

fixed r >rmin. To see that the curve is an increasing function of r, consider the function V(E,r) 

= μL - μE and apply the chain rule to the equation V(g(r), r) = 0 to find that along the curve E 

= g(r):  

𝑑𝑑𝐸𝐸
𝑑𝑑𝑟𝑟

= 𝑔𝑔′(𝑟𝑟) =
−𝜕𝜕𝑉𝑉𝜕𝜕𝑟𝑟
𝜕𝜕𝑉𝑉
𝜕𝜕𝐸𝐸

. (17) 

 We consider the terms in Eq. (17) carefully. The function V is an increasing function 

of r because μE is independent of r because μL is an increasing function of r (for a fixed 

investment in photosynthesis and greater photosynthetic growth rate). Thus, the 

numerator of Eq. (17) is negative. The function V is a decreasing function of E because μL is 

a decreasing function of E (greater investments in biosynthesis at fixed radius lead to 

smaller investments in photosynthesis) and μE is an increasing function of E. Thus the 

denominator of Eq. (17) is negative, and the quotient on the right-hand side is positive, so 

g’(r) is positive and describes an increasing curve.  
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By similar logic, we can define a curve h(r) that solves the equation μP(h,r) = μE(h,r). 

This curve exists on the finite interval [rI, rmax], where rI solves the equation 𝜇𝜇𝑃𝑃(1−

𝑉𝑉(𝑟𝑟𝐼𝐼), 𝑟𝑟𝐼𝐼) = 𝜇𝜇𝐸𝐸(1 − 𝑉𝑉(𝑟𝑟𝐼𝐼), 𝑟𝑟𝐼𝐼). Thus, ℎ(𝑟𝑟)represents a decrasing curve from the point 

(1 − 𝑉𝑉(𝑟𝑟𝐼𝐼), 𝑟𝑟𝐼𝐼) to (0, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚). We can see that ℎ(𝑟𝑟) is always decreasing by using the chain rule 

on 𝜇𝜇𝑃𝑃(ℎ, 𝑟𝑟) − 𝜇𝜇𝐸𝐸(ℎ, 𝑟𝑟) = 0, just as in the previous argument. 

The growth maximizing strategy must occur somewhere on the curves described by 

(𝑔𝑔(𝑟𝑟), 𝑟𝑟) and (ℎ(𝑟𝑟), 𝑟𝑟). The functions 𝜇𝜇1(𝑟𝑟) = 𝜇𝜇(𝑔𝑔(𝑟𝑟), 𝑟𝑟) and 𝜇𝜇2(𝑟𝑟) = 𝜇𝜇(ℎ(𝑟𝑟), 𝑟𝑟) are 

continuously differentiable functions of 𝑟𝑟 except where 𝑔𝑔(𝑟𝑟) = ℎ(𝑟𝑟) (which must exist by 

the intermediate value theorem). Therefore, the only place where 𝜇𝜇 can have a maximum is 

at the place where 𝑔𝑔(𝑟𝑟) and ℎ(𝑟𝑟) intersect. This is the strategy that leads to equality of all 

the growth rates.  We refer to this strategy, as a function of environmental conditions, as 

�𝑟𝑟𝑚𝑚(𝑑𝑑, 𝐼𝐼,𝑇𝑇),𝐸𝐸𝑚𝑚(𝑑𝑑, 𝐼𝐼,𝑇𝑇), 𝐿𝐿𝑚𝑚(𝑑𝑑, 𝐼𝐼,𝑇𝑇)�. Using this strategy, we can predict the stoichiometry of 

the functional components of the phytoplankton population in a given environment. 

We assume that real phytoplankton populations cluster near the optimal strategy in 

the local environment (Norberg et al. 2001): 

(𝐸𝐸𝑚𝑚, 𝑟𝑟𝑚𝑚) = argmax(𝐸𝐸,𝑟𝑟)𝜇𝜇. (18) 

For all values of environmental parameters used in this study, the unique maximum of the 

growth rate occurs for the set of parameter values that lead to co-limitation by nutrients, 

photosynthesis, and biosynthesis, analogously to the predictions of Klausmeier and co-

workers (2004). The optimal strategy determines the model prediction of the C:P of 

functional components in a given environment by taking the quotient of the carbon and 

phosphorus quotas. The carbon quota is calculated as:  
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𝑄𝑄𝐶𝐶 =
�
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼

𝑟𝑟 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙+𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐+𝛼𝛼𝐸𝐸𝐸𝐸𝐶𝐶rib+�(1−𝛼𝛼𝐸𝐸)𝐸𝐸+𝐿𝐿+
𝑚𝑚𝑙𝑙𝑟𝑟𝑝𝑝𝑝𝑝𝛼𝛼

𝑟𝑟 �𝐶𝐶𝑙𝑙𝑟𝑟𝑝𝑝𝑝𝑝+𝑝𝑝DNA𝐶𝐶DNA�

4
3𝜋𝜋𝑟𝑟

3𝜌𝜌cell𝑝𝑝dry
. (19) 

Here we see the contributions of carbon contained in both functional and storage pools, the 

latter of which are assumed to occupy a fixed fraction of the cell independent of the 

environment (but linked to cell size). 

Measurements of cellular P partitioning indicate that the ribosomal RNA can 

sometimes contribute only 33% of the total P quota (Garcia et al. 2016). The additional 

phosphorus includes membrane phospholipids and storage compounds, each of which can 

be up- or down-regulated in response to phosphorus availability in the environment. To 

model this phenomenon, we assume the existence of an additional stored P pool, whose 

size is a linear function of environmental P, or: 

(𝑑𝑑:𝑑𝑑)𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑚𝑚𝑠𝑠𝑒𝑒 = 𝜖𝜖[𝑑𝑑], (20) 

where 𝜖𝜖 is determined by the best fit to the Martiny et al. (2014) data. Our model then 

predicts C:P as: 

𝑑𝑑:𝑑𝑑 =
1

(𝑑𝑑:𝑑𝑑)(𝐸𝐸𝑚𝑚,𝑟𝑟𝑚𝑚) + 𝜖𝜖[𝑑𝑑]. (21) 

The model parameter 𝜖𝜖 is calculated by minimizing the residuals of the P:C ratio 

predicted by Eq. (19) in comparison to the global dataset on particulate organic matter 

stoichiometry compiled by Martiny et al. (2014). To maintain consistency with the linear 

regression model of Galbraith and Martiny (2015), we restrict the dataset to observations 

from the upper 30 m of the water column containing particulate organic phosphorus and 

carbon concentrations of greater than 5 nM. Observations from the same station and the 

same day, but at different depths in the water column are averaged together. The P:C ratio 



106 
 

of the functional apparatus is calculated using irradiance, T, and P data from the World 

Ocean Atlas (Garcia et al. 2014b; Locarnini et al. 2013 

oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3B/PAR/2014/, last access: 12 

April 2018.), which are used to estimate environmental conditions at the location and date 

of particulate organic matter measurements. Light levels are computed by averaging 

irradiance over the top 50 m of the water column, assuming an e-folding depth of 20 m.  

Linear regression determines 𝜖𝜖 = 2500 M −1 which fits the data with an 𝑅𝑅2 = 0.28. All 

parameters for the model are listed in Table 3.2.   

Experimental Design 

To address how changing environmental conditions affected stoichiometric ratios, 

carbon export, and pCO2,atm we performed two tests: a change in nutrients and a change in 

sea surface temperature. These tests allowed us to observe how the relationships between 

environmental conditions, carbon export and pCO2,atm depend on the mechanisms 

responsible for stoichiometric variation in the ocean. In order to account for the effects of 

particulate inorganic carbon (PIC) export, we multiply model predicted C:Pexport by 1.2, 

consistent with previous studies (Broecker 1982; Sarmiento & Toggweiler 1984).  

The first set of numerical experiments examined the sensitivity of pCO2,atm to 

nutrient availability in the tropical and subtropical boxes for each of the three 

stoichiometric models. We varied tropical P from 0.15 to 1.5 μM and subtropical P from 

1x10-3 to 0.5 μM by adjusting the implied biological export and determined the equilibrium 

pCO2,atm values.  

The second set of experimental tests was done to quantify how temperature 

modifies carbon export and pCO2,atm for each stoichiometric model. Temperature influences 
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carbon cycling in two ways within our model: through the solubility of inorganic carbon in 

seawater and through changes in phytoplankton stoichiometry within the temperature-

only and multi-environmental models. Due to the well-known effects of temperature on 

CO2 solubility, it is generally predicted that there is to be a positive feedback between 

pCO2,atm and temperature mediated by declining CO2 solubility at high temperatures. To 

study the relative strengths of the temperature solubility feedback and the temperature 

regulation of C:P feedback, we performed a numerical experiment in which we varied the 

sea surface temperature by 5°C in either direction of modern sea surface temperature. This 

represents a plausible range of variation under both ice-age and anthropogenic climate 

change scenarios. We varied tropical temperature from 21 to 31°C and subtropical 

temperature from 19 to 29°C, determining equilibrium pCO2,atm values for combinations of 

temperature conditions.  

Results 

To quantify the linkages between phytoplankton and physiology, elemental 

stoichiometry, and ocean carbon cycling, we divide our results into two parts. The first is a 

direct study of the stoichiometric models, comparing their predictions about the 

relationship between stoichiometry and environmental conditions, and in the case of the 

trait-based model, illustrating how cellular physiology is predicted to vary across these 

conditions. In the second part, we show how variable stoichiometry influences carbon 

export and pCO2,atm, under changing phosphorus concentrations and temperature. Within 

these results, we distinguish the influence or lack thereof off the three distinct biomes; in 

particular the equatorial upwelling regions and the macronutrient depleted subtropical 

gyres.  
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Multi-environmental and physiological controls on plankton stoichiometry 

 Out multi-environmental model captured several major mechanisms hypothesized 

to be environmental drivers of C:P ratios, including a temperature dependence of many  

cellular processes, a link between growth rate and ribosome abundance, and storage 

drawdown during nutrient limitation. The predicted relationship between environmental 

conditions and C:P can be understood through the environmental regulation of three 

factors: (i) the balance between photosynthetic proteins and ribosomes, (ii) the cell radius 

and associated allocation to structural material, and (iii) the degree of phosphorus storage. 

Our model predicted that for an optimal strategy, specific protein synthesis rates will 

match specific rates of carbon fixation. Thus the ratio of photosynthetic machinery to 

biosynthetic machinery is primarily controlled by irradiance and temperature. Increases in 

light levels lead to higher photosynthetic efficiency, higher ribosome content, smaller cells 

(due to a lower requirement for photosynthetic machinery), and lower C:P ratios (Figure 

3.5). The response of C:P to light levels predicted by our model was muted in comparison to 

other subcellular compartment models because we separately modeled electron transport 

and carbon fixation (Talmy et al. 2013), and our predictions were consistent with the weak 

relationship between irradiance and C:P (Thrane et al. 2016) (Figure 3.5A).  

 Increases in temperature increase the efficiency of biosynthesis, but not 

photosynthesis. Therefore elevated temperature lead to a reduced ribosome content 

relative to photosynthetic proteins and higher C:P ratios (Figure 3.6A). This leads to a non-

monotonic, concave relationship between temperature and cell size, which is due to a 

subtle interaction between biosynthesis efficiency (which varies greatly with temperature), 

maintenance costs, and size-dependent uptake rates.  
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 Nutrient concentrations do not affect the ratio of biosynthetic to photosynthetic 

machinery but positively relate to both P storage and cell radius. Cell radius directly 

influences the specific rate of nutrient uptake and indirectly influences biosynthesis and 

photosynthesis as the cell membrane and wall affects the space available for other 

investments. This effect is pronounced in oligotrophic conditions (P< 100nM). Here, cell 

radius declines below 1 μm, resulting in decreasing allocations to both photosynthesis and 

biosynthesis and elevated C:P ratios. Higher values of the cell radius are observed in 

nutrient-rich conditions.  

 P concentrations also influenced C:P through the direct control of P storage. We 

plotted the relative contribution of the storage compartment and the functional 

compartment to the P quota, as a function of environmental conditions. The impact of the 

residual pool on the overall size of the P pool is heavily dependent on environmental 

conditions, varying from a minimum of close to 0% to a maximum of just under 50%. In the 

vast majority of the parameter range considered here, the contribution of the residual pool 

is much more modest (10-20%). High values occur when phosphorus is available and the 

temperature is high. In these conditions, ribosomal contributions are decreased but the 

residual contribution is high. In cold water, high P ecosystems, the residual contribution is 

approximately 25% and in oligotrophic ecosystems it is close to 0. Thus, C:P was predicted 

to be a decreasing function of P with two distinct regimes: a moderate-sensitivity regime 

for P above 100nM, and a high-sensitivity regime for P below 100 nM.  

 We next used the outcome of the trait model as a multi-environmental model to 

predict C:P ratios in the modern ocean based on annual mean light, T, and P. Our 

predictions reproduced the global pattern (Martiny et al. 2013a) with C:Pratios above the 
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Redfield ratio in subtropical gyres and C:P ratios below the Redfield ratio in equatorial and 

coastal upwelling regions and subpolar gyres (Figure 3.7A). Additionally, our model also 

reproduced basin-scale stoichiometric gradients among similar biomes in each ocean, 

predicting the highest C:P ratios in the western Mediterranean Sea and the western North 

Atlantic Subtropical Gyre, and somewhat elevated C:P ratios in the South Atlantic 

Subtropical Gyre as well as the North and South Pacific subtropical gyres. 

 To study the potential impact of sea surface temperature on phytoplankton resource 

allocation and stoichiometry, we used our multi-environmental model to predict C:P in 

ocean conditions both 5°C colder (cooling environments) and warmer (warming 

environments) than the modern ocean. According to our model, a 5°C increase (or 

decrease) in sea surface temperature would cause a 15% rise (or fall) in C:P ratios (Figure 

3.7). This sensitivity suggested that the relative effect of T on biochemical processes could 

have large implications for biogeochemical cycles, making it important to determine the 

relative importance of physiological mechanisms regulating C:P ratios.  

 We compared the multi-environmental model to the predictions made by two other 

models: the nutrient-only model used by the Galbraith and Martiny model (2015), and our 

temperature-only model modified from Yvon-Durocher et al. (2015). These two models 

also successfully predicted the qualitative pattern of stoichiometric variation in the ocean, 

but they were unable to replicate the full range of variation observed in the data (Figure 

3.8). In particular, there were mismatches in the North Atlantic Subtropical Gyre and the 

Southern Ocean, where the C:P ratio is at the extreme (Figure 3.8A, B). The nutrient-only 

model has a tendency to predict lower C:P ratios than the multi-environmental model in 

warm tropical and subtropical waters, and predict higher C:P ratios in cold waters (Figure 
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3.8A). This difference is driven by the T sensitivity of biosynthesis in the multi-

environmental model, leading to increasing C:P in all warm-water regions and decreasing 

C:P in cold-water regions (Figure 3.8C). The multi-environmental model predicted a wider 

range of C:P in the ocean. The temperature-only model overall had higher C:P ratios 

globally compared with the multi-environmental model (Figure 3.8B) but suggested lower 

C:P in the gyres and higher C:P in high latitudes, especially in the Southern Ocean (Figure 

3.8D).  

Impact of nutrient availability on carbon export and atmospheric pCO2 

 We next quantified the impact of nutrient availability in the tropics and subtropics 

on stoichiometry, carbon export, and pCO2,atm (Figure 3.9A-L). Using a constant Redfield 

model (or the temperature-only model), we replicated the previously observed 

approximately linear relationship between surface P and pCO2,atm (equivalent to how pre-

formed P will influence pCO2,atm) (Ito & Follows 2003; Sigman & Boyle 2000). We found 

that P drawdown in the subtropical box had a greater impact on carbon export, since 

export from the high-latitude box was not enhanced by the P supply from the subtropical 

box (Figure 3.9A, D, G). In the Redfield model, pCO2,atm appeared to be much more sensitive 

to subtropical P than tropical P, which was partially due to enhanced carbon export in the 

subtropical box and partially due to the larger surface area of the subtropical box (implying 

a greater potential for CO2 exchange) (Figure 3.9J).  

 In contrast to the predictions made using Redfield stoichiometry, when we used the 

nutrient-only model for phytoplankton stoichiometry, we observed a nonlinear 

relationship between surface P and pCO2,atm (Figure 3.9B, E, H, K). At fixed tropical P, there 

was a strong relationship between subtropical P drawdown, export, and pCO2,atm in 
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accordance with the findings of Galbraith and Martiny (2015) (Figure 3.9B, E, H). The total 

decline in pCO2,atm as subtropical P declined from 0.4 to 1 x 10-3 μM could be more than 60 

ppm, which was more than twice the decline that occurred in the fixed stoichiometry 

experiment (Figure 3.9K). We found a nonlinear monotonic relationship between tropical P 

and pCO2,atm: when tropical P was high, declines in tropical P led to lower carbon export 

and increased pCO2,atm. However, this trend reversed when tropical P was further drawn 

down (Figure 3.9K). The counter-intuitive decline in pCO2,atm with higher export from the 

tropics was driven by a teleconnection in nutrient delivery between the subtropical and 

tropical boxes. Increases in export in the tropical box due to P drawdown decreased the 

supply of P to the subtropics, which led to a decrease in the more efficient (higher C:P) 

subtropical export. Thus, the nutrient-only model predicted a greater decrease in 

subtropical export than the increase in tropical export.  

 The multi-environmental model also predicted a nonlinear relationship between P 

drawdown, carbon export, and pCO2,atm. However, the pattern was somewhat distinct from 

that of the nutrient-only model results (Figure 3.9C, F, I, L). First, subtropical P drawdown 

had a nonlinear relationship with pCO2,atm: when subtropical P was high, declines in 

tropical P led to slight declines in pCO2,atm, and when subtropical P is low, small declines in 

tropical P lead to large declines in pCO2,atm. This intensification of the relationship between 

subtropical P and pCO2,atm was due to the nonlinear relationship between P and C:P 

predicted by the trait-based model (Figure 3.9I). The multi-environmental model predicted 

extremely high tropical export, but only when P was lower than 0.05 μM (Figure 3.9C, F, I). 

Second, the effect of tropical P levels on pCO2,atm was strongly modulated by subtropical P, 

reversing from a negative to a positive relationship as subtropical P decline (Figure 3.9I, L). 
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The difference between the nutrient-only model and the multi-environmental model arose 

because the multi-environmental model incorporated a temperature impact on resource 

allocation and elemental ratios. Although we were not varying temperatures in these 

experiments, we did represent regional temperature differences between the different 

boxes. The result in that a large stoichiometric contrast between the tropical and 

subtropical regions only arose when there was a large difference in nutrient levels between 

the two regions (Figure 3.9L). However, both the nutrient-only model and the multi-

environmental model predicted that carbon export and pCO2,atm were sensitive to the 

interaction between regional nutrient availability and C:Pexport.  

Interactive effect of temperature on stoichiometry, carbon export, and atmospheric 

pCO2 

 We next quantified the impact of sea surface temperature (SST) in the tropics and 

subtropics on C:Pexport, carbon export, and pCO2,atm (Figure 3.10A-D). The Redfield model 

predicts that increases in temperature lead to a decline in the solubility of CO2 in seawater 

and consequently an increase in pCO2,atm from 288 to 300 ppm (Δ pCO2,atm = 12) (Figure 

3.10A). This feedback was present with the same strength in the nutrient-only model (with 

no T dependence on C:P), in which pCO2,atm ranged from 268 to 280 ppm (Δ pCO2,atm = 12) 

(Figure 3.10B).  

 In contrast to the Redfield and nutrient-only models, the temperature-only model 

predicted a negative linear relationship between pCO2,atm and tropical sea surface T and a 

positive linear relationship between pCO2,atm and subtropical sea surface T (Figure 3.10C). 

The decline in pCO2,atm with tropical SST was driven by an enhancement of export due to 

increased C:P at higher temperatures (Figure 3.11). At 5°C below modern ocean 



114 
 

temperature, the model predicted C:P in the tropics was 131 and subtropical was 121, 

resulting in a pCO2,atm of 305 ppm. At 5°C above modern ocean temperature, the model 

predicts a C:P ratio in the tropics of 189 and C:P ratio of 175 in the subtropics, resulting in a 

pCO2,atm of 263 ppm. Tropical SST had more impact with Δ pCO2,atm = 41 ppm compared to 

subtropical SST, with a Δ pCO2,atm ranging from 4 to 5 ppm (Figure 3.11).  

 Similar to the temperature-only model, the multi-environmental model predicted a 

negative linear relationship between pCO2,atm and tropical SST and a positive linear 

relationship between pCO2,atm and subtropical SST (Figure 3.10D). The decline in pCO2,atm 

with tropical SST was driven by an enhancement of export due to increased C:P at  higher 

temperatures (Figure 3.11). In the subtropical region, the expected increase in export was 

mitigated by a decline in solubility. At 5°C below modern ocean temperature, the trait-

based model predicted that C:P in the tropics was 147 and that C:P in the subtropics was 

155, resulting in an increase in pCO2,atm to 279 ppm (Figure 3.11). Variation in tropical SST 

over a 10°C span led to a significant decline in pCO2,atm, with a Δ pCO2,atm of approximately 

46, and tropical C:P ranging from 147 to 210 (Figure 3.11). Because the subtropical box has 

a large surface area, the decrease in surface CO2 solubility at high temperatures is sufficient 

to overcome the increase in export due to higher C:P leading to a positive relationship 

between pCO2,atm and subtropical temperatures.  

Discussion 

 Here, we found that variable stoichiometry of exported organic material moderates 

the interaction between low-latitude nutrient fluxes and ocean carbon cycling. A full 

connecting circulation allows for complete movement of nutrients between ocean regions 

resulting in strong linkages between nutrient supply ratios and cellular stoichiometric 
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ratios (Deutsch & Weber 2012). It has been shown that the inclusion of an oceanic 

circulation connecting high- and low-latitude regions results in a feedback effect between 

high-latitude nutrient export and relative nutrient supply in low-latitudes (Sarmiento et al. 

2004; Weber & Deutsch 2010). Together, the inclusion of lateral transport between ocean 

regions and of deviations from Redfield stoichiometry within our model led us to predict 

the existence of strong teleconnections between the tropics and the macronutrient-limited 

subtropics. The degree of nutrient drawdown in the tropics had a strongly non-monotonic 

relationship with pCO2,atm because this drawdown influenced both nutrient supply to the 

subtropics and tropical C:P. The idea of biogeochemical teleconnections has been proposed 

before, but we found that variations in stoichiometry greatly enhance the importance and 

strength of such linkages (Sarmiento & Toggweiler 1984). Thus biome-scale variations in 

phytoplankton elemental stoichiometry may change the sensitivity of the carbon pump to 

other phenomena that regulate patterns of nutrient drawdown. We also see that the degree 

of nutrient drawdown had a strong impact on predicted (and observed) C:P leading to 

highly nonlinear controls on pCO2,atm, whereby increased export in the topics counter-

intuitively leads to increasing pCO2,atm. Large-scale gradients in stoichiometry can alter the 

regional efficiency of the biological pump: P supplied to high C:P regions leads to a larger 

export of carbon than P supplied to low C:P regions. This lends an important role to details 

of ocean circulation and other processes that alter nutrient supply and phytoplankton 

physiological responses in different surface ocean regions. Therefore, biome-scale 

variations in phytoplankton elemental stoichiometry can lead to a fundamental change in 

the partitioning of carbon between the atmosphere and the ocean.  



116 
 

 We have created a box model to simulate the impact of the low-latitude 

stoichiometric ratios, its environmental controlling factors, and the relationships to 

pCO2,atm. Low-latitude phosphorus concentrations can be set in one of two fashions; 

through iron limitation and through nutrient supply. Here we will briefly discuss how iron 

limitation would play a significant role on phosphorus concentrations and associated C:P. 

The biogeochemical functioning of tropical regions are commonly influenced by iron 

availability in such a way that macronutrients cannot be fully drawn down by 

phytoplankton (Coale et al. 1996; Moore 2004; Raven et al. 1999). The degree of nutrient 

drawdown has a strong impact on predicted (and observed) C:P. This environmental 

control on C:P could lead to highly nonlinear controls on pCO2,atm, whereby increased iron 

availability lead to increased P drawdown and export in the tropics. However, as we have 

shown this may lead to increasing rather than commonly assumed decreasing pCO2,atm. This 

link between iron and export would differ in the subtropics, where iron is thought to 

stimulate nitrogen levels through nitrogen fixation. This would result in elevated 

phosphate drawdown, higher C:P, and higher export. Thus, iron availability may play a 

complex role depending on whether there is an increased delivery in upwelling zones 

(leading to a potential declining global C export) or in the subtropical gyres (leading to a 

potential increase in global C export).  

 Past studies using box models have found pCO2,atm to be insensitive to low-latitude 

nutrients (Follows et al. 2002; Ito & Follows 2003; Sarmiento & Toggweiler 1984; 

Toggweiler 1999). This phenomenon was explored by DeVries and Peimeau (2009), who 

showed that the strength of the thermohaline circulation is the strongest control on 

pCO2,atm, and that changes in low-latitude export have a minor impact. Unlike our study, 
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such earlier work relied on a uniform Redfield stoichiometry. However, we find that when 

stoichiometric variation is included, carbon export and pCO2,atm become dependent on 

details of low-latitude processes.  

 It is important to recognize that a five-box model is an incomplete description of 

ocean circulation and that it is here used to illustrate important mechanisms, not to make 

precise quantitative predictions. In order for our model to adequately reflect important 

features of the carbon and phosphorus nutrient distributions, we had to carefully select the 

values of the thermohaline and wind-driven upper ocean circulations that lead to 

reasonable nutrient fluxes and standing stocks. The value of thermocline circulation, Tc, has 

been calibrated in different box models to range from 12 to 30 Sv (DeVries & Primeau 

2009; Galbraith & Martiny 2015; Sarmiento & Toggweiler 1984; Toggweiler 1999). 

Variations in the thermohaline circulation influence the abundance of nutrients in different 

boxes. Depending on the strength of this circulation, our model accumulated nutrients in 

the thermocline box and we tuned this parameter to most accurately mimic nutrient 

variation across ocean regions. Other caveats relates to our choice of the wind driven 

overturning circulation and the two-way flux values. Similar to the circulation values, a 

wide range of two-way flux values have been used in the literature. We therefore 

performed sensitivity experiments to find the best value for our full model setup, but the 

qualitative trends observed are insensitive to the choice of such fluxes.  

 Nutrient availability and temperature have been alternatively proposed as drivers 

of variation in stoichiometric ratios in the global ocean, and the strong statistical 

correlation between temperature and nutrients throughout the ocean has prevented 

identification of the relative importance of each factor (Martiny et al. 2013b; Moreno & 
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Martiny 2018). We see that although temperature regulation of C:Pexport can influence 

pCO2,atm, this regulation is strongly dependent on the detailed physiological control 

mechanisms and also generally diverge from expectations based on the solubility pump. 

The decrease in surface CO2 solubility at elevated temperature is sufficient to overcome the 

increase in export due to higher C:P leading to a positive relationship between pCO2,atm and 

subtropical temperatures.  It is important to point out that the relative importance of the 

two competing effect depends critically on the physical circulation of the ocean. Predicted 

increases in stratification are often invoked as mechanisms that would decrease the 

vertical supply of nutrients, which one might think would further compensate for the effect 

of higher C:P. However, the strength of the biological pump in the subtropics is also 

influences by lateral transport of nutrients (Letscher et al. 2015) as such we argue that it is 

unclear if you should expect increasing, unchanged, or decreasing C export in low-latitude 

regions with ocean warming and stratification. Similarly, it is unclear how increases in 

stratification might affect the strength of the solubility pump. The sensitivity of pCO2,atm to 

changes in subtropical surface temperatures depends critically on the volume of the ocean 

ventilated form the subtropics, i.e., on the volume of the thermocline box in our model. How 

this volume might change in response to a warming world is a complicated dynamical 

problem that is beyond the scope of the present work.  

 Our results do not identify whether temperature or nutrient concentrations is the 

most important driver of phytoplankton C:P, but they do suggest that the physiological 

effect of temperature could be important for ocean carbon cycling. Both the temperature-

only and multi-environmental models predict that temperature increases enhance tropical 

export, causing substantial decreases in pCO2,atm with temperature. This relationship is the 
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reverse of that predicted by the nutrient-only and Redfield models and represents a sizable 

potential negative feedback on carbon cycling. The multi-environmental model also 

predicted that C:P responds in a nonlinear fashion to P, with significantly increased 

sensitivity in highly oligotrophic conditions. Thus, a deeper understanding of the 

physiological mechanisms regulating phytoplankton C:P ratios is key to understanding the 

carbon cycle.  

 Our derivations of the multi-environmental model relies on several important 

assumptions. The growth rate in the multi-environmental model is determined by a set of 

environmental conditions and quantified by the specific rate of protein synthesis, carbon 

fixation, and phosphorus uptake. The effect of growth rate on stoichiometry will likely be 

dependent on whether light, a specific nutrient, or temperature control growth (Moreno & 

Martiny 2018). The magnitude of Q10 leads to uncertainty in our multi-environmental 

model because the range of possible values is highly dependent on the cell or organism 

being tested. In a study examining Q10 of photochemical processes ranged from 1.0 to 2.08, 

and for carboxylase activity of RuBisCO to be 2.66 (Raven & Geider 1988). In addition to 

the high uncertainty between Q10 values, there is high ambiguity associated with cellular 

inorganic P stores (e.g., polyphosphates and phospholipids) (Kornberg et al. 1999). P 

storage, such as polyphosphates, can serve as both energy and nutrient storage that may be 

regulated by unique environmental factors. Thus, we recognize multiple caveats within the 

trait-based model but expect that it improves our ability to link environmental and 

phytoplankton stoichiometry variation.  

Conclusions 
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 We find that processed that affect nutrient supply in oligotrophic gyres, such as the 

strength of the thermohaline circulation, are particularly important in setting pCO2,atm but 

via a complex link with C:Pexport. By explicitly modeling the shallow overturning circulation, 

we showed that increased export in the tropics, which might be influenced by increased 

atmospheric iron dust deposition, may lead to increases, rather than decreases, in pCO2,atm. 

Increased P drawdown in the tropics shifts export away from the subtropical gyres and 

changes the mean export C:P in the low-latitude ocean. Additionally, we find that it is 

difficult to separate nutrient supply and temperature controls on marine phytoplankton 

stoichiometry, carbon export, and pCO2,atm and we need better physiological experiments 

and field data to fully understand the relative impact of the two factors. Nevertheless, it is 

likely that both play a key role in regulating phytoplankton stoichiometry, C:Pexport, and 

ultimately ocean carbon cycling.  
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Figure 3.12 Box model design. (a) Sea surface breakdown by region. All peach-colored 
regions represent the tropical surface ocean box, the cream-colored regions represent the 
subtropical surface ocean box, and grey regions represent the high-latitude surface ocean 
box. (b) The model includes tropical (T), subtropical (S), and high-latitude (H) surface 
ocean boxes, a mixed thermocline (M) box, and a deep water (D) box. The thermohaline 
circulation Tc is set to 20 Sv, while the wind driven shallow overturning circulation is set to 
5 Sv. The high-latitude mixing flux fhd is set to 45.6 Sv. The thickness of box H is 1000 m, 
and box M is 900 m. Box T has a temperature of 26◦C, box S has a temperature of 24◦C, and 
box H has a temperature of 7◦C. Box S covers 39 % and box T covers 25% of the ocean 
surface area. 
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Table 3.2 High-latitude deep water exchange range. 

RANGE OF FHD [SV] SOURCESOURCE 

38.1 (Sarmiento and Toggweiler, 1984) 

3-300 (Toggweiler, 1999) 

60 (DeVries and Primeau, 2009) 

30-130 (Galbraith and Martiny, 2015) 

18-108 (default value 45.6) This Study 

  



129 
 

 
Figure 3.13 pCO2,atm (ppm) sensitivity to extreme fhd values under changing surface 
phosphate concentrations. (a) Range of pCO2,atm (ppm) using an fhd value of 18 Sv. (b) 
Range of pCO2,atm (ppm) using an fhd value of 108 Sv. 
  



130 
 

 

 

Figure 3.14 Diagram of physiological model. Phytoplankton strategies are represented in a 
two-dimensional strategy space (E, r). Each strategy is assigned a fitness in each 
environment using physiological principles, and the strategy with the highest fitness is 
selected to represent the local population. The stoichiometry of cellular components is used 
to calculate the stoichiometry of the functional pools in the cell.  
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Figure 3.15 Diagram of strategy space. The (r, E) plane is divided into a region in the first 
quadrant where L > 0 corresponds to the set of allowable strategies. The optimal strategy 
occurs at the point ropt, Eopt , denoted by the red rectangle, where µ = µL = µP =µE .  
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Table 3.3 Physiological Model Constants  

PARAMETER DESCRIPTION VALUE UNITS SOURCE 

α Proportionality 
coefficient for radius 

0.12 - (Toseland et al., 2013) 

γ Percent dry mass 
devoted to structure 

other than membrane 

0.2 - (Toseland et al., 2013) 

kE0 Synthesis rate of 
biosynthesis apparatus 

at T0=25 

0.168 hr−1 (Shuter, 1979) 

Q10,E Q10 of biosynthetic 
apparatus 

2.0  (Shuter, 1979) 

ΦM0 Specific carbon cost of 
maintenance at T0=25 

10−3 hr−1 (Shuter, 1979) 

Q10,M Q10 of maintenance 2.0 - (Shuter, 1979) 

Q10,P Q10 of photosynthesis 1.0  (Shuter, 1979) 

ΦS Carbon cost of synthesis 0.67 - (Shuter, 1979) 

aP Allometric scaling 
constant for VMP 

1.04×10−16 (mol P)(hr)−1 (Edwards et al., 2012) 

bP Allometric scaling 
exponent for VMP 

3.0 - (Edwards et al., 2012) 

aK Allometric scaling 
constant for KP 

6.4×10−8 (mol P)(L)−1 (Edwards et al., 2012) 

bK Allometric scaling 
exponent for KP 

1.23 - (Edwards et al., 2012) 

ρcell Cell Density 106 g/m3 (Shuter, 1979) 

pdry Fraction of dry mass in 
cell 

0.47 - (Toseland et al., 2013) 

αE Fraction of dry mass in 
biosynthetic apparatus 

0.55 - (Toseland et al., 2013) 
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devoted to ribosomes 

Prib Fraction of ribosomal 
mass in phosphorus 

0.047 - (Sterner and Elser, 2002) 

pDNA Fraction of cell dry mass 
in DNA 

0.01 - (Toseland et al., 2013) 

PDNA Fraction of DNA mass in 
phosphorus 

0.095 - (Sterner and Elser, 2002) 

k1 Specific Efficiency of 
Carbon Fixation 

Apparatus 

0.373 hr−1 (Talmy et al., 2013) 

k2 Specific Efficiency of 
Electron Transport 

Apparatus 

0.857 hr−1 (Talmy et al., 2013) 

αPh Light Absorption 1.97 m2/gC (Morel and Bricaud, 1981) 

ϕM Maximum Quantum 
Efficiency 

10−6 gC/μmol photons (Falkowski and Raven, 1997) 

𝑡𝑡𝑙𝑙𝑏𝑏𝑝𝑝 Fraction of cell 
membrane composed of 

lipids 

0.3 - (Toseland et al., 2013) 

𝑡𝑡𝑝𝑝𝑟𝑟𝑏𝑏𝑏𝑏 Fraction of cell 
membrane composed of 

protein 

0.7 - (Toseland et al., 2013) 

𝑡𝑡𝑙𝑙𝑏𝑏𝑝𝑝 Fraction of cell dry mass 
in storage lipids 

0.1 -  

(Sterner and Elser, 2002) 

𝑡𝑡𝑐𝑐𝑚𝑚𝑟𝑟𝑏𝑏 Fraction of cell dry mass 
in storage carbohydrates 

0.04 - (Sterner and Elser, 2002) 

𝑑𝑑𝐷𝐷𝐷𝐷𝐴𝐴 Fraction of DNA mass in 
Carbon 

0.36 - (Sterner and Elser, 2002) 

𝑑𝑑𝑟𝑟𝑏𝑏𝑏𝑏 Fraction of ribosomal 
mass in Carbon 

0.42 - (Sterner and Elser, 2002) 

𝑑𝑑𝑝𝑝𝑟𝑟𝑏𝑏𝑏𝑏 Fraction of protein mass 
in Carbon 

0.53 - (Sterner and Elser, 2002) 
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𝑑𝑑𝑙𝑙𝑏𝑏𝑝𝑝 Fraction of lipid mass in 
Carbon 

0.76 - (Sterner and Elser, 2002) 

𝑑𝑑𝑐𝑐𝑚𝑚𝑟𝑟𝑏𝑏 Fraction of carbohydrate 
mass in Carbon 

0. 4 - (Sterner and Elser, 2002) 
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Figure 3.16 Influence of phosphate concentration and irradiance on cellular stoichiometry 
and cellular traits, at a constant T = 25°C. A) Cell radius (r). B) P storage allocation. C) 
Biosynthesis allocation. D) Photosynthesis (L) allocation. E) The C:P ratio. As irradiance 
increases, there is a tendency towards greater allocation to biosynthesis and lesser 
allocation to photosynthesis, which leads to lower C:P ratios. When phosphorus is very low, 
there is a large decrease in both biosynthesis and photosynthesis allocations due to the 
large relative allocation to the cell membrane. C:P ratios are inversely proportional to 
phosphorus concentration, driven by an increase in luxury storage and ribosomal content 
as P increases. 
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Figure 3.17 Influence of phosphate concentration and temperature on cellular 
stoichiometry and cellular traits, at a constant irradiance I = 50µEm−2s−1. A) Cell radius (r). 
B) P storage allocation. C) Biosynthesis allocation. D) Photosynthesis (L) allocation. E) The 
C:P ratio. Consistent with the translation compensation hypothesis, increases in T led to a 
reduction in the allocation to biosynthesis and an increase in C:P.  
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Figure 3.18 Predicted C:P ratios in the global ocean in differing climatic regimes. (a) C:P 
ratio under modern ocean conditions. Large differences in C:P are predicted between 
distinct types of ocean biome, with low C:P in equatorial upwelling regions and subpolar 
gyres, and high C:P in subtropical gyres. Regional differences between biomes of similar 
type are observed as well, with the low-phosphorus Atlantic having a higher C:P than the 
Pacific. (b) C:P ratio under cooling temperature conditions (5◦C from the modern ocean). 
(c) C:P ratio under warming temperature conditions (5◦C from the modern ocean). Each 
5◦C change leads to a shift of 15 % in the mean C:P ratio of organic matter. 
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Figure 3.19 Comparison of C P between the multi-environmental model and the nutrient-
only model and temperature-only model. The upper panels show predicted C:P for the 
global ocean under the nutrient-only (a) and temperature-only (b) models, and the lower 
panels show the normalized difference, i. e. C:Psubcell−C:Pother

C:Psubcell
, between the C : P in the 

subcellular model (c, d). 
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Figure 3.20 Carbon export (T mol C yr-1) and pCO2,atm (ppm) in changing surface phosphate 
concentrations. Columns correspond to type of stoichiometry: Redfield (a, d, g, j), nutrient-
only (b, e, h, k), and multi-environmental model (c, f, i, l). Rows correspond to either 
tropical carbon export (a–c), subtropical carbon export (d–f), total carbon export (g–i), or 
atmospheric pCO2 (j–l). The grey points represent where pCO2,atm was calculated, between 
spaces are interpolated.  
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Figure 3.21 pCO2,atm (ppm) as a function of changing surface temperature concentrations. 
Based on (a) Redfield (fixed) stoichiometry model, (b) nutrient-only stoichiometry model, 
(c) temperature-only stoichiometry model, and (d) multi-environmental stoichiometry 
model. 
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Figure 3.22 The effect of changing sea surface temperature (°C) on pCO2,atm and total carbon 
export (T mol C yr−1) in the temperature-only and multi-environmental model. Phosphate 
concentrations are 0.3 µM in the tropical and 0.05 µM in the subtropical box. Multi-
environmental model total carbon export is the solid grey line, and pCO2,atm is the dashed 
grey line. Temperature-only model total carbon export is the solid black line, and pCO2,atm is 
the dashed black line. 
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CHAPTER 4 
Latitudinal gradient in the carbon-to-oxygen respiration quotient and the 

implications for ocean oxygen availability 
 
Abstract 
 We show that the concentration of dissolved oxygen in the ocean is strongly 

sensitive to the respiratory oxygen demand of exported organic matter. Relatively small 

changes in the amount of oxygen consumed per unit of organic carbon respiration (i.e., the 

respiration quotient, 𝑟𝑟−𝑂𝑂2:𝐶𝐶) produce large changes in oxygen minimum zones with strong 

feedbacks on primary productivity through the nitrogen inventory. Because 𝑟𝑟−𝑂𝑂2:𝐶𝐶 has 

rarely been measured in the ocean, this result conveys a large uncertainty for future 

deoxygenation. We present direct measurements of 𝑟𝑟−𝑂𝑂2:𝐶𝐶 along a Pacific Ocean meridional 

transect that traverses all major biomes. Our measured 𝑟𝑟−𝑂𝑂2:𝐶𝐶  ranged from 0.73 to 1.54 

with a positive temperature relationship and a mean of 1.15. An independent inverse 

model constrained with global nutrients, oxygen, and carbon concentrations support this 

positive relationship between 𝑟𝑟−𝑂𝑂2:𝐶𝐶 and temperature. These results imply that future 

deoxygenation in response to warming will be more intense than previously anticipated. 

Keywords: Respiration quotient, oxygen levels 
 
Introduction 

Global warming is presently driving an observed marine deoxygenation, which is 

predicted to amplify in the future (Schmidtko et al. 2017). The resulting changes in oxygen 

levels will impact the size of oxygen minimum zones (OMZs) (Gruber 2011; Oschlies et al. 

2008) and could lead to increased loss of fixed nitrogen. Furthermore, the combination of 

ocean warming and declining oxygen levels may reduce the habitat range for many marine 

animals and possibly lead to mass extinction as seen at the end of the Permian period 

(Penn et al. 2018).  
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 One of the main uncertainties in predicting current and future oxygen levels is the 

regulation of the biological respiration demand (Oschlies et al. 2018). The respiration 

quotient describes the amount of oxygen needed during the consumption of one mole of 

organic carbon and is thus controlled by the carbon oxidation state (signified by z):   

Cx(H2O)w(NH3)yHzH3PO4 + �x +  1
4

z�O2 → xCO2 + yNH3 + H3PO4 + �w +  1
2

z�H2O (1) 

𝑟𝑟−𝑂𝑂2:𝐶𝐶 =
�𝑚𝑚+ 14𝑧𝑧�

𝑚𝑚
 ,     (2) 

with an additional oxygen demand due to nitrification:  

y NH3 +  2y O2 → yHNO3 + yH2O,     (3) 

yielding the total respiration quotient (𝑟𝑟𝛴𝛴−𝑂𝑂2:𝐶𝐶) describing the full oxidation of particulate 

organic matter:    

𝑟𝑟𝛴𝛴−𝑂𝑂2:𝐶𝐶 =
�𝑚𝑚+ 14𝑧𝑧+2𝑏𝑏�

𝑚𝑚
.     (4) 

Despite the great importance of linking carbon export to ocean oxygen loss, the respiration 

quotient has rarely been measured directly in the field (Karl & Grabowski 2017). Alfred 

Redfield implicitly assumed that all planktonic organic carbon consisted of carbohydrates 

(setting z to zero) and thus 𝑟𝑟−𝑂𝑂2:𝐶𝐶 = 1.0  and 𝑟𝑟𝛴𝛴−𝑂𝑂2:𝐶𝐶  = 1.3 (Redfield et al. 1963). However, 

carbohydrates represent a somewhat oxidized form of organic carbon and other 

macromolecules (especially lipids) are further reduced. Based on a theoretical estimation 

of phytoplankton biomass composition, Anderson (1995) and Laws (2000) independently 

estimated the respiration quotient to be ~1.1 and proposed limited biological variation. 

Ocean biogeochemical models and theories assume a constant respiration quotient but 

disagree on the exact value (Paulmier et al. 2009). 
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 There is some biological and geochemical evidence for a varying respiration 

quotient. The macromolecular composition of plankton differs across lineages (Finkel et al. 

2016b) and physiological states (Fraga et al. 1998) leading to predicted shifts in the 

respiration quotient (Fig. S4.1). A limited set of full elemental analyses of particulate 

organic matter provide support for variation in the carbon oxidation state (Chen et al. 

1996; Hedges et al. 2002). End-member mixing models of oxygen and DIC concentrations 

along isopycnal surfaces suggest large variance in 𝑟𝑟−𝑂𝑂2:𝐶𝐶  between ocean basins (Li 2002), 

but this method can have large biases (Schneider et al. 2005). Inverse model studies 

constrained by observations, find large-scale gradients in the 𝑟𝑟−𝑂𝑂2:𝑃𝑃 and 𝑟𝑟𝐶𝐶:𝑃𝑃 for the 

regeneration of organic matter (DeVries & Deutsch 2014; Teng et al. 2014). Simply dividing 

these two ratios suggests that 𝑟𝑟𝛴𝛴−𝑂𝑂2:𝐶𝐶 could range between 0.7 to 2.1. Such independent 

studies challenge the notion of a static link between the oxygen and carbon cycles, but the 

drivers, magnitude, and regional differences of the respiration quotient are unknown. 

Based on a set of prognostic ocean biogeochemical model simulations, direct 

chemical measurements from diverse biomes, and a global inverse model analysis, we 

address the following research questions: (i) what are the global biogeochemical 

implications of changing 𝑟𝑟−𝑂𝑂2:𝐶𝐶, (ii) what is the regional average and variation in 𝑟𝑟−𝑂𝑂2:𝐶𝐶, and 

(iii) does the regional variation in 𝑟𝑟−𝑂𝑂2:𝐶𝐶 systematically relate to specific environmental 

conditions?  

MATERIALS AND METHODS 

Sample Collection 

 Seawater samples were collected during the GO-SHIP P18 cruise aboard R/V Ronald 

H. Brown from November 11, 2016 to February 3, 2017 between 32.72° N, 117.16°W off 
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San Diego, CA to 77.85°S, 166.67°E near Antarctica (Fig. S4.2). Samples for particulate 

organic carbon (POC) and chemical oxygen demand (PCOD) were taken from 198 stations 

from the underway system. The underway intake was located at a depth of 5.3 m from the 

sea surface. All carboys were rinsed twice with filtered seawater before sampling. 

Triplicate samples for POC and sextuplicate samples for PCOD were taken every four hours 

with a one hour shift forward each day. Water was pre-filtered with a 30 μm nylon mesh 

(Small Parts #7050-1220-000-12) to remove rare large particles from the sample. 

Additional samples (triplicate for POC and sextuplicate for PCOD) were taken by removing 

the 30 μm nylon mesh, allowing all particles to collect in order to determine the total 

particulate organic matter from station 159 to 198. All samples were collected on pre-

combusted 500°C GF/F filters (Whatman, GE Healthcare, Little Chalfont, Buckinghamshire, 

UK) for the analysis of POC and PCOD. Sample volume was determined on a per station 

basis, ranging from 3 to 8 l. All filters were then folded in half, sealed inside pre-combusted 

aluminum foil, and stored at -20°C until analysis.  

Particulate Organic Carbon (POC) 

Filters were dried at 55°C (24 h) and then stored in a desiccator with concentrated 

hydrochloric acid fumes for 24 h to remove inorganic carbonates. The filters were dried for 

48 h at 55°C before being folded and pelletized into pre-combusted tin capsules (CE 

Elantech, Lakewood, New Jersey). Tin capsules were then analyzed on a Flash EA 1112 NC 

Soil Analyzer (Thermo Scientific, Waltham, Massachusetts) using an atropine (C17H23NO3) 

standard. 

Particulate Chemical Oxygen Demand (PCOD) Assay  
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Quantifying the Chemical Oxygen Demand is commonly used for wastewater and 

freshwater samples. The assay is based on the determination of residual potassium 

dichromate following organic matter oxidation with silver sulfate as catalyst under 

strongly acidic and high temperature (150°C) conditions (Baumann 1974; Moore et al. 

1949; Vyrides & Stuckey 2009). As dichromate does not oxidize ammonium, the assay only 

quantifies the oxygen demand from organic carbon. A major obstacle for using the method 

with seawater POM samples is the interference of chloride ions. As such, chloride is 

oxidized by dichromate and cause precipitation of silver chloride. Several efforts have been 

made to apply this method to seawater samples and the main solution is the addition of 

mercuric sulfate (Dobbs & Williams 1963). Thus, the method has the potential for 

quantifying the oxygen demand in POM. 

Here, we modified the assay to quantify the chemical oxygen demand from marine 

POM collected on GF/F filters. Specifically, GF/F filters with collected POM samples were 

dried overnight at 55°C. We then added the filter and 2 ml milli-Q water to HACH COD HR+ 

reagent vials (Product # 2415915 containing mercuric sulfate) and digested the samples at 

150˚C for 2 h. We learned that the major obstacle for this assay was uneven precipitation of 

silver chloride following digestion. Thus, we modified the assay to include a subsequent 

precipitation step by adding 92.1 μL of 9.5 M NaCl (minimum amount of chloride to induce 

consistent precipitation) to each vial. Vials were immediately inverted twice and 

centrifuged for 30 min at 2500 rpm to remove any precipitate. Finally, we quantified the 

remaining dichromate by absorbance at 600 nm using HACH certified COD standards (Fig. 

S4.3).  
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To validate the modified technique, we (i) tested for any interference using standard 

additions, (ii) established a linear relationship between input amounts and absorbance, 

and (iii) optimized the technique to achieve a variance similar to other POM analyses. First, 

we were quantitatively able to recover experimentally added organic carbon to seawater 

samples suggesting limited sample interference (Fig. S4.3). Second, we found that 

increasing sample volume (and associated amount of PCOD captured on filters) 

corresponded linearly to an increase in measured PCOD (Fig. S4.3C). Third, the coefficient 

of variance for PCOD and 𝑟𝑟−O2:C  corresponded to the coefficient of variance for POC and 

𝑟𝑟𝐶𝐶:𝑃𝑃, respectively (Fig. S4.3F). We did not fully explore the detection limit for our assay as 

the method was much more sensitive than one used for POC. Thus, our sampling strategy 

focused on recovering enough POC. These method development and optimization steps 

suggested that our assay provided an unbiased and sensitive method to quantify PCOD.  

 r−O2:C was computed from the mean concentrations of PCOD and POC. The standard 

deviation for 𝑟𝑟−O2:C was calculated as a pooled sample:  

σr−O2:C =  PCOD aver
POCaver

× √(( σPCOD
POCaver

)2 +  ( σPOC
POCaver

)2).   (5) 

The coefficient of variance was calculated as a pooled sample:    

cvr−O2:C =  σr−O2:C 
r−O2:C,aver

.       (6) 

 Statistical linear models were fitted using one or two predictor variables 

(Temperature (°C; T), Nutricline Depth (m; ZNO3 = 1 µM NO3), Phosphate (P), and N:Psurf ).  

Our standard POM assay quantifies particles less than 30 µm to avoid the stochastic 

presence of rare large particles. However, large phytoplankton are an important 

contributor to POM in the Southern Ocean. To address any uncertainties with this size 



148 
 

selection, we also collected POM with no size fractionation between 54° S and 69° S (Fig. 

S4.4A). We found that total [POC] or [PCOD] were only significantly different from the <30 

µm fraction at a few stations. Furthermore, 𝑟𝑟−𝑂𝑂2:𝐶𝐶 was not statistically different between 

the total and below <30 µm fractions. This suggested that capping the POM sample at a 

particle size of 30 µm did not affect the outcome of our analysis (Fig. S4.4C).   

Prognostic CESM Simulations 

A modified version of Community Earth System Model (CESM) was used for our 

300-year simulations, which included a prescribed 𝑟𝑟−𝑂𝑂2:𝐶𝐶  ranging between 0.8 and 1.3 in 

0.1 increments across model experiments. Model output was averaged over the last 20 

simulation years for analysis to remove short term variability. The model includes three 

phytoplankton functional groups (small, large, and diazotrophic phytoplankton) and 

multiple potentially growth-limiting nutrients (N, P, Fe, Si). The model has been used in 

CESM climate simulations (Moore et al. 2013, 2018). The ecosystem-biogeochemistry 

model code is a preliminary version of the CESM V2.1 code set, run within the coarse-

resolution CESM V1.2.1. ocean circulation model (Wang et al. 2019). Water column 

denitrification is initiated in the model when oxygen levels fall below 7 μM, with complete 

denitrification and no oxic remineralization below 5 μM (Moore et al. 2013). Additional 

documentation and model source code for CESM2.0 are available online 

(www2.cesm.ucar.edu). To quantify the changes in oxygen levels, denitrification rates, and 

net primary production, we subtracted the model output using a fixed 𝑟𝑟−𝑂𝑂2:𝐶𝐶 of 0.8 (Figure 

3.1A, D, and G) and 1.3 (Figure 3.1B, E, and H) from the simulation with fixed 𝑟𝑟−𝑂𝑂2:𝐶𝐶 of 1.0 

(Redfield quotient).  

Analysis of CMIP5 Model Output 
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 We obtained output from the Coupled Model Intercomparison Project Phase 5 

(CMIP5) models from the Earth System Grid Federation (Taylor et al. 2012). We calculated 

the changes in ocean oxygen content and rates of denitrification between the simulated 

1990s and 2090s for available biogeochemical models following the historical and 

Representative Concentration Pathway 8.5 (RCP8.5). This is the high-end, business as 

usual, emissions scenario with strong global warming over the 21st century.    

Bayesian Inverse Model Estimate of 𝒓𝒓−𝐎𝐎𝐎𝐎:𝐂𝐂 

The formulation of the biogeochemical inverse model builds on our previous inverse 

modeling work for the phosphorus and nitrogen cycles (Wang et al. 2019) by adding 

governing equations for the cycling of carbon and dissolved oxygen. The model also carries 

explicit tracers for the chemical-oxygen-demand (COD) so that it can keep track of organic 

carbon with different oxidative states.  The governing equations for the biogeochemical 

model are given subsequently. Here, we give a brief overview of the source and sink terms 

and introduce the parameters that need to be estimated from the data.  

  The optimal solution for the marine nitrogen cycle computed serves as the starting 

point for the new model (Wang et al. 2019). From that solution, the rate of organic nitrogen 

production is used to prescribe the rate of organic carbon production via a constant 

C:N=106:16 ratio:  

𝑑𝑑Corg = 𝑟𝑟C:N𝑑𝑑Norg. 

The rate of COD production is then diagnosed from the organic carbon production rate via 

a respiration quotient that varies spatially through its dependence on the sea-surface 

temperature (SST), i.e. 𝑟𝑟−O2:C = 𝑡𝑡(𝑉𝑉𝑉𝑉𝑇𝑇 − 15℃) + 𝑏𝑏: 

𝑑𝑑COD = 𝑟𝑟−O2:C𝑟𝑟C:N𝑑𝑑Norg. 
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The photosynthetic oxygen production is then diagnosed by combining the COD production 

rate with the rates of new and recycled organic N: 

 𝑑𝑑O2 =  𝑑𝑑COD + 2𝑅𝑅𝑑𝑑Norg −
3
4

(1 − 𝑅𝑅)𝑑𝑑Norg, 

where 1-R denotes the fraction of organic matter production tied to new sources of fixed N 

(either due to microbial N fixation or due to inputs from atmospheric deposition and 

rivers). A fraction 𝜎𝜎 of  𝑑𝑑Corg and 𝑑𝑑COD is allocated to the dissolved phase, i.e. to DOC and 

DCOD while the remaining is allocated to a sinking particulate phase. An estimate of the 

climatologically-averaged circulation constrained by temperature, salinity, mean sea 

surface height, natural radiocarbon, CFC-11 and the air-sea exchange of heat and 

freshwater is used to compute the transport and mixing of tracers in the dissolved phase 

(DeVries & Primeau 2011; Primeau et al. 2013). Tracers in the particulate phase (POC and 

PCOD) are transported downward using a depth-dependent sinking speed with a constant 

dissolution rate so as to produce a powerlaw flux attentuation profile with exponent 𝑏𝑏C. 

Particulate inorganic carbon is transported downward using  a constant sinking speed and 

dissolution rate so as to produce an exponentially decaying flux attenuation profile. All the 

POC and PCOD cycle through their corresponding dissolved phases before being respired 

according to a respiration rate coefficient, 𝜅𝜅𝑑𝑑C. The oxygen consumption rate is diagnosed 

from the respiration of carbon and the remineralization of organic nitrogen after correcting 

for the substitution of nitrate as the electron acceptor in the presence of water-column and 

sedimentary denitrification: 

𝐿𝐿O2 =  𝜅𝜅𝑑𝑑CDCOD + 2𝜅𝜅𝑑𝑑NDON −
5
4

(𝑉𝑉wc + 𝑉𝑉sed), 
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where 𝜅𝜅𝑑𝑑NDON is remineralization rate of organic N, and 𝑉𝑉wc + 𝑉𝑉sed is the fixed-N loss rate 

due to denitrification and anammox reactions.   

As formulated, the new inverse model includes five biogeochemical parameters that 

were not part of the previous N-cycle model: 𝑡𝑡, 𝑏𝑏, 𝜎𝜎, 𝜅𝜅𝑑𝑑C, and 𝑏𝑏C. Only the parameters 𝑡𝑡 

and 𝑏𝑏 that determine 𝑟𝑟−O2:C are of direct interest, but the additional parameters are 

uncertain and must also be estimated from the data. We use a Bayesian inversion 

procedure to account for their contribution to the uncertainty of 𝑟𝑟−O2:C (Wang et al. 2019). 

In this approach, the model-predicted concentrations of dissolved oxygen, DO2, dissolved 

organic carbon, DOC, and dissolved inorganic carbon, DIC, are used to define the mean of a 

multivariate normal probability distribution for the observations of O2, DOC, and DIC in the 

GLODAPv2 database (Key et al. 2015; Olsen et al. 2016). The resulting probability 

distribution, conditioned on the structural choice of our biogeochemical model, specifies 

the likelihood function for the Bayesian inversion procedure. Flat prior probability 

densities are assumed for 𝑡𝑡 and 𝑏𝑏, whereas flat priors are assumed for the logarithms of 𝜎𝜎, 

𝜅𝜅𝑑𝑑C, and 𝑏𝑏C. A trust-region optimization procedure is used to find the parameter values that 

maximize the posterior probability distributions. Parameter uncertainties are determined 

by approximating the posterior distribution near its maximum using a multivariate normal 

distribution.  

Results 

A change in the respiration quotient can have widespread impacts on ocean oxygen, 

nitrogen, and carbon processes. We conducted sensitivity simulations with a prognostic 

ecosystem and biogeochemistry model (Primeau et al. 2013; Wang et al. 2019) in which we 

varied 𝑟𝑟−𝑂𝑂2:𝐶𝐶 between 0.8 and 1.3. An increase from Redfield proportions (𝑟𝑟−𝑂𝑂2:𝐶𝐶 = 1) to a 
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high value (𝑟𝑟−𝑂𝑂2:𝐶𝐶 = 1.3) caused a 7% decrease in global dissolved oxygen levels and a 

187% expansion of OMZs volumes ([O2] <25μM; Fig. 1). This expansion as well as 

decreased oxygen concentrations at the water-sediment interface caused a 218% increase 

in total denitrification. Indirectly, through the loss of N, net primary production and carbon 

export at 100 m decreased by 4.9% and 5.1%, respectively. Thus, the respiration quotient 

is a first-order control on ocean biogeochemical cycles. 

The changes to ocean biogeochemical cycles from a varying respiration quotient are 

comparable in magnitude to business-as-usual climate change impacts by year 2100 (Fig. 

S4.5, Table S4.1). Climate simulations performed under scenario RCP8.5 showed a decline 

in the total dissolved oxygen content of the ocean between 3.1% and 4.7% by year 2100 

(Figure S4.5, Table S4.1). Climate warming impacts on ocean oxygen were similar in 

magnitude to a change in 𝑟𝑟−𝑂𝑂2:𝐶𝐶 of ~0.2. Therefore, changes in the respiration quotients 

rival generally accepted thermodynamic and physical impacts on ocean oxygen levels and 

could serve as an important feedback to climate change.  

To quantify the respiration quotient, we combined field measurements of 

particulate organic carbon (POC) and the required oxygen demand for respiration along 

the Eastern Pacific Ocean. We measured oxygen consumption by modifying and calibrating 

a method commonly used for measuring the particulate chemical oxygen demand (PCOD) 

in wastewater (Vyrides & Stuckey 2009). We then estimated the respiration quotient 

(𝑟𝑟−𝑂𝑂2:𝐶𝐶) across 198 stations along line P18 (Fig. S4.6). The cruise covered the Eastern 

boundary of the North Pacific Ocean subtropical gyre, the eastern Pacific Ocean equatorial 

upwelling region, the South Pacific Ocean subtropical gyre, and finally crossed several 

fronts in the Southern Ocean. Based on past biome delineations (Reygondeau et al. 2013) 
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and our environmental observations, we classified the transect into nine distinct regions 

(Table S4.2). Sea-surface temperature steadily decreased from 29.5°C to approximately 0°C 

(Figure 3.2A). A deep nutricline was detected in regions 1:CAMR - 3:TPEQ, and 5:SPSG 

marking the location of subtropical gyre conditions (Figure 3.1B). Nitrate was mostly 

drawn down to detection limit in several regions, whereas residual phosphate was present 

throughout the Eastern Pacific Ocean (Fig. S4.7). As a result, the dissolved nitrate to 

phosphate (N:Psurf) ratio was low in the subtropical North Pacific, approached Redfield 

proportions in high nutrient regions south of the equator, decreased again in the southern 

subtropical gyre, and finally continually increased entering the Southern Ocean (Figure 

3.1). This low N:Psurf suggested N limitation in oligotrophic regions. As such, our samples 

covered all major biome types. 

We observed distinct but highly correlated POM concentration levels across regions. 

[POC] and [PCOD] were tightly correlated (r2Pearson = 0.93, p < 0.0001) (Figure 3.2D, E) and 

showed parallel regional shifts. Thus, our optimized PCOD assay accurately quantified 

marine organic matter. Specifically, [POC] and [PCOD] were low in the gyre regions 

(1:CAMR, 2:PNEC, and 5:SPSG), slightly higher in equatorial Pacific Ocean waters (4:PEQD), 

and very high in the Southern Ocean regions (6:SST – 9:APLR) (Figure 2D, E). Changes in 

POM concentrations followed the nine regions that arose from the combination of 

environmental conditions.  

We detected significant a clear latitudinal gradient in the respiration quotient. 𝑟𝑟−𝑂𝑂2:𝐶𝐶 

averaged 1.15 but ranged between 0.73 and 1.54 (Table S4.3, Fig. 2F). The highest regional 

average 𝑟𝑟−𝑂𝑂2:𝐶𝐶 of 1.261.10
1.48 (range set by the minimum and maximum value) was found on 

the warm edge of the North Pacific Subtropical Gyre (1:CAMR, Fig. S4.7), and the lowest 
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average 𝑟𝑟−𝑂𝑂2:𝐶𝐶 ratio at 0.990.79
1.18 was detected near the ice edge in the Southern Ocean 

(9:APLR). Regions 1:CAMR through 7:SANT were significantly different from the Redfield 

quotient, whereas regions 1:CAMR through 4:PEQD and 9:APLR deviated from Anderson’s 

higher quotient (Fig. S4.8). Alas, the observed respiration quotients were different from the 

theoretical values across multiple ocean regions. 

The respiration quotient was significantly related to ocean environmental 

conditions. We tested all linear combinations of environmental factors and 𝑟𝑟−𝑂𝑂2:𝐶𝐶 (Table 

S4.4). A significant positive relationship between temperature and 𝑟𝑟−𝑂𝑂2:𝐶𝐶 suggested an 

increase in 𝑟𝑟−𝑂𝑂2:𝐶𝐶 of ~ 0.2 between polar and tropical regions (Figure 3.3A). We saw 

indications of an additional regulation of 𝑟𝑟−𝑂𝑂2:𝐶𝐶 by nutrient availability and/or nitrogen. A 

deeper nutricline led to a slightly depressed quotient in comparison to waters with the 

same temperature but higher nutrients. A positive relationship between temperature and 

the respiration quotient was also observed for a small set of previously analyzed samples 

from the Western North Pacific Ocean (Fig. S4.7). Temperature emerged as the best 

predictor, but additional factors may exert a secondary control on the respiration quotient. 

We tested if the observed temperature dependence of 𝑟𝑟−𝑂𝑂2:𝐶𝐶 could be detected via 

the imprint on the large-scale three-dimensional distribution of oxygen and carbon in the 

ocean. To achieve this, we constructed an inverse biogeochemical model constrained by the 

GLODAP.2016v2 and WOA2013 databases of hydrographic measurements of nutrients, 

carbon, and oxygen concentrations (Key et al. 2015; Olsen et al. 2016). We relied on 

previous inverse-modeling efforts for the carbon, nitrogen, and phosphorus cycles 

(Primeau et al. 2013; Teng et al. 2014; Wang et al. 2019) but with an added oxygen cycling 

model. The resulting biogeochemical model tracks the dissolved oxygen concentration as 
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well as the oxidation and reduction of nitrogen and carbon. Through a Bayesian inversion 

procedure, we estimated 𝑟𝑟−𝑂𝑂2:𝐶𝐶 = 1.1211.119
1.123 at 15°C and a temperature dependence 

(0.01970.0193
0.0201°C-1) (± 1 std; Figure 3.3B). The temperature dependence for the respiration 

quotient estimated from the inverse model is stronger than what we measured in the 

suspended particles. However, both the inverse model and the direct measurements agree 

on the midpoint value at 15˚C and a positive relationship with temperature (Figure 3.3). 

Accordingly, we have multiple lines of evidence for a regional varying respiration quotient. 

Discussion 

There is increasing evidence for regionally distinct elemental ratios of marine 

organic matter (Moreno & Martiny 2018). Extending this work, we find strong support for a 

latitudinal gradient in the respiration quotient ranging between 0.73 and 1.54. This range 

is somewhat outside the bounds of biochemical predictions (Anderson 1995; Laws et al. 

2000) but still within a plausible range. Previously detected shifts in the C:H:O ratio of POM 

in the Western Pacific Ocean corresponds to a respiration quotient ranging between 0.6 

and 1.6 (Chen et al. 1996) and several studies have detected 40% variation in the C:H ratio 

(Karl & Grabowski 2017). Platt and Irwin observed a 30% variation in the caloric content 

of fresh organic matter (Platt & Irwin 1972). As the carbon oxidation state and caloric 

content of organic matter are closely tied (Karl & Grabowski 2017), one should expect a 

parallel range in the respiration quotient. Finally, the observed values are firmly within the 

bounds proposed using endmember mixing models (Li 2002). Previous studies have 

tended to downplay or dismiss evidence for changes in the respiration quotient because of 

an inability to distinguish signal from noise. However, the large number of new 
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measurements and their spatial coherence strongly support a systematically varying 

respiration quotient. 

The observed latitudinal gradient for the respiration quotient must be linked to 

changes in the underlying molecular composition of surface POM and plankton. The exact 

nature of this relationship remains to be quantified, but we hypothesize it is driven by an 

increased proportion of lipids relative to proteins and carbohydrates. The proportion of 

biochemical components across major phytoplankton groups follow an allometric 

relationship (Finkel et al. 2016a) leading to an elevated lipid-to-carbohydrate/protein ratio 

in small plankton. Smaller cells have a higher surface-to-volume ratio and an associated 

high contribution of the lipid-rich membrane to total carbon. The high abundance of small 

picoplankton in warm tropical and subtropical regions could result in a higher lipid 

fraction and higher respiration quotient of exported organic matter. Another biological 

mechanism is the accumulation of lipids following nitrogen starvation response in many 

phytoplankton (Shifrin & Chisholm 1981). We observed the highest respiration quotient in 

warm regions with low N:Psurf. Thus, shifts in plankton biogeography and/ or physiology 

could regulate the observed changes in the respiration quotient. 

There are several noteworthy caveats to our conclusions. First, the direct 

observations are limited to surface samples from a single Eastern Pacific Ocean transect. It 

is plausible that measurements from other regions or seasons will identify additional 

controls on the respiration quotient. Second, it is unclear if the POM oxidative state will 

change during sinking and aging. The O:C ratio is higher in surface vs. deep dissolved 

organic matter (DOM) suggesting preferential remineralization of oxidized forms of organic 

carbon (Letscher et al. 2013). In this study, H:C decrease concurrently and it is the balance 
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of O:C and H:C that ultimately controls the respiration quotient. Furthermore, there is 

limited variation in the O:C and H:C ratios for DOC between deep Atlantic (young) and 

Pacific Ocean (old) DOM (Bercovici et al. 2018). Thus, it is difficult at present to predict if 

the respiration quotient will change with depth and future vertical profiles are needed. 

Third, we did not measure the respiration quotient of DOM even though this fraction is an 

important component of the ocean carbon cycle (Roshan & Devries 2017). Hence, it is 

unclear if POM and DOM will display the same level and biome patterns in 𝑟𝑟−𝑂𝑂2:𝐶𝐶 . Fourth, 

the chemical assay has oxidative limitations and some compounds are not fully oxidized 

(Baker et al. 1999). Thus, there may be negative biases in the respiration quotient for some 

samples although extensive work on sewage material has not uncovered any systematic 

biases in COD measurements (McCrady 2008). Fifth, we observed covariance between 

𝑟𝑟−𝑂𝑂2:𝐶𝐶 and environmental parameters other than sea surface temperature. The uncertainty 

estimates we have provided from our inverse model analysis are conditioned on the model 

structure. Exploring more complex relationships between 𝑟𝑟−𝑂𝑂2:𝐶𝐶 and a broader suite of 

environmental variables in the lab, in situ, and by the inverse model should improve our 

understanding of the respiration quotient. Nevertheless, our independent methods 

strongly support our conclusion that the respiration quotient varies between regions. 

The observed variation in the respiration quotient is expected to have large 

biological and biogeochemical impacts. The production of more reduced organic carbon in 

tropical and subtropical regions implies a higher caloric content and perhaps a superior 

food source (Karl & Grabowski 2017). On the other hand, an upshift in the respiration 

quotient can initiate a biogeochemical cascade leading to lower ocean oxygen levels, higher 

rates of denitrification, N loss and declining productivity. These biogeochemical changes 
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could have devastating impacts on marine life (Penn et al. 2018). Thus, a biological 

feedback whereby warmer temperature leads to the production of more reduced organic 

carbon can have a large future control on marine ecosystem functioning and 

biogeochemistry.  
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Figure 4.23 Impact of a changing respiration quotient on ocean biogeochemical processes. 
A. Change in OMZ (O2 ≤25 μM) extent and intensification when 𝑟𝑟−𝑂𝑂2:𝐶𝐶  shifts from 1 to 0.8, B. 
Change in OMZ extent and intensification when 𝑟𝑟−𝑂𝑂2:𝐶𝐶  shifts from 1 to 1.3. C. Total oxygen 
levels and OMZ volume as a function of the respiration quotient. D. Change in 
denitrification zones and intensity when 𝑟𝑟−𝑂𝑂2:𝐶𝐶  shifts from 1 to 0.8. E. Change in 
denitrification zones and intensity when 𝑟𝑟−𝑂𝑂2:𝐶𝐶  shifts from 1 to 1.3. F. Annual 
denitrification rates and global ocean N balance as a function of the respiration quotient. G. 
Change in ocean net primary production when 𝑟𝑟−𝑂𝑂2:𝐶𝐶  shifts from 1 to 0.8. H. Change in 
ocean net primary production when 𝑟𝑟−𝑂𝑂2:𝐶𝐶  shifts from 1 to 1.3. I. Annual net primary 
production and carbon export (at 100 m) as a function of the respiration quotient. 
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Figure 4.24 Environmental conditions, POM concentrations and the respiration quotient 
across the eastern Pacific Ocean. A. Sea-surface temperature, B. Nutricline depth (depth at 
which nitrate is 1 μM), C. Dissolved nitrate to phosphate (N:Psurf) ratios at the surface, D. 
Particulate organic carbon (POC), E. Particulate chemical oxygen demand (PCOD), and F. 
Respiration Quotient. Averaged data are marked as black dots. In panels A-E, the red line 
represents a 4-station moving average. In panels D-F, the grey shaded regions represent 
the standard deviation of the replicates. In panel F, the red line represents an 8-station 
moving average. 
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Figure 4.25 Relationship between temperature and the respiration quotient. A. Observed 
temperature dependence for surface POM 𝒓𝒓−𝐎𝐎𝐎𝐎:𝐂𝐂  = 1.0465 + (0.0055383/℃) SST, (R2 = 
0.154) and equivalent relationship inferred from the inversion of hydrographic data. B. The 
logarithmic marginal posterior probability density for the temperature dependence (m) 
and intercept (b) in the relationship 𝒓𝒓−𝐎𝐎𝐎𝐎:𝐂𝐂 = 𝒎𝒎(𝑺𝑺𝑺𝑺𝑺𝑺 − 𝟏𝟏𝟏𝟏℃) + 𝒃𝒃 estimated from the 
inversion of the hydrographic data. 
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Table S4.1 Model change in oxygen levels. 
ESM Model Ocean module Depth 

layers 
O2 

(Pg) 
Resolution Reference 

CESM1-BGC BEC 60 -289 1.125˚/0.27˚-0.53˚ (Moore et al. 
2002) 

GFDL-ESM2G TOPAZ2 63 -281 0.3–1˚ (Dunne et al. 
2013) 

GFDL-ESM2M TOPAZ2 50 -312 0.3–1˚ (Dunne et al. 
2013) 

HadGEM2-ES Diat-HadOCC 40 -303 0.3–1˚ (Palmer & 
Totterdell 

2001) 
IPSL-CM5A-LR PISCES 31 -322 0.5–2˚ (Aumont & 

Bopp 2006) 
IPSL-CM5A-MR PISCES 31 -254 0.5–2˚ (Aumont & 

Bopp 2006) 
MPI-ESM-LR HAMOCC5.2 40 -249 1.5˚ (Ilyina et al. 

2013) 
MPI-ESM-MR HAMOCC5.2 40 -229 0.4˚ (Ilyina et al. 

2013) 
NorESM1-ME HAMOCC5.1 53 -206 1.125˚ (Tjiputra et 

al. 2013) 
CESM1-BGC  
𝚫𝚫𝚫𝚫−𝐎𝐎𝐎𝐎:𝐂𝐂= -0.2 

BEC 60 382 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝚫𝚫𝚫−𝐎𝐎𝐎𝐎:𝐂𝐂= -0.1 

BEC 60 186 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝚫𝚫𝚫−𝐎𝐎𝐎𝐎:𝐂𝐂= 0 

BEC 60 0 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝚫𝚫𝚫−𝐎𝐎𝐎𝐎:𝐂𝐂= 0.1 

BEC 60 -177 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝚫𝚫𝚫−𝐎𝐎𝐎𝐎:𝐂𝐂= 0.2 

BEC 60 -308 1.125˚/0.27˚-0.53˚ This study 

CESM1-BGC 
𝚫𝚫𝚫𝚫−𝐎𝐎𝐎𝐎:𝐂𝐂= 0.3 

BEC 60 -493 1.125˚/0.27˚-0.53˚ This study 
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Table S4.2 Regional environmental characteristics. Observed environmental conditions in 
each defined biome [mean (minimum – maximum)]. 
Region Stations Temperature Nutricline N:Psurf 
1: CAMR 1 - 13 28.4 (26.5 -29.5) 54.3 (1.9 - 92.4) Below detection 
2: PNEC 14 - 26 28.5 (27.8 - 29.6) 40.9 (32.1 - 52.2) 0.04 (0 - 0.56) 
3: TPEQ 27 - 37 26.4 (25.9 - 27.7) 54.0 (32.1 - 67.2) 1.1 (0 - 2) 
4: PEQD 38 - 82 24.0 (21.6 - 25.7) 2.7 (1.9 - 32.1) 8.9 (0 - 12.6) 
5: SPSG 83 - 121 23.4 (20.3 - 25.3) 164.3 (1.9 - 223.1) 0.3 (0 - 4.1) 
6: SSTC 122 - 144 14.8 (11.5 - 19.8) 1.9 9.5 (4.1 - 12.9) 
7: SANT 145 - 170 8.6 (6.2 - 10.9) 1.9 13.3 (11.9 - 14.3) 
8: ANTA 171 - 187 3.6 (2.0 - 5.9) 1.9 15.0 (14.3 – 16.5) 
9: APLR 188 - 198 0.7 (0 - 1.7) 1.9 15.0 (14.8 - 15.7) 
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Table S4.3 The respiration quotient across regions 
Region Average Range Standard Error n 
1: CAMR 1.26 1.10 – 1.48 0.036 13 
2: PNEC 1.19 1.08 – 1.35 0.022 13 
3: TPEQ 1.20 1.10 – 1.38 0.029 11 
4: PEQD 1.15 0.98 - 1.43 0.011 45 
5: SPSG 1.18 0.73 – 1.54 0.026 39 
6: SSTC 1.14 0.75 – 1.54 0.027 23 
7: SANT 1.13 0.99 – 1.33 0.017 26 
8: ANTA 1.05 0.89 – 1.32 0.028 17 
9: APLR 0.99 0.79 – 1.18 0.042 11 
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Table S4.4 Statistical r-O2:C models. SE represents the coefficient of variation.  
 Intercept SE Temperature SE Nutricline SE Phosphate SE NPsurf SE 
r-O2:C(T, ZNO3, P, NPsurf) 1.11 8.1e-2 3.2e-3 2.4e-3 2.0e-4 1.9e-4 -9.6e-1 7.6e-2 5.2e-3 4.9e-3 
r-O2:C(T, ZNO3, P) 1.10 5.9e-2 3.7e-3* 1.8e-4 1.1e-4 1.6e-4 -3.2e-2 3.6e-2   
r-O2:C(T, ZNO3, NPsurf) 1.04 5.7e-2 5.3e-3* 1.7e-3 2.0e-4 1.9e-4   5.6e-4 3.2e-3 
r-O2:C(T, P, NPsurf) 1.15 7.3e-2 2.5e-3 2.3e-3   -9.4e-2 7.6e-3 2.8e-3 4.3e-3 
r-O2:C(ZNO3, P, NPsurf) 1.21 2.2e-2   1.4e-4 1.9e-4 -1.7e-1* 5.4e-2 6.2e-3 4.8e-3 
r-O2:C(T, ZNO3) 1.05 1.9e-2 5.e-3* 1.0e-3 1.8e-4 1.4e-4     
r-O2:C(T, P) 1.12 5.3e-2 3.4e-3* 1.7e-3   -4.5e-2 3.2e-2   
r-O2:C(T, NPsurf) 1.07 4.5e-2 4.6e-3* 1.6e-3     -1.7e-3 2.4e-3 
r-O2:C(ZNO3, P) 1.21 2.1e-2   5.1e-5 1.6e-4 -9.4e-2* 2.1e-2   
r-O2:C(ZNO3, NPsurf) 1.20 2.2e-2   -1.6e-5 1.8e-4   -7.4e-3* 2.0e-3 
r-O2:C(P, NPsurf) 1.23 1.6e-2     -1.5e-1* 5.2e-2 4.2e-3 4.1e-3 
r-O2:C(T) 1.05 1.9e-2 5.5e-3* 9.3e-4       
r-O2:C(ZNO3) 1.13 1.0e-2   4.7e-4* 1.3e-4     
r-O2:C(P) 1.22 1.5e-2     -9.8e-1* 1.7e-2   
r-O2:C(NPsurf) 1.20 1.3e-2       -7.3e-3* 1.4e-3 

 
*p<0.05 
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Figure S4.1 Predicted distribution of the respiration quotient across microalgae species. A. 
The total respiration quotient (𝑟𝑟𝛴𝛴−𝑂𝑂2:𝐶𝐶) and B. the respiration quotient (𝑟𝑟−𝑂𝑂2:𝐶𝐶). The 
predictions are based on the biochemical composition of 1562 phytoplankton cultures 
(Finkel et al. 2016b). 
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Figure S4.2 P18 GO-SHIP Cruise track locations from San Diego, CA (32.72° N, 117.16°W) to 
Antarctica (77.85°S, 166.67°E). Background phosphate concentrations are from the 
GLODAPv2 database (Key et al. 2015; Olsen et al. 2016).   
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Figure S4.3 Optimization and evaluation of a method for quantifying the oxygen demand of 
marine POM. A: PCOD standard curve. B: Recovery of the PCOD after experimentally adding 
organic material to a seawater sample.  C: 1:1 relationship between sample volume and 
measured PCOD. Coefficient of variance in D: [POC], E: [PCOD], F: rC:P, and G: The 
respiration quotient.  
  



173 
 

 
 
Figure S4.4 Comparison of PCOD concentrations in different size fractions. A. Particulate 
organic carbon in samples <30 µm and total. B: Particulate chemical oxygen demand in 
samples <30 µm and total. C: The respiration quotient for <30 µm and total samples as well 
as for two regions with significant POM concentration differences (R1 and R2). 
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Figure S4.5 Comparison of changes to oxygen levels via changes to the respiration quotient 
or climate change. A. Changes in global marine oxygen levels by a changing respiration 
quotient or B. 2100 under the climate change scenario RCP8.5. The climate model outputs 
are from CMIP5. 
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Figure S4.6 Observed nitrate (a) and phosphate (b) concentrations across the P18 cruise 
track. Colored background represents each ocean biome region.  
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Figure S4.7 Variation in the respiration quotient across eastern Pacific Ocean biomes. 
1:CAMR (Central American Coast), 2:PNEC (North Pacific Equatorial Counter Current), 
3:TPEQ (Transitional Pacific Equatorial Divergence), 4:PEQD (Pacific Equatorial 
Divergence), 5:SPSG (South Pacific Gyre), 6:SSTC (South Subtropical Convergence), 7:SANT 
(Sub-Antarctic Water Ring), 8:ANTA (Antarctic), and 9:APLR (Austral Polar). The variation 
across biomes (letters above each box) were evaluated by a 1-way ANOVA (p-value <0.05 
and Tukey post hoc test). The black and grey dashed line represents Anderson’s (1.11) and 
Redfield’s (1.0) respiration quotient. A black or grey asterisks denote a biome average that 
is statistically different from Anderson’s or Redfield’s quotient (t-test, p-value <0.05). 
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Figure S4.8 Relationship between temperature and the respiration quotient derived from a 
CHNOPS elemental analysis of marine POM from the Western North Pacific Ocean (Chen et 
al. 1996). The line represents a linear fitted model of temperature and r−O2:C (r−O2:C = 0.19 
+ (0.036/℃) SST. 
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