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How many zeros of a random polynomial are real?

Alan Edelman*
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Abstract

We give an elementary derivation of the Kac integral formula for the expected number of real zeros
of a random polynomial with independent standard normally distributed coefficients. We show that the
expected number of real zeros is the length of the moment curve (1,1,...,1") projected onto the surface
of the unit sphere, divided by 7. The probability density of a real zero is proportional to how fast this
curve is traced out. We generalize the Kac formula to polynomials with coefficients that have an arbitrary
multivariate normal distribution. We show, for example, that for a particularly nice definition of random
polynomial, the expected number of real zeros is ezactly the square root of the degree.

If the random polynomials have an arbitrary density function, the expected number of zeros is a
wesghted length of the moment curve. We also calculate the the distribution of the real zeros of random
power series and Fourier series, random sums of orthogonal polynomials, and random Dirichlet series.
Extensions to systems of equations are also discussed.
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1 Introduction

What is the expected number of real zeros E, of a “random” polynomial of degree n? If the coefficients are
independent standard normals, we show that as n — oo,

= %log(n) + 0.6257358072... + % + O(1/n%) .

The %logn term was derived by Kac in 1943 [12], who pfoduced an integral formula for the expected number
of real zeros. Papers on zeros of random polynomials include [2], (8], [11], [18] and [19]. There is also the
comprehensive book of Bharucha-Reid and Sambandham [1].

We will derive the Kac (sometimes known as the Kac-Rice) formula for the expected. number of real
zeros with an elementary geometric argument that is related to the Buffon needle problem. We present the
.argument in a manner such that precalculus level mathematics is sufficient for understanding (and enjoying)
the introductory arguments, while elementary calculus and linear algebra are sufficient prerequisites for much
of the paper. : ]

. These results can be generalized to arbitrary normal distributions. Several authors [3] [15] [23] have
studied random polynomials with independent normally distributed coefficients, each with mean zero, but

with the variance of the it%

coefficient of a polynomial of degree n being equal to (7). This is, in some sense,
the most natural definition of random polynomial. For this particular random polynomial, the expected
number of real zeros is exactly the sqﬁare root. of the degree.

We also compute the density of the real zeros of other collections of random functions. Specifically, we
consider power series, Fourier series, sums of orthogonal polynomials, and Dirichlet series.

Fortunately, the methods discussed in this paper work equally well for random functions in several

variables, so we are able to generalize many of our results to systems.

i

2. Elementary geometry and random polynomials

Section 2.1 is restricted to elementary geometry. Polynomials are never mentioned. The relationship is

revealed in Section 2.2.

2.1 How fast do equators sweep out area?

We will denote (the surface of) the unit sphere centered at the origin in ®*! by S". Our figures correspond
to the case n = 2. Higher dimensions provide no further comp]icaf.ions.

Definition 2.1 If P € S" is any poini, the associated equator P, is the set of pmnts of S™ on perpen-
dicular to the line from the origin to P.

This generalizes our familiar notion of the Earth’s equator, which is equal to (north pole), and also
equal to (south pole) . See Figure 1 below. Notice that P, is always a unit sphere (“great hypercircle”) of
dimension n — 1. '



SIO0SIEN

Figure 1 Points P and associated equators P, .
Let v(t) be a (rectifiable) curve on the sphere S™.
Definition 2.2 Let v, , the equators of a curve, be the set {P,|P € v}.

Assume that ¥ has a finite length |y]. Let |yv.| to be the area “swept out” by v; — we will provide a
precise definition shortly. We wish to relate |y} to |vy|.

If the curve v is a small section of a great circle, then Uy, is a lune, the area bounded by two equators
as illustrated in Figure 2. If v is an arc of length 8, then our lune covers /= of the area of the sphere. The
simplest case is # = m. We thus obtain the formula valid for arcs of great circles, that

~areaof S 7’

Figure 2 The lune Uy, when v is a great circular arc

If v.1s not a section of a great circle we may approximate it by a union of small great circular arcs, and
the argument is seen to still apply. ' '

‘The alert reader may notice something wrong. What if we continue our v so that it is more than just

half of a great-circle or what if our curve v spirals- many times around a point? Clearly v may have quite
a large length, but |y, | remains small. The correct. definition for |y, ] is the area swept out by ¥(t)., as t
varies, counting muliiplicities. We now give the precise definitions.

Definition 2.3 The multiplicity of a point Q € Uyy is the number of equators in v that contain Q, i.e.
the cardinality of {t € R|Q € (1), }.

Definition 2.4 We define |yL| to be volume of Uyy counting multiplicity. More precisely, we define }y.] to
be the integral of the multiplicity over Uy .

The sphere is then divided into regions of points that have the same multiplicity, as is schematically illustrated
in Figure 3.

-

4



Figure 3 Schematic regions on a sphere with multiplicities 3, 4, and 5. @.has multiplicity 3.

‘Lemma 2.1 Ify is a reclifiable curve, then

‘ 7. 171

area of S” -

As an example, consider a point. P on the surface of the Earth. If we assume that the point P is receiving
the direct ray of the sun — for our purposes, we consider the sun to be fixed in space relative to the Earth
during the course of a day, with rays arriving in parallel — then P, is the great circle that divides day from
night. This great circle is known to astronomers as the terminator. During the Earth’s daily rotation, the
point P runs through all the points on a circle v of fixed latitude. Similarly, the Earth’s rotation generates
the collection of terminators v, . -

The multiplicity in vy, is two on a region between two latitudes. This is a fancy mathematical way of
saying that unless you are too close to the poles, you witness both a sunrise and a sunset every day! The
summer solstice is a convenient example. P is on the tropic of Cancer and Equation (1) becomes

2 x (The surface area of the Earth between the Arctic/Antarctic Circles) _ The length of the Tropic of Cancer
The area of the Earth " 7 x (The radius of the Earth)

or equivalently

(The surface area of the Earth between the Arctic/Antarctic Circles)  The length of the Tropic of Cancer
The area of the Earth - The length of the Equator

Equations appropriate for other days of the year may be derived by the reader.
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Figure 4 On the summer solstice, the direct ray of the sun reaches P on the Tropic of Cancer .

2.2 The expected number of real zeros of a random polynomial

What does the geometric argument in the previous section and Formula (1) in particular have to do with
the number of real zeros of a random polynomial? Let

p(z) = ag + a1+ -+ agz”,

be a non-zero polynomial. Define the two vectors

({11}

O - t
2
’ a=| 2 and v(t)= | !
iy, ' " )

The curve in ®**! traced out by v(t) as t runs over the real line is the moment curve. .

The condition that ¢ is a zero of the pblynomial ay + a1 + - -+ a,z" is precisely the condition that a
is perpendicular to v(t). Another way of saying this is that v(t), is the set of polynomials which have ¢ as
a 2ero. ‘ '

Define unit vectors

a = ofllall, 7() = v/ ()]
As before, ()1 corresponds to the polynomials which have t as a zero.

Let v = {y(t) : t € R}. When n = 2, the curve v is the intersection of the elliptical (squashed) cone and
the unit sphere. In particular, the curve is not planar — See Figure 5. If we include the point at infinity,
v becomes a simple closed curve when n is even. (In projective space, the curve is closed for all n.) The
number of times that a point a on our sphere is covered by an equator in vy, i.e. the multiplicity of a in v,
is exactly the number of real zeros of the corresponding polynomial.

So far, we have not discussed random polynomials. It is well known that if the @; are independent
standard normals, then the vector a is uniformly distributed on the sphere S™ since the joint density function
in spherical coordinates is a function of the radius alone.

.



What is E, = the expected number of real zeros of a random polynomial? A random polynomial is
identified with a uniformly distributed random point on the sphere, so E, is the area of the sphere with our
convention of counting multiplicities.

Equation (1) (read backwards!) states that

1
E,==v|.
T

Our question about the expected number of real zeros of a random polynomial is reduced to finding the
length of the curve y. We compute this length in Section 3.1. :

Figure 5 When n = 2, v is the intersection of the sphere and cone. The intersection is a curve that

includes the north pole and a point on the equator.

Similar geometric considerations have also lead to the calculation of the distribution of the real eigenvalues

and real generalized eigenvalues of random matrices (7, 4, 5, 6].

3 Calculations

We now obtain concrete results. The reader will also find more little surprises in the sections to follow.

3.1 Calculating the length of v

We invoke calculus to obtain the integral formula for the length of 4, and hence the expected number of

zeros of a random polynomial, E,. The result was first obtained by Kac in 1943.

Theorem 3.1 The expected number of real zeros of a degree n polynomial with independent standerd normal

coefficients is ,
1 [* 1 (n+ 1)2e2n
= - - 1t
2T \/ @=17 ~ @7

4 LT 1 (n +1)22m :
-‘;/o \/(1—t2>2 "t @




Proof The standard arclength formula is

b= [ It o

-0

To calculate the integrand, we first consider any differentiable v(¢) : ® — R"*!. It is not hard to show that

V() = (__(t)“(—)) _ b vl - Q) - v W)lo@)

o(t) - ot [v(t) - v(2)]3/2
and therefore,
i< (2@ Y (o ) )o@l ) )= b0 v oF
@il “( v(t)~v(t)) (\/v(t)~v(t)) - [o(?) - v(2))?
We may proceed in two different ways.

Method I (Direct approach):
If v(t) is the moment curve then we may calculate ||7/()]| with the help of the following observations and

some messy algebra:

— ¢2n+2
v(t)-v(t)=1+t2+t4+...+t2"=1—1—t2—-—;
: 1d [1—t2n+2 t (1—t2" — nt?" 4 ni2nt?)
! . _ 43 5 2n-1 _ 2 % _ .
V) v(@) =t + 2+ 37+ ..+ nt —2dt( T )_ (t2—1)2 ;
- : 1d d (1—12742\ 2742 g2 1 4420 (ng? —n—1)°
"WV =14+42 49t + Y s ——— = - :
V() V) =1+47+ 9+ 0 i\ oo @) ;

we arrive at the following formula, first arrived at by Kac. v

/ \/(t2n+2 — 1)1 (n+ 1)2t2n(t2 —1)? = 1 /oo 1 (n + 1)2t2n it
—nerr -1 T r )l NEeoDr T e ozt
Method II (Sneaky vers10n)
By introducing a logarithmic derivative, we can avoid the messy alg,ebra in Method I. Let v(t) : ® — R+!

be any differentiable curve. Then it easy to check that
2

ORI

= o (3)

y=z=t
Thus we have an alternative expression for ||v'(t)||*.

Remember that we obtained ~(¢) from v(t) by projecting. The length of v(t) is unimportant, any scaling
is equally valid. The logarithmic derivative is tailored to be invariant under scaling by any A(t):

92 ' 92 02 ‘
523y B @) AW = 5 loglu(z) - v(0)] + log\(x) + ogAw))} = 7 loglolz) - o)l

The simplicity with which lengths of curves can be measured is one way to motivate the scale independent .
Fubini-Study metric [10]. '
When v(t) is the moment curve,

' ‘ — (gy)*H!
v(z) - v(y) =1+ey+23’ + . +z"y = -1——-(—“1)——
1—=xzy
the Kac formula is then
1 / 1- (zy)nt!
dt.
\/81 aJ 1-— zY y=zr=t
This version of the Kac formula first appeared in [15]. ' (]



3.2 The density of zeros

We focused, up until now, on the length of ¥ = {y(t)] — co < t < oo}, and concluded that it equals the
expected number of zeros on the real line. What we really did, however, was observe that the density of
zeros is the speed of the curve divided by x. Thus

1 1 n + 1)2¢2n0
() = \/(t2 1)? - ((t2nt2 )_tl)z

is the expected number of real zeros per unit length at the point t € R. This is a true density: integrating

pn(t) over any interval (or measurable set) produces the expected number of real zeros on that (or set). The
© probability density for a random real zero is p,(t)/E,. It is straightforward [12, 13] to see that as n — oo,
the real zeros are concentrated near the point ¢ = %1. ‘

The asymptotic behavior of both the density and expected number of real zeros is displayed in the
subsection below. ' ,

3.3 The asymptotics of the Kac formula

This section contains a long calculation that is unrelated to the rest of the paper. A short argument could
have shown that E, ~ Zlogn [12], but since several researchers, including Christensen, Sambandham,
Stevens and Wilkins have sharpened Kac’s original estimate, we show here how successive terms of the
asymptotic series. may be derived, although we will only derive a few terms of the series explicitly. The
constant C; and the next term ;£ were unknown to previous researchers. See (1, pp. 90-91] for a summary

of previous estimates of the constant.

Theorem 3.2 As n — oo,

_ 2 L2 ’
En'= Zlog(n) + C1 + — + O(1/n?) ,

2 had 1 4e—2% 1
= — | log(2 _— . - lr = 0.6257358072... .
Gy W<OE’()+A { 22 (1—e-2)2 27+1}(T)
Proof

We now study the asymptotic behavior of the density of zeros. To do this, we make the change of variables
t=1+z/n,so '

where

E, = 4/ fnl2) dx |

(1

where

. _ 1 nt (n+ 121+ z/n)*
pn(z) = z2(2n + z)2 - [(1+ z/n)2n+2 - 12

is the (transformed) density of zeros. Using

7 n )
(1+2)" = (1-—~—)+0(1/n),
n
and Mathematica, we see that for any fixed z as n — oo, the density of zeros is given by

z(2 -

2n

) = () + | 522 h@ﬂ+ouw | )

9



where
4 1[1 4e-22 M2
o) = 5 [ - ]
This asymptotic series cannot be integrate term by term. We solve this problem by considering the asymptotic
series for the Kac power series (Section 4.6):
x[z>1] 1 _xlz>1] 1

, L 2
2z 2n(2n4z) 27z 4dnw + 0(1/n%), (3)

where we have introduced the factor

x[:n>1]s{(l) gl

to avoid to pole at z = 0. Subtracting (5) from (4), we obtain

;3,.(1-)—{"[r> n_ 1 }={pm(af)— X[—’—>—1—]}+{[?m(ﬂ]'+'4—,1;;} + 0(1/n?) . |

27z 2r(2n + x) 27

We then integrate term by term from 0 to co to get

i — Liogamye [ Lo MUY L :
A pn(z) dx 2wlob(2n)_A {pm(;z:) oy } dm+2n7r. + O(1/n%).

The theorem immediately follows from this formula and one final trick: we replace x[z > 1]/z with 1/(z +1)
in the definition of C; so we can express it as a single integral of an elementary function.

O

4 Generalizations and examples

Reviewing the discussion in Section 2, we see that we could omitsome members of our basis set {1,z,22%,...,z"}
and ask how many zeros are expected to be real of an nth degree polynomial with, say, its cubic term deleted.
The proof would hardly change. Or we can change the function space entirely and ask how many zeros of
the random function .

ay + apsin(x) + azel®l

are expected to be real — the answer is 0.63662. The only assumption is that the coefficients are standard

normals. If fo, f1,..., fu 1s any collection of rectifiable functions, we may define the analogue of the moment
curve '
fo(t)
hi(®@)
v(t) = . (6)
fa(?)
The function 1||y/(t)|| is the density of a real zero; its integral over R is the expected number of real zeros.
We may relax the assumption that the coefficient vector a = (ao,...,a,)7 contains independent standard -

normals, by allowing for any multivariate distribution with zero mean. If the a; are normally distributed,
E(a) = 0 and E(eaT) = C, then a is a (central) multivariate normal distribution with covariance matrix C.
It is easy to see that a has this distribution if and only if C~/2q is a vector of standard normals. Since

a-v(t)=C V% Cllzv(t),

10



the density of real zeros with coefficients from an arbitrary central multivariate normal distribution is
1
;Hw’(t)“, where w(t) = CY%u(t), and w(t) = w(t)/|lw(?)]\. (7N

The expected number of real zeros is the integral of L|lw’(t)|].
We now state our general result.

Theorem 4.1 Let fu(t),..., fo(t) be any collection of differentiable functions and ao,...,a, be the
elements of a multivariale normal distribution with mean zero and covariance mairiz C. The expected
number of real zeros on an interval (or measurable set) I of the equation

aofot)+ a1 fi(t)+ ...+ anfu(t) =0
15 . ’
[ Fiwoa,

where w is defined by Equations (G) and (7). In logarithmic derivative notation this is

T

1 [ 0* r 1z
__/I <_('):l:6y (log v(=) Cv(y))ly=z=!) dt,

where v is defined by Equation (6).

Geometrically, changing the covariance is the same as changing the inner product on the space of functions.

We now enumerate several examples of Theorem 4.1. We consider examples for which v(z)7 Co(y) is
a nice enough function of x and y that the density of zeros can be easily described. For a survey of the
literature related to the first, third, and fifth examples, see [1], which also includes the results of numerical
experiments. In our discussion of random series, proofs of convergence are omitted. Interested readers may
refer to {22]. We also suggest the classic book of J-P. Kahane [14], where other problems about random
series of functions are considered. »

4.1 The Kac formula

If the coefficients of random polynomials are independent, standard normal random variables, we saw in the

previous section that from
. 1— (:lty)"+l .
AT ¢ = —r 8
v(z)" Cv(y) T2y (8)

 we can derive the Kac integral formula.

4.2 A random polynomial with a simple answer
Consider random polynomials : ‘ A
a0+ amr+ ...+ azz” =0,

where the a; are independent normals with variances ("‘) Such random polynomials have been studied by
[15] and [23], because of their mathematical properties, and by [3] because of their relationship to quantum
physics.

The binomial theorem simplifies the computation of

o) Coly) = 3 (',f) 2yt = (14 z)"

k=0

il



We see that the density of zeros is given by

n
p(t) = ;(-l—\{{-——t—z)
This is a Cauchy distribution, that is, arctan(t) is uniformly distributed on {~w/2,7/2]. Integrating the
density shows that the expected number of real zeros is \/. As we shall see in the following section, this
simple expected value and density is reflected in the geometry of 7. '
Ezercise: Show that if we have two independent random polynomials, p(t) and ¢(t), each of degree n, and
each distributed as in this example, then the expected number of fized points of the rational mapping

p(D)/a(t) : RU{o0) — RU{co)
is gxactly vn+ 1. (Hint: Consider p(t) — tq(t) = 0.)

4.3 Random trigonometric sums and Fourier series

Consider the trigonometric sum
n

Z ay cos vi.0 + by sin v 0,
k=0

where a; and b, are independent normal randorn variables with means zero and variances O'Z. Notice that

n

. n
v(z)T Co(y) = Z o (sin vz sinvpy + cos vz cos v y) = Z ai cosvi(z — y),
k=0 k=0

and we see that the integrand is a constant. Thus the real zeros of the random trigonometric sum are
uniformly distributed on the real line, and the expected number of zeros on the interval [a, b] is

b—a [Y vie?
¥ Yoai

This formula also holds for a variety of Fourier series. The similarity between this formul‘a and the

Pythagorean theorem is more than superficial, as we will see in the following section. Several authors,
including Christensen, Das, Dunnage, Jamrom, Maruthachalam, Qualls and Sambandham have derived
results about the expected number of zeros of these and other trigonometric sums.

4.4 Spijker’s lemma on the Riemann sphere

Any curve in R" can be interpreted as v(t) for some space of random functions. Let
1 1b(t
INIROET 0
e(t) +id(t)

be any rational function, where a,b, ¢, and d are real polynomials of a real variable t. Let v be the stereo-
graphic projection of r(t) onto the Riemann sphere. It is not difficult to show that v is the projection of the
curve

(fo(®), 1(D), f2(2))

“onto the unit (Riemann) sphere, where fy = 2(ac+bd), f; = 2(bc — ad), fo = a® + b2 — 2 — d2. The geometry
is illustrated in the figure below.

12



of work, we see that

.0
A

Therefore the length of 4 is 7 times the expected number of zeros of the random function

aofo +arfi + axfo,

where the a; are independent standard normals. For example, if a, b, ¢, and d are polynomials of degrees no
more than n, then any such function has degree at most 2n, so the length of ¥ can be no more than 2nw.
By taking a Mdbius transformation, we arrive at Spijker’s lemma: ‘
The image of any circle in the compler plane under a compler rational mapping, with numerator and de-
nominator having degrees no more than n, has length no longer than 2n=w. ’

This example was obtained from Wegert and Trefethen [25].

4.5 Random sums of orthogonal polynomials

Consider the vector space of polynomials of the form Y} _,, ax Px(x) where ay are independent standard nor-
mal random variables, and where { P(x)} is a set of normalized orthogonal polynomials with any nonnegative
weight function on any interval. The Darboux-Christoffel formula [9] 8.902 states that '

3 P@)Puly) = (q‘fn ) Pa(0)Pat1(2) = Pa(2)Puss(s)

E=0 n+l r=y

where ¢, (resp. gn41) is defined to 'be the lead coefficient of P, (resp. Ppy1). With this formula and a bit
o) = L2 /im0 - o,

_ 4 4 (Pan()
Gty = g los 7 ( X0 )

This is equivalent to formula (5.21) in [1]. Interesting asymptotic results have been derived by Das and

where

Bhatt. The easiest example to consider is the random Chebyshev polynomials, for which the the density of

zeros is an elementary function of n and ¢.

4.6 Kac power series

Consider a random powér series .
f(z) =ap+ a1z + asz® +...,

where a; are independent standard normal random variables. This has radius of convergence one with
probability one. Thus we will assume that —1 < « < 1. In this case,

v(z)T Cu(y) = e

13



The logarithmic derivative reveals a density of zeros of the form A
1
P = Ty -

We see that the expected number of zeros on any subinterval [a, §] of (-1,1)is

1, (1-a)(1+)
27 S +a)(1—b)

Th_is result may also be derived from the original Kac formula by letting n — co.

4.7 Kac power series with correlated coefficients

What effect does correlation have on the density of zeros? We will consider a simple generalization of the
previous example. Consider random power series

fl@)=an+ a2+ (12:1:2 + ...,

where a; are standard normal random variables, but assume that the correlation between ar and ax; equals
some constant r for all k. Thus the covariance matrix is tridiagonal with one on the diagonal and r on the
superdiagonal and subdiagonal. In order to assure that this matrix be positive definite, we will assume that
Ir] < % By the Gershgorin Theorem the sﬁectral radius of the covariance matrix is less than or equal to
1+ 27, and therefore the radius of convergence of the random sequence is independent of r. Thus we will,
as in the previous example, assume that —1 < z < 1. We see that

1+ r(z + )

1._1.1/ ’ .

v(z)T Co(y) =

SO

I 1 r
1) = ;\/(1 —12)2 " (1 +2rt)2

Notice that the correlation between coefficients has decreased the density of zeros throughout the interval.

4.8 Random entire functions

Consider a random power series ‘
Cf(z) = a0t arz + a2 + ..,

- where a; are independent central normal random variables with variances 1/k!, i.e., the covariance matrix
is diagonal with the numbers 1/k! down the diagonal. This series has infinite radius of convergence with
probability one. Now clearly

v(2)T Cu(y) = €%,

so p(t) = 1/x. In other words, the real zeros are uniformly distributed on the real line, with a density of 1/7
zeros per unit length.
4.9 Random Dirichlet series

Consider a random Dirichlet series -
a;  asz
f(x =“1+}2;+3_z+-~~-

14



Assume that a; are independent standard normal random variables. This converges with probabxllty one if
z > 1/2. We see that

vo(z)T Co(y) = Z Lﬁy (= + ),

and that the expected number of zeros on any interval [a,b] is
1 f
— M
2,,/0 VIog(CT .

5 The geometry of ~

The second and third examples above are points of departure for lots of interesting mathematics. We explore
these connections in the following subsections.

5.1 A curve with more symmetries than meet the eye

We return to the second example, and explore why the distribution of the real zeros was so simple. Take the
curve v(t) and make the change of variables t = tan# and scale to obtain

¥(8) = (cos™ 8)(v(tan 8)).

Doing so shows that :
1/
o 1 cos™ B
¢ 12 0510 sin @

y@) = | (2)"/*cos"-28sin? 6

—
(o

(%) sin™ 0

ie. 7(0) = (Z)l/2 cos" ¥ @sin* 8, where the dimension index & runs from 0 to n.

We have chosen to denote this curve the super-circle. The binomial expansion of (cos?8 + sin? )" = 1
tells us that our super-circle lives on the unit sphere. Indeed when n = 2, the super-circle is merely a
small-circle on the unit sphere in 3. When n = 1, the super-circle is the unit circle in the plane. '

What is not immediately obvious is that every point on this curve “looks” exactly the same. We will
display an orthogonal matrix Q(¢) that rotates #"+! in such a manner that each and every point on the
super-clrcle v(8) is sent to ¥(# + ¢). To do this, we show that v is a solution to a “nice” ordinary differential
equatlon '

By a simple differentiation of the kth component of y(8), we see that.

l v
;;—07'°(9) = ape-1(0) — arpin41(0), k=0,...,n,

where ap = y/k(n + 1 — k). In matrix—vector notation this means that -

0 —]
(¢33 0 —a3
‘ X (44 0 —3
(9) A'y(e) where A = ) _ ) . 9
an; 0 —ay
oy 0



i.e. A has the a; on the subdiagonal, the —«; on the superdiagonal, and 0 everywhere else mcludmg the
main diagonal.
The solution to the ordinary differential equation (9) is

7(8) = eA*4(0). - | (10)

The matrix Q(¢) = e4? is orthogonal because 4 is anti-symmetric, and indeed Q(#) is the orthogonal matrix
that we promised would send v() to (6 + ¢). We suspect that Equation (10) with the specification that
v(0) = (1,0,...,0)T is the most convenient description of the super-circle. Differentiating (10) any number
of times shows exphcltly that

sy
‘ (10: (0) e 2o O
In particular, the speed is invariant. A quick check shows that it is /n. If we let 8 run from —7/2 to 7/2,
we trace out a curve of length r/n. /
The ideas here may also be expressed in the language of invariant measures for polynomials [15]. This
gives a deeper understanding of the symmetries that we will only sketch here. Rather than representing a

polynomial as
(1) = ap +ayt + axt® + ...+ apt®

, we homogenize the polynomial and consider

(1, t2) = ath + (thltg_l + ...+ a,,_lt'f'l + ant?.
For any angle a, a new “rotated” polynomial may be defined by

Pa(tr,t2) = p(t) cos a + Ly sina, —t; sina + £ cos ).

It is not difficult to show directly that if the a; are independent and normally distributed with variance 3,
then so are the coefficients of the rotated polynomial. The symmetry of the curve and the symmetry of the
polynomial distribution are equivalent. An immediate consequence of the rotational invariance is that the
distribution of the real zeros must be Cauchy.

5.2 Geodesics on flat tori

Consider the third example of the previous section. Fix a finite interval [e,b]. For simplicity assume that

n
E g =

k=0

The curve () is given by
(o0 cos vy, g sinwd, ..., a0, cosvpl, o, sinv,0) .
This curve is a geodesic on the flat (n + 1)-(liménsional torus
(o0 cosby,oqsinby,. .., 0, cos6,,0,sin 0,,) .

Therefore if we lift to the universal covering space of the torus, ¥ becomes a straight line in ®°+!. By the
Pythagorean theorem, the length of v is ’

16



which equals the expected number of zeros on the interval [a, b]

Now replace [a, b] with (—oo, 00). If v;/v; is rational for all 7 and j, then 7 is closed, otherwise it is dense
in some subtorus. ‘
Ezercise: Show that if we choose the v and the o correctly, the second example becomes a special case of

the third example. Thus the super-circle of the second example is a spherical helix.

5.3 The Kac matrix

Historically, Mark Kac was the first mathematician to obtain an exact formula for the expected number of

real zeros of a random polynomial. Ironically, he also has his name attached to a certain matrix that is

important to understanding the second example, yet we have no evidence that he ever made the connection.
The n+ 1 by n + 1 Kac matrix is defined as the tridiagonal matrix -

0 n
1 0 n-1
2 0. Tl-—_2
Sp = .
n—1 (¢ 1
n

The history of this matrix is documented in [24] where several proofs that S, has eigenvalues —n, —n +
2,-n+4,...,n~2,n. One of the proofs is denoted as “mild trickery by Kac.” We will derive the eigenvalues
by employing a different trick. '

Theorem 5.1 The eigenvalues of S, are the integers 2k —n for k=0,1,...,n.

Proof Define ) '
fi(z) = sinh*(z) cosh® *(z), k=0,...,n,

gr(z) = (sinh(z) + cosh(x))*(sinh(z) — cosh(::r))""‘, k=0,...,n

If V is the vector space of functions with basis {fi(x)}, then the gi(z) are clearly in this vector space.
Also, %fk(:l:) = kfi—1(2)+(n—k)frs1(x), so that the Kac matrix is the representation of the operator d/dz
in V. We actually wrote gr(z) in a more complicated way than we needed to so that we could emphasize
that gx(z) € V. Actually, gr(z) = exp((2k — n)x) is an eigenfunction of d/dz with eigenvalue 2k — n for
k=0,...,n. The eigenvector is obtained by expanding out the above expression for gi(z).

The matrix above may be symmetrized in which case it looks exactly like the matrix A in (9) without
any minus signs. Indeed iS, is similar to the matrix in (9) that so nicely explains the symmetry when the

coeflicients have variances that are binomial coeflicients.

6 Extensions to other distributions

This paper began by constdering random polynomials with standard normal coefficients, and then we realized

quickly that any multivariate normal distribution with mean zero (the so-called “central distributions”)

hardly presented any further difficulty. We now generalize to arbitrary distributions, with a particular focus

on the non-central multivariate normal distributions. The basic theme is the same: the density of zeros is

equal to the rate at which the equators of a curve sweeps out volume. Previous investigators include Ali,

Dunnage, Hirata, Ibragimov, Logan, Maslova, Mishra, Pratihari, Samal, Sambandham, Stevens, and Shepp. .
See [1] for a survey of results. There is also the interesting recent work of Odlyzko and Poonen on zeros of
polynomials with coefficients that are quantized [20].
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6.1 Arbitréry distributions

Given fo(t), fi(t), ..., fa(t) we now ask for the expected number of real zeros of the random equation

aofo(t) + a1 /() + ‘+anfa(t) =0,

where we will assume that the a; have an arbitrary joint probability density function o(a). -
Define v(t) € R**! by ’
' fo(?)
w={ : | .
fa(1)

and let
v(t) = v(t)/|(D)I- (11)

Instead of working on the sphere, let us work in ®7*! by defining v(¢)L to be the hyperplane through the
origin perpendicular to (). ' ,

Fix t and choose an orthonormal basis such that ey = v(t) and e; = ¥'(t)/]|Y'(¢)|}. As we change t to
"t + dt, the volume swept out by the hyperplanes will form an infinitesimal wedge. (See figure.)

This wedge is the Cartesian product of a two dimensional wedge in the plane span(eq,e;) with "1, the
entire span of the remainin_g n — 1 basis directions. The volume of the wedge is '

ol | lex - alo(a)da™
V JRr={eq-a=0}

where the domain of integration is the n-dimensional space perpendicular to eg, and ™ denotes n-dimensional
Lebesgue measure in that space. Intuitively [|v/(¢)||dt is rate at which the wedge is being swept out. The
width of the wedge is inﬁnit.esirﬁally proportional to |e; - a|, where « is in this perpendicular hyperspace.
The factor o(a) scales the volume in accordance with our chosen probability measure.

Theorem 6.1 If a has a joint probability densily o(a), then tizc density of the real zeros of apfo(t) + -+
an fo(t) =0 is ' _

0 = O[S e = [ 70 o

where da™ is standard Lesbesque measure in the subspace perpendicular to v(t).

e

g =

ern lty (nlide

o v

&

=~
YDy () fide

Figure 6 “Infinitesimal” wedge area
g A
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6.2 Non-central multivariate normals

We apply the results in the previous subsection to the case of multivariate normal distributions. We begin
by assuming that our distribution has mean m and covariance matrix I. We then show that the restriction
on the covariance matrix is readily removed. Thiis we assume that

(7((1) = (2“)-—(11-4-1)/28- Z(a-m.-)'*/z, and m = (mO’ . ‘,mn)T.

Theorem 6.2 Assume that (ag,...,an)T has the multivariate normal distribution with mean m and covari-
ance matriz I. Let y(t) be defined as in (11). Let mo(t) and my(t) be the components of m in the ¥(t) and
¥'(t) directions, respectively. The density of the real zeros of the equation y_ a; f;(t) = 0 is

) = T Ol Lo im 4 [y et [22E]

For polynomials with identically distributed normal coefﬁnents this formula is equivalent to [1, Section
- 4.3C).
Proof .

Since we are considering the multivariate normal distribution, we may rewrite o(a) in coordinates
© Zg,...,Z, in the directions ey, ..., e, respectively. Thus

0(20,- -, 2n) = (2m)~(HD2e=3 Lle-mi®)

where m;(t) denotes the coordinate of m in the e; direction. The n-dimensional integral formula that appears
in Theorem 6.1 reduces to o
1
2

after integrating out the n — 1 directions orthogonal to the wedge. From this, the formula in the theorem is

l,’l‘ll e ;(”lu(l) ) -:—(z,—m,(t)) d$1

obtained by direct integration. a

We can now generalize these formulas to allow for arbitrary covariance matrices as we did with Theorem
4.1. We phrase this corollary in a manner that. is self~contamed no reference to definitions anywhere else in
the paper is necessary.

Corollary 6.1 Let v(t) = (fo(t), fr(@), -, fa()T and let a = (aq,...,a,) be a multivariate distribution
with mean m = (my,...,m,)T and covariance matriz C. Equivalently consider random functions of the
Jorm 3 a; fi(t) with mean p(t) = mofo(t) + ...+ ma fo(t) and covariance matriz C. The ezpected number
of real zeros of the equation Y a; fi(t) =0 on the interval fa,b] is

_ /b I (ol mi0 { =m0 4 \@W”e‘f EalEE

where
w(t) u(t ) my(t)
w(t) = CY%(t), () = v, ma(t)= and my(t) = .
. ()l [ro(@)II’ ‘ iy I
Proof There is no difference between the equation a - v = 0 and C~2¢ - C'/2y = 0. The latter equation
describes a random equation problem with coefficients from a multivariate normal with mean C~*/2m and

covariance matrix I. Since p(t)/[lw(t)]] = ¥(2) - C=2m and m{@)/|V' @) = Y'(t) - C~2m/|lY (D), the,
result follows immediately from Theorem 6.2.

O
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6.3 Examples

We explore two cases in which non-central normal distributions have particularly simple zero densities:
e Case I: mg(t) = m and m,(t) = 0

o Case I:img(t) = m ()

Case I: mo(t) = m and my1(2) =0
If we can arrange for my = m to be a constant then m;(f) = 0 and the density is.
1 ] —im?
o(t) = Sl @l

In this very special case, the density function for the mean m case is just a constant factor (e~ %'"2) times
the mean zero case. .

This can be arranged if and only if the function ||w(t)]] is in the linear space spanned by the f;. The next -
few examples show when this is possible. In parentheses, we indicate the subsection of this paper where the
reader may find the zero mean case for comparison.
Example 1 (4.2) A random polynomial with a simple answer, even degree: Let f; (t)=t,i=0,...,nand
C = diag[(})]. so that [lw(t)|] = (1 + t?)"/2. The constant weight case occurs when our space has mean
put) = (1+22)"2 ' ‘

As a simple application when n = 2, if ay,a;, and a, are independent standard Gaussians, then the
random polynomial ’ '

(a0 + m) + a1 V2t + (ay + m)i?,

is expected to have '

V2e~™’

real zeros. The density is

1 \/‘Z —m7)2
—_—c .
7 (14+12)

Note that as m — oo, we are looking at perturbations to the equation t* 4+ 1 = 0 with no real zeros, so we

p(t) =

expect the number of real zeros to converge towards 0.

Example 2 (4.3) Trigonometric sums : u(t) = mm.
Example 3 (4.6) Kac power series : pu(t) = m(1 — t2)~1/2,
Example 4 (4.8) Entire functions : p(t) = met' /2,
Example 5 (4.9) Dirichlet Series:

ut) =m/C) = 3 7,
k=1

2n;~1)"
2n)!

if k has the prime factorization 1, p2™

where m; = 0 if k is not a square, and m; = m[];

Case IL:mg(t) = my(t)



We may pick a u(t) for which mg(t) = my(t) by solving the first order ordihary differential equation
mo(t) = my(t)/[|7 (t)ll. The solution is

) = il exo [ [ 1 eide]

There is really only one integration constant since the result of shifting by K can be absorbed into the m
‘factor. If the resulting u(t) is in the linear space spanned by the f;, then we choose this as our mean.

Though there is no reason to expect this, it turns out that if we make this choice of u(t), then the density
may be integrated in closed form. The expected number of zeros on the interval [a,b] is

b 1 1 b
/ p(t)dt = gerf(mo(t)/V2) ~ 5-T10,m3(1))| -

Example 6 (4.6) Kac power series : Consider a power series with independent, identically distributed
normal coefficients with mean m. In this case pu(t) = {Z;, where m = (mean/standard deviation), so

mo(t) = my/ L. A quick check shows that my(t) = ma(t).

Example 7 (4.8) Entire functions : In this case pu(t) = nu\e”'z/?, so mg(t) = me'.
Example 8 (4.9) Dirichlet Series: This we leave as an exercise. Choose K > 1/2.

One final examble

Theorem 6.3 Consider a random polynomial of degree n with coefficients that are independent and identi-
cally distributed normal random variables. Define m # 0 lo be the mean divided by the standard deviation.
Then as n — oo, ) : '
| En = Tlog(n)+ 5+ 5 = L= Zlogim| +0(1/n)
where C) s defined in Section 3.3, and where ¥ = 0.5772156649... is Euler’s constant. Furthermore, the
expected number of positive zeros is asymptotic to .
I lerf"’(m/\/‘Z) + lI‘[O, m?].
2 2 4
sketch of proof _
We break up the domain of integration into four subdomains: (—o0, —1], [-1,0], [0, 1] and [1, 0). Observe
that the expected number of zeros on the first and second intervals are the same, as are the expected number
.of zeros on the third and fouith intervals. Thus we will focus on the first and third interval, doubling our
final answer. '
The asymptotics of the density of zeros is easy to analyze on [0,1], because it converges quickly to that
of the power series (Example 6, above). Doubling this gives us the expected number of positive zeros.
On the interval (—oco, —1}, one can parallel the proof in Section 3.3. We make the change of variables
—t = 14-z/n. The weight due to the nonzero mean can be shown to be 1+0(1/n). Therefore, the asymptotic
series for the density of the zeros is the same up to O(1/n). We subtract the asymptotic series for the density
of the zeros of the non-central Kac power series, and then integrate term by term.

|

The 1log(n) term was first derived by Sambandham.
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7 Systems of equations

" The results that we have derived about random equations in one variable may be generalized to systems of
m equations in m unknowns. What used to be a curve v(t) : ®# — R¥ is now an m-dimensional surface
u(t) : R™ — RN defined in the same way. The random coefficients now form an m x N matrix. We assume
that the rows of this matrix are independent and identically distributed multivariate normals with mean
zero and covariance matrix C.

Theorem 7.1 Let fo(t), .o [n(t) be any collection of real valued rectifiable functions defined on R™,
let U be a measurable subset of R™, and let the vectors (ago,...,aen), k= 1,...,m be independent and
identically distributed. Assume each vector is a mullivariate normal random vector with mean zero and
covariance mairiz C. The expected number of real zeros of the system of equations

(lk()f()(t) +ak1f1(t)+.. .+(lkaN(t) = 0, k= 1,. oM,

that lie in the set U, is

’ . . 1/2
_m4 m + 1 (‘)2 T
a~ 2 T ( 3 ) /U (det-[(')a:;(?y]- (log v(z)T Cu(y)) Iym:___t] ,-j) dt,

where v(t) = (folt), . . ., fn(2))-

Proof If we project the set {v(t)| t € U} onto the unit sphere, the volume of the resulting set, divided by
the volume of projective space of dimension m, equals the expected number of zeros in the region U. The
Fubini-Study metric thus gives us the desired formula. See [15, 16] for details. a

The reader might prefer to phrase questions about random systems in terms of measures on Grassman
manifolds. We remark that the factor before the integral is the reciprocal of the volume of the projective
space of dimension m.

We now apply this formula to extend our previous examples.

7.1 The Kac formula

Consider systems of polynomial equations with independent standard normal coefficients. The most straight-
forward generalization occurs if the components of v are all the monomials {[ ]y, zi* }, where for all &, i < d.
In other words, the Newton polyhedron is a hypercube.

Clearly,

o) ola) = T 3w
. i=1 k=0
from which we see that the matrix in the formula above is diagonal, and the densxty of the zeros on ™
breaks up as a product of densities on K. Tlms if E'('") represents the expected number of zeros for the
system,

_mt1 m-+1 1
E(m) =7""=2 T ( 2 ) (WEE; hym,
The asymptotics of the univariate Kac formula shows that as d — oo,

E(™ ~ p==tr ("’; 1) (2logd)™

The same asymptotic formula holds for a wide range of newton polyhedra, including the usual definition of
degree: Y"1, i < d [16]. \
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7.2 A random polynomial with a simple answer

Consider a system of m random polynomials each of the form

‘ m i
E: Ay iy M= T s

i1yerim

where Y 7., it < d, and where the a;,. ., are independent normals with mean zero and variances equal to

™m

multinomial coefficients: .
dl

d ! .
(ii,-'-,im) BRCEDEENT ) R
The multinomial theorem simplifies the computation of

W@ Cuy) = 3 ( ’ )Hr"’*y‘*=(1+z-y)“‘
. : k=1

' R |
LS FRERIL X7 1y vom

We see that the density of zeros is

m+ l) dm/?

/)(t) =x""2T ( 9 (1 +1 ,‘t)(m+l)/2 .

In other words, the zeros are uniformly distributed on real projective space, and the expected number of
zeros is d™/2. ’ _

Mike Shub and Steve Smale [23] have generalized tliis result as follows. Consideér m independent equations
of degrees dy, ..., dn,, each defined as in this example. Then the expected number of real zeros of the system

VI de.

The result has also been generalized to underdetermined systems of equations {15, 17]. That is to say, we

IS

may consider the expected volume of a random real projective variety. The degrees of the equations need not
be the same. The key result is as follows. The ezpected volume of a real projective variely is the square root
of the product of the degrees of the equations defining the variety, divided by the volume of the real projective
space of the same dimension as the variely. For a detailed discussion of random real projective varieties, see

[17).

7.3 Random trigonometric sums

‘The generalization of these sums leads to sums of random harmonic polynomials, or random hyperspherical

harmonics. The random harmonic polynomials form irreducible representations of the orthogonal groups, and

therefore there is an essentially unique invariant normal measure. If we are given a system of m independent.

random harmonic polynomials in m 4 1 homogeneous variables, and the degrees of the polynomials are dj,
-+ dm, then the expected number of real zeros for the system is

ﬁ di(dg +m=1) -
k=1 m
By considering the eigenspaces of the Laplacian, we can classify all invariant normal measures on systems
of polynomials. Using the formula above, we can calculate the expected number of real zeros for any such

measure.- See [16] for details.
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7.4 Kac power series

For a power series in m variables with independent standard normal coefficients, we see as in the first
examnple, that the density of zeros on R™ breaks 1up as the product of m densities: '

mi1 m+1\ 1
ty=7a""2 -

Notice that the power series converges with probability one on the unit hypercube, and that at the boundaries

of this domain the density of zeros becomes infinite.

7.5 Random entire functions

Consider a random power series

C f(z) = Z Uiy i T:l""i;k’

l.h--win

. . . m . -1
where the a;,.;, are independent normals with mean zero and variance ([];., #!) . Clearly

w(x)T Co(y) = ¥,

so the zeros are uniformly distributed on ®™ with densit
Yy

T I (m;— 1)

zeros per unit volume.

8 The Buffon needle problem revisited

In 1777, Buffon showed that if you drop a needle of le11gt.ll L on a plane containing parallel lines spaced a
distance D from each other, then the expected number of intersections of the needle with the lines is

2L

nD’

Buffon assumed L = D', but the restriction is not necessary. In fact the needle may be bent into any

reasonable plane curve and the formula still holds. This is perhaps the most celebrated theorem in integral
geometry and is considered by many to be the first [21}.

Let us translate the Buffon needle problem to the sphere as was first done by Barbier in 1860 — see [25]
for a history. Consider a sphere with a fixed great circle. Draw a “needle” (a small piece of a great circle) on
the sphere at random and consider the expected number of intersections of the needle with the great circle.
If we instead fix the needle, and vary the great circle, it is clear that that the answer would be the same. .

Any curve on the sphere can be approximated by a series of small needles. The expected number of
intersections of the curve with a great circle is the sum of the expected number of intersection of each needle
with a great circle. Thus the expected number of intersections of a fixed curve with a random great circle is
given by ’

(some constant)L,

where L is the length of the curve. To find the constant consider the case where the fixed curve is itself a
great circle. Then the average number of intersections is clearly 2 and L is clearly 27. Thus the formula for
the expected number of intersections of the curve with a random great circle must be

L

m
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Of course the theorem generalizes to curves on a sphere of any dimension.

To relate Barbier’s result to random polynomials, we consider the curve 4 on the unit sphere in ®*+1.
By Barbier, the length of v.is 7 times the expected number of intersections of ¥ with a random great
circle. What are these intersections? Consider a polynomial p(z) = Y 7 @nz”, and let p, be the great circle
perpendicular to the vector p = (ay,...,a,). Clearly y(t) € p, for the values of ¢ where 7(t) L p. As we
saw in.Section 2, these are the values of ¢ for which p(t) = 0. Thus the number of intersections of ¥ with p,
is exactly the number of real zeros of p, and the expected number of intersections is therefore the expected
number of real zeros.
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