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Autonomous experimentation systems use algorithms and data from prior experiments to

select and perform new experiments in order to meet a specified objective. In most ex-

perimental chemistry situations there is a limited set of prior historical data available, and

acquiring new data may be expensive and time consuming, which places constraints on ma-

chine learning methods. Active learning methods prioritize new experiment selection by

using machine learning model uncertainty and predicted outcomes. Meta-learning meth-

ods attempt to construct models that can learn quickly with a limited set of data for a

new task. In this paper, we applied the model-agnostic meta-learning (MAML) model and

Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot learning

(PLATIPUS) approach, which extends MAML to active learning, to the problem of halide

perovskite growth by inverse temperature crystallization. Using a dataset of 1870 reactions

conducted using 19 different organoammoniumn lead iodide systems, we determined the

optimal strategies for incorporating historical data into active and meta-learning models to

predict reaction compositions that result in crystals. We then evaluated the best three algo-

rithms (PLATIPUS, and active-learning k-Nearest Neighbor and Decision Tree algorithms)

with four new chemical systems in experimental laboratory tests. With a fixed budget of

20 experiments, PLATIPUS makes superior predictions of reaction outcome compared to

other active-learning algorithms and a random baseline.
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I. INTRODUCTION

Materials discovery can be accelerated by combining simulations, machine-learning, and au-

tomation1,2. Autonomous experimentation systems, in which algorithms specify an iterative se-

quence of new experiments based on incoming results without human intervention, have been the

subject of recent reviews3–6. Autonomous experimentation systems have been demonstrated for a

variety of materials optimizations problems, including carbon nanotube growth7,8, additive manu-

facturing9, colloidal nanoparticle syntheses10–12, thin-film devices13, photocatalysts synthesis and

characterization14, alloy phase mapping15, and optimization of battery electrolyte compositions16.

Metal halide perovskites are a promising class of materials for next-generation photovoltaic

and optoelectronic devices17. The ability to incorporate different organic cattions results in a vast,

chemically diverse space to explore18. The relatively mild, solution-based syntheses for these

materials make them amenable to high-throughput automated experimentation.19 Some examples

include antisolvent precipitation of polycrystals20,21, antisolvent vapor diffusion22,23, perovskite

thin films13,24–26, and production of nanocrystals under batch27,28 and flow10 conditions.

We previously described our Robot Accelerated Perovskite Investigation and Discovery (RAPID)

system for performing high-throughput inverse temperature crystallization (ITC) growth of halide

perovskites29. RAPID has collected data on 14,838 reactions (and counting), spanning 56 organic

cations and 3 solvents, a subset of which are used in this study. RAPID has been used to assess

and demonstrate data-driven approaches to experimental tasks, including model fusion strategies

for automating quality control of high-throughput data30, and statistical analyses of uncontrolled

variations in lab conditions to identify the role of humidity in reaction outcomes31. ML models

trained on 96 randomly selected experiments within a chemical system can interpolatively predict

subsequent outcomes in that system29. By augmenting the dataset to include molecular and so-

lution physicochemical features, extrapolative prediction of reaction outcomes for new chemical

systems (i.e., when the protonated organic amine is changed) has ∼ 40% precision on average,

but with large variations32. While better than random experiment selection (∼ 25% precision),

this suggests the need for improved algorithms. As any set of descriptors may not capture all

interactions specific to a particular molecular species, this suggests the need for better algorithms

that can learn the specific attributes of a chemical system from a limited set of new experiments.

Experiment selection algorithms, such as active learning algorithms, are a central part of au-

tonomous experimentation systems, and have been summarized in several recent reviews3,21. Ac-
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tive learning (AL) methods have ML algorithms iteratively request new data-points during train-

ing. Requested data are prioritized by specifying a policy that balances exploration (reducing

model uncertainty) and exploitation (requesting new points with a high value according to the

existing model). This transforms the model training into a sequential learning process, in which

each new experimental datum is incorporated into the model, and this improved model is used to

request the next experiment. Active learning has been widely adopted in molecular simulations

and the construction of ML models on computational data. Notable examples include determina-

tion of phase diagrams33, parameterization of ML force fields34, design of organometallic com-

plexes35, and computational searches for CO2 electrocatalytic alloys36. Notable demonstrations

of active learning in the laboratory setting include determining the reaction conditions for poly-

oxometalate crystallization37,38, antisolvent vapor diffusion syntheses of halide perovskites22,23,

electrocatalytic alloys for oxygen evolution reactions39, alloy phase mapping15, neutron scattering

determinations of magnetic properties40, determination of material property curves41, and battery

electrolyte optimization16. Active learning is typically framed in the context of parameterizing a

single model applicable to the entire problem domain. Our previous work suggests that it may be

more effective to consider each chemical system as comprising a distinct problem domain with its

own ML model. The naïve strategy of performing an active learning parameterization ab initio for

each system would not make use of the valuable information contained in previous experimental

data.

Transfer learning uses information from one problem (i.e., chemical system) to solve a differ-

ent, but related problem. The premise is that the model will have already learned fundamental

representations and the general structure of the task. Therefore, by starting with a model pre-

trained on the previous system, a smaller amount of data on the new system is needed to fine tune

those previously learned characteristics. Applications in computational chemistry include param-

eterization of ML forcefields34, in silico drug discovery42, and efficient metadynamics sampling

in protein molecular dynamics simulations43. Applications to chemical experimentation are more

limited, but examples include tandem mass spec proteomics (with a task transfer from unmodified

to post-translationally modified proteins)44, defect identification in silicon CMOS devices (with a

task transfer between transistor gate geometries)45, and band gap and catalytic activation energy

prediction (with transfer between DFT prediction results and experimental values)46.

Meta-learning is a form of transfer learning in which ML models are constructed to minimize

the loss functions and are evaluated on their ability to “learn how to learn” when presented with
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data in a new domain (or “task”)47. In practice, this results in an initial model that is parameter-

ized to describe a generic case, but more importantly, focuses data acquisition during the sequen-

tial learning phase such that it rapidly converges for the system at hand. Applications of meta-

learning in chemistry have largely focused on in silico drug design tasks, namely determination of

quantitative structure activity relationships (QSAR)48,49, identification of potential drug-drug in-

teractions50, and ligand optimization51. Other applications of meta learning in chemistry include

, RNA design52, soot density recognition in combustion53, gas adsorption in nanoporous mate-

rials54, and interatomic potential fitting.55 Barrett et al.56 used active meta-learning for in silico

iterative peptide design using the Reptile57 meta model. The authors presented the results of us-

ing random sampling and uncertainty minimization functions with active meta-learning methods.

While meta-learning was found to be effective in that context, the benefits of active meta-learning

were inconsistent.

In this paper, we apply model-agnostic meta-learning (MAML)58 to the problem of metal halide

perovskite crystal growth. We consider each chemical system as a new task, and determine the

viability of this approach for few-shot meta-learning suitable for laboratory experimentation at an

early stage in the discovery process where the goal is to identify conditions that result in crystal

formation. As performing experiments is costly and time-consuming, we use active learning to

best iteratively improve the per-task (per-amine) models. To do this, we apply a MAML variant

that allows the determination of prediction probabilities of each outcome, specifically the Prob-

abilistic LATent model for Incorporating Priors and Uncertainty in few-Shot learning (PLATI-

PUS)59. We describe computational studies using historical data to assess the benefits of an active

meta-learning approach relative to "mere" active learning approaches and develop an appropriate

training and validation procedure for applying these methods to laboratory tasks. In addition to

evaluating the results on time-held out data, we also performed a laboratory experimental task

on previously unseen systems. Statistical analysis of the laboratory results demonstrates that the

PLATIPUS active meta-learning technique is more successful in predicting the outcomes of new

experiments that traditional active learning methods or random experiment selection.
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II. METHODS

A. Theory: MAML and PLATIPUS

The goal of meta-learning is to train a model that can quickly adapt to new tasks using only a

few datapoints and iterations. MAML formulates this problem in a model-agnostic way by adding

a gradient-based learning rule (in addition to whatever other loss function is present) that prefers

model parameters that are sensitive to changes in the task. By doing so, small changes in the

parameters produce large improvements on the loss function of any task drawn from a distribution

of possible example tasks when altered in the direction of the gradient of that loss.58 Consider a

model fθ , with parameters θ . When applied to a new task, Ti, the model’s parameters should be

updated from θ to θ ′i . This can be formalized by considering the update in terms of a gradient

descent on task Ti,

θ
′
i = θ −α∇θ LTi( fθ ) (1)

where α is a step size, and L is the user-specified loss function evaluated on task Ti using model

fθ . We can see from this why this is a model-agnostic approach—it is applicable to any model,

fθ for which we can compute gradients of any loss function L. Model parameters are trained by

optimizing for the performance of fθ ′i
with respect to θ across tasks sampled from the distribution

of possible tasks, p(T ), by optimizing a meta-objective,

minθ ∑
Ti∼p(T )

LTi( fθ−α∇θ LTi( fθ )) (2)

Minimizing this meta-objective also requires a gradient, and so we note that this requires the

gradient of a gradient to update θi. In practice, this meta-optimization is also solved by stochastic

gradient descent.

MAML can quickly adapt to a new task by training on a handful of samples from that task,

but lacks the ability to provide uncertainty for predicted samples. Even with the best possible

prior, MAML cannot determine whether there is enough information in the small set of samples to

resolve the new task with high certainty. PLATIPUS is one such method that can propose multiple

solutions to an ambiguous few-shot problem. Evaluating this uncertainty, we can perform active

learning by providing the models with labels to samples with highest uncertainty.

PLATIPUS59 extends MAML to model a distribution over prior model parameters. This is done

by initializing a distribution over model parameters Θ. The distribution is generated using average
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model parameters µθ , variance of model parameters γ2
θ

, learned diagonal covariance vq and two

learning rate vectors γp and γq. The algorithm assumes the distribution of model parameters to be

a normal distribution.

Θ := {µθ ,γ
2
θ ,vq,γp,γq} (3)

During training, PLATIPUS, like MAML, samples a task Ti from a distribution of tasks along

with some task specific training (Dtrain
Ti

) and testing (Dtest
Ti

) data. Unlike MAML however, PLATI-

PUS updates the mean model parameters using the task specific testing data, Dtest
Ti

, first. From the

updated mean parameters, a model is then sampled from the inferred distribution q. This sampled

model is optimized by using gradient descent on the sampled task’s training data. After all the

sampled models have been optimized, the algorithm calculates the prior p of the mean model pa-

rameters by only using the the training data Dtrain
Ti

. Finally, meta model parameters are updated

using the following meta objective,

minΘ ∑
Ti∼(T )

LTi( fθ−α∇θ LTi( fθ ))+DKL(q(θ |Dtest
Ti

)||p(θ |Dtrain
Ti

)) (4)

where DKL is the Kullback-Leibler divergence loss term, which measures the information lost if

the model was trained on the testing data (posterior q), also considered the true distribution of

data, compared to model trained on the training data (prior p). Minimizing this term ensures that

the hyper-parameters perform equally well on meta-training and meta-testing data.

In the testing phase, when a new task is introduced to the model, the algorithm samples several

sets of model parameters from the distribution Θ. Next, it performs gradient descent on all sets

of parameters to obtain multiple task specific models. These trained models can be used to make

predictions where the uncertainty is the difference in the predicted probabilities between sampled

models.

In this study, both the MAML and PLATIPUS models use neural networks with three hidden

layers. The hidden nodes, training rates and other hyper-parameters are presented in Table S-2 and

Table S-3 in the supplementary material.
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B. Problem Summary

Given input information about reactant properties (physical properties, descriptors) and reac-

tion conditions (concentrations, temperature, etc.) we want to predict reaction outcome (formation

of a crystalline product). As a specific example, we consider the growth of lead halide perovskite

crystals via the inverse temperature crystallization (ITC) route, using lead iodide, an organoammo-

nium cation (which for brevity we refer to as the amine), and formic acid. In this work, a “success-

ful” reaction is the formation of a large single-crystalline product. This is a chemically meaningful

outcome, as producing a large, high-quality single crystal is a prerequisite for subsequent charac-

terizations such as single-crystal X-ray structure determination or electrical measurements. We

define a task in terms of a specific choice of reagents, and the goal of this task is to predict the

reaction outcome given the concentrations of the species as input or find input concentrations that

achieve a desired outcome. In the present study, a task comprises of the selection of an amine. All

other reagent identities are fixed. As such, we will use task and amine interchangeably, although

in principle it could be a set of reagents.

In practice, different types of data may be available with which to build a predictive model.

We consider cases where one has access to information about previous, historical tasks (historical

only), limited information about the current task (amine only), or both (historical + amine). Ad-

ditionally, we consider cases where the prior information about the current task may be a random

sample or directed by an active learning (AL) strategy. For each of these types of data resources,

we will consider different model types (to provide a baseline against which to compare MAML

and PLATIPUS), tuning hyperparameters as necessary. Ultimately, success will be evaluated both

by numerical experiments (performed by backtesting on previously obtained data) as well as on

new laboratory experiments. In the next section we describe the process by which we determined

the best types of training data and model types, and prioritized methods to test in the experimental

laboratory.

C. Overview of the Model Training and Evaluation Process

Figure 1 depicts an overview of the numerical and laboratory experimental campaign designed

for this study. The campaign is split into three phases: (1) validation, (2) hold-out testing and

(3) in-lab testing. During the validation phase, we evaluated a number of models and performed
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FIG. 1. Experimental Campaign Overview

baseline development with existing data. To establish a baseline, we considered standard ma-

chine learning models: k-nearest neighbors (KNN), decision trees (DT), support vector machines

(SVM), logistic regression (LR), gradient boosted trees (GBT), and random forest (RF) models,

along with the MAML58 and PLATIPUS59 meta-models. Throughout, our goal was to ensure

a fair comparison across models, so that models always had access to the same data. This first

phase focused on training and validation on historical data from perovskite experiments across 16

amines, so as to determine the best set of hyperparameters across a wide variety of models and

training strategies.

In the hold-out testing phase, we tested all the models considered in the validation phase, fixed

with the best performing hyper-parameters on three (3) held-out amines in our dataset. The goal

of this second phase was to identify the best models to advance to the final laboratory testing

phase. The goal of the third phase was to evaluate the model performance, in an actual laboratory

setting, on a new system with the ability to request experiments. Each model received the same

initial set of random starting data, requested its own desired experiments, and then attempted to

predict successful outcomes which were then validated. This process was repeated twice for each

of four (4) previously unknown chemical systems (constituting a time-separated laboratory test ).

Below we describe the datasets, models, the training and validation conducted in each phase, and
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laboratory experimentation methodology.

D. Datasets

The data was obtained using the Robot-Accelerated Perovskite Investigation and Discov-

ery (RAPID) system discussed in our previous work.29 Each data item describes an inverse-

temperature crystallization (ITC) metal halide perovskite synthesis through the inclusion of con-

centrations of lead iodide, formic acid, and an organoammonium cation (which for brevity we

refer to as, the amine), other reaction conditions (such as temperature), and outcomes. We consid-

ered only experiments conducted at a nominal 105 ◦C, and only those where the concentrations

were chosen uniformly over the achievable convex hull of possible compositions,60 and for which

at least one successful outcome was observed. Of the 20 amines satisfying this criteria in the his-

torical data, 16 amines (and all experimental data using those amines) were selected randomly for

cross-validation experiments, three amines were selected randomly for hold-out testing, and one

amine (dimethylammonium iodide) was held out to be used as part of the phase three laboratory

test experiments. In addition, we acquired a uniformly-sampled (in concentration) baseline for

three additional amines for which we had no previous data, in order to demonstrate the resulting

models on a true time-separated hold-out set. Table I summarizes the amines included in each

phase of the study, and the number of experiments from the historical dataset.

Each amine is used to separate the data into tasks for the developed meta-learning models. The

ESCALATE software was used to append stoichiometric and physicochemical descriptors from

the raw record of reaction conditions and amine structure.32 In total, each experiment is described

by 50 input features: 28 molecular descriptors (number of atoms, rotatable bond counts, etc.), 7

reaction conditions (temperature, concentration, etc.), and 15 stoichiometric descriptors. The full

list of included features can be found in Table S-1. Numerical features in the dataset were scaled to

unit variance for training models. The mean and standard deviation of the training data were used

to scale the training set, samples from the unseen amine, and the pool of potential experiments

used for active learning. The 44 numerical features in the dataset were scaled using this process

while the 6 remaining binary features were not.

To understand how closely tasks are related to each other, we measured the pairwise correlation

between different tasks in the training and testing data in the hold out testing phase and laboratory

testing phase. Figure S-1 in the supporting materials shows the average cosine similarity between
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(a) Score 1

Clear solution

(b) Score 2

Fine Powder

(c) Score 3

Small crystallites

(d) Score 4

Large crystals

FIG. 2. Representative Crystal outcomes for Dimethylamine. A crystal score of “4” is considered a suc-

cessful reaction outcome. Scale bar indicates centimeters

experiments on amines in Phase 1 vs. Phase 2 and Figure S-3 shows the same metric between

experiments on amines in Phase 1 and 2 vs. Phase 3. Additionally, we used the Optimal Transport

Dataset Distance (OTDD)61 metric that measures the notion of task similarity that is model ag-

nostic, shown in Figures S-2 and S-4 The OTDD metric is based on the Earth Mover’s Distance62.

Task pairs with low average cosine similarity or OTDD indicate they are more alike than pairs with

a higher value. For example, in the hold out testing set, two of the held out tasks, n-Butylamine

and iso-Butylamine, are closely related to 4-Fluoro-phenylamine in the training set, with cosine

values 0.88 and 0.84 and OTDD values 52.91 and 48.16 respectively. Whereas the third held out

task, 4-Trifluoromethyl-phenylamine, has a higher cosine similarity and OTDD value of 1.19 and

112.19 respectively, indicating that this task is not as closely related to 4-Fluoro-phenylamine. The

two metrics do not agree on task relatedness for all amine pairs, but indicate trends in relative task

similarities.

Experimental outcomes are scored into four classes: (1) no solid observed in the solution; (2)

fine powder observed; (3) small crystals observed; (4) large crystals observed (> 0.1 mm), as used

in previous work.29,63,64. Figure 2 shows representative crystal outcomes for each of these classes

dimethylamine reactions, and Table SI-3 shows representative images of the new syntheses per-

formed for this work. This type of reaction outcome is experimentally convenient because it can

be determined rapidly (and even automated using computer vision approaches22) and producing

crystals is a prerequisite for for the structural characterization used in materials discovery, even if it
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does not reveal the composition of the final product. In this study, the outcomes are represented as

binary values for the machine learning classification task, with large (class 4) crystals considered as

successful (denoted as a classification outcome of 1) and all other classes are considered as failed

experiments (classification outcome of 0). In general, the success rates of any given amine (shown

in the final column of Table I) are very low; a randomly chosen experiment is more likely to fail

than succeed for all but one amine. Of the 23 included amines, 7 have success rates less than 10%

and another 11 have success rates between 10% and 20%. Given this large class-imbalance, mod-

els will be evaluated based on their balanced classification rate, as discussed in the next section. A

machine readable copy of the dataset is available at https://github.com/darkreactions/platipus/.

TABLE I: Per-amine data statistics for all experimental phases.

Amine chemical name Number of Number of Fraction of

samples successes success

Cyclohexylmethylamine 96 60 0.62

Phenylamine 96 29 0.30

t-Butylamine 96 19 0.20

4-Fluoro-benzylamine 96 18 0.19

N,N-Dimethylpropane-1,3-diamine 96 16 0.17

Methylamine 32 4 0.13

Morpholine 96 11 0.12

4-Fluoro-phenylamine 71 8 0.11

Cyclohexylamine 96 9 0.10

n-Hexylamine 96 8 0.09

Piperidine 156 11 0.07

Propane-1,3-diamine 81 5 0.07

N,N-Diethylpropane-1,3-diamine 96 4 0.05

N,N-Diethylethane-1,2-diamine 96 1 0.02

Ethylamine 81 1 0.01

Butane-1,4-diamine 96 1 0.01

Hold-out testing data

Continued on next page
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TABLE I – continued from previous page

Amine chemical name Number of Number of Fraction of

samples successes success

iso-Butylamine 35 10 0.29

n-Butylamine 42 5 0.12

4-Trifluoromethyl-phenylamine 72 8 0.11

Time-separated hold-out live lab experimentation data

4-Hydroxyphenethylamine 96 45 0.47

4-Chlorophenethylamine 96 27 0.28

4-Chlorophenylamine 96 19 0.20

Dimethylamine 95 15 0.16

E. Phase 1: Model Training

The training and model evaluation phase considers many possible training paradigms and dif-

ferently composed training datasets. In addition to classic one-shot models, we will develop and

compare to meta-models and to active learning versions of both one-shot and meta-models. The

goal of these training procedures is to evaluate all models against reasonable benchmarks, making

sure that the classical one-shot models have the same access to (and advantage from) provided

training data as active meta-models. This makes direct comparisons of the value of active and

meta-learning approaches possible, but requires a complicated description of the data presented

for each of the model variations. We describe this below, as it is valuable for future studies and

notational clarity, but encourage the casual reader to skip to the next section.

Each amine defines a meta-learning task; to mimic this, one-shot models use training and test-

ing splits where each amine is in either training or testing, but not both. Meta-learning models

are given initial jump start data from a new task (an “unseen" amine absent in the training data),

comprised of k = 10 uniformly randomly sampled reaction data for the new amine. We chose k

to be relatively small, as it represents the initial experimental data that needs to be collected when

performing a new task. To create reasonable benchmarks, one-shot models are also given access

to the same initial k = 10 jump start reactions for the new amine. Active learning models request

x = 10 additional samples from the new amine in an iterative fashion; again, this low value of x
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was chosen so as to be feasible for non-automated experimentation. Non-active learned models

will also have access to x = 10 additional experimental data points chosen uniformly at random

from the new amine. During phase 1 and 2 (model validation and hold-out testing), the iterative

experiment requests are chosen from the pool of archived experimental data. During phase 3, they

are selected from a much larger stateset comprised of a grid of∼ 20,0000 possible concentrations

of lead, formic acid, and amine achievable with the stock solutions used (the iodide concentration

is implicit). To summarize, each model has access to at most 20 samples from the new amine

during its training process.

To determine how best to incorporate historical data, different combinations of historical train-

ing data and per-amine data were used during model training, as summarized in Table II. One-shot

models were trained in the following ways: (i) Historical only using only historical data and no

data from the unseen amine; (ii) Amine only using only k + x = 20 data sampled uniformly at

random from the unseen amine; (iii) Amine only with success using only k+ x = 20 data sampled

uniformly from the historical data, but where this must contain at least one successful experiment;

(iv) Historical + amine using all available training data, i.e., all historical data in addition to and

20 points sampled randomly from the unseen amine. Additionally, active learning models were

trained in the following ways: (v) Amine only active learning using amine only data as above,

where k = 10 are given as initial training data and x = 10 are queried iteratively via active learn-

ing; (vi) Historical + amine active learning using all previously available data, where k = 10 data

points from the new amine are added to the initial training set and x = 10 are queried to refine the

model via active learning.

To establish a performance baseline, we trained k-nearest neighbor (KNN), random forest (RF),

decision trees (DT), logistic regression (LR), support vector machine (SVM), and gradient boosted

tree (GBT) models under the above data options. MAML was trained under the historical and

amine option and PLATIPUS was trained under the historical + amine active learning option as

summarized Table III. In the amine only strategy, the training set contains 20 samples from the

held out amine. Due to the unbalanced nature of the outcomes, all 20 random samples may be

failures. The SVM, GBT and LR models require at least one sample from each class in its training

data, and thus can only be examined via the amine only with success training option (and not the

amine only version).

All models in this study use maximum uncertainty sampling to request active learning queries.
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TABLE II. Training data sets considered in this study.

Training strategy Historical data 20 randomly k = 10 uniform random

sampled points x = 10 actively sampled

with or with at least with or with at least

w/o success 1 success w/o success 1 success

Historical only X

Amine only X

Amine only X

w/ success

Historical + X X

Amine

Amine only AL X

Amine only X

w/ success AL

Historical + X X

Amine AL

Uncertainty sampling is defined as

U(X) = 1−P(X̂ |X) (5)

where P(X̂ |X) is the model’s estimated probability of the most likely prediction X̂ of instance X .

For each active learning step, the instance X with the largest value of U(X) is selected as the next

experiment to be queried.

F. Phase 1: Model Validation and Baseline development

In the first phase, all models were evaluated using a 16-fold leave-one-amine-out cross vali-

dation i.e., trained on 15 amines and validated on the remaining 1 amine). We take 5 different

draws of per-amine samples (either k = 10 for active learning models or k+ x = 20 samples for

one-shot models) to test the models under different starting conditions. Next, all active learning

models request the scores of x = 10 more experiments sequentially from the remaining (historical
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TABLE III. Models considered in this study and data used to train them

Model Historical Amine Amine only Historical + Amine only Amine only Historical +

only only with success Amine AL w/ success AL Amine AL

KNN X X X X X X X

RF X X X X X X X

DT X X X X X X X

LR X X X X X

SVM X X X X X

GBT X X X X X

MAML X

PLATIPUS X

data) samples for that amine. Active learning models update their uncertainty values before re-

questing a new sample. Thus each model trains on a total of 20 samples from the held out amine.

Models are evaluated by testing on all held out amine samples in each fold. Accuracy statistics

(recall, precision, accuracy, and balanced classification rate) are calculated by considering the

mean per-amine accuracy statistic over the 5 random draws and taking the mean over all single

amine cross-validation folds. Given the large class imbalance in the dataset (see Table I), balanced

classification rate (BCR) is the primary performance metric, defined as

BCR =
1
2

(
T P

T P+FN
+

T N
T N +FP

)
(6)

where TP, TN, FP, FN are the number of true positive, true negative, false positive, and false

negative classification outcomes, respectively. For non-active learning models the BCR is used

directly, while for active learning models BCR is calculated at each step of the active learning

process and the area under the BCR curve (BCR AUC) is used to measure the rate of improve-

ment. All model hyperparameters and model architecture choices listed in Table S-2 are evaluated

based on the BCR or area under the BCR curve (for non-active learning or active learning models,

respectively).
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G. Phase 2: Hold out Testing

The hyperparameters that provide the best results in the model validation phase for each model

type and training strategy are fixed for use in hold-out testing; those finalized hyperparameters are

shown in Table S-3 During this phase, models are trained with all 16 amines used in the validation

phase. Trained models are then tested on 3 held out amines as indicated in Table I. Similar to the

model validation phase, we take 5 different draws of per-amine samples to test the models under

different starting conditions. Models that perform well in this phase under each training strategy

are selected to be used in the final evaluation. Phase 2 verifies the phase 1 training and testing

process, and serves as the qualifying round that determines which models advance to laboratory

experimentation.

H. Phase 3: Testing Model Performance in the Laboratory

For each of the four amines used in the laboratory testing phase, we acquired 96 experiments

sampling the concentrations uniformly in the achievable 3-dimensional composition space lead,

formic acid, and amine). Next, two draws of x = 10 experiments were selected using uniform

random sampling from this pool, and used to jump start the models. Models requested k = 10

additional experiments sequentially from the stateset of possible achievable compositions for the

amine. Because only one experiment is requested by each model at a time, the requested exper-

iments were dispensed by manual pipetting, but otherwise follow the same experimental process

described below. At the conclusion of the experiment, the results were returned to the models.

Each ITC experiment requires approximately 4 hours to complete, allowing for 2 active learning

rounds per amine per day. At the conclusion of the x+k = 20 data points, each fully trained model

selected the top 9 experiments with the highest probability of yielding a large single crystal (class

4) outcome and these experiments were conducted in the laboratory using the liquid handler robot.

I. Phase 3: Experimental Method

The experimental procedure for the high-throughput inverse temperature crystallization (ITC)

synthesis of metal halide perovskite single crystals is described in our previous work29. In brief,

a Hamilton Microlab NIMBUS automatic liquid handler robot pipettes four different types of

stock solutions into glass vials on a 96-well microplate. These stock solutions consist of: (a) lead
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(II) iodide and the selected organoammonium iodide in solvent, (b) organoammonium iodide in

solvent, (c) neat solvent (dimethylformamide, DMF, was used for all reactions described in this

work), and (d) neat formic acid. The liquid handling robot dispenses the reagent stock solutions

into pre-heated (70 ◦C) glass vials placed in a 96 well microplate. The plate is vortexed for 35

minutes to ensure the proper mixing of stock solutions. The robot then heats the microplates (to

a nominal setting of 105 ◦C, which we measured as 95 ◦C by IR thermometry) without vortexing

for 150 minutes to allow for crystal growth. The reaction outcome is scored by visual inspection

into the four outcome classes described above. Figure 2 shows the representative crystal outcomes

for dimethylamine, where outcomes with score 4 are considered successful. Table SI-3 provides

representative images for all the amines tested during the Phase 3 laboratory experiments. The

raw data file, contained in the supplementary material, includes a description of the stock solu-

tion concentrations used for each experiment, as well as details of the pipetting instructions, final

compositions and outcomes of each reaction.

III. RESULTS AND DISCUSSION

A. Phase 1: Model Validation

We benchmarked MAML and PLATIPUS performance against other baseline models and train-

ing strategies by numerical backtesting on archived data; the results are shown in Figure 3. We

first define three (non-active, non-meta) baselines training schemes and their results. The histor-

ical only training strategy provides a baseline for how well models can predict the outcomes of

reactions for new amine tasks that have not previously been seen during training. Such models do

not perform well; the best performing model using this historical only training strategy is k-nearest

neighbors (indicated as the teal bar with down-left stripes in Figure 3), with an average BCR value

of 0.64.

The second baseline, amine only models, only have access to limited data on the new unseen

amine. The best performing models trained in this manner are worse than the best historical only

model (specifically, decision tree with an average BCR of 0.57, indicated by the pink bar with

down-right stripes in Figure 3). As noted in the Methods section, SVM, GBT and LR require the

training data to contain at least one successful sample, and the imbalances seen in these experi-

ments often precludes this. To establish a baseline for these methods, the amine only with success
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FIG. 3. Cross-validation results showing the (a) balanced classification rate (BCR), (b) accuracy, (c) recall,

and (d) precision for each training strategy averaged over all folds and with 5 draws for each fold. Historical

+ amine active learning, emphhistorical + amine, historical only and amine only

training strategy results are shown for all models. Error bars indicate the standard deviation of the average

accuracy statistic across all amines (16 folds). Lines indicate the model with the highest average BCR for

its corresponding strategy. The large standard deviation for all models indicates large variability across

amines.

training scheme ensures that the training data includes at least one success. This slightly improves

the results over the amine only version, but the best performing model is still poor; the DT model

achieves a BCR of 0.58, indicated by the dotted pink line in Figure 3. Although all of these base-

lines are better than random guessing (which would have a BCR value of 0.5), there is room for

improvement.

First, we assess the value of meta-learning on historical data and compare it to simply adding
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historical data into the model. In general, all models trained using the historical + amine data

perform better than those trained using only the historical data or only the new amine data (lighter-

shaded bars, in Figure 3). This indicates the value of combining both types of information when

exploring a new chemical system. However, the performance is still generally poor; the best

performing model among standard (non-meta-learning) models is KNN, with a BCR of 0.67 In

contrast, the MAML method, using the historical data for meta-optimization, and then training on

the small set of new amine data, yields better performance, with a BCR of 0.74, indicating the

value of meta-learning.

FIG. 4. Cross-validation results for the active learning models showing the number of active learning queries

versus the average balanced classification rate (BCR) over 5 draws for each fold, averaged over all folds.

Accuracy, recall, and precision metrics are shown in Figure S-6. Shown models are the best per training

category after a hyperparameter search. Solid lines in (a) represent the historical+amine training strategy

and dashed lines in (b) are amine only with successes and dotted lines in the (c) are amine only with random

selection.

Applying an active learning scheme to the amine only or historical + amine training results in

a large improvement over the non-actively learned equivalent model. Because one-shot models are

given access to an equivalent number (x = 10) of randomly sampled data points, the appropriate

comparison to the actively learned models is at the x = 10 point on the right of the BCR plots

in Figure 4 graphs. The KNN, DT, and RF models learned with all available data (historical +

amine) all perform similarly well after 10 active learning queries, with BCR between 0.67 and

0.7, and perform better than the SVM, GBT, or LR equivalents. The amine only active learning

versions of KNN, DT, and RF similarly perform better than the non-active learning versions (with

BCRs between 0.64 and 0.71), as does the amine only with success active learning for which
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FIG. 5. Cross-validation BCR AUC for the active learning strategies. PLATIPUS has the highest BCR

AUC among all models followed by KNN and DT using the historical+amine training strategy. KNN with

amine only has the highest BCR AUC among the amine only models, but it is lower than KNN with the

historical+amine strategy. SVM, GBT, and LR models could not be evaluated under the amine only strategy

since they require both outcome classes in their training data.

GBT performs best with a BCR of 0.74. Thus, the active learning process improves the baseline

models more than random sampling, but the models’ performance is still not particularly strong.

To compare performance among active learning models, we calculate the area under the curve

(AUC) for the BCR values shown in Figure 4. The BCR AUC metric rewards models that improve

at each step of the active learning process and quantitatively differentiates BCR curves.

The PLATIPUS results (indicated by green in Figures 3-5) demonstrate the value of active

meta-learning. Even with only the jump start data for the specific amine (the x = 0 point on the

graphs in Figure 4), PLATIPUS already has higher BCR than the other actively learned models

achieve after an additional x = 10 queries. After 10 active learning queries, the PLATIPUS model

has a BCR of 0.81, outperforming all other models considered. However, as the standard deviation

across amines is relatively large (0.1), even for the best performing models, it is important to

evaluate these models on held out amines in the next phase.

B. Phase 2: Hold-out Testing

The goal of this phase is to evaluate MAML and PLATIPUS performance on unseen tasks, so

as to confirm the results discussed in the previous section. This is needed for methodological rigor
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and to justify our selection of a subset of models for laboratory evaluation, but can be skipped

by a casual reader. To evaluate the models on fully unseen data, the models were tested on three

amines held out from the previous dataset (see Table I). Models were trained on the entire set

of 16 amines from the validation experimentation phase using the previously determined optimal

hyperparameters (see Table S-3) Overall, the models perform better on the hold-out test set than in

the cross-validation evaluation. This is likely due to the random choice of amines in the hold-out

test set and not any general improvement in the models. Thus, we will focus here mostly on the

relative performance of different model types and training strategies.

Baseline models trained solely on the historical only and with no data from the unseen amine

again perform relatively poorly, though in some cases as well or better than other options for a

specific model type, as shown in Figure 6. Interestingly, the average BCR for the DT models is

much higher for the historical only training strategy (0.78±0.13) shown as a pink bar with down-

left stripes, than for the historical+amine strategy (0.68± 0.12), shown as the dotted pink bar.

However the standard deviation of the BCR across the three held-out amines is quite large. The

models trained using amine only perform similarly to or better than the models trained using only

historical only data. This is different from the pattern seen during validation, and indicates a lack

of generalization of the baseline models to these held-out amines. The models trained using the

amine only with success strategy are not consistently better or worse than those trained using amine

only data. Both training strategies have large standard deviations in the BCR across amines, and

the variability across amine data may be more important to a model’s ability to predict successfully

than the initial sampling choice. The amine only and amine only with success strategies perform

reasonably well without historical data, which suggests that these are reasonable training strategies

in the absence of a large historical dataset.

The baseline models trained using all available data (historical + amine) again do not clearly

dominate any of the other strategies using those standard models. MAML performs on par with,

but not clearly dominating, the best of the other models, with an average BCR of 0.79. The

impact of active learning on the standard models is also inconsistent across model and training

strategy, with some models and strategies increasing performance under active learning and some

decreasing. KNN performs the best with the historical+amine strategy and active learning, but

some weaker models (RF, SVM, and GBT) under this training strategy have a BCR of about 0.5,

which is the performance of a random model. Analyzing the active learning queries made by

the KNN model revealed that the model naïvely requests the first point in the list of remaining
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FIG. 6. Hold-out testing results showing active and non-active learning model accuracy statistics ((a) BCR,

(b) accuracy, (c) recall, and (d) precision) averaged over 3 held-out amines, each with initial data chosen

from 5 random draws. Bars represent the Historical+Amine and Historical+Amine AL strategies. Error

bars shown indicate the standard deviation of the accuracy statistic over the three held-out amines. The best

performing models for other training strategies are indicated using horizontal lines. SVM, GBT, and LR

models can only be trained with at least one successful reaction, so these models do not have results for all

training strategies.

experiments in the pool. Since this pool contains points that are uniformly sampled throughout the

statespace, any point selected will improve model performance.

While the validation evaluation showed PLATIPUS to be the best of the evaluated models and

training strategies, the performance improvement is less clear on the hold-out testing set. PLATI-

PUS seems to perform similarly to the best standard models (KNN under varying strategies),

with a large standard deviation in BCR across held-out amines. The large standard deviation can
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FIG. 7. Hold-out testing results for the active learning models showing the number of active learning queries

versus the average balanced classification rate (BCR) over 5 draws for each amine, averaged over all amines.

Accuracy, recall, and precision metrics are shown in Figure S-11 in the Supplementary Materials. Solid lines

in (a) represent the historical+amine training strategy. Dotted lines in (b) represent amine only and dashed

lines in (c) represent amine only with success training strategy. Models are evaluated based on the BCR

AUC (see Figure 8) and KNN is the best performing model.

FIG. 8. Hold-out testing BCR AUC for the active learning strategies. KNN has the highest BCR AUC

among all models followed by PLATIPUS and DT using the historical+amine training strategy.

be explained by the fact that all models, except for KNN, trained using historical+amine active

learning strategy perform poorly for one of the three held out tasks, specifically 4-Trifluoromethyl-

phenylamine, shown in Figure S-14. The BCR value of KNN is 0.63 at the end of jumpstart train-

ing and the beginning of the active learning process which is on par with other models, but rapidly

increases in subsequent steps to a BCR value of 0.83. This could suggest that KNN selected exper-
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iments that improved model performance by chance, since as noted before, KNN naïvely selects

active learning experiments in the order they are presented.

Additionally, the average OTDD of 4-Trifluoromethyl-phenylamine from the training set con-

taining 16 amines is 174.37. This distance is much higher than the average OTDD of the other held

out tasks, iso-Butylamine and n-Butylamine, whose values are 116.79 and 120.59 repectively. The

relative difference in average distances from the training dataset corresponds to the performance

of the PLATIPUS model on each amine, where PLATIPUS does not perform well on the amine

that is farther away from the training dataset.

In order to test the developed models in a real world scenario, the next phase of experimenta-

tion involves in-lab live active learning, including laboratory testing of chosen queries. Real world

experiments require materials and labor, so we will limit our attention to the best active learning

models to use as a baseline. Based on the success of the KNN and DT models across both vali-

dation and hold-out testing, as well as the general success of the historical+amine active learning

training strategy, the in-lab experimentation will include KNN and DT historical+amine active

learning models as well as PLATIPUS.

Given the constraints of performing live lab experiments on previously unused amines, it is

also impractical to continue using the amine only with success strategy; the goal in the live lab

experiments is to use a limited and fixed experimental budget, which is incompatible with sampling

until a success is found. Furthermore, the validation and hold-out testing results indicate that

this strategy does not yield significant benefits in model performance. Thus, keeping the same

hyperparameters for each model, we move forward to the next phase with an examination of the

KNN, DT and PLATIPUS models using historical+amine in-lab active learning, and compare

against a baseline of standard models using different training strategies.

C. Phase 3: Laboratory evaluation

How well will MAML and PLATIPUS behave in a real laboratory setting? A possible limitation

of the previous numerical backtesting results is that the active learning selections were limited to

choices among a subset of experiments. To assess the practical performance of these methods,

each model was trained on the historical data of 19 amines used in model validation and hold

out testing phases, provided with the same k = 10 jump start data and allowed to request its own

x = 10 additional experiments from the state space of possible compositions, and then evaluated
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on its ability to identify 9 successful reaction conditions for 4 new amines. The entire process

is repeated twice for each amine, using different randomly selected jump-starts, to assess the

dependence of model performance on initial conditions.

Does active learning improve model quality relative to random experiment sampling in a new

task? Figure 9 compares the performance of all baseline standard and meta models, training on

the same data available to the in-lab active learning models (using the same historical and jump

start data on the amine), and testing using the high-throughput baseline data. The best results for

the non-active learning models tend to use historical + amine data (except for KNN, which does

better with amine only training), and MAML has the best overall performance. Therefore, when

active learning is impractical, we recommend using MAML when historical data is available,

and KNN when it is not. However, using active learning improves performance. Notably, the

PLATIPUS model dominates all other models with an average BCR of 0.81. The DT model with

active learning does better than DT with other strategies, but KNN with active learning does worse

than KNN with historical + amine and amine only strategies. The PLATIPUS model performs

consistently well over all the tested amines as indicated by a smaller standard deviation in BCR

values. The average OTDD values of the tested amines namely, 4-Hydroxyphenethylamine, 4-

Chlorophenethylamine, 4-Chlorophenylamine and Dimethylamine are 144.36, 143.34, 134.18 and

128.68 respectively. We observe that the OTDD values of these amines from the training dataset,

containing 20 amines, do not vary significantly. Unlike the hold out testing, where the OTDD of

4-Trifluoromethyl-phenylamine was significantly larger. Although we selected the 4 amines in this

phase at random, a distance metric like OTDD can help in selecting candidate amines. Candidates

with large distance values from the training set may not be suitable for exploration by meta-models

like PLATIPUS.

Similar to the behaviour seen in the hold-out testing phase, KNN naïvely selects points from

the stateset in the order it is presented to the model for lab evaluation. Consecutive experiments

presented to the model are close together in chemical space which limits the information it gains

from the active experiment requests. This explains why KNN performed best in the hold out testing

phase as the model was presented with uniformly sampled experiments that greatly improved

model performance. Therefore, it is important to test models in a laboratory setting as there may be

hidden factors influencing model performance that were not considered in retrospective analyses.

How do the active learning models improve with each experimental request? Figure 10a shows

the BCR values at each step of the active learning process averaged over both draws over four
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FIG. 9. Final phase testing results showing active and non-active learning model accuracy statistics ((a)

BCR, (b) accuracy, (c) recall, and (d) precision) averaged over 4 amines, each with initial data chosen from

2 random draws. Solid bars represent models trained using x= 10 benchtop experiments (Historical+Amine

AL (In lab)), dotted bars represent models trained using historical + amine strategy, bars with down-left and

down-right stripes are trained using historical only and amine only strategies, respectively.

amines and Figure 10b shows the BCR AUC of each model. In addition to starting with an initially

higher BCR, the experiment selections by PLATIPUS increase the BCR more than active learning

on the DT and KNN models. This demonstrates the value of PLATIPUS for exploration.

How well can trained active learning models predict new experiments? Table IV summarizes

the actual experimental outcomes observed for 9 reaction that each model predicted to be success-

ful; this allows us to assess how well each model can be used to exploit the information it has

learned during the active learning process. Large variations are observed between the different
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FIG. 10. Laboratory evaluation training results for the active learning models averaged over two draws over

four amines. (a) active learning BCR and (b) average BCR AUC. Error bars indicate standard deviation

across the 8 trials.

jump-start draws, which reflects the dependence on initial data. However, in every case, PLATI-

PUS makes more successful predictions than DT- and KNN-based active learning models. This is

evidence that regardless of the initial conditions, PLATIPUS makes better use of its experimen-

tal requests than these other models to learn the relationship between composition and reaction

outcome.

We quantify the prediction quality using a simple statistical approach. Suppose that each model

is an oracle that makes correct predictions with probability p, i.e., each experiment is a Bernoulli

trial. The number of successes m that occur in a batch of n experiments is the binomial distribution.

Given an observation of m successes, we wish to determine the probability density function (PDF)

of p consistent with this outcome. This is merely the PDF of the binomial distribution times the
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TABLE IV. Summary of the laboratory evaluation results on predicting 9 experimental outcomes.

Model PLATIPUS Decision Tree KNN

Amine Draw Fraction Number of Fraction Number of Fraction Number of

Success Successes Success Successes Success Successes

Dimethylamine 1 0.78 7 0.67 6 0.00 0

2 0.22 2 0.22 2 0.22 2

4-Chlorophenethyl- 1 0.55 5 0.11 1 0.00 0

amine 2 0.89 8 0.22 2 0.00 0

4-Hydroxyphenethyl- 1 0.44 4 0.22 2 0.00 0

amine 2 0.44 4 0.11 1 0.00 0

4-Chlorophenyl- 1 0.78 7 0.11 1 0.22 2

amine 2 0.44 4 0.22 2 0.33 3

appropriate normalization factor for n trials,

f (p) = (n+1)(1− p)n−m pm
(

n
m

)
. (7)

(Readers familiar with Bayesian inference will recognize this as the PDF of the beta distribution,

Beta(α = m+1,β = n−m+1), which is the conjugate prior of the binomial distribution.) Eq (7)

can be used to assess each model’s predictions quality (peaks at higher p) and uncertainty (width

of the peak). To focus on each model’s general performance, we combine the two draws together.

Figure 11 plots the estimated PDF of p for each model for each amine; in each case there are

n = 18 experiments and m is the sum of successes reported in Table IV for the two draws. We

also compare this to the random baseline results for each amine (black line), using the data from

Table I. The random baseline distribution is narrower because of the larger number of random

baseline samples; the statistical treatment allows us to account for the uncertainty associated with

different numbers of experimental trials in a consistent way. As depicted in Figure 11, the PDF for

PLATIPUS (green) is higher or comparable to that of the other reference methods. This indicates

that PLATIPUS has a better maximum likelihood (p that maximizes the PDF) of making successful

reaction predictions than the other approaches. However, one might also ask how the uncertainty

in our estimate might change this evaluation.

A useful way to approach decision making in uncertain environments is to think in terms of

bets.65. Consider a wager placed on one of two different models, with PDFs described by fA(p)
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FIG. 11. Probability density function (PDF), Eq. (7) of estimated model success probability, p, for the

KNN, DT, and PLATIPUS active learning models and random baseline data. The distribution of p for

PLATIPUS is better than, or comparable to all other contenders.

and fB(p). The integral of the joint PDF (which in this case is simply the product of the two

independent PDFs, fA(pA) fB(pB)) for pA > pB,

gA>B =
∫ 1

0
dpA

∫ pA

0
dpB fA(pA) fB(pB), (8)

indicates how often a bet on A is better than a bet on B. An illustrative example is shown in Figure

12, using the example of dimethylammonium iodide. In each inset, the PDF of each individual

model (taken from Figure 11a) is shown in the margins, and the joint PDF is depicted as a contour
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plot. The region below the dotted bisectrix line is where pA > pB. The integral gA>B is larger when

more of the joint PDF sits below this bisectrix. For example, the joint PDF of the PLATIPUS and

random sampling schemes (Figure 12a) is mostly below the bisectrix, indicating that the PLATI-

PUS model ("A") is typically more successful than the random model ("B"), as gA>B is closer to

1. In contrast, the difference between the PLATIPUS and DT PDFs is not as pronounced, and as

a result, the joint PDF is more symmetrical about the bisectrix (Figure 12b). As a result, gA>B

will be closer to 0.5, indicating that these are equally good bets. (As an aside, this is the same

reasoning used to justify the Thompson sampling heuristic for the multi-arm bandit problem.66)

FIG. 12. Illustrative examples of comparing joint probability density functions (PDF) to determine which

model is a better choice, for dimethylammonium iodide reactions. The PDF for each model is shown as

the colored lines on the axes, and the joint PDF is depicted as a contour plot. The dotted diagonal line

indicates the bisectrix. (a) Comparison of PLATIPUS and random choice. The contour sits below the

bisectrix indicating PLATIPUS as the better bet (b) Comparison of PLATIPUS and the active decision tree

model. The contour is more symmetrical around bisectrix indicating equally good bets.

Eq 8 can be evaluated analytically, resulting in a rational fraction for each value of gA>B (see

Supplementary Material). As the results are somewhat unwieldy, Table V shows the decimal

truncation, with a comparison of PLATIPUS (P) to the KNN and DT active learning methods and
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TABLE V. Estimation of which model is more likely to be successful, by integration of Equation (8).

Amine gP>KNN gP>DT gP>Rand gDT>Rand

Dimethylamine 0.994 0.627 0.999 0.996

4-Chlorophenylamine 0.976 0.997 1.00 0.451

4-Chlorophenethylamine 1.00 1.00 1.00 0.188

4-Hydroxyphenethylamine 0.999 0.961 0.433 0.009

against the random baseline; As noted above, gA>B values closest to 1 indicate that it is almost

certain that model A will have a superior outcome, and values of 0.5 indicate that each model

has an equal likelihood of winning. In all cases, PLATIPUS is a better choice than the other

active learning models, and in most cases should outperform every other strategy > 96% of the

time. There are two exceptions: For dimethylammonium iodide, PLATIPUS outperforms DT only

62% of the time. Nonetheless, PLATIPUS remains a better choice, even though this advantage

is smaller than usual. For 4-hydroxyphenethylammonium iodide, despite outperforming the other

active learning methods, PLATIPUS is less likely to succeed than random choice. However, this

amine has an anomalously high success rate of 47%, compared to 16-28% for other amines (Table

I). In other words, adopting a smart strategy offers few advantages when dumb luck has a high

chance of success. For reference, the last column in Table V shows a similar comparison of the DT

model against random experimentation. In only one case does the active DT model outperform

the random baseline. This further highlights the strength of PLATIPUS. In summary, PLATIPUS

is comparable or better to any other strategy for all amines considered, indicating that is a robust

strategy to adopt when attempting new experiment campaigns.

IV. CONCLUSION

Experimental chemistry datasets are typically small, which makes efficient data use impera-

tive. Acquiring new experimental data can be slow and expensive, so methods that reduce the

need to acquire new data are valuable. Chemical reaction systems are complicated, and while

there are often broad trends between different systems, each chemical system has its own unique

peculiarities.

By performing an extensive series of computational experiments using historical data, we have

demonstrated that the MAML meta-learning method uses historical data to get more explanatory
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value from a subsequent fixed, limited set of data for a new chemical system. Additionally, we have

demonstrated that the PLATIPUS active meta-learning method gives additional improvements in

model quality when it is possible to acquire additional data. The PLATIPUS active meta-learning

approach learns better models than active learning alone, on both historical data and in-laboratory

testing. The demonstrated advantage of PLATIPUS in the context of exploratory halide perovskite

synthesis in the laboratory indicates its robustness to noise in a real world setting.

More broadly, the training and evaluation strategies we describe are generally applicable to

other types of chemical and material synthesis problems that can be described in terms of distinct,

but related tasks. Tasks such as replacing one chemical ingredient with another, are examples of

Wittgenstein’s notion of family resemblance (Famlienähnlichkeit), in the sense that there is only

a “complicated network of similarities overlapping and criss-crossing" rather than any specific

features common to all tasks.67

Meta-learning approaches, such as MAML used here, allow us to incorporate the peculiar de-

tails of the new task, while still making use of the general structure of a historical dataset of

related tasks. Adding active-learning iterations using PLATIPUS increases the value of limited

experiments, and thus is generally applicable to the various autonomous experimentation systems

discussed in the introduction.

V. SUPPLEMENTARY MATERIAL

See the supplementary material for tables of training dataset features, task relatedness measured

by average cosine similarity and OTDD, photographs of example reaction outcomes, model hyper-

parameters tested in each stage, and additional figures depicting model performance in the cross

validation, hold out testing and in lab testing phases, as described in the text.

ACKNOWLEDGEMENTS

We thank Rodolfo Keesey and Mina Kim for their careful reading of the manuscript. This study

is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) un-

der Contract No. HR001118C0036. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views of

DARPA. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic

33



Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

JS acknowledges the Henry Dreyfus Teacher-Scholar Award (TH-14-010) and resources of the

MERCURY consortium (http://mercuryconsortium.org/) under NSF Grant No. CNS-2018427.

AUTHOR DECLARATIONS

The authors have no conflicts to disclose.

DATA AVAILABILITY

All data and code needed to reproduce the results of this study are available at

https://github.com/darkreactions/platipus

REFERENCES

1R. K. Vasudevan, K. Choudhary, A. Mehta, R. Smith, G. Kusne, F. Tavazza, L. Vlcek, M. Ziat-

dinov, S. V. Kalinin, and J. Hattrick-Simpers, MRS Commun. 9, 821 (2019).
2J. E. Saal, A. O. Oliynyk, and B. Meredig, Annu. Rev. Mater. Res. 50, 49 (2020).
3E. Stach, B. DeCost, A. G. Kusne, J. Hattrick-Simpers, K. A. Brown, K. G. Reyes, J. Schrier,

S. Billinge, T. Buonassisi, I. Foster, C. P. Gomes, J. M. Gregoire, A. Mehta, J. Montoya,

E. Olivetti, C. Park, E. Rotenberg, S. K. Saikin, S. Smullin, V. Stanev, and B. Maruyama,

Matter (2021), 10.1016/j.matt.2021.06.036.
4M. M. Flores-Leonar, L. M. Mejía-Mendoza, A. Aguilar-Granda, B. Sanchez-Lengeling,

H. Tribukait, C. Amador-Bedolla, and A. Aspuru-Guzik, Curr. Opin. Green Sustain. Chem.

25, 100370 (2020).
5F. Häse, L. M. Roch, and A. Aspuru-Guzik, Trends Chem. 1, 282 (2019).
6N. J. Szymanski, Y. Zeng, H. Huo, C. J. Bartel, H. Kim, and G. Ceder, Mater. Horiz. 8, 2169

(2021).
7P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, and

B. Maruyama, npj Comput. Mater. 2 (2016), 10.1038/npjcompumats.2016.31.
8J. Chang, P. Nikolaev, J. Carpena-Núñez, R. Rao, K. Decker, A. E. Islam, J. Kim, M. A. Pitt,

J. I. Myung, and B. Maruyama, Sci. Rep. 10 (2020), 10.1038/s41598-020-64397-3.

34



9A. E. Gongora, B. Xu, W. Perry, C. Okoye, P. Riley, K. G. Reyes, E. F. Morgan, and K. A.

Brown, Sci. Adv. 6, eaaz1708 (2020).
10R. W. Epps, M. S. Bowen, A. A. Volk, K. Abdel-Latif, S. Han, K. G. Reyes, A. Amassian, and

M. Abolhasani, Adv. Mater. 32, 2001626 (2020).
11A. A. Volk and M. Abolhasani, Trends Chem. 3, 519 (2021).
12A. Y. Fong, L. Pellouchoud, M. Davidson, R. C. Walroth, C. Church, E. Tcareva, L. Wu, K. Pe-

terson, B. Meredig, and C. J. Tassone, J. Chem. Phys. 154, 224201 (2021).
13B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Häse, L. M. Roch, K. E. Dettelbach,

R. Moreira, L. P. E. Yunker, M. B. Rooney, J. R. Deeth, V. Lai, G. J. Ng, H. Situ, R. H. Zhang,

M. S. Elliott, T. H. Haley, D. J. Dvorak, A. Aspuru-Guzik, J. E. Hein, and C. P. Berlinguette,

Sci. Adv. 6, eaaz8867 (2020).
14B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, X. Wang, X. Li, B. M. Alston,

B. Li, R. Clowes, N. Rankin, B. Harris, R. S. Sprick, and A. I. Cooper, Nature 583, 237 (2020).
15A. G. Kusne, H. Yu, C. Wu, H. Zhang, J. Hattrick-Simpers, B. DeCost, S. Sarker, C. Oses,

C. Toher, S. Curtarolo, A. V. Davydov, R. Agarwal, L. A. Bendersky, M. Li, A. Mehta, and

I. Takeuchi, Nat. Commun. 11 (2020), 10.1038/s41467-020-19597-w.
16A. Dave, J. Mitchell, K. Kandasamy, H. Wang, S. Burke, B. Paria, B. Póczos, J. Whitacre, and

V. Viswanathan, Cell Rep. Phys. Sci. 1, 100264 (2020).
17A. K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119, 3036 (2019).
18M. D. Smith, E. J. Crace, A. Jaffe, and H. I. Karunadasa, Annu. Rev. Mater. Res. 48, 111 (2018).
19M. Ahmadi, M. Ziatdinov, Y. Zhou, E. A. Lass, and S. Kalinin, Joule (2021),

10.1016/j.joule.2021.10.001.
20K. Higgins, S. M. Valleti, M. Ziatdinov, S. V. Kalinin, and M. Ahmadi, ACS Energy Lett. 5,

3426 (2020).
21S. Chen, Y. Hou, H. Chen, X. Tang, S. Langner, N. Li, T. Stubhan, I. Levchuk, E. Gu, A. Osvet,

and C. J. Brabec, Adv. Energy Mater. 8, 1701543 (2017).
22J. Kirman, A. Johnston, D. A. Kuntz, M. Askerka, Y. Gao, P. Todorović, D. Ma, G. G. Privé,
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