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How many zeros of a random polynomial are real? 

Alan Edelman* 
Eric Kostlan t 

November 17, 1993 

Abstract 

We give an elementary derivation of the Kac integral formula for the expected number of real zeros 
of a random polynomial with independent standard normally distributed coefficients. We show that the 
expected number of real ze.ros is the length of the moment curve (1, t, ... , t") projected onto the surface 
of the unit spltere, divided hy 1r. The probability density of a real zero is proportional to how fast this 
curve is traced out. We generalize the I<ac formula to polynomials with coefficients that have an arbitrary 
multivariate normal distribution. We show, for example, that for a particularly nice definition of random 
polynomial, the expected number of real zeros is exactly the square root of the degree. 

If the random polynomials have an arbitrary density function, the expected number of zeros is a 
weighted length of the moment curve. We also calculate the the distribution of the real zeros of random 
power series and Fourier series, random sums of orthogonal polynomials, and random Dirichlet series. 
Extensions to systems of equations are also discussed. 
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1 Introduction 

What is the expected number of real zeros En of a "random" polynomial of degree n? If the coefficients are 

independent standard normals, we show that. as n __. oo, 

2 . 
En = -log(n) + 0.6257358072 ... + 
0 11' 

2 
n11' 

The ~log n term was derived by Kac in 1943 (12], who produced an integral formula for the expected number 

of real zeros. Papers on zeros of random polynomials include (2], (8], (11], (18] and [19]. There is also the 

comprehensive book of Bharucha-Reid and Sambandham (1]. 

We will derive the Kac (sometimes known as the Kac-Rice) formula for the expected number of real 

zeros with an elementary geometric argument that is related to the Buffon needle problem. We present the 

.argument in a manner such that precalculus level mathematics is sufficient for understanding (and enjoying) 

the introductory arguments, while elementary calculus and linear algebra are sufficient prerequisites for much 

of the paper. 

These results can be generalized to arbitrary normal distributions. Several authors (3] (15] (23) have 

studied random polynomials with independent normally distributed coefficients, each with mean zero, but 

with the variance of the i 111 coefficient of a polynomial of degree n being e(lual to (7). This is, i~ some sense, 

the most natural definition of random polynomial. For this particular random polynomial, the expected 

number of real zeros is exactly the square root. of the degree. 

We also compute the density of the real zeros of other collections of random funct.ions. Specifically, we 

consider power series, Fourier series, sums of orthogonal polynomiais, and Dirichlet series. 

Fortunately, the methods discussed in this paper work equally well for random functions m several 

variables, so we are able to generalize many of ou.r results to systems. 

2. Elementary geometry and random polynomials 

Section 2.1 is restrict.ed to elementary geometry. Polynomials are riever mentioned. The relationship is 

revealed in Section 2.2. 

2.1 How fast do equators sweep out area? 

We will denote (the surface of) the unit sphere centered at the origin in ~n+l by S". ·Our figures correspond 

to the case n = 2. Higher dimensions provide no further complications. 

Definition 2.1 If P E S" is any point, the associated equator Pl. is t!te set of points of S" on perpen­

dicular to the line fmm the or·igin to P. 

This generalizes ~ur familiar notion of the Earth's equator, which is equal to (north poleh and also 

equal to (south poleh. See Figure 1 below. Notice that. Pl. is always a unit sphere ("great hypercircle") of 

dimension n - 1. 
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Figure 1 Points P and associated equators Pl.. 

Let 1(t) be a (rect.ifiable) cu~ve on the sphere sn. 
Definition 2.2 Let 'Yl., the equators of a curve, be the set {P1.IP E 1}. 

Assume that. 1 has a finite length 11'1· Let 11'LI to be the area "swept out" by ll. -we will provide a 

precise definition shortly. We wish to relate Ill to 11' l.l· 
If the curve 1' is a small section of a great circle, then U1 l. is a June, the area bounded by two equators 

as illustrated in Figure 2. If 1 is an arc of length 8, then our hme covers 8j1r of the area of the sphere. The 

simplest case is (} = 1r. We thus obtain the formula valid for arcs of great circles, that 

II l.l Ill =- (1) 
area of sn 7r 

. Figure 2 The June U-yl. when 1' is a great. circular arc 

If 1' is not a section of a great circle we may approximate it by a union of small great circular arcs, and 

the argument is seen to still apply. 

The alert reader may notice something wrong. What if we continue our 1' so that it is more than just 

half of a great-circle or what if our curve 1' spirals· many times around a point? Clearly 1' may have quite 

a large length, but l11.l remains small. The correct. definition for l;l.l is the area swept. out by 1(t)l., as t 
varies, cotmting multiplicities. We now give the precise definitions. 

Definition 2.3 The multiplicity of a ]Joint Q E U11. is the numbe1· of equators in ll. that contain Q, a.e. 

the cardinality of {t E ~IQ E -y(t)l.}. 

Definition 2.4 We define l11.l to be volume ofU;l. counting multiplicity. More precisely, we define !1'1.1 to 

be the integral of the multiplicity over U11.. 

The sphere is then divided into regions of points that. have the same multiplicity, as is schematically illustrated 

in Figure 3. 
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Figure 3 Schematic regions on a sphere with multiplicities 3, 4, and 5. Q.has multiplicity 3. 

Lemma 2.1 If 1 is a rectifiable C1l1'1Jt:, then 

111.1 = ITl 
an:a of sn 7r 

As an example, consider a point. P on the surface of the Earth. If we assume that. the point P is receiving 

the direct ray of the sun - for our purposes, we consider the sun to be fixed in space relative to the Earth 

during the course of a day, with rays arriving in parallel·- then PJ.. is the great. circle that. divides day from 

night. This great. circle is known t.o astronomers as the tenn,iuator. During the Earth's daily rotation, the 

point P runs through all the points on a. circle 1 of fixed latitude. Similarly, the Earth's rotation generates 

the collection of terminators .1 J... 

The multiplicity in 1 J.. is two on a region between two latitudes. This is a fancy mathematical way of 

saying that unless you are too close to the poles, you witness both a sunrise and a sunset every day! The 
summer solstice is a convenient example. Pis on the tropic of Cancer and Equation (1) becomes 

2 x (The surface area of the Earth between the Arctic/ Antarct.ic Circles) 
The area of the Earth 

or equivalent.ly 

The length of the Tropic of Cancer 
1r x (The radius of the Earth) 

(The surface area of the Earth between the Arct.ir.f Ant.arct.ic Circles) The length of the Tropic of Cancer 
~----------------~--------~--~~--~------------~= The area of the Earth The length of the Equator 

Equations appropriate for other days of the year may be derived by the reader. 
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Figure 4 On the summer solstice, the direct. ray of the sun reaches P on the Tropic of Cancer 1. 

2.2 The expected number of real zeros of a random polynomial 

What. does the geometric argument in the previous section and Formula (1) in particular have to do with 

the number of real zeros of a random polynomial? Let 

be a non-zero polynomial. Define the two vectors 

au 1 
fll 

a= fl2 and v(t) = t2 

lln tn 

The curve in ~n+l traced out. by v(t) as t runs over the real line is the moment curve. 

The condition that ·t is a zero of the I)olynomiala0 + a1x + · · · + anxn is precisely the condition that a 

is perpendicular to v(t). Another way of saying this is that v(t)l. is the set of polynomials which have t as 

a zero. 

Define unit vectors 

a= a/llall, 1(t) = v(t)/llv(t)ll. 

As befoi:e, 'Y(t).L corresponds to the polynomials which have t as a zero. 

Let 1 = {T(t) : t E ~}. When n = 2, 'the curve 1 is the interseCtion of the elliptical (squashed) cone and 

the unit sphere. In particular, the curve is not planar- See Figure 5. If we include the point at infinity, 

1 becomes a simple closed curve when n is even. (In projective space, the curve is closed for all n.) The 

number of times that a point a on our sphere is covered by an equator in r .L, i.e. the mult.iplicity of a in 11. 

is exactly the number of real zeros of the corresponding polynomial. 

So far, we have not discussed mndom polynomials. It. is wel.l known that. if the a; are independent 

standard normals, then the vector a is uniformly distribut.ed on the sphere sn since t.he joint density function 

in spherical coordinates is a function of the radius alone. 
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What is En = the expected number of real zeros of a random polynomial? A random polynomial is 
identified with a uniformly distributed random point on the sphere, so En is the area of the sphere with our 
convention of counting multiplicities. 

Equation (1) (read backwards!) states that 

1 
En= -h'I-

7T 

Our question about the expected number of real zeros of a random polynomial is reduced to finding the 

length of the curve 'Y· We compute this length in Section 3.1. 

Figure 5 When n = 2, r is the intersection of t.he sphere and cone. The intersection is a curve that 

includes the north pole and a point. on the equator. 

Similar geometric considerations have also lead to the calculation of the distribution of the real eigenvalues 

and real generalized eigenvalues of random matrices [7, 4, 5, 6]. 

3 Calculations 

We now obtain concrete results. The reader will also find more little surprises in the sections to follow. 

3.1 Calculating the length of 1 

We invoke calculus to obtain the integral formula for the length of r, and hence the expected number of 

zeros of a random polynomial, En. The result. wa.r; first obtained by I<ac in 1943. 

Theorem 3.1 Tlte expected number· of r·eal u:ms of a dt:gr·ce n polynomial wit!t independent standard normal 

coefficients is 

1100 

En=-
1T -oo 

4 rl 
=; Jo 

1 (n + 1)2t2n 
(1- t2):! - (1- t2n+2)2 dt. (2) 
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Proof The standard arclength formula is 

h'l = 1: lli'(t)ildt. 

T() calculate the integrand, we first consider any differentiable v(t) : ~-+ ~n+l. It is not hard to show that 

i'(t) = ( v(t) )' _ [v(t) · v(t)]v'(t)- [v(t) · v1(t)]v(t) 
· yfv(t) · v(t) [v(t) · v(t)] 3 /2 

and therefore, 

1 2 ( v(t) ) 
1 

( v(t) ) 
1 

[v(t) · v(t)][v1(t) · v'(t)]- [v(t) · v'(t)F 
Ill (t)ll = y'v(t) . v(t) . y'v(t). v(t) · = [v(t) · v(t)F 

We may proceed in two different ways. 

Method I (Direct approach): 

If v(t) is the moment curve then we may calculate lli1(t)ll with the help of the following observations and 

some messy algebra: 
1 _ t2n+2 

v(t) · v(t) = 1 + t 2 + t4 + ... + t 2
" = 2 ; 

1- t 

r. • 1d(1-t2"+2 ) t(1-t2 "-nt2"+nt2 "+2
) 

V
1(t) · v(t) = t + 2t3 + 3t" + ... + nt2

n-! = -- = · 
2 rlt 1- t 2 (t2- 1)2 

J 

· . 1 d d (1-t2"+2 ) t2"+2-t2 -l+t2 "(nt2-n-1)
2 

V
1(t) · v'(t) = 1 + 4t 2 + 9t4 + ... + n2(l"-

2 = --t- = · ; 
. . 4t rlt rlt 1 - t 2 (t2- 1)3 

we arrive at the following formula, first arrived at. by Kac. 

11"" y'(t 2n+2- 1)2- (n + 1)2t2"(t2
- 1)2 1100 

~=- . ~=-
7r -oo (t2- 1)(t2n+2- 1) . 7r -oo 

1 (n + 1)2t 2" . - dt (t2 _ 1)2 (t2n+2 _ 1)2 · 

Method II (Sneaky version): 

By introducing a logarithmic derivative, we can avoid the messy algebra in Method I. Let v(t) : ~-+ ~n+l 
be any differentiable curve. Then it. easy to check that 

{]2 I oxoy log[v(x). v(y)] y=x=t = 111'1(t)ll2· (3) 

Thus we have an alternative expression for ll71 (t)IF~. 

Remember that we obtained 7(t) from v(t) by projecting. The length of v(t) is unimportant, any scaling 

is equally valid. The logarithmic derivative is tailored to be invariant under scaling by any A(t): 

~ ~ ~ 
-
0 

{) log[A(x)v(x) · A(y)v(y)] = ~ {log[v(J:) · v(y)] + log(A(x)) + log(A(y))} = ~ log[v(x) · v(y)]. 
X Y, cn:vy vxvy 

The simplicity with which lengths of curves can be measured is one way to motivate the scale independent 

Fubini-Study metric [10]. 

When v(t) is the moment curve, 

the Kac formula is then 

) 
2 2 n n 1-(xy)n+l 

v(x · v(y) = 1 + :t:y + x y + ... + x y = ----'---"-'---
1- xy 

En= .!.j"" 
7r -oo 

()2 1 - (xy)n+l I 
--log rlt. 
01.:8y 1 - xy y=x=t 

This version of the Kac formula first. appeared in [15]. 
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3.2 The density of zeros 

We focused, up until now, on the length of -y = {-y(t) I - oo < t < oo}, and concluded that it equals the 

expected number of zeros on the real line. What we really did, however, was observe that the density of 

zeros is the speed of the curve divided by 1r. Thus 

1 1 
Pn(t):;;, (t2- 1)2 

(n + 1)2t2n 
(t2n+2 _ 1)2 

is the expected number of real zeros per unit length at the point t E ~. This is a true density: integrating 

Pn(t) over any interval (or measurable set) produces the expected number of real zeros on that (or set). The 

probability density for a random real zero is Pn(t)/ En. It is straightforward [12, 13] to see that as n--+ oo, 

the real zeros are concentrated near the point. t = ±1. 
The asymptotic behavior of both the density and expected number of real zeros is displayed in the 

subsection below. 

3.3 The asymptotics ofthe Kac formula 

This section contains a long calculation that is unrelated to the rest of the paper. A short argument could 

have shown that En ......, ~log n [12], but since several researchers, including Christensen, Sambandham, 

Stevens and Wilkins have sharpened Kac's original estimate, we show here how successive terms of the 

asymptotic series. may be derived, although we will only derive a few terms of the series explicitly. The 

constant C1 and the next term ..1.. were unknown to previous researchers. See [1, pp. 90-91] for a summary 
n~ , 

of previous estimates ofthe constaut. 

Theorem 3.2 As n -+ oo, 

En = .3_log(n) + G\ + _!_ + 0(1/n2
) , 

1f n1f 

where 

1 4e-2i: 

;,:2 - (1 _ c-2xF 
__ 1 } dx) 

x+1 
0.6257358072 .... 

Proof 

We now study the asymptotic behavior of the density of zeros. To do this, we make the change of variables 

t = 1 + x/n, so 

where 

Pn(x) = -1 
n1f 

En = 4100 

Pn(:~:) dx , 
(I 

(n + 1)2(1 + x/n)2n 
[(1 +x/n)2n+2 - 1)2 

is the (transformed) density of zeros. Using 

and Mathemat.ic.a, we see that for any fixed x, as n --+ oo, the densit.y of zeros is given by 

(4) 



where 
. 1 [ 1. 4e-2x ] 1/2 

Poo(:r.) := 271" 3:2 - (1- e-2:rF . 

This asymptotic series cannot be integrate term by term. We solve this problem by considering the asymptotic 

series for the Kac power series (Section 4.6): 

x[x > 1) 
2;rx 

where we have introduced the factor 

1 = x[x > 1) - _1_ + 0 1/n2) ' 
2;r(2n .+ x) 2;rx 4mr ( 

- { 1 if x[x > 1) = 0 if 
x>l. 
x~1 

to avoid to pole at x = 0. Subtracting (5) from (4), we obtain 

(5) 

Pn(x) _ {x[x > 1) _ 1 } = {ii=(:~:) _ x[x > 1]} + { [x(2- x) Poo(x)]' +-1-} + 0(1/n2). 
2;rx 2;r(2n + x) 2;rx 2n 411'n 

We then integrate term by term from 0 to oo to get 

1
00 

• 1 1oo {. x[x > 1]} Pn(x) dx - -
2 

log(2n) = Poo(x)-
2 0 7r 0 11'X 

1 
dx + -

2 
- + 0(1/n2

) . 
n;r. 

The theorem immediately follows from this formula and one final trick: we replace x[x > 1]/x with 1/(x + 1) 
in the definition of C1 so we can express it. as a single integral of an dementar·y function. 

0 

4 Generalizations and examples 

Reviewing the discussion in Section 2, we see that. we could omit some members of our basis set { 1, x, x 2, ••• , xn} 

and ask how many zeros are expected to be real of an nth degree polynomial with, say, its cubic term deleted. 

The proof would hardly change. Or we can change the function space entirely and ask how many zeros of 

the random func.tion 

au + a 1 sin( x) + a2el:rl 

are expected to be real - the answer is 0.63662. The only assumption is that. the coefficients are standard 

normals. If /o, ft, ... , fn is any collection of rectifiable functions, we may define the analogue of the moment 

curve 

v(t) = 
( 

/u(t) ) It (t) 

fn(t) 

(6) 

The function ~II"Y'(t)ll is the density of a real zel'O; its integral over~ is the expected number of real zeros. 

We may relax the assumption that the coefficient vector c~ = {a0 , ••. , anf contains independent standard 

normals, by allowing for any multivariate distribution with zero mean. If the ai are normally distributed, 

E(a) = 0 and E(cmT) = C, then c.t is a (central) mult.ivariate normal distribution with covariance matrix C. 
It is easy to see that a has this distribution if and only if c- 112a is a vector of standard normals. Since 

10 
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the density of real zeros with coefficients from an arbitrary central multivariate normal distribution is 

~llw'(t)ll, where w(t) = C 112v(t), and w(t) = w(t)/lltv(t)ll. 

The expected number of real zeros is the integral of ~llw'(t)II­

We now state our general result. 

{7) 

Theorem 4.1 Let fo(t), ... , fn(t) be any collection of differ·entiable functions and ao, ... , an be the 
elements of a multivariate normal distr·ibution with mean zero and covariance matrix C. The expected 
number of real zeros on an interval {or measurable set) I of the equation 

as 

aofo(t) + ClJfi(t) + ... + anfn(t) = 0 

f .!_llw'(t)lldt; 
jl 7r 

wltcr·e w is definc:d by Equations {6} and {7). In logar·ithmic dcr·ivativc notation this is 

1 1. ( fP ) 1/2 - ~ (logv(x)TCv(y))j _ _ dt, 
11" I oxuy Y-X-1 

where v is defined by Equation {6). 

Geometrically, changing the covariance is the same as changing the inner product on the space of functions. 

We now enumerate several examples of Theorem 4.1. We consider examples for which v(x)TCv(y) is 

a nice enough funct.ion of x and y that the density of zeros can be easily described. For a survey of the 

lit.erature related to the first., third, and fift.h examples, see [1], which also includes the results of numerical 

experiments. In our discussion of random series, proofs of convergence are omitted. Interested readers may 

refer to [22). We also suggest the classic book of .l-P. I<ahane [14], where other problems about random 

series of functions are considered. 

4.1 The Kac formula 

If the coefficients of random polynomials are independent., standard normal random variables, we saw in the 

previous section that. from 

(8) 

we can derive the Kac integral formula. 

4.2 A random polynomial with a simple answer 

Consider random polynomials 

where the a, are independent normals with variances (7). Such random polynomials have been studied by 

[15) and [23], because of their mathematical properties, and by [3] because of their relationship to quantum 

physics. 

The binomial theorem simplifies the computation of 

v(xfCv(y) = t (~):~:kl = (1 +xyt. 
k=O 

11 
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We see that the density of zeros is given by 

..;n. 
p(t) = ( 2)" 

7r 1 + t 

This is a Cauchy distribution, that. is, arct.an(t) is uniformly distributed on [-1r /2, 1r /2]. Integrating the 

density shows that the expected number of real zeros is .fii.. As we shall see in the following section, this 

simple expected value and density is reflected in the geometry of r. 
Exercise: Show that if we have two independent random polynomials, p(t) and q(t), each of degree n, and 

each distributed as in this example, then the expected number of fixed points of the rational mapping 

p(t)jq(t): !RU{oo}--+ ~U{oo} 

is exactly .,fii"TI. (Hint: Consider p(t)- tq(t) = 0.) 

4.3 Random trigonometric sums arid Fourier series 

Consider the trigonometric sum 
n 

L llk cos vk8 + bk sin vkB, 
k:O 

where llk and bk, are independent normal random variables with means zero and variances of Notice that 

n n 

v(xf Cv(y) = L IT~(sin vkxsin Vk]J + cosvkXWSVkY) =LIT~ cosvk(x- y), 
, k:O k:CI 

and we see that. the integrand is a constant.. Thus t.he real zeros of t.he random trigonometric sum are 

uniformly distributed on the real line, and t.he expected number of zeros on the interval [a, b] is 

b-u 
.71" 

This formula also holds for a variety of Fourier series. The similarity between this forrnuia and the 

Pythagorean theorem is more than superficial, as we will see in the following section. Several authors, 

including Christensen, Das, Dunnage, Jarnrom, Maruthachalarn, Qualls and Sambandham have derived 

results about the expected number of zeros of these and ot.her"trigonomet.ric sums. 

4.4 Spijker's lemma on the Riemann sphere 

Any curve in !Rn can be interpreted as v(t) for some space of random functions. Let 

r(t) = ~u(+t)_+_ib77(t_,_) 
c(t) + id(t) 

be any rational function, where a, b, c, and d are real polynomials of a real variable t. Let r be the stereo­

graphic projection of r(t) onto the Riemann sphere. It. is not difficult to show that r is the projection of the 

curve 

(/u(t), h(t), h(t)) 

onto the unit (Riemann) sphere, where / 11 = 2(ac+ bd),/1 = 2(bc- ml),/2 = a2 + b2 - c2 - d2 • The geometry 

is illustrated in the figure below. 

12 
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Therefore the length of 1 is 1r times the expected number of zeros of the random function 

where the a; are independent. standard normals. For example, if a, b, c, and d are polynomials of degrees no 

more than n, then any such fnnc.t.ion ha.c; degree at. most. 2n, so the length of 1 c.an be no more than 2n1T. 

By taking a Mobius transformation, we arrive at. Spijker's lemma: 

The image of any cir·cle in the complt:x plant: undt:r a comphx r-ational mapping, with numer·ator and de­

nominator having degr·ees rw mort; than n, has /t;ngth no longt;r than 2n7r. 

This example was obtained from Wegert and Trefethen [25]. 

4. 5 Random sums of orthogonal polynomials 

Consider the vector space of polynomials of the form I:~=U llk Pk ( x) where lLk are independent standard nor­
mal random variables, and where { Pk(;:)} is a set of normalized orthogonal polynomials with any nonnegative 

weight function on any interval. The Darbonx-Christoffel formula [9] 8.902 states that. 

t P~;(x)Pk(Y) = (...2!!.__) P,.(y)Pn+t(x)- P,.(x)Pn+t(Y)' 
k:U qn+l X- Y 

where q,. (r·esp. qn+t) is defined t.o'be the lead coefficient. of P,. (r-esp. Pn+J). With this formula and a bit 

of work, we see that 

where 

p(t) = '{; )2G'(t)- G2(t), 

G(t)= :.!_lor:.!_ (Pn+t(i}). 
dt g clt P,.(t) 

This is ectuivalent to formula (5.21) in [1]. Interesting a.c;ymptot.ic results have been derived by Das and 

Bhatt. The easiest example t.o consider is t.he random Chebyshev polynomials, for which the the density of 

zeros is an elementary func.t.ion of n and t. 

4.6 Kac power series 

Consider a random power series 

f(x) =au+ a1x + ft2x2 + ... , 
where a~c are independent. stan~lard normal random variables. This has radius of cqnvergence one with 

probability one. Thus we will assume that. -1 < :~: < 1. In this case, 

v(:~:)TCv(y) = -
1
-. 

1- xy 



The logarithmic derivative reveals a density of zeros of the form 

. 1 

p(t) = 7r(1 - t2) 

We see that the expected number of zeros on any subinterval [a, b] of ( -1, 1) is 

_!_
10

,(1-a)(1+b) 
271" g(1+a)(1-b)" 

This result may also be derived from the original Kac formula by letting n --+ oo. 

4. 7 Kac power series with correlated coefficients 

What effect does correlation have on the density of zeros? We will consider a simple generalization of the 

previous example. Consider random power series 

where ak are standard normal random variables, but assume that the correlation between flk and (lk+l equals 

some constant r for all k. Thus the covariance matrix is tridiagonal with one on the diagonal and r on the 

superdiagonal and subdiagonal. In order to a:;;snre that this matrix be positive definite, we will assume that 

lrl S ~- By the Gershgorin Theorem the Sflectral radius of the covariance matrix is less than or equal to 

1 + 2r, and therefore the radius of convergence of the I'andom sequence is independent of r. Thus we will, 

as in the previous example, assume that. ~1 < x < 1. We see that. 

so 

( )Tc ( ) 1 + 1·(x + y) v :1: ..-v y = , , 
· 1- xy 

1 
p(t) = -

7r 

Notice that the correlation between coefficients has dew~ased the density of zeros throughout. the interval. 

4.8 Random entire functions 

Consider a random power series 

. where ak are independent. central normal random variables with variances 1/k!, i.e., the covariance matrix 

is diagonal with the numbers 1/ A:! down the diagonal. This series has infinite radius of convergence with 

probability one. Now clearly 

v(.:z:f Cv(y) = e"Y, 

so p(t) = 1/71". In other words, the real zeros are uniformly distributed on the real line, with a density of 1/71" 
zeros per unit length. 

4.9 Random Dirichlet sertes 

Consider a random Dirichlet. series 

14 

"' 



·'"' 

Assume that ak are independent standard normal random variables. This converges with probability one if 

x > 1/2. We see that 
00 . 1 

v(xf Cv(y)::: L k"'+Y = ((x + y), 
k=1 

and that the expected number of zeros on any interval [a, b] is 

1 1b 
2

7r a J[log((2t)]"dt. 

5 The geometry of 1 

The second and third examples above are points of departure for lots of interesting mathematics. We explore 

these connections in the following subsections. 

5.1 A curve with more symmetries than meet the eye 

We return to the second example, and explore why the distribution of the real zeros was so simple. Take the 

curve v(t) and make the change of variables t = tan 8 and scale to obtain 

-y(8) :::: (cosn 8)(v(tan 8)). 

Doing so shows that. 

(n)1/2 no 
(I cos 

-y(8) =:= 

1/2 . 
(~) cosn- 1 OsinB 

1/2 C) cosn- 2 8 sin2 8 

(~) 1/2 sinn 8 

i.e. 'Yk(8) = (~) 112 
cosn-k Bsink (},where the dimension index k runs from 0 ton. 

We have chosen to denote this curve the· supc:r·-cirdt:. The binomial expansion of ( cos2 B + sin2 8)n = 1 

tells us that. our super-cirde lives on the unit sphere. Indeed when n = 2, the super-circle is merely a 

small-circle on the unit. sphere in !R3
. When n = 1, the super-circle is the unit circle in the plane. 

What is not immediately obvious is that every point on this curve "looks" exactly the same. We will 

display an ort.hogonal matrix Q( ¢) that rotates !Rn+ 1 in such a manner that each and every point on the 

super-circle -y( 9) is sent to -y( (} + ¢). To do this, we show that 'Y is a solution to a "nice" ordinary differential 

equation. 

By a simple differentiation of the kt.h component of -y(8), we see that. 

where CXk = Jk(n + 1- k). In matrix-vector notatjon this means t.h~t 

0 -U! 

CX! 0 -U2 

d . 
dB -y(B) = A-y(B), where A= 

0'2 Q -cx3 
(9) 

i5 



I.e. A has the a; on the subdiagonal, the -a; on the superdiagonal, and 0 everywhere else including the 
main diagonal. 

The solution to the ordinary differential equation (9) is 

(10) 

. The matrix Q(¢) =eM' is orthogonal because A is anti-symmetric, and indeed Q( ¢)is the orthogonal matrix 
that we promised would send 1(8) to 1(8 -i- ¢). We suspect that Equation (10) with the specification that 
1(0) = (1,0, ... , O)T is the most convenient description of the super-circle. Differentiating (10) any number 
of times shows explicitly that 

dil AB cJil 
dOi (B) = e cJOi (O). 

In particular, the speed is invariant. A quick check shows that it is fo. If we let 0 run from -7r/2 to 1rj2, 
we trace out a curve of length 1r,jn. 

The ideas here may also be expressed in the language of invariant measures for polynomials (15]. This 
gives a deeper understanding of the symmetries that. we will only sketch here. Rather than representing a 
polynomial as 

, we homogenize the polynomial and consider 

For any angle a, a new "rotated" polynomial may be defined by 

It is not difficult to show directly that if the a; are independent and normally distributed with variance (7)' 
then so are the coefficients of the rotated polynomial. The symmetry of the curve and the symmetry of the 
polynomial distribution are equivalent.. An immediate consequence of the rotational invariance is that. the 

distribution of the real zeros must. be Cauchy. 

5.2 Geodesics on flat tori 

Consider the third example of the previous section. Fix a finite interval (a, b]. For simplicity assume that 

The curve 1( 0) is given by 

~=1. 
~6"k 

(ITo cosvoB, ITo siu v11 B, ... , IT,. cosv,.O, IT,. sin v,.O) . 

This curve i~ a geodesic on the flat. (n +I)-dimensional torus 

(ITo cos00 , o-osin00 , ... , IT,. cosO,., o-,. sin 0,.) . 

Therefore if we lift. to the universal covering spar.e of the torus, 1 becomes a straight line in !R"+1 . By the 
Pythagorean theorem, the length of 1 is 

n 

{b- a) L lifO"~ , 
k=ll 
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which equals the expected number of zeros on the interval [a, b]. · 
Now replace [a, b] with ( -oo, oo). If vi/vi is rational for all i and j, then 'Y is closed, otherwise it is dense 

in some subtorus. 

Exercise: Show that if we choose the. Ilk and the CTk correctly, the second example becomes a special case of 

the third example. Thus the super-circle of the second example is a spherical helix. 

5.3 The Kac matrix 

Historically, Mark Kac was the first mathematician to obtain an exact formula for the expected number of 
real zeros of a random polynomial. Ironically, he also has his name attached to a certain matrix that is 
important to understanding the second example, yet we have no evidence that he ever made the connection. 

The n + 1 by n + 1 Kac matrix is defined as the tridiagonal matrix 

0 n 
1 0 

2 
n-1 

0 

n-1 0 
n 0 

The history of this matrix is documented in [24) where several proofs that Sn has eigenvalues -n, -n + 
2, -n + 4, ... , n- 2, n. One of the proofs is denoted as "mild trickery by Kac." We will derive the eigenvalues 
by employing a different. trick. 

Theorem 5.1 The eigenvalues of Sn au; the inte.ger·s 2k- n fork= 0, 1, ... , n. 

Proof Define 
fk(x) := sinhk(:r:) coshn-k(x), k = 0, ... , n, 

9k(x) := (sinh(x) + cosh(:~:))k(sinh(x)- cosh(x))n-k, k = 0, ... , n 

If Vis the vector space of functions with basis {fk(:r:)}, then the gk(x) are clearly in this vector space. 

Also, d:fk(x) = kfk- 1(:r:)+(n-k)fk+I(:r:), so that the Kac matrix is the representation of the operator dfdx 

in V: We actually wrote Yk(:r:) in a more complicated way than we needed to so that. we could emphasize 

that. 9k(x) E V. Actually, 9k(x) = exp({2A:- n)x) is an eigenfunction of dfdx with eigenvalue 2k- n for 
k = 0, ... , n. The eigenvector is obtained by expanding out the above expression for 9k (x ). 

The matrix above may be symmetrized in which case it looks exactly like the matrix A in {9) without 
any minus signs. Indeed iSn is similar to the matrix in (9) that. so nicely explains the symmetry when the 

coefficients have variances that are binomial coefficients. 

6 Extensions to other distributions 

This paper began by considering random polynomials with standard normal coefficients, and then we realized 

quickly that any multivariate normal distribution with mean zero (the so-called "central distributions") 

hardly presented any further difficulty. We now generalize to arbitrary distributions, with a particular focus 
on the non-central multivariate normal distributions. The basic theme is the same: t.he density of zeros is 
equal to the rate at. which the equators of a curve sweeps ·out volume. Previous investigators include Ali, 

Dunnage, Hirata, lbragimov, Logan, Maslova, Mishra, Pratihari, Sarna), Sambandham, Stevens, and Shepp .. 

See [1] for a survey of result.s. There is also the interesting recent work of Odlyzko and Poonen on zeros of 

polynomials with coefficients that. are quantized [20]. 
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6.1 Arbitrary distributions 

Given fo(t), /1 (t), ... , fn(t) we now ask for the expected rmmber of real zeros of the random equation 

ao/ri(t) + ad1(t) + · · · + anfn(t) = 0, 
I 

where we will assume that the a; have an arbitrary joint. probability density function cr(a). 
Define v(t) E !Rn+l by 

( 

/o(t) ) ' 
v(t) = 

fn(t) 

and let 

1(t) = v(t)/llv(t)ll· (11) 

Instead of working on the sphere, let us work in mn+I. by defining 1(t)L to be the hyperplane through the 

origin perpendicular to 1(t). 

Fix t and choose an orthonormal basis such that eu = 1(t) and e1 = l'(t)/lli'(t)ll. As we change t to 

t + dt, the volume swept. out. by the hyperplanes will form an infinitesimal wedge. (See figure.) 

This wedge is the Cartesian product of a two dimensional wedge in the plane span(e0 ,el) with !Rn-l, the 

entire span of the remaining n - 1 basis direct.ions. The volume of the wedge is 

where the domain ofint.egration is then-dimensional space perpendicular to e0 , and a" denotes n-dimensional 

Lebesgue measure in that. space .. Intuitively lli'(t)lldt is rate at which the wedge is being swept out. The 
width of the wedge is infinitesimally proportional t.o je 1 · al, where a is in this perpendicular hyperspace. 

The factor cr(a) scales the volume in accordance with our chosen probability measure. 

Theorem 6.1 If a has a joint pr·obability density u(a ), tht:n the dwsity of the r·eal zer·os of aofo(t) + · · · + 
anfn(t) = 0 is 

p(t) = lli'(t)llj l~'(;l )t~l u(a)dan = j l1'(t) · aju(a)dCJn , 
-y(t)·n:::O "f t -y(t)·n:::O 

where dan is stanclar·d Lt:sbesguc measun: in the subspace ]JCT']Jcndicular· to 1(t). 

(e,•a) II'Y'(t) lldt 

eo Y(t) 

' Y(t+dt) II'Y'(t) lldt 

Figure G "Infinitesimal" wedge area 
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6.2 Non-central multivariate normals 

We apply the results in the previous subsection to the case of multivariate normal distributions. We begin 

by assuming that our distribution has mean m and covariance matrix I. We then show that the restriction 

on the covariance matrix is readily removed. Thus we assume that 

Theorem 6.2 Assume that (a0 , ... , an)T lws the multivar·iate normal distribution with mean m and covari­

ance matrix I. Let 1(t) be defined as in {11). Let mo(t) and m 1 (t) be the components of m in the 1(t) and 

1'(t) directions, r-espectively. The density of tlu r·eal zeros of the equation L a;f;(t) = 0 is 

Pn(t) = ~lli'(t)lle-tmn(t)2 
{ e-tmt(t)

2 + ~m1(t)erf [m~)]} . 
For polynomials with identically distributed normal coefficients, this formula is equivalent to [1, Section 
4.3C]. 
Proof 

Since we are considering the multivariate normal distribution, we may rewrite o-(a) in coordinates 

xo, ... , Xn in the directions e0 , .•• , en respectively. Thus 

where m; (t) denotes the coordinate of m in thee; direction. The n-dimensional integral formula that appears 

in Theorem 6.1 reduces to 
1 ~()(J I ( ( 2) 1 ( ))2 - lxde-'imut) e-,(x,-m,t dxl 

21T -O<J 

after integrating out the n- 1 directions orthogonal to the wedge. From this, the formula in the theorem is 

obtained by direct integration. 0 

We can now generalize these formulas to allow for arbitrary covariance matrices as we did with Theorem 

4.1. We phrase this corollary in a manner that. is self-contained: no reference to definitions anywhere else in 

the paper is necessary. 

Corollary 6.1 Let v(t) = (f0 (t), fr(t), ... , f 11 (t))T and lt:t a= (a0 , ... ,an) be a multivariate distribution 

with mean m = (m0 , ... , m 11 )T and covtLr·iance matr·ix C. Equivalently considn· T'Undorn functions of the 

for·m L:tL;/;(t) with mean JL(t) = mufn(t) + ... + mnfn(t) anti covar·iance matrix C. The expected number 

cJf r·eal zer·os of t!te equation L: u;J;(t) = o on t!tt: intt:nmt [u, bJ is 

wher·e 

w(t) = C 112v(t), 
w(t) 

l(t) = llw(t)ll' 
JL(t) m:,(t) 

m0 (t) = llw(t)ll, and m1 (t) = Ill' (t)ll" 

Proof There is no difference between the equation cz · v = 0 and c-112a · C 112v = 0. The latter equation 

describes a random equation problem with coefficients from a multivariate normal with mean c- 112m and 

covariance matrix I. Since J.L(t)fiiw(t)ll = 1(t) · c-I/'l.m and m:,(t)/lh'(t)ll = 1'(t) · c- 112m/lli'(t)JI, the
1 

result follows immediately from Theorem 6.2. 

0 
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6.3 Examples 

We explore two cases in which non-central normal distributions have particularly simple zero densities: 

• Case 1: mo{t) = m and m1{t) = 0 

• Case Il:mo(t) = m1 (t) 

Case I: mo{t) = m and m 1{t) = 0 

If we can arrange for m0 = m to be a constant then m1 (t) = 0 and the density is 

1 l 2 
p(t) = -II'Y'(t)ile- ~m . 

1r 

In this very special case, the density function for the mean m case is just. a constant. factor {e- tm2

) times 

the mean zero case. 

This can be arranged if and only if the fund.ion llw(t)ll is in the linear space spanned by the k The next 

few examples show when this is possible. In parentheses, we indicate the subsection of this paper where the 

reader may find the zero mean case for comparison. 

Example 1 (4.2) A random polynomial with a simple answer, even degree: Let /;(t) = ti, i = 0, ... , nand 

C = diag[(7)]. so that. !lw(t)ll = (1 + fl·)n/ 2. The constant weight. case occurs when our space has mean 
p(t) = {1 +t2)n/2. 

As a simple application when n = 2, if a0 , a 1 , and a2 are independent. standard Gaussians, then the 

random polynomial 

is expected to have 

real zeros. The density is 

1 .../2 2/:.! p(t) = - e-m . 
1r(l+t2) 

Note that. as m _. (X), we are looking at. perturbations t.o the e<JUat.ion t 2 + 1 = 0 with no real zeros, so we 

expect. the number of real zeros t.o converge towards 0. 

Example 2 (4.3) Trigonometric sums: Jl(t) = mv'r-0."'~-+-· .-.-+-u"'"~. 
Example 3 (4.6) Kac power series: Jl(t) = m(l- t 2)- 112 • 

Example 4 (4.8) Entire functions: p(t) = me1212 . 

Example 5 (4.9) Dirichlet Series: 
00 

~ '\" mk 
p(t) = mv~,\"-LJ = L..J kt' 

k=l 

where mk = 0 if k is not. a square, and ffik = m ni 2;~~)1!! !! if k has the prime factorization ni p~n;. 

Case Il:mo(t) = m1(t) 
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We may pick a J-l(t) for which m0 (t) = m1(t) by solviug the first order ordinary differential equation 

mo(t) = mti(t)/llr'(t)ll. The solution is 

Jl(t) = mllw(t)ll exp 11: llr'(x)!ldx] 

There is really only one integration constant since the result of shifting by J( can be absorbed into the m 
·factor. If the resulting Jl( t) is in the linear space spanned by the f 1, then we choose this as our mean. 

Though there is no reason to expect this, it turns out that if we make this choice of J-l(t), then ~he density 
may be integrated in closed form. The expected number of zeros on the interval [a, b) is 

rb 1 1 lb la p(t)clt = 4ere(m0 (t)/v'2)- 21/[0, m~(t)] a. 

Example 6 ( 4.6) Kac power series : Consider a power series with independent, identically distributed 

normal coefficients with mean m. In this ca.'>e JL(t) = 1~ 1 , where m = (mean/standard deviation), so 

mo(t) = m/ff]. A quick check shows that m1 (t) = m0 (t). 

Example 7 ( 4.8) Entire functions : In this ca.<;e Jt(t) = m~t+t" 12 , so m0 (t) = me1. 
Example 8 (4.9) Dirichlet Series: This we leave as an exercise. Choose I<> 1/2. 

One final example 

Theorem 6.3 Considt:r· a r·andom polynomial of th:gr·a n with coefficients that ar·e independent and identi­

cally distrib~tted nor·mal random 11ar·iables. Dtfine m =f; 0 to be the mean divided by the standard deviation. 

Then as n -+ oo, 

En= ~log(n)+ ~1 
+ ~-;- ~loglml + 0(1/n), 

where cl is defined in St:ction 3.3, and whtTe I = 0.5772156649 ... is Euler·'s constant. Fur-thermor·e, the 

expected number· of positi'Ve zer·os is asymptotic to 

sketch of proof 

1 1 ., 10 1 2] '2- 2erf-(m/v2) + ;f[O, m . 

We break up the domain ofint.egrat.ion into four sub domains: ( -oo, -1), [-1, 0], [0, 1) and [1, oo). Observe 

that the expected number of zeros on the first and second intervals are the same, as are the expect.ed number 

of zeros on the third and foui:th intervals. Thus we will focus on the first and third interval, doubling our 
final answer. 

The asymptotics of the density of zeros is easy to analyze on [0,1), because it converges quickly to that 

of the power series (Example 6, above). Doubling this gives us the expected number of positive zeros. 
On the interval (-oo, -1), one can parallel the proof in Section 3.3. We make the change of variables 

-t = 1+x/n. The weight due to the non~ero mean can be shown to be 1+0(1/n). Therefore, the asymptotic 
series for the density of the zeros is the same up to 0(1/n). We subtract the asymptotic series for the density 
of the zeros of the non-central Kac power series, and then integrate term by term. 

0 

The ~log(n) term was first derived by Sambanclham. 
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7 Systems of equations 

The results that we have derived about random equations in one variable may be generalized to systems of 

m equations in m unknowns. What. used to be a curve v(t) : ~ - ~N is now an m-dimensional surface 

v(t) : ~m - ~N defined in the same way. The random coefficients now form an m x N matrix. We assume 

that the rows of this matrix are independent and identically distributed multivariate normals with mean 

zero and covariance matrix C. 

Theorem 7.1 Let fo(t), ... , fN(t) be any collection of real valued rectifiable functions defined on ~m, 
let U be a measurable subset of~m, and let tlte vectors (a~:0 , ... , UkN ), k = 1, ... , m be independent and 
identically distributed. Assume each vector is a multivariate normal random vector with mean zero and 
covariance matrix C. The expected number of r·eal zeros of tlte system of equations 

a~.;ofo(t) + aklfi(t) + ... + ClkNfN(t) = 0, k = 1, ... ,m, 

that lie in the set U, zs 

( 

•. , ) 1/2 
!!!..±.!. m + 1 cJ-

7T- , f (-, -) 1 det [-n -n- {logv(:~:)TCv(y)) j __ 1] dt, 
2 u (J3.;;(JYi Y-"- ij 

where v(t) = (/o(t), ... , fN(t)). 

Proof If we project. the set. { v(t)l t E U} onto the unit. sphere, the volume of the resulting set, divided by 

the volume of projective space of dimension m, equals the expected number of zeros in the region U. The 

Fubini-Study metric thus gives us the desired formula. See [15, 16] for details. 0 

The reader might prefer to phrase questions about. random systems in terms of measures on Grassman 

manifolds. We remark that. the fa:c.t.or before the integral is the reciprocal of the volume of the projective 

space of dimension m. 

We now apply this formula t.o extend our previous examples. 

7.1 The Kac formula 

Consider systems of polynomial equations with independent. standard normal coefficients. The most. straight­

forward generaliz.at.ion occurs if the components of v are all the monomials {TI;';, 1 x~k }, where for all k, i~: ~d. 
In other words, the Newt.on polyhedron is a hypercube. 

Clearly, 
m d 

v(:~:f v(y) =IT 2):~:;y;)J.: 
i=l 1.::0 

from which we see that the matrix in the formula above is diagonal, and the density of the zeros on ~m 

breaks up as a product. of densities on ~. Thus if ES"') represents the expected number of zeros for the 

system, 

E(m) - - !!!;I:..!T (m + 1) ( E(l))m 
d -1T J -2- 7T d • 

The asymptotics of the univariate Kac formula shows that. as d - oo, 

The same asymptotic formula holds for a wide range of newton polyhedra, including the usual definition of 

degree: 2::;'=1 i~: ~ d [16]. 
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7.2 A random polynomial with a simple answer 

Consider a system of m random polynomials each of the form 

where L::;'=l ik $ d, and where the a; 1 •.. im are independent normals with mean zero and variances equal to 
multinomial coefficients: 

( 
cl ') 

ii,. ·., im -
d! 

( 1 '\'m . )1 nm . I 
( - L.....k:l 1k . k=l 'k· 

The multinomial theorem simplifies the computation of 

We see that the density of zeros is 

t - 1r- ~ r --!!!.±.!. (m + 1) cJm/2 
p( ) - 2 (1 + t · t)(m+l)/2 . 

In other words, the zeros are uniformly distributed on real projective space, and the expected number of 
zeros is dm/ 2 . 

Mike Shub and Steve Smale [23] have generalized this result as follows. Consid~r m independent equations 

of degrees d1, ... , rim, each defined as in this example. Then the expected number of real zeros of the system 
IS 

JrrA,n=ldk. 

The result has also been generalized to underdet.ermined systems of equations [15, 17). That is to say, we 

may consider the expected volume of a random real projective variety. The degrees of t.he equations need not 

be the same. The key result is a.'l follows. The t:xpectt:d volume of a r·t:al pT'Ojt:ctitJc var·iety is the sqttar·e T'Oot 

of the product of the dcgr·ees of tht: equations defining the varidy, divided by tlu: volume of the r·cal projective 

space of the same dimt:nsion as tltt: varit:iy. For a detailed discussion of random real projective varieties, see 

[17]. 

7.3 Random trigonometric sums 

The generalization of these sums leads to sums of random harmonic. polynomials, or random hyperspherical 

harmonics. The random harmonic polynomials form irreducible representations of the orthogonal groups, and 

therefore there is an essentially unique invariant. normal measure. If we are given a system of m independent 

random harmonic polynomials in.m + 1 homogeneous variables, and the degrees of the polynomials are d1 , 

... , elm, then the expected number of real zeros for t.he system is 

By considering the eigenspaces of the Laplacian, we can classify all invariant normal measures on systems 

of polynomials. Using the formula above, we can calculate the expected number of real zeros for any such 

measure .. See [16] for details. 



7.4 Kac power ser1es 

For a power series in m variables with independent. standard normal coefficients, we see as m the first 
example, that the density of zeros ori ~m breaks tip as the product of m densities: 

_!!!±!. (m+1)IIm 1 p( t) = 1r , r -- ( 2) · 
2 k=l 1 - tk 

Notice that the power series converges with probability one on the unit hypercube, and that at the boundaries 

of this domain the density of zeros becomes infinite. 

7.5 Random entire functions 

Consider a random power series 

where the a; 1 •.. i'" are independent. normals with meau zero· and variance (O~=l ik!f
1
. Clearly 

so the zeros are uniformly dist.rilmt.ed on ~m with density 

1r ,r ---_!!!.±! (m+l) 
2 

zeros per unit. volume. 

8 The Buffon needle problem revisited 

In 1777, Buffon showed that if you drop a needle of length Lon a plane containing parallel lines spaced a 

distance D from each other, then the exped.ed number of intersections of the needle with the lines is 

2L 

1TD 

Buffon assumed L = D, but the restrict.ion is not. necessary. In fact. the needle may be bent into ariy 

reasonable plane·curve and the formula still holds. This is perhaps the most celebrated theorem in integral 

geometry and is considered by many to be the first. [21]. 

Let us translate the Buffon needle problem t.o the sphere as was first. done by Barbier in 1860 - see [25] 
for a history. Consider a sphere with a fixed great. circle. Draw a "needle" (a small piece of a great. circle) on 
the sphere at. random and consider the expect.ed number of intersections of t.he needle with the great circle. 

If we instead fix the needle, and vary the great. circle, it. is clear that. t.hat the answer would be the same .. 

Any curve on the sphere can be approximated by a series of small needles. The expect.ed number of 

intersections of the curve with a. great. circle is the sum of the expected number of intersection of each needle 

with a great circle. Thus the expect.ed number of int.ersect.ions of a fixed curve with a random great. circle is 

given by 

(somt: constant)L, 

where L is the length of the curve. To find the constant. consider the case where the fixed curve is itself a 

great circle. Then the average number of intersections is clearly 2 and L is clearly 27T. Thus the formula for 

the expect.ed number of intersections of the curve wit.h a random great circle must. be 

L 
1T 
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Of course the theorem generalizes to curves on a sphere of any dimension. 

To relate Barbier's result to random polynomials, we consider the curve 1 on the unit sphere in ~n+l. 
By Barbier, the length of 1. is 1r times the expected number of intersections of 1 with a random great 

circle. What are these intersections? Consider a polynomial p(x) = L~ anx", and let P.L be the great circle 

perpendicular to the vector p = (a0 ; ... , an)· Clearly 1(t) E P.!. for the values oft where 1(t) j_ p. As we 
saw in.Section 2, these are the values oft for which p(t) = 0. Thus the number of intersections of 1 with p.!. 

is exactly the number of real zeros of p, and the expected number of intersections is therefore the expected 
number of real zeros. 
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