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ABSTRACT: We report the production and spectroscopic characterization of
strontium(I) phenoxide (SrOC6H5 or SrOPh) and variants featuring electron-
withdrawing groups designed to suppress vibrational excitation during spontaneous
emission from the electronically excited state. Optical cycling closure of these species,
which is the decoupling of the vibrational state changes from spontaneous optical
decay, is found by dispersed laser-induced fluorescence spectroscopy to be high, in
accordance with theoretical predictions. A high-resolution, rotationally resolved laser
excitation spectrum is recorded for SrOPh, allowing the estimation of spectroscopic
constants and identification of candidate optical cycling transitions for future work.
The results confirm the promise of strontium phenoxides for laser cooling and
quantum state detection at the single-molecule level.

Optical cycling transitions in atoms allow laser cooling of
the center-of-mass motion, laser state preparation, and

laser-induced fluorescence (LIF) state detection�open-
channel operations at the heart of many promising applications
of quantum technology, including quantum computation,1,2

atomic clocks,3,4 and quantum simulation.5,6 Optical cycling
and cooling schemes have also been demonstrated in
diatomic7,8 and even some small polyatomic molecules,9,10

including SrF,11 YO,12 CaF,13,14 YbF,15 BaF,16,17 MgF,18 AlF,19

SrOH,20 CaOH,21,22 YbOH,23 and CaOCH3.
24 Because they

possess rich internal structures and complex interactions,
molecules provide new opportunities in studies of dark matter
detection,25,26 measurement of electron’s electric-dipole mo-
ment,27−29 parity violation tests,30,31 and changes to
fundamental constants.32,33 The somewhat unexpected atom-
like transitions supporting optical cycling and cooling in these
small molecules have inspired searches for similar transitions in
complex polyatomic molecules with an M−O−R struc-
ture,9,10,34−40 where M is an alkaline-earth metal atom ionically
bonded to oxygen (O) forming an optical cycling center
(OCC) and R is a molecular ligand.36−40 In these molecules,
the remaining metal-centered radical electron forms the
highest-occupied and the lowest-unoccupied molecular orbi-
tals, HOMO and LUMO. For molecules with R having strong
electron-withdrawing capability, the HOMO and LUMO are
localized on M, which typically indicates that the OCC is
highly decoupled from the vibrational degrees of freedom. As a
result, the diagonal vibrational branching ratio (VBR, which is
to say the probability that spontaneous decay occurs on the 0−
0 transition) is high, indicating that the spontaneous emission

happens without a vibrational state change. This allows such
molecules to repeatedly scatter photons before being pumped
to the vibrational dark states, furnishing mechanical control
and state detection of single molecules via laser illumination.

Since optical cycling in this motif is predicted to be
enhanced by the electron-withdrawing strength of the ligand,
the diagonal VBR of M−O−R molecules could be tuned by
functionalizing the ligand to promote this effect.34,39 For
example, according to a recent measurement of the VBRs,41

laser cooling of CaOPh-3,4,5-F3 (Ph, phenyl group) appears
feasible from the perspective that each molecule could scatter
≈1000 photons with six to eight lasers. Compared to CaOPh,
the three substitutions of H → F in the 3, 4, and 5 positions on
the ring enhance the electron-withdrawing strength of the
ligand, rendering the Ca atom more ionic and thus suppressing
spontaneous decays to excited vibrational states of the
electronic ground state.

As molecules of M−O−R type, the strontinum variants,
SrOPh-X, were also predicted to have high and tunable
diagonal VBRs.39 Compared to CaOPh-X, although the
diagonal VBRs were predicted to be lower, the predicted
difference is of the same order as the variation in measured
VBRs of various calcium species,41 suggesting that some of the
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strontium species may show better cycle closure if the variation
is due to M-specific features. Further, Sr-containing molecules
allow exploration of the role of strong spin−orbit coupling42

and nuclear spin structures.43 For the strontium variants, the
excitation and repumping wavelengths can be directly
produced by diode lasers.

Here, we report the production and spectroscopic character-
ization of strontium(I) phenoxide (SrOPh) and its derivatives,
SrOPh-X (X = 3-CH3, 3-F, 3-CF3, and 3,4,5-F3, see Scheme 1).

Gas-phase molecules are produced by the reaction of Sr atoms
generated by the ablation of Sr metal with the corresponding
organic precursor vapor and cooled via collisions with the neon
buffer gas in a cryogenic cell at a temperature of ≈23 K. The
first two electronically excited states, which have been
theoretically proposed for optical cycling and laser cooling,
are identified and the respective vibrational decays are
observed using the dispersed laser-induced fluorescence
(DLIF) spectroscopy. Details of the experimental and
theoretical methods can be found in the Supporting
Information.44 The diagonal vibrational branching ratios are
estimated to be 0.82−0.96, which indicates promise for laser
cooling with a handful of vibrational repump lasers. To further
characterize candidate optical cycling transitions, we have
measured the rotationally resolved excitation spectrum for the
B X transition of SrOPh and obtained the molecular
constants by fitting using PGOPHER.45

In the calcium and strontium phenoxides, transitions to the
two lowest electronic states (A and B, Figure 1a) have been
proposed for laser cooling, since almost all photon scatters go
back to the vibrationless ground state X .39,41,46Figure 1b shows
the measured transition energies of all molecules show a linear
correlation with the acid dissociation constants, pKa, of the
precursor phenol. This linear trend has recently also been
observed for CaOPh-X molecules.41,46 A lower pKa implies
higher electron-withdrawing capability of the R−O− ligand,
which pulls the single electron away from the Sr atom, making
it more ionic and increasing the HOMO−LUMO gap.39 Also
shown are excitation energies calculated by time-dependent
density functional theory (TD-DFT)44 which give a similar
trend but systematically undershoot the excitation energies
likely due to self-interaction error and approximate treatment
of electronic correlation.47 The calculated energy gap of A B
(36−68 cm−1) is much smaller than the measured gap (300−
324 cm−1), similar to what was observed in CaOPh-X species
but with a wider difference between the theory and
measurement.41 The theory−experiment discrepancies of the
A B energy gap are likely due to the lack of spin−orbit
coupling (SOC) in calculations48 and the wider difference in
SrOPh-X is due to the stronger SOC effects in Sr.

To measure the VBRs from the two electronic states, we
performed DLIF spectroscopy of all molecules. Electronic
excitation is provided by a pulsed dye laser (PDL) tuned to the
0−0 line, and the spectrometer grating was scanned in time
(over repeated excitation) to select the wavelength of LIF
photons sent to a photomultiplier tube (PMT).44Figure 2
shows the measured DLIF spectra of SrOPh while those of
other species are presented in Figure S1. Figure 2a shows the
spectrum of Ã 2B2 → X̃ 2A1 of SrOPh (Figure 1a) at an
excitation of 669.06 nm. The strongest peak at the origin,
labeled as 00

0A
, is due to the diagonal decay from =vA( 0) to

=vX( 0). The strong peak at −440 cm−1 is from excited
atomic Sr created during laser ablation.49 The peak at −238
cm−1 is assigned to the strongest off-diagonal stretching mode
ν3 (theory 241 cm−1) and the weak peak at −54 cm−1 is
assigned to the low-frequency bending mode ν2 (theory 56
cm−1). The other two weak peaks at −100 cm−1 and −297
cm−1, which do not match the calculated frequencies of any
fundamental vibrational modes, are assigned to the overtone of
the bending mode A22

0 and a combinational mode of 2 31
0A

1
0,

respectively.
Figure 2b shows the spectrum of B̃ 2B1 → X̃ 2A1 of SrOPh

(Figure 1a) at 655.68 nm. Aside from the strongest diagonal
peak 00

0B
, four peaks are observed. The strong peak with a shift

Scheme 1. Molecular Structures of Strontium(I) Phenoxide
and Its Derivatives Studied in This Work

Figure 1. (a) Schematic energy levels of the transitions proposed for
laser cooling. The molecular orbital and the respective symmetry of
each state are illustrated for SrOPh with a C2v point group. For
molecules with Cs symmetry, the symmetries would be A′ (X), A″(A),
and A′(B). The principle inertial axes are also given. (b) Excitation
energy versus pKa for A X and B X transitions for all studied species
in an increasing order of ligand pKa.

41 The linear fits of the
experimental values yield =EA X (16380 − 142.8 × pKa) cm−1 and
EB X= (16777 − 152.3 × pKa) cm−1.
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of −300 cm−1 is due to a diagonal decay 00
0A

from the A state.

The origin of the appearance of 00
0A

when exciting the B X

is unknown but could be due to the collisional relaxation from
B to A followed by fluorescence decay to the ground state X
.41,46,50 The identification of this feature as originating from the
A state is further confirmed by the observation of the decay to
the stretching mode ν3 at −534 cm−1 from A . The other two
weak peaks, −238 cm−1 and −55 cm−1, are due to the
vibrational decay to the stretching mode ν3 and bending mode
ν2, respectively. The full width at half-maximum of all peaks is
≈22 cm−1 mainly due to the spectrometer resolution of
approximately 20 cm−1. Another measurement was performed
using a narrow-band continuous-wave (cw) laser to excite the
B X of SrOPh and an electron-multiplying charge-coupled
device (EMCCD) camera to capture the fluorescence photons
dispersed by the spectrometer. This technique obtained a
better spectral resolution (≈5 cm−1), allowing the resolution of
the combinational vibrational mode of 2 31

0B
1
0 at −300 cm−1

(Figure S2), which is overlapped with the diagonal decay 00
0A

from the A state and not observed in Figure 2b. The
experimental and theoretical vibrational frequencies of all
resolved fundamental modes are summarized in Table S1.

The relative heights of the peaks 00
0A

and 00
0B

in Figure 2 and
Figures S1 and S2 imply that both transitions are very diagonal
with few vibration-changing decays. To extract the VBRs, all
peaks are fitted with Gaussian functions, as shown by the red
traces in Figure 2, and the peak areas are extracted from the fits
to obtain VBRs. A strict definition of VBR requires
measurements of all vibrational decays. Due to finite
measurement sensitivity ( 10 )2 and detection range (<600
cm−1), while we predict that our measurement is sensitive to
the dominant leakage channels, the possibility of undetected
decays contributes a systematic uncertainty on the measured
VBRs.

For the vibrational decays that were identified for each
molecule, and the ratios of line intensities to the total
intensities of all observed peaks are presented in Figure 3a. In
both electronic transitions, the relative ratios of observed peaks
show good agreement with the calculated VBRs.44 The

Figure 2. (a) and (b) Dispersed spectra of A X and B X ,
respectively, of SrOPh excited by pulsed dye laser and measured by a
spectrometer coupled with PMT. The experimental curves (black) are
fitted with the Gaussian functions (red). The positions of the blue,
vertical lines illustrate the theoretical frequencies while the intensities
show the vibrational branching ratios of different vibrational modes of
SrOPh. The Sr impurity peak in (a) is from the Sr emission of
5s5p P 5s S3

1
o 2

0
1 at 689 nm.49 The assignments of all resolved

vibrational peaks are indicated.

Figure 3. (a) Intensity ratio of observed decays for A X and B X transitions. Error bars are statistical errors from Gaussian fits. The
vibrational label νi indicates the final vibrational modes of the X state. ν0 implys the decay that does not change the vibrational state. (b) Scaled 00

0

VBRs as a function of pKa of all species. The scaling adds the contributions of those unobserved vibrational decays predicted by the theory to the
observed intensity ratios of 00

0 in (a). Error bars include the statistical errors from Gaussian fits and the systematic errors from the unobserved
peaks.44
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vibrational decays to the strongest off-diagonal Sr−O
stretching mode (ν3, ν4, ν5, or ν6) and the low-frequency
bending mode (ν1 or ν2) have been observed for all molecules.
The theoretical VBRs of the low-frequency bending modes are
underestimated, possibly due to the vibronic coupling and
anharmonicity effect not considered in the calculation.39,41

SrOPh also shows unpredicted decays to the overtone of mode
ν2 and a combinational mode ν2ν3 where the intensities could
be from the vibronic coupling. The intensity ratios of all
observed decays are summarized in Table S2. Figure 3b plots
the estimated VBRs of the diagonal peak 00

0 of each transition
as a function of ligand pKa. The scaled 00

0 VBRs are obtained
by adding the estimated contribution of the unobserved peaks
predicted by the theory to the normalized intensity ratios of
the observed 00

0 intensities.44 Both SrOPh-3-F and SrOPh-
3,4,5-F3 molecules show VBRs >95% for the B X transition
and >90% for the A X transition, while SrOPh has the
lowest VBR of 82.2% for A X transition. Due to the
predominantly localized excitations and previous benchmark-
ing results,39−41,44,46 we find TD-DFT is sufficient to predict
VBR trends in SrOPh optical cycling species. However, we find
our theoretical calculations still lack important dynamic
correlation and spin−orbit coupling which will affect important
branching pathways. For high-level predictions beyond simple
trends, we suggest choosing methods which can improve upon
dynamic correlation systematically, such as coupled-clus-
ter,34−36 and incorporating the Breit−Pauli operator to
compute spin−orbit coupling effects.51

The VBRs for SrOPh-3-CF3 shows the largest discrepancy
between the calculation and the measurement, potentially due
to the larger vibronic mixing between the A and B caused by
the low symmetry and large electron inductive effect from the
CF3 group.41 The error bars include both the statistical
uncertainties from the Gaussian fit and the systematic

uncertainty estimate from the unobserved peaks. Three
additional systematic errors, including signal drift during
measurement, the wavelength response of the spectrometer,
and the diagonal excitation from the vibrationally excited
states, are estimated to be a few percent in total.44

To further investigate the potential of these species for
optical cycling, a high-resolution excitation spectrum (obtained
by collecting LIF as a continuous-wave (cw) excitation laser is
scanned) of SrOPh for the = =v vB( 0) X( 0) transition
is recorded at a step size of 25−50 MHz in a cryogenic buffer-
gas beam (CBGB)44,52 and fitted with PGOPHER,45 as
presented in Figure 4. Since SrOPh is an asymmetric-top
molecule, the rotational states are labeled as NK Ka c

, where N is
the rotational angular momentum and a and c label the inertial
axes lying along the Sr−O bond and perpendicular to the
molecular plane (Figure 1a), respectively, Ka and Kc are the
projection of N onto the two axes in the prolate and oblate
limits, respectively. Figure 4a shows the expansion of the two
congested bands at 15238.5 cm−1, while Figure 4 panels b and
c show two well-resolved rotational bands. A full rotational
analysis is difficult due to the high density of rotational lines in
the middle of the spectrum (Figure 4a), but the individually
resolved lines (Figure 4b,c) make it possible to fit the spectrum
to extract some spectroscopic constants.

Using a custom program to fit the spectral contour and
PGOPHER45 to refine and iterate the line assignments,44 we
have assigned nearly 400 rotational transitions and obtained
the final fitted spectrum given as the black traces in Figure 4.
The fitting is in agreement with the experimental measurement
for the middle broad bands and the Ka′ = 3 ← Ka″ = 2 and Ka′ =
4 ← Ka″ = 3 bands, as expanded in Figure 4a−c. The best fit
molecular constants, including the transition energy, rotational
constants, spin-rotation constants and centrifugal distortion
corrections, are reported in Table 1. The measured rotational

Figure 4. High-resolution rotationally resolved excitation spectrum of the B X transition of SrOPh. The upper trace (blue) shows the
experimental spectrum and the lower trace (black) is the simulated spectrum with a Gaussian line width of 70 MHz and a rotational temperature
Tsim = 2.5 K. Insets a, b, and c are expansions of some local features. (a) displays detailed spectrum near 0−0 transition, while (b) and (c) show the
Ka′ = 3 ← Ka″ = 2 and Ka′ = 4 ← Ka″ = 3 rotational bandheads, respectively. (d) shows the inferred position of the candidate rotational cycling
transition between the spin-rotation manifold of the N″ = 1 state and N′ = 0 state.
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constants are in good agreement with the calculated values.
The spin-rotation constant ϵaa in the ground state is too small
to be determined from the spectrum, and ϵaa in the B state is
large because of the coupling to the A state. The larger value of
spin-rotation constant than the rotational constants in B
implies a strong SOC effect apart from the direct coupling
between the spin and molecular rotation. Based on the second
order perturbation theory53,54 and the measured constants, the
SOC constant in SrOPh is estimated to be ≈272 cm−1, which
is close to that of SrOH (A2Π, ≈265 cm−1).55 The large SOC
also dominates the energy separation of A B, elucidating the
discrepancy between the calculation and the measurement in
Figure 1b.44,48

While involving more parameters has been able to enhance
the accuracy of fitting, many parameters in such scenarios
tended to fit to values consistent with zero, and we therefore
omit those in our analysis. The large error bars of some of the
centrifugal distortion constants are mainly due to the
uncertainty of the line assignment near the 0−0 transition.
The rotational temperature from the fit is 2.5 K.44 The colder
temperature is due to the free expansion of neon buffer gas
from the cryogenic cell (≈23 K) to form a beam with SrOPh
entrained.52 As the SrOPh B X transition dipole moment
lies along the principle axis c (Figure 1b), the rotationally
closed photon cycling transition is the c-type transition

= =N N0 1K K K K00 10a c a c
,38 which is estimated to be at

456.8391(7) THz based on the fitting results and shown in
Figure 4a,d.

In summary, we have produced strontium(I) phenoxide
(SrOPh) and derivatives featuring electron-withdrawing
groups in a cryogenic cell. Two proposed laser cooling
transitions (A X and B X) of each molecule have been
identified and the transition energies show linear trends as the
ligand pKa, which can be used to look for transitions of new
molecules containing Sr. The overall vibrational branching
ratios considering contributions of unobserved vibrational
decays are estimated to be 82.2% to 95.8%. Among them,
SrOPh-3-F and SrOPh-3,4,5-F3 molecules show diagonal VBRs
>95%, potentially enabling laser cooling with fewer than ten
vibrational repumping lasers. The rotationally resolved
spectrum for the B X transition of SrOPh is presented
and molecular constants are obtained. The spin−orbit

interaction that couples the A and B states is estimated to
be 275 cm−1, which has a strong effect on the energy splitting
of A B. The rotational closure transition for optical cycling is
estimated to be centered near 456.8391(7) THz. This work
paves the way for optical cycling of SrOPh and other large
molecules using diode lasers.
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distortion constants. HK: sextic centrifugal distortion correction.
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