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ARTICLE

Do behavioral pharmacology findings predict clinical trial
outcomes? A proof-of-concept in medication development for
alcohol use disorder
Lara A. Ray 1,2, Han Du1, ReJoyce Green1, Daniel J. O. Roche1 and Spencer Bujarski1

Behavioral pharmacology paradigms have been used for early efficacy testing of novel compounds for alcohol use disorder (AUD).
However, the degree to which early efficacy in the human laboratory predicts clinical efficacy remains unclear. To address this gap
in the literature we employed a novel meta-analytic approach. We searched the literature for medications tested for AUD using
both behavioral pharmacology (i.e., alcohol administration) and randomized clinical trials (RCTs). For behavioral pharmacology, we
computed medication effects on alcohol-induced stimulation, sedation, and craving during the alcohol administration (k=
51 studies, 24 medications). For RCTs, we computed medication effects on any drinking and heavy drinking (k= 118 studies, 17
medications). We used medication as the unit of analysis and applied the Williamson-York bivariate weighted least squares
estimation to preserve the errors in both the independent and dependent variables. Results, with correction for publication bias,
revealed a significant and positive relationship between medication effects on alcohol-induced stimulation (β= 1.18 p < 0.05),
sedation (β= 2.38, p < 0.05), and craving (β= 3.28, p < 0.001) in the laboratory, and drinking outcomes in RCTs, such that
medications that reduced stimulation, sedation, and craving during the alcohol administration were associated with better clinical
outcomes. A leave-one-out Monte Carlo analysis examined the predictive utility of these laboratory endpoints for each medication.
The observed clinical effect size was within one standard deviation of the mean predicted effect size for all but three
pharmacotherapies. This proof-of-concept study demonstrates that behavioral pharmacology endpoints of alcohol-induced
stimulation, sedation, and craving track medication effects from the human laboratory to clinical trial outcomes. These results apply
to alcohol administration phenotypes and may be especially useful to medications for which the mechanisms of action involve
alterations in subjective responses to alcohol (e.g., antagonist medication). These methods and results can be applied to a host of
clinical questions and can streamline the process of screening novel compounds for AUD. For instance, this approach can be used
to quantify the predictive utility of cue-reactivity screening models and even preclinical models of medication development.

Neuropsychopharmacology (2021) 46:519–527; https://doi.org/10.1038/s41386-020-00913-3

INTRODUCTION
Behavioral pharmacology has a long and rich history in addiction
science, from examining drug effects under controlled laboratory
conditions to testing risk mechanisms for alcohol and other
substance use disorders [1, 2]. More recently, behavioral
pharmacology approaches have been proposed as tools for
medication development for addiction [3–6], with the most
commonly used paradigm consisting of controlled alcohol/drug
administration (i.e., alcohol or drug “challenge”). Controlled drug/
alcohol challenges allow for tests of medication × drug/alcohol
interactions, which is critical in medication development for
establishing safety and tolerability. Beyond safety, behavioral
pharmacology paradigms permit testing of theoretically mean-
ingful endpoints, described as early efficacy markers. These
endpoints often include medication-induced changes in the
subjective response (SR) to alcohol or drugs, as well as measures
of craving, via cue-reactivity or alcohol/drug administration [7–9].
Putatively, these early efficacy endpoints (i.e., Phase Ib) can inform
clinical trials and whether or not a novel compound should be

advanced to the next stage of clinical testing (i.e., Phase II,
randomized clinical trial) [6, 10]. However, the human laboratory
prediction made herein is limited to behavioral pharmacology
studies with alcohol administration. Furthermore, certain medica-
tions (e.g., antagonists such as naltrexone) may be better suited
for screening through these models than other medications (e.g.,
antagonist such as gabapentin).
While the utility of behavioral pharmacology for establishing

the safety and tolerability of addiction pharmacotherapies in
humans is well established, the degree to which the early efficacy
of novel compounds in the human laboratory can predict clinical
efficacy remains unclear. In a recent critique, we argued that the
degree to which a behavioral pharmacology paradigm is useful as
an early efficacy marker depends on the degree to which that
paradigm is related to the desired clinical outcome (e.g.,
abstinence or reduced heavy drinking) [11]. At a theorical level,
medications that reduce alcohol-induced stimulation and alcohol
craving during alcohol administration are thought to reduce
alcohol use [12]. Medications that potentiate the sedative effects
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of alcohol during alcohol administration are also thought to
reduce alcohol intake [12]. Nevertheless, these hypothetical
predictions have not been empirically tested and doing so is the
focus of the present study. In our previous work, we conducted a
series of simulations were conducted to determine the required
sample size for a behavioral pharmacology study to detect early
efficacy based on varying levels of association between human
laboratory paradigms and clinical outcomes [11]. These simula-
tions used hypothetical associations, given that estimates of the
“real” association between medication effects in behavioral
pharmacology studies and its efficacy in randomized clinical trial
(RCTs) remain unknown.
Thus far, systematic reviews have focused on qualitative assess-

ments of the consistency between behavioral pharmacology and
RCT results [3, 13, 14]. For example, Naltrexone has known clinical
efficacy for AUD [15, 16] and appears to reliably blunt the reinforcing
effects of alcohol [17, 18]. This is seen as evidence that reducing the
rewarding effects of alcohol is a mechanism of action of naltrexone.
Furthermore, blunting the rewarding SR to alcohol is an early efficacy
marker of naltrexone observed in the lab [19, 20] and confirmed in
clinical trials [21, 22]. Though these reviews provide insights into the
consilience between behavioral pharmacology and clinical out-
comes, they cannot provide quantitative estimates that could inform
medication development. To date, no quantitative test of the
concordance of behavioral pharmacology and clinical efficacy has
been published in the field of addiction or psychiatry.
To address this gap in the literature we employed a novel

translational meta-analytic approach to test whether behavioral
pharmacology effect sizes are correlated with RCT effect sizes. To
accomplish this goal, we searched the literature for medications
tested for AUD using both behavioral pharmacology paradigms and
RCTs. We then computed effect sizes for each medication in both
behavioral pharmacology (i.e., “lab”) and clinical trial (i.e., “clinic”)
designs. To integrate these two independent effect sizes, we used
medication as the unit of analysis and tested the degree to which
behavioral pharmacology effects are correlated with treatment
effects across the various AUD pharmacotherapies.
For this proof-of-concept study, we focus on the primary

outcome from alcohol challenge studies, which is SR to alcohol,
including alcohol craving. This study does not address other
important early efficacy endpoints in behavioral pharmacology for
AUD, including cue-induced craving [23] and stress-induced [9, 24]
craving. The focus on SR is consistent with its centrality in multiple
theories of AUD etiology [25–28], and its relevance and wide
prevalence in the AUD behavioral pharmacology literature
[4, 12, 26]. Furthermore, alcohol craving has been introduced as
an AUD symptom in DSM-5 and is widely considered a
translational phenotype [29]. Through independent meta-
analysis of AUD pharmacotherapies in human laboratory studies
and RCTs, and by systematically testing their association, this
study will quantitatively estimate the relationship between
behavioral pharmacology and clinical trial outcomes in medication
development for AUD.

METHODS
Literature review
Inclusion criteria for the behavioral pharmacology studies were (1)
the administration of a pharmacological agent approved or being
developed for the treatment of AUD, (2) alcohol administered in
the laboratory to a target BrAC via alcohol challenge or priming for
self-administration1, (3) SR outcomes measured via self-report

questionnaires, (4) reported in the English language, or translated
to English, and (5) publication in a PubMed indexed journal.
Databases were searched through July, 2018 and collected data
were analyzed through September, 2020.
Given the scope of literature covered in this meta-analysis an

algorithmic approach was utilized to identify all the relevant
research reports. First, published reviews of AUD psychopharma-
cology were reviewed to identify medications that have been
tested in the human laboratory with alcohol administration
paradigms [3, 4, 30–32]. Examination of published reviews
identified 40 pharmacological compounds that may have been
evaluated using behavioral pharmacology paradigms from 45
laboratory studies. Second, PubMed searches were conducted
with each of the 40 medications in combination with any of the
following phrases: “alcohol challenge,” “alcohol response,”
“response* to alcohol,” “alcohol response,” “alcohol priming,”
“alcohol intoxication,” “ethanol intoxication,” “response* to etha-
nol,” “ethanol response.” Medical subject headings (MeSH) were
used in combination with terms listed above. These PubMed
searches yielded a total of 1206 studies which were assessed for
relevance in the present paper via abstract review.
From these 1206 initial studies, 67 were deemed relevant for full

text review. 16 studies were excluded based on full text review (7
for lack of controlled alcohol administration, 4 for lack of SR
outcomes, 2 for lack of new outcomes, and 3 for self-
administration only). This resulted in a final sample of 51 studies
that were included in this analysis comprising 55 independent
samples with 1850 total subjects (all study statistics are made
publicly available in https://github.com/sbujarski). All studies were
coded by at least two raters (SB, RG, and/or DJOR). Where coding
discrepancies existed, all raters met in person to reach a
consensus. Furthermore, when sufficient data to generate effect
size estimates were not reported in the published paper,
corresponding authors were contacted via email to obtain the
necessary information. The DigitizeIt software [33] was also
utilized to extract data from published figures [34].
Inclusion criteria for the RCT studies was: (1) a randomized

controlled trial, (2) double or single blinded, (3) Placebo or active
control condition, (4) Alcohol use was the primary endpoint, (5) 4 or
more weeks of treatment, and (6) 12 or more weeks of follow-up.
These inclusion criteria were selected based on established guide-
lines by the Cochrane Collaboration. Similar to the behavioral
pharmacology review, RCT literature searching was algorithmic. First,
Cochrane reviews were searched on each of the 24 medications
with behavioral pharmacology data. Six medications (Naltrexone,
Nalmefene, Acamprosate, Topiramate, Gabapentin, and Zonisamide)
had published Cochrane reviews for AUD which included a total of
67 studies. Secondly, PubMed searches were conducted on each of
the 24 medications with the following search phrases: “randomized
clinical trial,” “randomized controlled trial,” “randomised clinical trial,”
“treatment,” and “Alcohol.” For medications that had Cochrane
reviews, Pubmed searches were time frame restricted to two years
prior to the publication of the Cochrane review to the present. These
searches identified a total of 2028 records, 132 of which were new
studies subjected to full-text review and 118 which were included in
the analyses. For RCTs, there were 17 medications and the number
of studies for each medication varied from 1 to 34. The systematic
review process is shown in Fig. 1.

Selection of outcomes
Behavioral pharmacology. Prior factor analytic work by our group
suggested that SR to alcohol represents a multifaceted construct
with four distinct domains: (a) Stimulation/Hedonia, (b) Craving/
Motivation, (c) Sedation/Motor Intoxication, and (d) Negative
Affect [35, 36]. Assigning of outcome variables to SR domains was
determined through consensus discussion among all study coders
referencing the prior factor analytic work [35, 36], other published
articles, and/or through referencing the specific items. The specific

1Studies that only reported subjective response data in the context of
a self-administration paradigm were excluded due to the potential for
large confounding effects of BrAC differences between medication
groups.
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domain assignments are presented in Supplementary Fig. 1.
Separate meta-analyses of medication effects were conducted on
each outcome domain.

Randomized clinical trials. Informed by FDA guidelines for AUD
medication development [37], two types of RCT outcomes were
analyzed: any drinking and heavy drinking. For heavy drinking, the
continuous outcome of percent drinking days (or percent heavy
drinking days) was analyzed. The two clinical outcomes for RCTs
were combined into a single outcome. This approach is consistent
with standard practice in meta-analysis for AUD/SUD [38, 39], and
resulted in a more stable estimate of medication effects on alcohol
use while reducing the number of independent tests/compar-
isons. Meta-analytic methods for the RCT studies were identical to
those employed for the behavioral pharmacology.

Data analytic plan
Data analysis for this study consisted of several steps. First, we
calculated the unbiased Cohen’s d as the target effect size for each

study. Cohen’s d was defined as the mean from the treatment
group minus the mean from the control group divided by a
pooled standard deviation. Cohen’s d was corrected by multi-
plying a correction factor to obtain an unbiased Cohen’s d.
Second, we grouped the effect size results from Abstinent and
Heavy Drinking together. The effect sizes of Abstinent and Heavy
Drinking were in the opposite directions, therefore we reverse-
coded the effect sizes of Abstinent. After reverse-coding, in both
Abstinent and Heavy Drinking, a negative effect size indicates that
the treatment group has a lower group mean than the control
group. Hence, there are 4 outcomes in behavioral pharmacology
laboratory (Stimulation/Hedonia, Craving/Motivation, Sedation/
Motor Intoxication, and Negative Affect) and 1 outcome
(Abstinent and Heavy Drinking were combined) in clinical trials.
Third, within each outcome, we conducted fixed-effects meta-
analysis for each medication using themetaphor R package [40]. In
other words, all medications studies identified in our literature
search were coded for their effects on the four behavioral
pharmacology outcome domains and the single clinical trial

Fig. 1 Consists of a flow chart of the systematic review process. Unlike a traditional meta-analysis, the goal was to identify trials for AUD
medications tested in behavioral pharmacology and to restrict the analyses of randomized clinical trials to only those medications studied
under behavioral pharmacology involving alcohol administration.
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outcome domain. And the effects of each study were pooled into
a single estimate for a given medication. Fixed-effects meta-
analysis was used instead of random-effects meta-analysis
because for some medications, there was only 1 or 2 studies. In
this case, we do not have enough studies to accurately estimate
both the overall effect size and between-study heterogeneity.
Hence, we adopted the fixed-effects meta-analysis and estimated
the overall effect size only. For Stimulation, there were 17
medications. Within each medication, the number of studies
varied from 1 to 17. For Sedation, there were 20 medications.
Within each medication, the number of studies varied from 1 to
18. For Craving, there were 17 medications. Within each
medication, the number of studies varied from 1 to 16. For
Negative Affect, there were only 8 medications. Within each
medication, the number of studies varied from 1 to 7. Since there
were only a few studies for Negative Affect and data information
was sparse, we excluded Negative Affect in the next step. Fourth,
we aimed to use the effect size of each medication in the
behavioral pharmacology laboratory to predict the effect size of
each medication in clinical trials. Considering that both the
independent and dependent variables have errors, we used the
Williamson-York bivariate weighted least squares estimation to
preserve the errors in both the independent and dependent
variables [41–44]. The widely used ordinary least squares
estimation could not be applied here because it only considers
the errors in the dependent variable, and thus important
information of the independent variable would be omitted. There
were three regressions based on different laboratory outcomes
(excluding negative mood due to its low data availability):
Stimulation effect sizes predict clinical effect sizes, Sedation effect
sizes predict clinical effect sizes, and Craving effect sizes predict
clinical effect sizes. Fifth, we conducted a sensitivity analysis by
correcting for publication bias. We used the p-uniform method
[45], obtained the corrected estimated overall effect sizes, and
conducted regression analysis. Compared to other publication
bias correction methods, the p-uniformmethod performs relatively
well when the effect sizes are homogeneous and the sample size
is small [46]. We used the puniform R package [47].
Subsequent to analyzing the bivariate associations between

laboratory and clinical outcomes we conducted predictive
analysis to determine the degree to which these methods can
inform go/no-go decisions for clinical trials of novel medications.
To assess the predictive utility of these laboratory outcomes, we
employed novel a leave-one-out Monte Carlo simulation method.
The Williamson-York regression models were trained on a
dataset with a single medication removed (the target medica-
tion). The regression models were then used to predict the
clinical effect size of the target medication based on its observed
laboratory effect size. A Monte Carlo method was used to
account for predictor value uncertainties. Specifically, 100,000
predicted values were generated for each laboratory outcome.
These simulated predicted values were then summarized with
respect to their mean and standard deviation. To arrive at a
single predicted clinical effect size distribution for the target
medication, we computed an aggregated mean and SD across
different outcomes. To provide a metric for how accurate these
predicted effect sizes were, we compute a z-score for the
observed clinical effect size with respect to the predicted mean
effect size and standard deviation. This metric therefore
represents the degree to which the observed effect size is
expected under the predicted range. This procedure was then
repeated across all medications included in this study.
Together, this novel application of Williamson-York bivariate

weighted least squares estimation, derived from physics and
astronomy fields, allowed us to integrate decades of research into
a meaningful and quantitatively sound test of relationship between
independent effect sizes obtained in behavioral pharmacology and
RCT contexts. In this effort, medication was the unit of analysis.

The novel leave-one-out Monte Carlo analysis also provides new
insights into the predictive utility of these laboratory methodologies
that can inform go/no-go decisions for novel medication clinical
trials.

RESULTS
Effect size estimation
Effect size estimation across the 51 human laboratory studies
included in the study and across the three outcomes of
stimulation, sedation, and craving, are presented in Supplemen-
tary Fig. 2. All studies are listed by author/year, medication name,
medication dosage, estimated effect size of Hedge’s G (converted
to Cohen’s d for the analyses), average drinks per month in the
sample (DpM), and Breath Alcohol Concentration (BrAC) during
the alcohol challenge. Effect size estimation across the 118 RCTs
included and across the two outcomes of abstinence and heavy
drinking are presented in Supplementary Fig. 3. All studies are
listed by author/year, medication name, medication dosage,
estimated effect size of Hedge’s G (converted to Cohen’s d for
the analyses), and treatment duration (in weeks).

Alcohol-induced stimulation and clinical outcomes
As described above, we tested a model in which the stimulation
effect sizes predict clinical effect sizes, across all medications
studied under both behavioral pharmacology and RCTs. Effect
sizes for stimulation and clinical outcomes were available for 12
medications. The slope of the regression was positive and
estimated at β= 1.64 (SE= 0.46, p < 0.01) when the laboratory
outcome was Stimulation, which indicated a significant positive
relationship between the effect sizes for medication effects on
alcohol-induced stimulation in the behavioral pharmacology
studies and the medication effect sizes in clinical trials for AUD;
see Fig. 2. The positive relationship suggests that medications that
decreased alcohol-induced stimulation in the human laboratory
were found to decrease drinking in RCTs. The bivariate-weighted
correlation between the two sets of effect sizes is r= 0.370. With
publication bias correction and corrected effect sizes, the slope of
the regression was estimated at β= 1.18 (p < 0.05), such that the
conclusion remained the same.

Fig. 2 Displays the Williamson-York bivariate weighted regres-
sion in which stimulation effect sizes predict clinical effect sizes.
Each medication is represented as a dot on the regression line and
smaller dots indicate more error variance while larger dots indicate
less error variance around each estimate. Bivariate effect size
standard errors for each medication are represented with the
ellipses surrounding each point. The regression standard error is
represented by the ribbon around the regression line.
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Alcohol-induced sedation and clinical outcomes
For the Sedation effect sizes, a positive effect size indicates that
the treatment group has a larger effect than the control group,
while for the clinical outcomes, a negative effect size indicates that
the treatment group has a larger effect than the control group.
Data for 13 medications was available.
Results for the model in which the sedation effect sizes predict

clinical effect sizes, the slope of the regression was β= 4.04 (SE=
2.48, p= 0.130), which was nonsignificant. Correlation between
the two sets of effect sizes is r= 0.227. With publication bias
correction and corrected effect sizes, the slope of the regression
was significant and positive, at β= 2.38 (p < 0.05). The significant
positive slope indicated that medications which lead to larger
increases in sedative subjective effects had poorer clinical benefit
see Fig. 3.

Alcohol-induced craving and clinical outcomes
The final model tested whether craving effect sizes predict clinical
effect sizes, across all medications studied under both behavioral
pharmacology and RCTs. Data was available for 13 medications.
The observed slope of the regression was positive and significant,
at β= 1.14 (SE= 0.32, p < 0.01). This finding suggests that
medications that decreased alcohol-induced craving during an
alcohol challenge were found to decrease drinking in RCTs. The
correlation between the two sets of effect sizes is r= 0.074. With
publication bias correction and corrected effect sizes, the slope of
the regression was β= 3.28 (p < 0.001), such that the significant
conclusion remained the same Fig. 4.

Predictive utility of laboratory effects
The leave-one-out Monte Carlo analysis suggested that these the
combination of these laboratory and quantitative methods can
provide useful information value for predicting clinical efficacy for
a novel medication that has yet to be tested in a clinical trial. That
said, the effect size uncertainties are generally wide, driven largely
by the laboratory effect size precision and modest correlations
between laboratory and clinical effects (see Table 1, Fig. 5). The
predicted effect sizes were well calibrated and not systematically
biased. The average z-score of the observed clinical effect size
with respect to the predicted distributions was very small
(−0.004). Despite generally high concordance between predicted
and observed effects, there were a few medications where

substantial discrepancies occurred. Namely, Gabapentin was
shown to have a significantly larger clinical impact than predicted
and Memantine was found to have a significantly more
deleterious clinical effect than predicted. Olanzapine was also
found to have a smaller clinical impact than predicted, though this
effect was substantially less severe than Gabapentin and
Memantine. For all other medications the observed clinical effect
size was within one standard deviation of the mean predicted
effect size.

DISCUSSION
This study tested the relationship between early efficacy assays of
SR to alcohol collected in placebo-controlled behavioral pharma-
cology studies of medications for AUD and the clinical effects of
these AUD medications in RCTs. Leveraging advanced meta-
analytic tools and the Williamson-York bivariate weighted least
squares estimation, the latter appropriate for integrating depen-
dent and independent variables with errors, this proof-of-concept
study provided quantitative estimates to a critical substantive
question in medication development. Namely, does early efficacy
in the human laboratory captured by medication effects on SR to
alcohol administration (i.e., stimulation, sedation, and craving)
predict clinical outcomes in RCTs for those medications?
Simply put, we predicted that the more a medication reduced

alcohol-induced stimulation, relative to placebo, the more that
medication reduced alcohol intake in RCTs. This hypothesis was
supported by our analyses such that reduced stimulation in the
laboratory was positively associated with less drinking in RCTs,
across the available medications studied in both human laboratory
and clinical settings. Furthermore, we found the same pattern to be
true for alcohol-induced craving and sedation, such that reduced
craving and sedation in the laboratory was positively associated with
less drinking in RCTs. These extensive and innovative analyses across
a wide range of medications and outcomes, effectively integrates
two critical phases of medication development, namely phase Ib
(early efficacy) and phase II (clinical efficacy). It provides critical
insights into the degree to which these early efficacy markers (i.e., SR
during alcohol challenge) measured in the human laboratory,
predict real-world clinical outcomes for AUD in RCTs.
While the fact that there is some consilience across the effects

obtained in behavioral pharmacology trials and in RCTs for AUD is

Fig. 3 Displays the Williamson-York bivariate weighted regres-
sion in which sedation effect sizes predict clinical effect sizes.
Each medication is represented as a dot on the regression line and
smaller dots indicate more error variance while larger dots indicate
less error variance around each estimate. Effect size standard errors
are represented with the ellipses surrounding each point. The
regression standard error is represented by the ribbon around the
regression line.

Fig. 4 Displays the Williamson-York bivariate weighted regres-
sion in which craving effect sizes predict clinical effect sizes. Each
medication is represented as a dot on the regression line and
smaller dots indicate more error variance while larger dots indicate
less error variance around each estimate. Effect size standard errors
are represented with the ellipses surrounding each point. The
regression standard error is represented by the ribbon around the
regression line.
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encouraging, the magnitude of these associations (i.e., their
correlation) was relatively small. As detailed in our simulation
study [11], the magnitude of the association between laboratory
and clinical outcomes should inform power analyses for human
laboratory trials. In that Monte Carlo Simulation study, a
correlation between laboratory and clinical outcomes of 0.3 was
the smallest and indicated that laboratory studies should have
twice the sample size of a clinical trial in order to detect a medium
effect size treatment. To further inform go/no-go decisions for
novel medications, we conducted a leave-one-out Monte Carlo
analysis on the combined human laboratory data. Findings
suggested that these the combination of these laboratory
endpoints can provide useful information for predicting clinical
efficacy for a novel medication that has yet to be subjected to a
clinical trial. A caveat to this conclusion is that the effect size
uncertainties are generally wide, driven largely by the laboratory
effect size precision and modest correlations between laboratory
and clinical effects. Furthermore, while there was generally high
concordance between predicted and observed effects, there were
a few notable exceptions. Specifically, Gabapentin was shown to
have a significantly larger clinical impact than predicted and
Memantine was found to have a significantly more deleterious
clinical effect than predicted. In brief, the Monte Carlo analyses
add medication-specific results and directly examine the pre-
dictive utility of human laboratory models focused on SR domains.
This study represents an important step toward optimizing the

medication development pipeline by leveraging behavioral
pharmacology designs to elucidate medication effects on early
efficacy endpoints. Insofar as SR to alcohol during an alcohol
challenge is the used, and early efficacy endpoints include
stimulation, sedation, and craving, this study confirms that these
early efficacy markers are indeed quantitatively related to clinical
outcomes in RCTs across a range of medications studied under
both experimental conditions. In other words, medications that
can reduce stimulation, reduce craving, and potentiate sedation
during alcohol administration, compared to placebo, fare better in
clinical trials as demonstrated by reduced alcohol consumption.
This finding is consistent with the role of behavioral pharmacology
in early signal detection and screening of promising compounds,
as articulated in the medication development literature for AUD
[4, 6, 48]. Nonetheless, caution should be exercised in adequately
powering studies to reliably detect the behavioral pharmacology

endpoints reported herein. In addition, it is important to consider
medication development for AUD and its success, in the broader
context of factors, including the lack of substantial investment
compared to other fields [49].
During the peer-review process of this study, a number of

important caveats were raised and should be considered by the
readers in interpreting these findings. These analyses do not
distinguish between drugs with a mechanism of action aimed at
antagonizing the rewarding effects of alcohol (e.g., naltrexone,
nalmefene, topiramate) and medications that seek to maintain
abstinence by restoring homeostasis in brain systems dysregu-
lated by the onset of abstinence (e.g., acamprosate and
gabapentin). We are clearly underpowered to do so. Nevertheless,
it is plausible that the behavioral pharmacology paradigms
associated with alcohol administration in the laboratory, and
studied herein, may be best suited for testing antagonist
medications and less suited for screening the therapeutic
potential of medications in the agonist category. Another issue
brought up in peer-review is the notion that reduction in heavy
drinking may be the ideal primary outcome for an antagonist
medication, such as naltrexone [50], whereas abstinence may be a
better outcome for an agonist medication, such as acamprosate
[51]. In this meta-analysis, abstinence and heavy drinking
outcomes are combined in order to boost statistical power. It is
plausible that in addition to refining the behavioral pharmacology
testing by selecting laboratory outcomes that are best suited
based on the mechanism of action of a given medication (i.e.,
agonist versus antagonist), such refinement should be considered
at the level of the clinical outcomes selected.
Several caveats and limitations should be applied to the

interpretation of these findings. First, this proof-of-concept study
is restricted to three dimensions of SR measured during an alcohol
administration paradigm (i.e., stimulation, sedation, and craving).
This study does not speak to other important early efficacy
endpoints in behavioral pharmacology for AUD, including cue-
induced craving [23] and stress-induced [9, 24] craving. Second,
this study only examined medications that were studied under
both human laboratory and RCT condition when certainly a host
of medications did not meet this criterion. Nevertheless, the novel
implementation of the Williamson-York bivariate weighted least
squares estimation allowed us to integrate independent samples
(i.e., participants tested in the laboratory were not the same as

Table 1. Represents the predicted clinical effect size based on each medications’ laboratory effect sizes using a leave-one-out Monte Carlo
simulation method on the bivariate-weighted regression models.

Number of laboratory outcomes Predicted clinical effect size (SD) Observed clinical effect size Observed effect size Z-Score

Acamprosate 3 −0.081 (0.293) −0.196 0.395

Aripiprazole 3 −0.242 (0.373) −0.117 −0.333

Baclofen 3 −0.433 (1.124) 0.129 −0.499

Gabapentin 3 −0.044 (0.112) −0.779 6.553

Memantine 3 −0.106 (0.233) 0.782 −3.811

Nalmefene 3 −0.468 (0.337) −0.228 −0.712

Naltrexone 3 −0.245 (0.261) −0.227 −0.069

Olanzapine 1 −0.898 (0.706) −0.028 −1.233

Ondansetron 3 −0.416 (0.316) −0.256 −0.508

Quetiapine 3 −0.305 (0.482) −0.101 −0.423

Ritanserin 2 −0.407 (0.449) −0.154 −0.564

Topiramate 3 −0.166 (0.312) −0.401 0.755

Varenicline 3 0.046 (0.275) −0.197 0.885

Zonisamide 2 −4.479 (7.709) −0.671 −0.494

Predictive model calibration was determined through examining where the observed effect size falls in the predicted effect size distribution through a z-score
transform.
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those tested in clinical studies). By doing so, we integrated
decades of research. The alternative approach would be to test
the same participants in the lab before they proceed to a clinical
trial [23], which is both costly and cumbersome. Third, utilizing
these three early efficacy endpoints to screen novel medications
assumes that all promising AUD medications will work through
these mechanisms of attenuating craving, stimulation, and/or
potentiating sedation during alcohol administration. Conversely,
as we understand novel drugs and novel mechanisms of action, a
wider range of early efficacy endpoints may be necessary,
including assessments of mood, alcohol metabolism, cue-reactiv-
ity, and alcohol self-administration [30, 52]. It is plausible that
Gabapentin, for example, operates through different mechanisms
hence the prediction via SR measures was not consistent with
clinical trial outcomes, which proved more favorable clinically than
predicted by the model. This is consistent with the argument that
agonist medications seeking to restore homeostasis in brain
systems dysregulated during abstinence may be better screened
through alternative behavioral pharmacology models, including
alcohol cue-reactivity, for example. Furthermore, the biobehavioral
assays studied herein can inform the development of treatment
responsive biomarkers, which remains a critical gap in AUD
treatment development [53]. Fourth, publication bias continues to
be a problem, and in this study alone, we estimated that 35% of
the outcomes mentioned in publications did not have accom-
panying results. Selective publication of outcomes is endemic in
human laboratory studies and clinical research more broadly [54].
While this issue has been recognized for almost three decades
[55], it continues to be a threat to the interpretation of scientific
findings and to meta-analytic efforts such as ours. Fifth, there is a
clear imbalance with regards to the number of studies available
across the range of medications studied, clearly naltrexone and
acamprosate are the most widely studied medications with

multiple studies available allowing for a more precise estimation
of both human laboratory and RCT outcomes. For the other study
medications, only a few studies were available for analyses. This
imbalance led to more variability in the estimates for studies with
few trials and caused medications like naltrexone and acampro-
sate to exert an undue influence on the outcomes. Nevertheless,
since the analyses were conducted with medication as the unit of
analysis, then medications with multiple studies were summarized
into a single data point such that they did not “count more
heavily” in the final analyses than any other medication. Sixth,
while these extensive efforts include coding of study covariates,
we were not able to reliably implement meta-regression analyses
controlling for study differences given that many medications only
had a few studies. Additional analyses including covariates may be
possible for medications with multiple trials [17]. Seventh, the
categorization scheme using items for the dimensions of SR on
the basis of their face-validity can be improved upon in future
studies in which person-level data are available. Specifically,
network analysis may be well-suited for testing the relationships
among the predictor variables (i.e., specific items/scales capturing
dimensions of SR to alcohol) and in turn, improve the overall
model prediction. Eighth, visual inspection of Fig. 5, in which
predicted and observed effects are displayed for each medication,
suggest that specificity and negative predictive value are low. This
means that the lab models studied herein did not correctly
identify any medications that were clinically ineffective. However,
it should be noted that this is sample of AUD pharmacotherapies
that was intentionally selected to have both human behavioral
pharmacology and RCT studies. As such, many medications tested
in the human lab may have not moved to RCT testing on the
bases of poor human-lab outcomes. Ninth, this proof-of-concept
study is focused exclusively on medications for AUD and the
translation from early efficacy testing (behavioral pharmacology,

Fig. 5 Displays the predicted and observed clinical effect size distributions. Predicted effect size distributions were generated using a
leave-one-out Monte Carlo simulation method for each medication across laboratory effect sizes. Where multiple laboratory effects existed for
a given medication, these predicted distributions were aggregated.
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phase Ib trial) to clinical efficacy testing (RCT, phase II trial).
Nevertheless, the novel methods employed in this study are
flexible and can be applied to examining the consilience between
preclinical efficacy and early efficacy or clinical efficacy, another
longstanding gap in the literature [56, 57]. This approach could
also be used to estimate the utility of a host of paradigms for
screening medications for alcohol and drug use disorders (e.g.,
cue-induced craving and self-administration) [5, 58].
In sum, behavioral pharmacology endpoints of alcohol-induced

stimulation, sedation, and craving track medications effects from the
human laboratory to clinical trial outcomes. This proof-of-concept
study uses a novel methodological approach to integrate decades of
medication development research and to demonstrate the relation-
ship, albeit of small-to-moderate magnitude, between behavioral
pharmacology with alcohol administration and clinical trials end-
points for AUD. These methods and results can be applied to a host
of clinical questions and can streamline the process of screening
novel compounds for AUD. This methodological approach can be
used to quantify the predictive utility of cue-reactivity screening
models and even preclinical models of medication screening.
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