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ABSTRACT OF THE THESIS

Learning Application-Oriented Classifiers for Multi-frame Visual Recognition

by

Anwesan Pal

Master of Science in Electrical and Computer Engineering

University of California San Diego, 2019

Professor Henrik I Christensen, Chair
Professor Nuno Vasconcelos, Co-Chair

Classification, a supervised learning problem, is a technique to categorize a given set of

data points into two (binary classification) or more (multi-class classification) targets or labels,

based on their characteristics. It has wide applications in the domain of Computer Vision and

Robotics. Despite the tremendous success of classification in recent times, a fundamental question

remains as to whether a classifier truly learns the correct representation (i.e. the ground-truth

representation) needed to solve a problem. The uncertainty in learning often limits generalization

of such methods across different domains. This thesis presents an in-depth study of how different

classifiers leverage the intrinsic properties of a dataset in order to robustly model the data

xii



distribution. The study further extends to the application of classifiers in two challenging domains

- Visual Semantic Place Categorization and Human Activity Recognition.

The first part of the thesis focuses on the concept of bias in action recognition videos.

This is illustrated by the fact that given just a single frame of a video, some actions can be

easily identified, due to the presence of certain objects and the background. The second part

generalizes classification into the domain of place categorization, where the focus is to learn

semantic information about a robot’s environment without any human guidance. This is done

through a deep fusion of the scene and object attributes. Finally, an algorithm is proposed for

human action recognition which incorporates the information learnt from optical flow and visual

attention mechanism in order to perform classification.
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Chapter 1

Introduction

Classification has always been an important topic in Machine Learning, and its appli-

cations are now widely spreading into the domains of Computer Vision and Robotics. Images

and videos are an excellent source of semantic information since they can capture detailed

contextual cues in a setting which is not possible through other types of sensors like LiDAR,

Proximity, Gyroscope etc. Deep Learning models invoking Convolutional Neural Networks

(CNNs) [LBBH98] have been very successful in tackling problems related to images including

recognition, segmentation and detection [KSH12, CGGS12, FCNL12, GDDM14]. However,

videos, or multi-frame recognition bring in more challenges in itself, such as huge computational

cost, need for capturing long context, network architectural design constraints and lack of standard

evaluation benchmarks. This thesis talks about these challenges in detail, with a special emphasis

on what intrinsic properties are learnt by a deep learning model in order to solve the classification

problem. The applications are discussed in the context of semantic place categorization and

human action classification.
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1.1 Bias in Action Recognition

The introduction of deep learning has enabled substantial advances in computer vision

over the last few years. This is mostly because deep learning networks [KSH12, SZ14, SLJ+15,

HZRS16] can leverage large amounts of training data in order to learn sophisticated representa-

tions of images and videos that enable the robust solution of problems such as object or action

recognition. On the other hand, these networks raise challenges because it is not very clear as to

what exactly they learn. This makes it difficult to know how far beyond their training they can

generalize. One well known principle in machine learning is that a learning system can only be

as good as the data on which it is trained. If the dataset is not representative of the entire example

distribution, the network will overfit. This is known as dataset bias [TE11] and can be combated

by increasing dataset size. With modern datasets [RDS+15, KRA+18, LMB+14, KH09], which

tend to be very large in size, and therefore dataset bias is less of an issue.

There are, nevertheless, other sources of bias. One particularly difficult example is

representation bias, i.e. the fact that the dataset favors some types of representations over

others. Representation bias is unavoidable in recognition problems since the goal is to learn

the optimal representation for the solution of the recognition problem, a.k.a. the ground-truth

representation. While it is usually unknown, some properties of this representation can be inferred

from the definition of the recognition problem. For example, it is unlikely that a system for the

classification of horse breeds will need to learn a representation of humans [DT05], as opposed to

that of motion. This is because running style of different horses can be informative of its breed.

This, however, assumes an ideal dataset. In practice, the dataset may be such that certain horse

breeds always appear with humans (e.g. domestic horses) while others do not (e.g. wild horses).

When this happens, a representation of humans, such as a person detector [TAS14], will

achieve better than chance level performance for horse classification. In this case, the dataset is

said to be biased for the human representation. In the extreme case, this might result in a very

2



high recognition accuracy utilizing only human representations. It is likely here that the deep

learning system has solved the problem without building any representation of horses. Unlike

dataset bias, a difficulty of representation bias is that it is not necessarily eliminated by simply

making datasets larger. In general, the problem is that the data collection is itself biased. For

example, pictures commonly found on the web may pit domestic horses with humans while wild

horses in seclusion. Thus, if additional data is acquired online, the representation bias will only

be reinforced.

Saliency

PlayingPiano

Skijet

HighJump

JavelinThrow

High-bias
Classes

Low-bias
Classes

Op�cal Flow

JumpingJack

HorseRiding

TennisSwing

Archery

CleanAndJerk

Wri�ngOnBoard

PoleVault

FrisbeeCatch

Pose Object

HorseRacing

Typing

CleanAndJerk

Swing

Figure 1.1: Representation bias illustrated by the frames of UCF101 classes. The features from
these frames are given as inputs to the classifier. Top 2 rows correspond to the high-biased
classes while the bottom 2 rows to the low-biased classes. Upon inspection, it is much simpler to
classify the frames in the top rows into their respective classes as compared to the bottom rows.

In domains such as action recognition, representation bias is a complex problem because

there are many potential sources of bias. Some of these are illustrated in Figure 1.1, with examples

from the UCF101 [SZS12] dataset. For example, action classes such as ”playing piano” or ”jet

ski” can be recognized by inspection of a single image, while ”jumping jack” and ”riding a horse”

are easily recognized from short term motion patterns, ”Clean and Jerk” and ”Writing on board”

from human pose skeleton, and finally classes such as ”horse racing” and ”typing” from the

presence of certain objects. In summary, UCF101 has bias towards static, motion, pose, and

3



object representations.

Given all this, the characterization of representation bias of existing datasets is important

for at least two reasons. First, it provides pointers on how to create or modify datasets so as

reduce or eliminate bias. For example, Li et al. [LLV18] have recently proposed a measure of

representation bias and used it to show that a dataset (Diving48) explicitly collected to have

low bias, does not have to be particularly large [KCS+17, GKM+17, MBG+18]. Second, by

analyzing the performance of different action recogniton algorithms on datasets with quantified

biases, it is possible to infer properties of the representation learned by the algorithm. This

enables a better understanding of where these algorithms are likely to succeed and fail and can be

exploited to produce new algorithms that address these limitations. Given the flexibility of modern

deep learning systems, they are quite likely to exploit any existing biases to learn representations

that solve the dataset instead of the real action recognition problem.

1.2 Visual Place Categorization

Scene recognition and understanding has been an important area of research in the

Robotics & Computer Vision community for more than a decade now. Programming robots

to identify their surroundings is integral to building autonomous systems for aiding humans in

house-hold environments.

Kostavelis et al. [KG15] provided a survey of previous work in semantic mapping using

robots in the last decade. According to their study, scene annotation augments topological maps

based on human input or visual information of the environment. Bormann et al. [BJL+16] pointed

out that the most popular approaches in room segmentation involve segmenting floor plans based

on spatial regions.

An essential aspect of any spatial region is the presence of specific objects in it. Some

examples include a bed in a bedroom, a stove in a kitchen, a sofa in a living room, etc. Niko et
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al. [SBS+18] formulated the following three reasoning challenges that address the semantics and

geometry of a scene and the objects therein, both separately and jointly: 1) Reasoning About

Object and Scene Semantics, 2) Reasoning About Object and Scene Geometry, and 3) Joint

Reasoning about Semantics and Geometry. The content in this thesis focuses on the first reasoning

challenge and uses Convolutional Neural Networks (CNNs) as feature extractors for both scenes

and objects. The goal is to design a system that allows a robot to identify the area where it is

located using visual information in a manner similar to how a human being would.

Figure 1.2: Visualization of the semantic mapping performed while the Fetch robot is navigating
through the environment.

In this thesis, five different models of scene prediction have been considered, each

developed through the integration of object and scene information from a surrounding in order to

perform place categorization. To evaluate the robustness of these models, extensive experiments

have been conducted on state-of-the-art still-image datasets, real-world videos captured via

different hand-held cameras, and also those recorded using a mobile robot platform in multiple

challenging environments. One such environment is shown in Figure 1.2, where the segmented

regions correspond to the scenes detected. The results obtained from the experiments demonstrate

that the proposed system can be generalized beyond the training data, in addition to being

5



impervious to object clutter, motion blur and varying light conditions.

1.3 Attention in Action Recognition

The study of attention has classically focused on the physical characteristics that determine

whether stimuli are attended. William James [Jam50] defined attention as taking possession of

one out of several simultaneously possible objects or train of thoughts by the mind. The modern

study of attention continues to work within this broad definition. It is generally accepted that

an individual is only aware of a small fraction of the information provided to the brain by the

sensory systems.

The computer vision models of attention perform remarkably well in most of the applica-

tions where static images or images from a video stream are manually fed to the model in order

to identify the most salient/task-relevant stimuli. In case of some real-time applications where the

current visual input of the attention model is to be determined by the decision output of the model

(i.e., the focus of attention) at the immediate past, the traditional methods of visual attention

face severe limitations in a number of aspects [BMG06], [BMGK08] and[BKMG09]. Using a

visual attention model as a component of robotic cognition is an example of such applications.

In this case, the attention model should be able to locate the behaviorally relevant stimuli in an

ongoing stream of visual input and respond to it, perform learning in an on-line fashion and with

minimal human supervision, and apply the learned knowledge for guiding the attention behavior

in arbitrary environmental settings.

1.4 Overview of the Thesis

Chapter 2 presents a study of the representation biases of existing datasets through their

results as reported. Six types of representation biases are defined and a procedure to quantify
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them is proposed. For implementation, nine of the most popular action recognition datasets are

considered. The characterization of bias is performed both at the level of the entire dataset and

that of individual classes. This provides a detailed picture of the origin of the biases that can

be leveraged by dataset creators to produce better datasets, either by adding data to the existing

datasets or by assembling new ones. In addition, a set of prototypical deep learning algorithms

for action recognition are also considered, and their performance are characterized in terms of

bias. This provides some insight on the representations learned by the algorithms. Finally, it is

shown that by simple manipulation of a small number of classes, it is possible to undermine the

”state of the art” standard for algorithm evaluation in computer vision.

Chapter 3 introduces a set of Diverse scEne Detection methods in Unseen Challenging

Environments (DEDUCE) algorithms for performing visual semantic place categorization. These

algorithms are then evaluated across different domains. The first experiments are conducted

on two state of the art 2D image datasets. This is followed by more experiments on real world

videos captured via professional and ordinary cell-phone cameras in house-hold settings. To

further test the robustness of the algorithms, an experiment is also carried out on a recording of

a movie, where the focus is not on the background, but instead on the people involved. Finally,

data is recorded on a mobile robot navigating through an office setting and place categorization is

performed without human guidance.

Chapter 4 provides a brief background of Optical Flow and the Neural Network architec-

tures and algorithms implemented thus far for human action classification. This is followed by the

explanation of the proposed Recurrent-Attentive Convolutional Neural Networks (R-ACNN) al-

gorithm for video classification. Detailed description about the data collection and pre-processing,

model architecture and hyper-parameter training are also provided. Finally, the results of the

proposed algorithm is compared along with the other state of the art algorithms.

7



Chapter 2

Representation Bias in Datasets and

Algorithms

2.1 Background

The learning process for action recognition can be affected by a wide variety of biases.

Many of these biases can be divided broadly into two categories based on the type of features

they affect—static and dynamic. To mitigate static biases, early action recognition datasets,

such as KTH [SLC04], Weizmann [BGS+05] and Hollywood2 [MLS09], were captured under a

controlled environment. However, most classes of these datasets can be recognized by simply

analyzing motion in small spatiotemporal neighborhoods. Also, these datasets are small and

prone to overfitting. Recently, many datasets have appeared which are larger in size and contain

more diverse classes, such as UCF101 [SZS12], HMDB51 [KJSS13] and Kinetics [KCS+17].

Unfortunately, these datasets do not cover a wide range of the daily life actions. To overcome this

problem, Charades [SVW+16] and Something-Something (v1 and v2) [GKM+17, MBG+18]

change the traditional way of labeling action classes and bring in more daily life videos. In

Charades, most videos are about day-to-day actions and every single video is assigned multiple

8



motion labels. For the Something-Something datasets, class names are not associated with

any object or identity, such as ”Throwing something”, ”Putting something on something”, etc.

Another newly introduced dataset, Diving48 [LLV18], consists of videos of competitive diving,

and has the added advantage of containing low static cues.

The notion that dataset bias can affect the performance of recognition systems has received

some attention by the computer vision community. Torralba et al.[TE11] uncovered biases of

several image datasets and related them to the poor generalization performance of state-of-

the-art models. Gkioxari et al.[GGM15] began to utilize contextual biases to solve action

recognition. Tommasi et al.[TPCT17] performed a thorough analysis of the common datasets and

verified the present de-biasing methods. More recently, Feichtenhofer et al.[FPWZ18] utilized

network visualizations to understand dataset bias and Stock et al.[SC18] proposed a way to avoid

undesirable bias when learning a model.

Traditional action recognition algorithms utilize different types of representations to boost

their performance. In many cases, it is difficult to determine what biases these representations

can leverage. There are, however, examples where the model uses a very explicit combination

of elementary representations. For example, two stream networks [SZ14] implement spatial

and temporal streams, which capture the static and dynamic structure of video respectively, and

combine these results at the final layer. These models can leverage either static or dynamic biases

to achieve artificially good performance on a biased dataset. The P-CNN of [CLS15] utilizes

a ”guided” two stream network, which adds a pose representations to the mix. Because they

are fairly explicit about their representations, these models are suitable tools for measuring the

amount of bias of different datasets.
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2.2 Understanding a Dataset

This section discusses the tools and the experiment setups used to measure bias. It also

introduces the different biases considered and the algorithms tested.

2.2.1 Bias

Li et al.[LLV18] introduced the concept of representation bias, defining the amount of

bias of a dataset D with respect to a representation φ as

B(D,φ) = log
M (D,φ)

Mrnd
, (2.1)

where M (D,φ) is the performance obtained on D by a network pretrained to detect φ, and Mrnd

is the random or chance-level performance. Li et al.[LLV18] proposed that M (D,φ) be test

accuracy when measuring the bias of datasets, and individual class average precision of the

test set for class-level analysis. This definition makes sense for class-level analysis of a dataset.

However, at the dataset level, using mean average precision is a more intuitive metric due to

two reasons. Firstly, it matches the usage of average precision at the class-level. This expedites

experiments on large datasets, since the dataset analysis follows easily from the class-level

analysis. It also makes it possible to directly relate dataset-level to class-level biases. Secondly,

since precision models the similarity among the constituent classes of a dataset, it is a preferable

metric for determining sources of bias.

Chance level performance is defined as 1/C in [LLV18], where C is the number of classes.

This does not account for unbalanced datasets. For this reason, the frequency of class i is defined

as

fi =
ni

N
, (2.2)

where ni is the number of videos in the class and N the total number of videos in D. At dataset-
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level, chance performance Mrnd is defined as the average class frequency, while for class, it is the

respective class frequency fi.

2.2.2 Fairness

Bias is not a complete characterization of how a dataset or classes favour different

representations. If D is an ”easy” dataset, many representations will achieve high recognition

rates on D. A second property of interest is how the biases of the different representations

compare. This is captured by the fairness score of D. To define this, we denote by Bc
i the bias

of class c for representation i = 1, . . . ,r. The fairness score ξc of the class is then determined by

finding the bias distribution

β
c
i =

Bc
i

∑ j Bc
j

(2.3)

and computing its Kullback-Leibler divergence [KL51] with the uniform distribution ui =
1
r ,∀i,

i.e.

ξ
c = DKL(βi||ui) = ∑

i
β

c
i log

(
βc

i
ui

)
. (2.4)

This is large when the bias distribution is ”peaky,” i.e. the class is much more biased for one

representation than the others, and small when the distribution is uniform, i.e. the class is equally

biased for all representations.

2.2.3 Representations

In this study, a representation φ is a classifier using a pre-trained convolutional neural

network (CNN). A CNN can be thought as a combination of two stages: a feature extractor, which

usually consists of many neural network layers, and a classification layer, usually implemented

with a linear weight layer and a softmax function. The feature extractor defines the representations

implemented by the network, the classifier leverages these representations to infer the class labels.

If the CNN has high classification rate on D, then D is said to be biased for the representations
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implemented by the CNN. These are determined by the network architecture and the data used

to train it. In general, a CNN can implement multiple representations. To guarantee that the

network only implements one representation φ there is a need to keep both the CNN and its

training as simple as possible. On the other hand, if the CNN is too simple it may not have the

discriminant power required to detect biases. [LLV18] suggested the use of standard CNN models

to define representations. We adopt a similar strategy, but expand the set of representations

considered. The first set of representations is a set of three CNN feature extractors similar to those

proposed in [LLV18]. In all cases, the CNN is the ResNet50 model of [HZRS16] and extracts

a 2048-dimensional feature vector. This is obtained by removing the softmax layer after the

network is trained.

Saliency bias - The first representation consists of a CNN pre-trained on the 1000 object classes

of ImageNet [RDS+15]. While the network is trained on objects, we apply it to entire video

frames, which can contain multiple objects or complex scenes. Hence, the network is more likely

to be successful for close-ups of objects, and can be seen as a representation of object dominance

in the scene, or object saliency. We denote this representation as φsal .

Scene bias - The second representation consists of a CNN pre-trained on the 365 scene classes

of the Places365 scene classification dataset [ZLK+17]. This is a scene representation, denoted

φscene.

Person bias - the third representation consists of a CNN pre-trained on the 204 classes of people

attributes of the COCO-attributes dataset. This is a person representation, denoted φperson.

Optical Flow bias - The fourth representation is based on optical flow and is implemented in

two steps. The first consists of the Flownet 2.0. model for optical flow computation [IMS+17].

This model achieves a good trade-off between accuracy of the computed optical flow and speed.

While other bench-mark methods such as TV-L1 [ZPB07], Brox [BBPW04] etc. may produce

slightly more accurate flow maps, they are considerably slower to compute. The second step is an

optical flow feature extractor, implemented with a Two-Stream CNN pre-trained on the UCF101
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Table 2.1: Representation bias of the various datasets.

KTH Hollywood2 UCF-101 HMDB-51 Charades Diving48 Kinetics Something v1 Something v2
# Videos 599 2417 13320 6766 9848 18404 231984 108499 220847
# Classes 6 12 101 51 157 48 400 174 174
Saliency 1.39 1.45 4.16 3.01 0.71 0.73 4.35 1.65 1.85
Person 1.33 1.34 4.07 2.87 0.63 0.71 4.13 1.46 1.72
Scene 1.31 1.35 3.93 2.86 0.65 0.58 3.98 1.24 1.37
Optical Flow 1.61 1.18 2.74 1.89 0.22 0.45 1.68 0.83 1.78
Pose 1.06 0.61 1.18 1.02 0.11 0.14 0.39 0.14 0.10
Object 0.75 0.76 1.52 1.40 0.11 0.30 0.55 0.20 0.16
Avg 1.24 1.12 2.93 2.17 0.40 0.48 2.51 0.92 1.17

dataset [SZS12]. Given the optical flow maps, batches of 10 consecutive flow images, temporally

separated by a stride of 10, are fed to the network. The implementation is based on [WXWQ15].

The output of the feature extraction stage of this network defines the optical flow representation,

denoted φ f low.

Pose bias - The fifth representation captures human pose. The feature extractor is the real-time

multi-person 2D pose estimation algorithm of [CSWS17]. The frames are first sampled from the

original video using a stride of 10 frames. The algorithm then extracts the pose of every person

and represents it as an 18-joint skeleton. For each frame, a pose skeleton is chosen randomly and

the x-y coordinates of each of the joints are concatenated. These concatenated coordinate vectors

are used as pose features, defining the pose representation φpose.

Object bias - The final representation is based on object detection results produced by the Faster

RCNN of [RHGS15]. This model is pre-trained on the 80 object classes of the MS-COCO dataset

[LMB+14]. For each frame, objects corresponding to the top 5 classification scores are selected.

The bounding box information of these detections along with their classification scores are then

concatenated and used as object features, defining the object representation φob ject .

Bias measurements Given a representation φ, the corresponding feature extractor is used to

extract feature vectors from the training set of D . These are fed to a linear classifier which is then

trained with respect to the classes of D . Next, the classifier is applied to the test set of D and the

average precision of each class and its mean are recorded. This is the measure of performance

M (D,φ) used in (2.1) for bias calculation.
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2.2.4 Algorithms

While the study of bias is important, it is also interesting to understand how bias affects

the performance of different algorithms. In its largest generality, this is a daunting task, since

there are many action recognition algorithms and these can be quite complex. Running a large

number of algorithms on a large number of datasets is beyond the reach of our computational

capabilities, at the moment. However, many algorithms are variants or combinations of simpler

prototypical algorithms. Understanding how bias affects these algorithms provides insight on how

it may affect the more complex variants. In this study, we considered the following prototypical

algorithms. In all cases, we used a ResNet101 with the weights pretrained on ImageNet and

finetuned on each dataset.

C2D-Spatial consists of the spatial stream of a Two-Stream CNN, implemented in isolation,

by simple addition of a softmax layer to the C2D-Spatial feature extractor. To classify a video,

n frames are randomly selected from it, fed through the network, and the output class scores

averaged. We used n = 3 for training and n = 19 for inference. The training strategy is as per

[SZ14], [WXWQ15] and [MCKA17].

C2D-Motion consists of the temporal stream of the Two-Stream CNN, implemented in isolation,

as above. The network processes stacks of 20 optical flow maps (10 channels each of x and y

motion components). For training, we randomly pass just one of these stacks, for inference, 19

stacks are uniformly segmented and softmax outputs averaged.

C2D-Two Stream averages the video-level predictions of the two models described above. Thus,

this algorithm models the combination of static and dynamic features in a video.

Inflated 3D (I3D)-Spatial is the algorithm of [CZ17]. It consists of a 3D ConvNet which is the

inflated version of the 2D Inception-v1 network [IS15]. The feature extractor takes in segments of

64 consecutive RGB video frames in order to produce a feature vector. For training, one segment

is randomly chosen from each video while for inference, 10 uniformly distributed segments are

passed into the network and the outputs are averaged. The model we used has been pretrained on
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ImageNet and then fine-tuned on the Kinetics dataset, as well as on each of our datasets.

P-CNN [CLS15] is similar to the two stream network, but with the additional guidance of pose-

joint locations. In both spatial and motion streams, image patches containing parts of the human

body (e.g. right and left hand) are passed through the CNN, producing initial image features,

which are then aggregated as static and dynamic features of corresponding body parts. Finally,

they are concatenated into a single video feature vector. A linear SVM classifier is used for the

final video classification.

2.3 Experiments

The representations and algorithms discussed above were used to perform a large number

of experiments, whose results we describe in this section.

2.3.1 Representation bias

Datasets We started by characterizing the representation bias of 9 datasets. Table 2.1 gives the

information regarding the number of videos and classes present in each of the datasets evaluated

in the thesis. The train/test splits we used is the same as those reported in the respective sources

of the datasets.

Bias Table 2.1 summarizes the biases of all datasets for all representations. A number of

observations can be made from the table. First, all datasets other than KTH have largest bias for

the saliency representation. This is likely because most action datasets tend to involve object

interactions. Understanding these interactions frequently requires a close-up view of the objects.

This explains the dominance of the saliency bias. On the other hand, many of these objects

tend not to belong to the classes detected by the Faster RCNN. This suggests that they are not

”popular” objects, which explains the low object bias. Second, comparing the datasets, it can be

seen that UCF101 has the most average bias, while Charades and Diving48 have the least. This
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can be explained by the fact that Charades contains lengthy videos with more than one label per

video. Moreover, the labels are also quite different from one another - such as ”Looking outside

the window” combined with ”Someone is cooking something”. As for the Diving dataset, the

information within each frame is quite limited due to the similar environment and the objects

related to the diving actions, which lowers down the biases from the static representations.

Figure 2.1: Dominant representation bias

Bias dominance: To obtain a more detailed picture of the bias within each dataset, we next

performed an analysis of class bias. The pie-charts of Figure 2.1 illustrate the distribution of

the class-level dominant representation bias for each of the datasets. They were obtained by

identifying the strongest bias for each class, which is denoted the dominant bias, and counting the

occurrences of these dominant biases across classes. A few conclusions can be taken from the

figure. First, saliency bias is dominant for most datasets other than KTH. This agrees with the

observations of Table 2.1. Second, the detailed picture is more nuanced than the broad picture

painted by the table. While it is true that saliency usually dominates, this dominance has a large

variation of intensity across datasets. On Kinetics and UCF101, saliency is dominant for more

than half of the classes in the dataset. On the other hand, for Charades and Diving the saliency
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slice is not much larger than some of the other slices.

Third, the second most dominant bias is, for most datasets, optical flow. The exceptions

are again Kinetics and UCF101. This suggests that these datasets are heavily biased towards

static representations. Among the remaining ones, Something-Something V2 and Diving have

the best balance between static and dynamic biases. On the other hand, KTH is heavily biased to

optical flow. Fourth, most datasets have very small bias towards object pose, which is explained

by the limited vocabulary of the Faster RCNN, and zero pose bias. This suggests that body

configurations do not play a major role in discriminating the action classes of these datasets.

Exceptions are Charades and Diving, which are composed of actions of people doing things and

athletes performing olympic dives. Finally, most datasets have a non-trivial amount of person

bias. This is expected, since most actions involve humans. An important point to note here is that

Figure 2.1 is also a reflection of the fairness score of a dataset D since it shows the distribution of

the dominant class bias across the entire dataset. Thus, in this case, Charades and Diving are the

most fair datasets since they have an almost uniform distribution among all the representations,

while KTH is the most unfair.
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Figure 2.2: Characterization of bias skew of all datasets for saliency

Bias skew We next considered the question of whether, within each dataset, classes are uniformly
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biased or contain a ”bias skew,” i.e. a small percentage of very biased classes and a long tail of

unbiased ones. For each dataset and representation, we sorted the classes by descending bias and

fit an exponential decay law, of the form Bc
i = aie−bic, where Bc

i is the bias of the class of rank

c for representation i, to the resulting raked bias values, by least squares. The parameter ai is a

measure of the strength of the largest bias for representation i in the dataset, while bi encodes the

rate of bias decay, capturing how quickly the bias falls across the sorted classes. The scatter plot

of Figure 2.2 depicts the values of largest bias (a) vs. bias decay (b) of the different datasets for

the saliency representation (φsal). Charades and Diving have small maximum bias that decays

very quickly. This is ideal behavior. On the other hand, UCF and Kinetics have large maximum

bias, which decays slowly. This explains why these datases are so biased for saliency in Table 2.1.

The remaining datasets ”interpolate” between these two behaviors, with the exception of KTH

and Hollywood2. These outliers have both small maximum bias and small decay. For KTH, this

is explained by fact that it has very little bias for saliency, as shown by the pie chart of Figure 2.1.

Hollywood2 is a more interesting case. While bias for the saliency representation is dominant in

many classes (Figure 2.1), the bias distribution is quite uniform across classes.
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Figure 2.3: Box-plots of the strength of largest bias (”a”) and the rate of bias decay (”b”) for
different datasets

Figure 2.3 summarizes the average and spread of the a-b values of each dataset across

representations using a boxplot. With regards to the maximum bias a, UCF101 and HMDB51
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have the highest median, while Kinetics has, by far, the largest range of values. This shows that

the largest class bias is extremely strong for some representations. On the other hand, Charades

and Diving have the smallest median max class bias. Regarding bias decay Charades has the

largest median rate, indicating that it has the most skewed bias distribution. It is also interesting

to note that the v2 for Something-Something has a greater median max bias a than v1 and an

equivalent median decay rate b. This implies that the bias distribution of v2 upper bounds that of

v1, and could be due to the different levels of granularity of the two datasets - more fine-grained

action categories in v2, and even more fine-grained labeling via video captions as reported in

[MBG+18]. Overall, Charades and Diving tend to have low and high values of ”a” and ”b”

respectively, indicating that they have both a low overall bias and a low population of very highly

biased classes.
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Figure 2.4: Correlation coefficients for average class bias and fairness score versus class
frequency

Relations: We next considered whether bias and unfairness can be explained by dataset unbalance,

i.e. unevenness of the class frequencies fi. Figure 2.4 presents a scatter plot of the average bias

of each class vs. its frequency and a similar plot for the fairness scores. The two plots show

very weak correlation between either of the bias properties and class frequency. This is positive,

because action recognition datasets tend to be unbalanced, just due to the fact that it is easier to

find videos of some actions than of others. These plots suggest that dataset unbalance is not a

19



major reason of concern, when it comes to representation bias. On the other hand, it would be

much easier to correct representation bias if it were mostly due to class inbalance. The fact that

this is not the case, suggests that further studies like the one we conducted are likely to be needed,

as well as algorithms that specifically target bias removal.

2.3.2 Effect of bias on algorithms

Beyond characterizing the representation bias of datasets, we investigated how this bias

affects algorithms.

Dependencies: We started by investigating how the different algorithms leverage the

various biases present in a dataset. For this reason, we computed the bias of a dataset D towards

each algorithm Ai by defining Bc(D,Ai) to be the normalized (by fi) average precision of Ai

towards class c. In this way, we generalize the concept of bias calculation of a dataset towards

both representations and algorithms. Thus, for a dataset such as HMDB51, we end up getting

the matrix B(D,A) of size 51x5 comprising of the bias of each of the 51 classes towards our 5

algorithms.

Representation/Algorithm similarity: The computation of the representation Bc(D,φi)

and algorithmic Bc(D,A j) biases, places algorithms and representations in a common space of

dimension equal to the number of classes in the dataset. PCA was used to project this space

on a 2D plane for visualizing the relationship between algorithms and representations. This

helps to establish the kind of representations different algorithms favour. It can also be used to

evaluate which algorithms might perform better on a new dataset, depending on the dominant

representation bias it has.

From (2.1), we already have the bias of the classes towards the 6 representations. This

results in a matrix B(D,φ) of size 51x6 for HMDB51. By concatenating B(D,φ) and B(D,A),

we get 11 vectors, each of 51 dimensions. These vectors are then projected onto the space of the

two largest principal components. This is given by Figure 2.5. There are a few notable observa-
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Figure 2.5: PCA visualization of the algorithms and representations projected onto the space of
the two largest Principal Components

tions here. Firstly, the C2D-Spatial as well as the I3D-Spatial algorithms lie close to the static

representations while the C2D-Motion and PCNN are closer to the dynamic representation,φ f low

and pose joint representation, φpose respectively. Secondly, it is intuitive to see that C2D-Two

Stream, which is the combination of the Spatial and Motion C2D algorithms, indeed lies around

the middle. Thirdly, the Object representation, φob ject , is located far away from all the algorithms.

It shows that there are not a lot of action recognition algorithms which consider just object

locations for classification purpose. This is in contrast to the Saliency representation φsal , which

is close to multiple algorithms. Thus, this result highlights the importance of object saliency over

just its location.

Bias-based Clustering analysis: One of the primary objectives of the work done here

is to look deeper at a dataset in order to find similarities in its constituent classes in terms of

bias. This motivates the idea of grouping or clustering the classes of a dataset according to the

representation bias values and visualizing the performance of each cluster. This is shown in

Figure 2.6. On the left side, we have the t-SNE plot [MH08] depicting 3 clusters of the UCF101

classes found according to the k-means clustering algorithm. The performance of the 5 algorithms
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Figure 2.6: t-SNE visualization of clusters of UCF101 classes and the corresponding algorithm
performance on each cluster

are then plotted on the right side for each of these clusters. It is observed that while the overall

performance of C2D-Spatial is better than C2D-Motion for UCF101, this is not the case for cluster

3. This is possibly due to the presence of classes with short-term motion (such as HorseRiding).

On the contrary, for cluster 2, the C2D-Spatial actually performs better than both the Two-Stream

as well as I3D algorithms. This is a striking observation since I3D usually outperforms most C2D

algorithms by a long margin [CZ17] .

2.3.3 Effect of Dataset Manipulation on Algorithms

The above sections mention the performance of the complete dataset towards different

representation biases and algorithms. Here, we introduce a novel technique of manipulating a

dataset according to bias, in order to see a change in the performance of algorithms. During our

implementation, the Spatial stream of C2D outperformed the Motion stream for UCF101. From

Figure 2.5, it can be seen that the spatial algorithms rely more on φsal while the motion algorithm

on φ f low. This is understandable since the former focus more on the static features while the

latter on short-term dynamics. Thus, theoretically, removing the classes according to φsal should

have some negative impact in the performance of the spatial algorithms. In our experiment, we

therefore picked only the high-biased classes such as PlayingPiano, Skijet etc. (as shown in

22



Figure 1.1) which also have relatively low bias for φ f low and recomputed the performance of

each of these algorithms.
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Figure 2.7: Performance of two algorithms on UCF101 and their differences, with biased
classes removed.

This is reflected in Figure 2.7 for the different number of classes removed. The curve

overlaid on the bins denotes the difference in accuracy of the spatial and motion algorithms.

Clearly, the difference decreases with the number of classes removed. This suggests that a simple

manipulation of classes may indeed change/alter the performance of algorithms. This is an

interesting result since it shows that relative algorithm performances are affected by the biases

of the dataset. This is important, due to the prevalence of the ”state of the art” standard in the

evaluation of vision algorithms. This practice encourages the promotion of algorithms that could

be best at leveraging representation biases of the dataset, instead of solving the actual task. To

make matters worse, datasets collected using similar data collection set-ups are likely to exhibit

similar biases. For example, many data collection efforts use the same source (YouTube) and

similar protocols (Turk annotations, etc.). While most recent efforts have focused on collecting

more data, this will not help if the new large datasets are as biased as the old and small ones.
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2.4 Conclusion

In this chapter, we studied different types of representation biases on most state-of-the-art

action recognition datasets and found that they vary a lot with respect to different representations.

A new metric, the fairness score, was also introduced to assess a dataset based on bias, and it

was further proven that both this metric and the average bias of a dataset is uncorrelated with

class frequency. We further established that the concentration of high-biased classes vary among

datasets and this information can be utilized to reduce the overall bias of the dataset. The second

part of the chapter rounds up the state-of-the-art algorithms and their relationship with different

representations. We proved that algorithms tend to perform better in the presence of their preferred

representations. Thus, when a new action recognition dataset is introduced, the optimal algorithm

can be found based on this dataset’s bias. Finally, we showed that an algorithm’s performance is

subject to the classes it is exposed to. Therefore, by removing biased classes of a dataset, it is

totally possible to change or even alter the relative performance of different algorithms.
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Chapter 3

Diverse Scene Detection

3.1 Background

Semantic place categorization using only visual features has been an important area of

research for robotic applications [TMFR03, WCR09]. In the past, many robotics researchers

focused on place recognition tasks [PMC08, SI07] or on the problem of scene recognition in

computer vision [OT01, QT09].

Quattoni and Torralba [QT09] introduced a purely vision-based place recognition system,

which improves the performance of the global gist descriptor by detecting prototypical scene

regions. However, the size, shape and location of up to ten object prototypes has to be labeled and

learned in advance for this system to work. Also, the labeling task is very work-intensive, and the

approach of having fixed regions is only useful in finding objects in typical views of the scene.

This makes the system ill-suited for robotics applications. Since we want to deal with flexible

positions of objects, we apply a visual attention mechanism that can locate important regions in a

scene automatically.

A number of different approaches have been proposed to address the problem of classify-

ing environments. One popular approach adopted is to use Feature Matching with Simultaneous
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Localization and Mapping (SLAM). Ekvall et al. [EKJ07] and Tong et al. [TSY17] demonstrated

a strategy for integrating spatial and semantic knowledge in a service environment using SLAM

and object detection & recognition based on Receptive Co-occurrence Histograms. Espinace et

al. [EKSR10] presented an indoor scene recognition system based on a generative probabilistic hi-

erarchical model using the contextual relations to associate objects to scenes. Kollar et al. [KR09]

utilize the notion of object-object and object-scene context to reason about the geometric structure

of the environment in order to predict the location of the objects. The performance of the object

classifiers is improved by including geometrical information obtained from a 3D range sensor that

facilitates a focus of attention mechanism, in addition. However, these approaches only identify

the place based on the specific objects detected and the hierarchical model that is used to link the

objects with the place. In contrast to their method, our algorithm is not limited to a small number

of recognizable objects.

Recently, there have been several approaches to Scene Recognition using Neural Networks.

Liao et al. [LKW+16, LKW+17] used Convolutional Neural Networks (CNNs) to recognize the

environment based on object occurrence for semantic reasoning, but their system information and

mapping results are not provided. Sun et al. [SMTA18] proposed a Unified Convolutional Neural

Network which performs Scene Recognition and Object Detection. Luo et al. [LC18] developed

a semantic mapping framework utilizing spatial room segmentation, CNNs trained for object

recognition, and a hybrid map provided by a customized service robot. Niko et al. [SDM+16]

proposed a transferable and expandable place categorization and semantic mapping system

that requires no environment-specific training. Mancini et al. [MBCR18] addressed Domain

Generalization (DG) in the context of semantic place categorization. They also provide results of

state-of-the-art algorithms on the VPC Dataset [WCR09] that we compare to. However, most of

these results do not test their algorithms on a wide variety of platforms. This is the main focus

of the work shown in this chapter. The experiments are conducted, both for static images, and

dynamic real world videos captured using hand-held cameras and robots.
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3.2 Proposed Methodology

We consider a set of five different models, abbreviated as Diverse scEne Detection

methods in Unseen Challenging Environments (DEDUCE), for place categorization. Each model

is derived from two base modules, one based on the PlacesCNN [ZLK+17] and the other being

an Object Detector-YOLOv3 [RF18]. The classification model can be formulated as a supervised

learning problem. Given a set of labeled training data X tr = {(x1,y1),(x2,y2)...(xN ,yN)}, where

xi corresponds to the data samples and yi to the scene labels, the classifier should learn the

discriminative probability model

p(ŷ j|Φ(X tr)) (3.1)

where ŷ j corresponds to the j-th predicted scene label and Φ = {φ1,φ2...φt} are the set of different

feature representations obtained from the xi. This trained model should be able to correctly

classify a set of unlabelled test samples X te = {x1,x2...xM}. It is to be noted that while the goal

of each of our five models is to perform place categorization, it is the Φ which varies across them.

We now describe the two base modules, and how our five models are derived and trained from

them. The complete network architecture is given in Figure 3.1.

0

0

...
FC

Bedroom

YOLOv3

Input Image 

Hot-encoded vector 

Scene_only
Object_only
Combined

1

PlacesCNN

Kitchen

Living Room 
Dining Room 

Office

Figure 3.1: Model Architecture. The highlighted regions represent the portion of the network
which was trained for the respective models.
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3.2.1 Scene Recognition

For scene recognition, we use the PlacesCNN model. The base architecture is that of

Resnet-18 [HZRS16] which has been pre-trained on the ImageNet dataset [DDS+09] and then

fine-tuned on the Places365 dataset [ZLK+17]. We choose seven classes out of the total 365

classes, which are integral to the recognition of indoor home/office environments - Bathroom,

Bedroom, Corridor, Dining room, Living room, Kitchen and Office. We use the official training

and validation split provided for our work. The training set consists of 5000 labelled images for

each scene-class, while the test set contains 100 images for each scene.

3.2.2 Object Detection

Object detection is a domain that has benefited immensely from the developments in deep

learning. Recent years have seen people develop many algorithms for object detection, some

of which include YOLO [RDGF16, RF17, RF18], SSD [LAE+16], Mask RCNN [HGDG17],

Cascade RCNN [CV18] and RetinaNet [LGG+17]. We work with the YOLOv3 [RF18] detector

here, mainly because of its speed, which makes real-time processing possible. It is a Fully Con-

volutional Network (FCN), and employs the Darknet-53 architecture which has 53 convolution

layers, consisting of successive 3x3 and 1x1 convolutional layers with some shortcut connec-

tions. The network used here has been pre-trained to detect the 80 classes of the MS-COCO

dataset [LMB+14].

3.2.3 Place Categorization models

Scene Only

The first model which we use consists of only the pre-trained and fine-tuned PlacesCNN

with a simple Linear Classifier on top of it. This model accounts for a holistic representation of a

scene, without specifically being trained to detect objects. Thus, the feature vector for this model
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is given by Φscene = φs.

Object Only

The second model acts a Scene classifier using only the information of detected objects.

There is no separate training performed here to identify the individual scene attributes. For this

purpose, we create a codebook of the most common COCO-objects seen in all the seven scenes.

This is shown in Table 3.1. It is to be noted that every object has been associated to only one scene,

thereby making it a landmark. For this model, the feature representation is given by Φob j = φ{ob j}

where {ob j} is the set of objects detected in the image.

Table 3.1: Top landmark objects (non-human) for the seven different scene classes

Bathroom Toilet Sink - -
Bedroom Bed - - -
Corridor - - - -
Dining Room Dining Table Chair Wine Glass Bowl
Kitchen Oven Microwave Refrigerator -
Living Room Sofa Vase - -
Office TV-Monitor Laptop Keyboard Mouse

Scene+Attention

In this model, we compute the activation maps for the given image of a scene, and using

those, we try to visualize where the network has its focus during scene classification. From the

output of the final block convolutional layer (layer 4) of the WideResnet architecture [ZK16],

we get the 14x14 feature blobs which retain the spatial information corresponding to the whole

image. Our model is similar to the soft attention mechanism of [XBK+15] in the sense that here

too, we assign the weights to be the output of a softmax layer, thereby associating a probability

distribution to it. However, since we are not classifying based on a sequence of images, we do

not employ a recurrent network to compute the sequential features. Instead, we simply utilize

the weights of the final FC layer and take its dot product with the feature blobs to obtain the
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heatmap. The final step is to upsample this 14x14 heatmap to the input image size, and then

overlay it on top to obtain the activation mask m(xn) of the input image xn. Therefore, the feature

representation for this model is Φattn. = φm(xn). The basic architecture is given in Figure 3.2.

14 x 14 Feature Map 

Input Image Activation Map PlacesCNN

Figure 3.2: Architecture for Generation of the Activation Map. The 14x14 feature maps
obtained from the block layer 4 of WideResNet are combined with the weights from the final
FC layer, and then their dot product id upsampled to the image size and overlaid on top to get
the activation maps

Combined

In this model, we use the PlacesCNN mentioned above as a feature extractor to give the

semantics of a scene. In addition, the YOLO detector gives us the information regarding the

objects present in the image. Given an image of a scene, our model creates a hot-encoded vector

of 80 dimensions, corresponding to the object classes of MS-COCO, with only the indices of the

detected objects set to 1. We then concatenate this vector along with that of the output of the scene

feature extractor, and train a Linear Classifier on top of it. Since we combine the two different

features of scene and objects, the feature representation here is given by Φcomb. = {φs,φ{ob j}}.

Scene+N-best objects

Our final model is similar to the above in the sense that here also, we use both the

PlacesCNN and the YOLO detector. However, this model does not need to be retrained again

and so, it is significantly faster. For this model, we place a certain confidence threshold on the

scene detector, and only when the probability of classification is below this threshold, we search
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for the information about specific objects in the scene (as obtained from Table 3.1). The reason

for introducing this as a new model is two-fold. Firstly, we eliminate the scenario of looking at

every object present since it is often redundant, given the semantics of the scene. Secondly, this is

similar to how we as human beings operate when we come across an unknown scene. The feature

representation for this model is given by ΦN−best = {φs,φ{N−ob j}}.

3.3 Experiments and Results

We evaluated our five models described above on a number of platforms. In this section,

we first describe our training procedure, and then talk about the different experiment settings used

for evaluation.

3.3.1 Training Procedure

As mentioned in Section 3.2, the base architecture for our scene classifier is the ResNet-18

architecture. The data pre-processing and training process is similar to [ZLK+17]. We used the

Stochastic Gradient Descent (SGD) optimizer with an initial learning rate of 0.1, momentum of

0.9, and a weight decay of 10−4. For the Φscene and the Φattn. models, the training was performed

for 90 epochs with the learning rate being decreased by a factor of 10 every 30 epochs. The

Φcomb. model converged much faster and so, it was only trained for 9 epochs, with the learning

rate reduced by 10 times after every 3 epochs. For all the 3 training procedures, the cross-entropy

loss function was optimized, which minimizes the cost function given by

J(ŷ j,y j) =−
1
N
(

N

∑
j=1

y j� log(ŷ j)) (3.2)

The training process was carried out on a NVIDIA Titan Xp GPU using the PyTorch

framework. The performance of the five DEDUCE algorithms on the test set of Places365 is
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shown in Table 3.2 for the seven classes chosen.

Table 3.2: Accuracy in percentage of DEDUCE on Places365 dataset

Scenes Φscene Φob j Φattn. Φcomb. ΦN−best

Dining room 79 94 75 79 80
Bedroom 90 74 90 90 91
Bathroom 92 65 92 91 92
Corridor 94 90 99 96 94
Living Room 84 25 68 80 84
Office 85 29 76 94 83
Kitchen 87 62 70 87 87
Avg 87.3 62.6 81.4 88.1 87.3

3.3.2 Experiment Settings

In order to check the robustness of our models, we further evaluated their performance on

two state-of-the-art still-image datasets.

SUN Dataset

The SUN-RGBD dataset [SLX15] is one of the most challenging scene understanding

datasets in existence. It consists of 3,784 images using Kinect v2 and 1,159 images using Intel

RealSense cameras. In addition, there are 1,449 images from the NYUDepth V2 [SHKF12],

and 554 manually selected realistic scene images from the Berkeley B3DO Dataset [JKJ+13],

both captured by Kinect v1. Finally, it has 3,389 manually selected distinguished frames without

significant motion blur from the SUN3D videos [XOT13] captured by Asus Xtion. Out of this,

we sample the seven classes of importance and use the official test split to evaluate our models.

We only consider the RGB images for this work since our training data doesn’t have depth

information. The performance is summarized in Table 3.3.

Upon comparison with Table 3.2, which contains the results on the Places365 dataset

where our models were fine-tuned, a number of observations can be made which are consistent

for both the datasets. Firstly, the Φcomb. model performs the best. This is intuitive since here,
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Table 3.3: Accuracy in percentage of DEDUCE on SUN dataset

Scenes Φscene Φob j Φattn. Φcomb. ΦN−best

Dining room 65.2 83.7 53.3 67.4 72.8
Bedroom 43.7 36.5 48.9 48.9 47.3
Bathroom 94.5 87.0 97.3 96.6 95.2
Corridor 44.4 67.6 67.6 44.4 41.7
Living Room 58.8 24.0 43.6 59.2 58.8
Office 84.0 12.6 75.8 90.6 80.6
Kitchen 77.1 63.5 63.9 83.8 77.4
Avg 66.8 53.6 64.3 70.1 67.7

the scene classification is done using the combined training of both the information about the

scene attributes and the object identity. Secondly, the Φob j model works the best for the Dining

Room class, even though its overall performance is the worst. This trend can be attributed to the

fact that dining rooms can be easily identified by the presence of specific objects, whereas the

scene attributes might throw in some confusion (for instance when the kitchen/living room is

partially visible in the image of a dining room). Thirdly, for Corridor, the performance of the

Φattn. model is best for both the datasets. This supports the fact that in order to classify a scene

like a corridor, viewing only a small portion of the image close to the vanishing point is sufficient.

Finally, the ΦN−best model performs just as good or better than the Φscene model. This proves

that presence of objects does indeed improve the scene classification. For the best performance

using the ΦN−best model, the threshold was set to 0.5 for the Places dataset while it was 0.6 for

the SUN dataset. The reason for the higher confidence on scene attributes for Places dataset is

most likely due to the fact that the scene classifier itself was fine tuned on it.

VPC Dataset

The Visual Place Categorization dataset [WCR09] consists of videos captured autonomously

using a HD camcorder (JVC GR-HD1) mounted on a rolling tripod. The data has been collected

from 6 different home environments, and three different floor types. The advantage of this dataset

is that the collected data closely mimics that of the motion of a robot - instead of focusing on
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captured frames or objects/furniture in the rooms, the operator recording the data just traversed

across all the areas in a room while avoiding collision with obstacles. For comparison with the

state-of-the-art algorithms, we test our methods only on the five classes which are present in all

the homes - Bathroom, Bedroom, Dining room, Living room and Kitchen. Table 3.4 contains the

results for the individual home environments for these five classes. For the AlexNet [KSH12]

and ResNet [HZRS16] models, we adopt the same training procedure as in [MBCR18]. It can

be seen from the table that our models perform better than the rest in all but one of the home

environments and much better in the overall performance.

Table 3.4: VPC Dataset: Average Accuracy across the 6 home environments

Networks H1 H2 H3 H4 H5 H6 avg.
AlexNet 49.8 53.4 49.2 64.4 41.0 43.4 50.2
AlexNet+BN 54.5 54.6 55.6 69.7 41.8 45.9 53.7
AlexNet+WBN 54.7 51.9 61.8 70.6 43.9 46.5 54.9
AlexNet+WBN∗ 53.5 54.6 55.7 68.1 44.3 49.9 54.3
ResNet 55.8 47.4 64.0 69.9 42.8 50.4 55.0
ResNet+WBN 55.7 49.5 64.7 70.2 42.1 52.0 55.7
ResNet+WBN∗ 56.8 50.9 64.1 69.3 45.1 51.6 56.5
Ours (Φscene) 63.7 57.3 63.7 71.4 60.2 65.9 63.7
Ours (Φcomb.) 63.7 60.7 64.5 70.7 65.7 68.8 65.7

Table 3.5 further compares our models with all other baseline algorithms tested on the

VPC dataset. The reported accuracies are the average over all the six home environments. We

first consider the methods described in [WCR09], which use SIFT and CENTRIST features

with a Nearest Neighbor Classifier, and also exploit temporal information between images by

coupling them with Bayesian Filtering (BF). Next, we look at the approach of [FET12] where

Histogram of Oriented Uniform Patterns (HOUP) is used as input to the same classifier. [YW12]

proposed the method of using object templates for visual place categorization, and reported results

Table 3.5: VPC Dataset: Comparison with State Of The Art

Method [WCR09] [FET12] [YW12] AlexNet ResNet Ours
Config. SIFT SIFT+BF CE CE+BF HOUP G+BF G+O(SIFT)+BF Base BN WBN∗ BN WBN∗ Scene-only Combined
Acc. 35.0 38.6 41.9 45.6 45.9 47.9 50 50.2 53.7 54.3 55.0 56.5 63.7 65.7
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for Global configurations approach with Bayesian Filtering (G+BF), and that combined with

the object templates (G+O(SIFT)+BF). Ushering the deep learning era, AlexNet [KSH12] and

ResNet [HZRS16] architectures give better results, both with their base models, as well as the

Batch Normalized (BN) and the Weighted Batch Normalized versions [MBCR18]. However,

comparisons with our Φscene and Φcomb. models show that our methods beat all the other results

by significant margins.

Figure 3.3: Detection Results on Real-World Videos. Top row corresponds to the video of a
Real-Estate model house. The next 2 rows are from the houses of the authors and their friends.
The bottom row is obtained from a house in the movie ”Father of the Bride”.

Real-World Scene Recognition

In order to test the robustness of our DEDUCE models, we expand the domain of test

cases beyond the aforementioned still image data sets. Figure 3.3 does this by showing the

results of scene recognition on real-world data recorded using hand-held cameras. We employ the

ΦN−best model for these cases due to its ability to mimic the natural behavior of humans, whereby

an initial prediction is made based on the scene attributes, and if unsure, more information related

to specific objects is gathered in order to update/re-inforce the initial prediction. The top row

corresponds to the tour of a semi-furnished real estate home obtained from YouTube which only

has the relevant objects in the scene. Although it is not a sequential tour of the house, it does

contain all the rooms. Also, professional photographers captured this video and hence, the image
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quality and white-balance of the camera is pretty good. The next-2 rows pose a more challenging

case as they correspond to homes currently inhabited by people. We consider two examples

of these houses, one which is a standard bungalow residence, while the other being a student

apartment. From experience, the bungalow is a much cleaner home, whereas student apartments

are prone to presence of cluttered objects and overlapping scene boundaries. Moreover, the videos

were recorded by the inhabitants using their cellphone cameras. This inherently brings motion

blur into the picture, specially during scene transitions. Finally, the last row depicts the settings

of a house from the movie ”Father of the Bride”. This ensures that our model is robust enough

to classify scenes even when the focus of the recording is on people instead of the background

settings. All the detection results mentioned in this chapter are available as individual videos in

the following link https://goo.gl/sYyVZ2.

Semantic Mapping

The experimental setting for semantic mapping involves running our algorithm on a

mobile robot platform in two different environments. The platform is a Fetch Mobile Manipulator

and Freight Mobile Robot Base by Fetch Robotics∗. Figure 1.2 shows the robot performing scene

classification in one of the environments.

The semantic maps for the experiments were constructed using Omnimapper [TRC14]. It

utilizes the GTsam library in order to optimize a graph of measurements between robot poses

along a trajectory, and between robot poses and various landmarks in the environment. The

measurements of simple objects like points, lines, and planes are data associated with mapped

landmarks using the joint compatibility branch and bound (JCBB) technique [NT01]. The regions

for color segmentation are acquired by the Gaussian Region algorithm of [NGRTC10]. However,

in [NGRTC10], the map partitions were built through human guidance, whereby the robot was

taken on a tour of the space (either by driving the robot manually, or using a person following

∗https://fetchrobotics.com/robotics-platforms/
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behavior) and the respective scene labels were taught to it. This is in contrast to our approach,

where the labels are learned from our visual place categorization system. Thus, the robot is itself

capable of identifying the scenes without any human guide. We used the ΦN−best model for

this task, and retrained the scene classifier to exclude the Bedroom, Dining Room & Bathroom

scenes, and instead include Conference Room as it is more likely to occur in an academic building

environment.

Figure 3.4a shows the navigation of the robot in the Computer Science and Engineering

(CSE) Building. Our system was able to classify the seven regions of the floor map. However,

there are some regions detected by Omnimapper using the laser range finder. These are painted in

white to denote their invisibility to the camera. The second test environment is the Contexual

Robotics Institute (CRI) building, which has a very different floor map in comparison to CSE.

The result of the run made here is shown in Figure 3.4b.

3.4 Conclusion

In this chapter, we considered five different models for performing place categorization,

which are derived mainly from two base modules - a scene recognizer, and an object detector.

We demonstrated the effectiveness of our algorithms in a series of experiments, ranging from

scene recognition in still-image data sets to real-world videos captured from different sources,

and finally via the generation of labeled semantic maps using data gathered by multiple mobile

robot platforms.

We showed that (i) different models are favorable for different scenes (Table 3.2 and 3.3),

and thus the ideal scene recognition system would likely be a combination of these five models,

(ii) the proposed methods give successful results on many different types of video recordings,

even when they are affected by object clutter, motion blur, and overlapping boundaries and (iii)

our models are robust enough to be tested on data gathered by mobile robotic platforms on

37



multiple building scenarios which are affected by occlusions and poor lighting conditions.

We plan to extend our experimental evaluation to other mobile robots and then flying

robots. While we demonstrated the effectiveness of our approach in different indoor scenarios,

we believe that the next step is to allow the robot to walk on a tour and label important regions in

its environment. This would be useful for navigation in unknown places using a semantic map

for robots and humans. Furthermore, our system could be applied to autonomous robots, thus

enabling them to assist humans in safety and rescue missions inside a house or a building.
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(a) Semantic Map of the CSE building.

(b) Semantic Map of the CRI.

Figure 3.4: Place categorization experiments with mobile robots. Each color represents one of
the seven classes of the visual place categorization that our system classified.
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Chapter 4

Visual Attention Mechanism for Action

Classification

4.1 Background

The study of Optical Flow in Computer Vision has long been an interesting domain, right

from its inception. Horn et al. [HS81], Lucas et al. [LK81] Fleet et al. [FW06], and Sun et

al. [SKS+18] give a background on what Optical Flow is and how it can be determined in a

computer vision problem. Convolutional Neural Networks are the primary form of architecture

used in most Computer Vision problems these days. Deep Learning essentially involves having

a series of convolutional layers, followed by multiple fully-connected layers which enable the

step-wise detection of features of importance, finally leading to the higher level-linguistics

representations.

Gathering temporal information is of prime importance for video-based classification

techniques. Karpathy et al. [KTS+14] used this and introduced the concepts of Early Fusion and

Late Fusion. Early Fusion combines information over a time window at a pixel-level, while Late

Fusion places two separate single-frame networks until the last convolution layer with frames
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being separated periodically. Another representation of fusion is the Two-Stream Convolutional

Networks [SZ14] used for classifying videos, where the spatial and temporal information form

the two steams and are processed separately. Recurrent Neural Networks are useful when we

associate a memory with a sequence of data gathered across several frames in a video [GBC16].

Our model uses the above-mentioned concepts and expands them to incorporate attention

in a series of frames to classify videos. We tested our model on a labeled dataset of human actions

spread over the length of a video. The dataset is custom-made and involves common human

actions performed and captured in a short video format.

Figure 4.1: From left to right: Comparison of early-fusion, late-fusion, and two-stream methods.

4.2 Proposed Methodology

4.2.1 Camera motion estimation and scene structure in video frames

To show the connection between camera motion and image point motion, we first introduce

a general optical flow equation:

u(x) = Nx(dτ+Wx), (4.1)

where x ∈ R3 is a point on the imaging surface, u(x) ∈ R3 is the optical flow vector at

that point (always tangent to the imaging surface), d is the inverse distance from the camera

principal point to the scene point imaged at x, τ is the camera translation vector, and W is the

camera angular velocity. Nx is the linear transformation, a 3×3 matrix, that projects flow on the
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unit sphere at x to flow on the true imaging surface.

Lucas-Kanade Method

We calculate the motion of each person via Lucas-Kanade Method[LK81]. This method

assumes a constant small velocity between two nearby frames. We want to minimize the sum of

squared error between template T (or the first frame) and the second frame I warped back onto

the template. We setup the cost function as:

∑
x,y
[I(W (x,y; p))−T (x,y)]2 (4.2)

We minimize the equation as a non-linear optimization problem because pixel values

I(x,y) are independent of coordinates x,y. Therefore, we optimize the method by descent step

∆p:

∑
x,y
[I(W (x,y; p)+∆p)+T (x,y)]2 (4.3)

The update step can be written as

pt+∆ = pt +∆p (4.4)

Next we applied the first order term of Taylor series

∑
x,y
[I(W (x,y; p))+∇I

∂w
∂p

∆p−T (x,y)]2 (4.5)

We assume the motion is pure translation.

W ((x,y; p)+∆p)) =

∣∣∣∣∣∣∣
x+ p1

y+ p2

∣∣∣∣∣∣∣ (4.6)
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∂w
∂p

=

∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣ (4.7)

Then, we solve for ∆p by Gauss-Newton Method where ∆p is

∆p = H−1
∑
x,y
[∇I]T [T (x,y)− I(W (x,y; p))] (4.8)

and the Hessian is

H = ∑
x,y
[
∂w
∂p

]T [∇I
∂W
∂p

] (4.9)

H = ∑x,y[∇I]T [∇I] (4.10)

For a clearer visual analysis, Figure 4.2 shows the steps to compute optical flow from

a sequence of two pictures. The arrows represent the motion which the object has moved with

respect to the camera view.

Figure 4.2: Diagram of computing optical Flow via Lucas-Kanade Method. In the above image,
optical flow gives the velocity gradients of the pixels which move in position over time. In the
lower image, we highlight the portion of the image which is in motion (the vehicles).
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4.2.2 Neural Networks

In this section, we describe our proposed neural network model for video classification.

We present two different models i.e., Recurrent Convolutional Neural Networks (R-CNN: Figure

4.3a) and Recurrent Attentive Convolutional Neural Networks (R-ACNN: Figure 4.3b). R-ACNN

extends R-CNN by adding the neural attention module. Attention model enables a neural network

to focus on certain parts of an input image instead of processing it entirely at a fine scale. This

region selection reduces the number of training parameters as well as the computational operations.

Beside computational benefits, attention models also provides information about where a neural

network is looking at, while taking any decision. Rest of the section is divided up according to the

different neural models of R-CNN and R-ACNN i.e., 1) Convnets; 2) Long Short-term Memory

(LSTM) network; and 3) Attention network (G) (used by R-ACNN). The flow of information

between the different modules of R-CNN and R-ACNN can be seen in Figure 4.3a and Figure

4.3b.

(a) Recurrent Convolutional Neural Network (b) Recurrent Attentive Convolutional Neural Net-
work

Figure 4.3: Neural network architectures used

ConvNets

The ConvNets take preprocessed visual frame as input in each time-step and transforms it

into L feature vectors, each of which provides D-dimensional representation of a part of an input

image i.e, at = {a1
t , · · · ,aL

t },al
t ∈ RD. This feature vector is either taken as an input by the linear
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layer in case of R-CNN or by attention network in case of R-ACNN to generate an annotation

vector z ∈ RD.

Figure 4.4: The structure of the Convolutional network encoder.

LSTM

Figure 4.5: The structure of a long short-term memory (LSTM) network.

We employ the following implementation of LSTM network. It is based on the structure

shown in Figure 4.5.
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σ

tanh


M

ht−1

zt

 (4.11)
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ct = ft� ct−1 + it�gt (4.12)

ht = ot� tanh(ct) (4.13)

where it, ft, ot, ct, and ht correspond to the input, forget, output, memory and hidden state

of the LSTM respectively. The activation functions for the input, forget, and output gate is given

by the sigmoid function σ, while for the hidden state, it is the hyperbolic tangent tanh function.

Let d be the dimensionality of all LSTM states and matrix M : Ra→ Rb, in equation 4.11, is an

affine transformation of trainable parameters with dimension a = d +D and b = 4d. As shown in

equation 4.13, the LSTM network takes the annotation vector zt ∈ RD, previous hidden state ht−1,

and the previous memory state ct−1 as an input in order to produce the next hidden state ht. This

hidden state ht is given to the attention network G (in case of R-ACNN) and to the linear output

layer for generating the annotation vector zt+1 at next time step and for providing the output

prediction value for each of the legal classes, respectively.

Attention network

The attention network (for R-ACNN) generates a dynamic representation, called annota-

tion vector zt, of the corresponding parts of an input image at time t. The attention mechanism φ,

a multilayer perceptron, takes a D-dimensional L feature vectors at and a previous hidden state

ht−1 of the LSTM network as an input for computing the positive weights βl
t for each location l.

The weights βl
t are computed as follow:

β
l
t =

exp(αl
t)

∑
L
k=1 exp(αk

t )
, (4.14)
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where

α
l
t = φ(al

t,ht−1), (4.15)

The annotation vector zt is given by

zt =
L

∑
l=1

β
l
ta

l
t. (4.16)

This annotation vector is used by LSTM for computing next hidden state.

There are two types of attention networks [XBK+15] in the literature: the soft and hard attention

network. The attention network used in our method is the soft attention network and unlike hard

attention network, it is fully differentiable and deterministic.

4.3 Technical Approach

This section outlines the implementation details of our project. The algorithms were

implemented in Pytorch. The system used for training our model has 3.40GHz octa-core Intel

Core i7 processor with 32 GB RAM and NVIDIA GeForce GTX 1080 GPU. The rest of the

section explains various modules of the project.

4.3.1 Data Collection and Pre-processing

The collected dataset comprises of 5 classes that we use in daily life communication.

Each gesture is depicted in Figure 4.6, along with a representative caption. Moreover, because we

wanted to ensure that the network is invariant to irrelevant factors such as background or lighting

and sensitive only with respect to gesture, we collected videos in 7 different locations, outdoors

and indoors. Furthermore, participants were recorded with three cameras, positioned at different

angles and heights. As the gestures involve motion to be clearly distinguishable, we decided to

include the temporal information by giving the network a series of consecutive frames, instead

of a single image. From each gesture clip, we randomly sampled 5 frames from 4 consecutive
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Figure 4.6: Examples of input sequences for each class. From top to bottom, the classes are
“bye”, ”don’t know”, “konnichiwa”, “quiet”, “high five”.
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frame intervals. Around 160 samples were obtained per gesture class. Afterwards the images

are rescaled and cropped in the center area such that their dimensions decrease to 210× 210.

After being transformed to YUV input, frames go through the process of computing optical flow

[HS81]. Finally, the images were globally normalized, such that the mean of all pixel values was

0 and the standard deviation 1.

4.3.2 Model Architecture and hyper-parameters

This section provides the details of the architecture of our R-CNN and R-ACNN model.

The convolutional neural network consists of four convolution layers each of which is followed by

a non-linear rectifier function. The input dimension to the CNN is 2×210×210. The convolution

layer 1, 2, 3 and 4 convolves 16 filters of 9× 9, 32 filters of 8× 8, 64 filters of 7× 7 and 256

filter of 6×6, respectively. The stride of the convolution layers 1, 2, 3 and 4 are 3, 2, 2 and 1

respectively. The CNN outputs 256 feature maps of dimension 7×7. The output feature maps

from CNN are given to the attention network which takes 49 vectors each of size 256. To be

consistent with attention network, the LSTM network also has 256 units. To generate prediction-

values for the five classes, the output of the LSTM is transformed to five units through a linear

layer preceded by non-linear rectifier unit. Finally, the cost function is negative log-likelihood

and the learning rate was kept at 10−3.

4.4 Results and Discussion

The dataset consists of 780 videos in total, with 624 (or 80%) for training and 156 (or

20%) for testing. Five models, including Early Fusion, Late Fusion, R-CNN, Two-stream, and

R-ACNN, have been implemented. Where applicable, optical flow have been added to the dataset.

The results of these experiments are shown in Table 4.1.

The results suggest that the best models are our R-CNN and R-ACNN with optical flow,
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Table 4.1: The accuracy for each of the five models, with and without optical flow.

Models Grayscale Accuracy Optical Flow Accuracy
Early Fusion 42.8% –
Late Fusion 57.3% 86.7%

R-CNN 59.0% 98.2%
Two Stream 87.3% 87.3%

R-ACNN 57.8% 97.4%

having accuracy above 97%. The next best models, two-stream and late fusion, have only been

able to achieve 87% accuracy. Other methods, especially the ones that do not use optical flow,

could not achieve an accuracy higher than 60%.

Figure 4.7: The attention masks generated from training the recurrent attentive convolutional
neural network (R-ACNN). The regions with higher attention are marked with brighter color.

We observe that using optical flow significantly boosts accuracy in late fusion, R-CNN

and R-ACNN models. The two-stream model does not appear to be able to effectively use the

optical flow. In contrast, the R-CNN and R-ACNN models get the most significant boost in

accuracy by using optical flow. Curiously, R-ACNN does not perform better than R-CNN in our

experiments. In fact, R-ACNN has slightly lower accuracy than R-CNN, regardless of the use of

optical flow. We believe this difference in accuracy is due to the fact that attentive model focuses
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only on a small region of the input, where as the non-attentive model uses the entire input. If the

attention is in the wrong region, then the classification becomes much less likely to be correct.

What, then, is the advantage of using an attentive model such as R-ACNN over R-CNN?

An answer to this question is that the attention masks which the attentive model produces may

provide intuitive ways to interpret the trained models. Figure 4.7 shows the attention masks

generated by the R-ACNN. The attention masks are produced by performing a convolution of a

Gaussian blur filter with the annotation vector zt , which is reshaped and rescaled to match the

input frame size, and then adding it on top of the input image with a non-zero alpha channel.

Figure 4.8: The attention masks for two training examples at epochs 0, 2, 5, 20, and 65
demonstrate the convergence of attention masks to a local region.

We observe that in all examples except for “shh”, the attention masks focus on “high-

activity regions”, ie the regions where significant motion is present. For the “konnichiwa” action,

the region is the upper body; for the “don’t know”, “wave” and “high five” actions, the elbow.

For the “shh” action, the model identifies the region of interest outside the body. We believe

that these highlighted regions demonstrate the regions where the model finds the most “telling”

about the action in question, similar to PCA identifying the most significant factors of a model.

The attention masks are especially useful for video and image data, since they allow even non-
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technical persons to peek into the network’s mechanism. This might be important to consider in

designing service robots, as users may be more willing to interact with a robot that displays its

attention.

How are the attention masks formed by training? Figure 4.8 shows the evolution of two

attention masks over training epochs. In both examples, the attention masks converge to a local

region. Before training, the attention is dispersed across large areas in the images. With training,

the attention gradually collapses into a few prominent regions (usually two) before one region

eventually dominates. The examples suggest that the model is the healthiest around epoch 20, as

the model at this point has formed a few regions of interest while not yet assigning all trust to a

single region. This might prevent over-fitting, to which the relatively small size of our dataset is

prone.
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Chapter 5

Conclusion and Future Work

This thesis presents a detailed analysis into the study of classifiers, with a focus on what

information they can leverage in order to solve a problem. In Chapter 2, this is done through the

concept of bias in action recognition, which illustrates the fact that deep learning models often

achieve better than average performance, simply by exploiting a set of representations which can

be quite different from the ground-truth. New metrics like Fairness score and Bias skew have

been introduced, which can be used to assess the bias of an action recognition dataset. A future

direction of work in this domain is to utilize the relationship between fairness score and bias to

classify a dataset in terms of its classification difficulty. Another possible extension to this work

is to evaluate the bias preference of state of the art algorithms. While it is likely that modern

algorithms tend to incorporate multiple representations, it is still interesting to see the distribution

of these representations. Finally, a new criterion for selecting classes for the dataset manipulation

experiment is being thought of, which takes the ratio of the two biases instead of their relative

performance.

In Chapter 3, the idea of classification is extended into place categorization, which is an

important topic in robotics. The set of algorithms proposed have been proven to be robust to

a number of different domains, ranging from simple 2D images, to real world videos captured
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via different hand-held cameras and a mobile robot platform. For the next step, the idea is to

extend this model in order to do place categorization in rural households, where objects might not

be as representative of their surrounding. We also want to add this module to motion planning

algorithms in order to solve the task-and-motion planning problems.

Finally, Chapter 4 of the thesis mentions the addition of a visual attention mechanism,

combined with optical flow guidance to a two-stream action recognition network. The results

show significant improvements over the base algorithm. An extension to this work currently

being planned of is to predict an action ahead of time, given the first few frames. This is of

importance in autonomous driving scenarios where it is essential to predict the intent of people in

an intersection as to whether they want to enter the cross-walk or not.

This thesis is currently being prepared for submission for publication of the material. Pal,

Anwesan - The thesis author was the primary investigator and author of this material.
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