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Abstract. A GRP-scheme is introduced for the numerical 
integration of the Euler system of equations of 
compressible reactive flow in a duct of variable cross 
section, subject to an external potential. The GRP 
(Generalized Riemann Problem} scheme is based on an 
analytic solution of the GRP at jump discontinuities. 
It is a second-order scheme generalizing the first-order 
Godunov scheme, having the property of high resolution 
of shocks and other discontinuities. Some numerical 
exam~les are considered, including an infinite spherical 
refl~cted shock, a spherical blast wave and gas collapse 
under an external potential. 
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1. Introduction 

Consider the Euler equations that model the time-dependent flow of an 

inviscid, compressible, reactive fluid through a duct of smoothly varying 

cross-section. In addition to the hydrodynamical pressure force, we allow 

an external conservative field which does not vary with time. We are using 

here the quasi one-dimensional approximation, namely, the hypothesis that 

all flow variables are uniform across a fixed cross-section. Notice that 

our treatment applies in particular to all problems with planar, 

cylindrical or spherical symmetry. Such problems arise, e.g., in 

astrophysics [16]. 

Denoting by r the spatial coordinate and by A(r) the area of the cross 

section at r, our equations are 

A:tu + ~t(AF(U)) + A~(U) + AH(U) 0, 

( 1. 1) 

u F(U) ~~2 l , G(U) 
(pE+p)u 

pzu 

H(U) 

where p,p,u are, respectively, density, pressure and velocity. z is the 

mass fraction of the unburnt fluid, that is, z = 1 (resp. z=O) represents 

the completely unburnt (resp. burnt) fluid. The total specific energy E is 

given by E = e + ~u 2 + $, where $ = $(r) is the external potential (whose 

derivative$' (r) is the external force field in (1.1)) and e is the 

specific internal energy (including chemical energy). We are assuming an 

equation-of-state of the form p = p(e,p,z). The reaction rate k = k(e,p,z) 

is assumed to be a positive function. Along a particle path we have 

dz 
dt -k, and z decreases in an irreversible way. 

Our purpose in this work is to provide a robust, high-resolution 

numerical scheme for the time integration of the equations (1.1). We work 
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within the general framework of the GRP (Generalized Riemann Problem) 

approach (1-4], which is an analytic extension of Godunov's first-order 

scheme [9] and has its origins in the work of van-Leer [15]. Let us review 

briefly this approach, leaving the more detailed discussion to Section 7 

below. 

Suppose that we use equally spaced grid-points ri = i·~r along the 

r-axis and equal time-intervals of size ~t. By "cell i" we shall refer to 

the interval extending between the "cell-boundaries" r 
i±~ 

(i±~)~r. We 

let Q~ denote the average value of a quantity Q over cell i at time 

n+~ 
Similarly, we denote by Qi+~ the value of Q at the 

cell-boundary r. ~· averaged over the time interval (n~t.(n+1)~t}. 
1+'"2 

Generally speaking, a "Godunov-type" difference scheme for (1.1) is given 

by, 

( 1. 2) 

where ~V. 
1 

u~+ 1 - u~ 
1 1 

,r i+~ 
1 A(r)dr. 

ri-~ 

n+~ ( n n+1) While u1 may be obtained implicitly as % u1 + u1 , one must still 

n+~ 
give an appropriate interpretation to the values Ui+%" In the Godunov 

scheme (9] this is done as follows. 

Take Eq. (1.1) with A= 1, H = 0 and with constant initial data on 

both sides of r = 0, namely. 

(u+. r > o 
U(r,O) { 

(u_, r < o. 
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This constitutes the so called "Riemann Problem" (RP) and, as is well-known 

[8], the resulting solution R(f; U+, u_) is constant along rays r 

Turning back to (1.2), consider the RP,with initial conditions U+ 

A.t. 

n u. 1 
1+~ 

and U n+~ ' n n' 
In the Godunov scheme one takes Ui+~ = RtO; Ui+ 1 ' UiJ, the 

(constant) solution along r- = 0. As is well-known the resulting scheme is 

of first-order accuracy and has relatively poor r-esolution properties. In 

or-der to upgrade this scheme (in terms of accuracy and resolution) we 

assume now that the values of U are tinearty distributed in cells, with 

possible jumps at r = ri+~· To imitate the Godunov scheme, one needs to 

solve the resulting "initial value problem" for- (1.1) at each 

cell-boundary. However, this is not a Riemann problem anymore, and its 

solutions are clearly not "self-similar''. Thus, to obtain a second-order 

scheme we need the time evolution (to first order) of the flow variables at 

cell-boundaries. This leads to the formulation of the GeneraLized Riemann 

Problem (GRP) for (1.1) as follows: 

Let U±(r) be two Linear distributions and consider the initiat value 

problem for (1.1) where, 

(U+(r), r > 0 
(1.3) U(r-,0) { 

(U_(r-), r- < 0. 

Let U(r,t) be the solution. Find, 

( 1. 4) 
(a) U(O,O) 

(b) ;~ ( 0 t 0) 

lim U(O,t), 
t-+0+ 

lim .Lu(O,t). 
t-+O+at 

Note that the application of the GRP to the numerical scheme (1.2) is 

str-aightfor-ward. Indeed, one takes in (1.3) the two linear- distributions 

as given by the values of un is cells i and i+l, translating ri+~ to 0. 
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Taking tn 0, the solution (1.4) is obtained and then interpreted as, 

U(O,O), [
a ] n au 
atu . = at(o,o) · 

1+~ 

( 1. 5) 

Finally, one sets in (1.2), 

n+~ u. v 
1+'2 

n At u .. + 2 
1+>2 

The existence of a solution to the GRP has been studied in detail in 

several recent works (10,12]. Its wave pattern in a small neighborhood of 

the singularity is completely determined by the solution R(f;u •. u_) to the 

Associated Riemann Problem, which is the RP with initial conditions equal 

to the limiting values of the linear initial data at the discontinuity, 

that is, using (1.3), 

( 1. 6) lim u.(r), 
r-+0+ 

We have the following. 

u u ( 0-) lim U_(r). 
r-+0-

Proposition. Let U(r,t) be the solution to the GRP (1.1), (1.3) and let 

R(f;u •. u_) be the solution of the associated RP. Then for every fixed 

r direction A = t , 

( 1. 7) lim U(At,t) 
t-+0-'-

Furthermore, the wave configuration for the GRP near the singularity is the 

same as that for the associated RP. 

The last part of the proposition means that if the solution R(f;u •. u_) 

involves a shock moving to the right, then this is the case also for the 

GRP (even though its trajectory is not a straight line anymore), etc. 
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Our work is an extension of [4], where planar combustion waves were 

considered. Many of the results here are parallel to those obtained in the 

planar case, with suitable modifications due to the presence of external 

fields and a variable cross section. Whenever this is the case, we state 

clearly the result and list the modified formulae. but omit the proof, 

giving suitable reference to [4]. 

The plan of the paper is as follows. In Section 2 we set up our 

notation (for convenience we display it in Table I) and discuss the basic 

thermodynamical and characteristic relations of the system. We also 

introduce the Lagrangian version of the equations. In Section 3 we give a 

detailed analysis of a centered rarefaction wave, which is really the heart 

of the GRP method. In Sections 4 and 5 we give the solution to the GRP in 

the Lagrangian and Eulerian frames, respectively. In Section 6 we 

specialize our results to a y-law gas (where y is independent of the 

chemical structure) with a simplified Arrhenius model for the chemistry. 

This leads to explicit (closed form) formulae for the solution of the GRP, 

due to the fact that the associated RP is explicitly solvable in this case. 

Section 7 carries the reward for our labor in the preceding sections. 

We use a straightforward GRP scheme along the lines discussed above. 

namely, combining (1.2) and (1.5) (a few more details concerning the 

numerical scheme are added in that section). Three numerical examples are 

discussed in Section 7: (a) A test problem suggested by W.F. Noh [13] 

which involves a single reflected infinite shock in spherical geometry; 

(b) A spherical explosion originating at the center of a uniform gas in 

spherical geometry [14]; (c) the collapse of a gas cluster under an 
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external field (simulating self-gravity), with and without chemical 

reactions (16]. We observe that example (a) has no chemistry or external 

potentials and has a full analytic solution. Example (b) possesses an 

analytic solution in the limit of infinite reaction rate (C-J theory) and 

contains chemistry but no external potentials. Example (c) contains all 

the novel features of the scheme presented here. 

The only previous (numerical) treatment of the system (1.1), that we 

are aware of, is given in [16]. However, the method presented there does 

not seem to have the same order of accuracy in the time integration. A 

comparison of the results in (16] with the results obtained here is given 

in Section 7. 
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2. Preliminaries and Notation 

In what follows we shall address the GRP as stated in (1.3),(1.4). 

In addition to the basic flow variables appearing in (1.1), we shall 

also make extensive use of the speed of sound c and the "Lagrangian" speed 

of sound g pc. Recall that c 2 is obtained by differentiating p with 

respect to p along an isentropic curve. However, the concept of entropy 

needs to be clarified here. Thus, let T = T(e,p,z) be the temperature. 

For each fixed z we define the entropy S(e,p,z) as usual by, 

( 2. 1) Tds = T(~as e + aasdp) =de+ pd(l). 
z e p p 

Solving for e we -get e = e(p,S,z) and substituting this in the equation-of-

state we get p = p(S,p,z). We then set, 

(2.2) 
ap -a (S,p,z). p -

We shall always indicate the independent variables when differentiating a 

thermodynamical function, as has been done in (2.2). Another important 

function in our analysis will be, 

(2.3) A.(e,p,z) a k(e,p,z)azp(e,p,z). 

where the reaction rate k is as in (1.1). 

It can easily be checked that the first three equations of (1.1) yield 

the characteristic relation, 

(2.4) 0 
dr 

along dt u. 

Using (2.1) and the fourth equation in (1.1) this can be written as, 



(2.5) dS 
dt 

a 
azS(e,p,z) 

dz . -
dt 
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a 
k(e,p,z)azS(e,p,z) dr 

- - f along dt u . 

We now transform the system (1.1), replacing the coordinate r by the 

Lagrangian coor9inate ~ given by, 

(2.6) d~ Apdr, ~(0) 0. 

Replacing the third equation of (1.1) by (2.5), the system can now be 

written as, 

Vt 
(2.7) 

+ lb(V)~ 'l'(V)' 

T -u 0 

u p n•E-q,• 
1 A' ( r) v lb(V) A• 'l'(V) p n(r) s . 0 . -f T 
p' A(r) 

z 0 -k 

Observe that in (2.7) the functions n(r).~(r) depend on ~.t by expressing 

r = r(~.t) in the Lagrangian frame. 

The Characteristic Relations. Obviously the contact discontinuity 

(= particle path) ~ = canst. serves as a double "linearly degenerate" 

characteristic, with the last two equations in (2.7) as its associated 

characteristic relations. It is not difficult to see that the other two 

characteristic directions are given by ~ = ± gA (recall that g = pc). 

Proceeding along the same line as in [4. Sec.21 we obtain the following 

characteristic relations, 

(2.8)) gdu ± dp +A+ gucn- g~']dt, along~~ = ± gA, 

where n,A are the functions defined in (2.7),(2.3), respectively. 



- 9 -

Note that the right-hand side in (2.8) consists of three contributions 

asociated, respectively, with the chemistry equation, variable cross 

section and external potential. They all vanish for planar non-reactive 

flow without external fields, where~= 0 in (2.7). Their magnitudes 

determine the amount by which the system (2.7) deviates from the 

corresponding one with ~ = 0. In particular, the magnitude of A reflects 

the coupling between the compressible flow and the chemistry equation in 

( 2. 7). 

Finally, we introduce some notation for the treatment of the GRP for 

the system (2.7). We assume that initially v(e,o) = V±(e) is piecewise 

linear with a jump at~= 0, in analogy to (1.3). This is justified by the 

fact (to be proved below) that the time derivatives at the singularity 

depend only on the limiting values (as e~o) of the initial data (including 

slopes). Hence we may replacer-derivatives bye-derivatives according to 

(2.6). Letting v_ = lim V_(e), v. =lim v.(e) (compare with (1.6)), we 
e~o- e~o+ 

denote by RL(t;v •. v_) the Lagrangian solution to the associated Riemann 

problem (see the Proposition and the discussion preceding it in the 

Introduction). Denoting by v(e,t) the solution to the GRP for (2.7), our 

objective (in analogy with (1.4)) is to determine, 

V(O,O) 

av 
at(O,O) 

lim V(O, t), 
t~O+ 

a lim -V(O,t). 
t~o+ at 

Clearly, in this case the line e = 0 represents a contact discontinuity 

across which p,S,z may be discontinuous, so that we must compute the 

corresponding limiting values on both sides of this line. 
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We shall employ the following notation conventions: Subscripts "•·-" 

denote limiting values as ~~0+,0-, respectively; an asterisk (*) is used 

for values at t=O+ along ~=0 (along with "•·-" for discontinuous 

quantities). Further details are given in Table I, where Q = Q(~.t) stands 

for any one of the flow variables (see also Figure 1 in Section 3 below). 

Q. ,Q_ 

v* 

* * Q. ,Q_ 

( aQ)* 
a~ • 

( ~)* 
a~ -

Sylllbot 

Tabte I -- Notations for the Lagrangian GRP 

Definition 

lim Q(~.o) as ~~0+,0-

Constant (initial) slopes for ~>0, ~<0 

Lagrangian solution of the associated RP 

Right and left values for Q discon­
tinuous across ~=0 (e.g., Q = p or g) 

a 
lim ~(~.t) at ~=0 
t-+0+ 

aQ * Right and left values of (at) for 
discontinuous Q 

lim lim a 
tf<Ctl 

t~O+ ~-+0+ 

lim lim a 
a~Q(~.t) 

t-+0+ ~-+0-

lim ho(~.t}lt=O' lim ho<Ct) I 
~-+0+ ~-+0- t=O 
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Remark. Note that if two limiting processes are implied, they must be 

carried out in the indicated order. ~* For example ( 3 ~)+ means that first the 

~-derivative is evaluated at ~=0+ and its limit is then taken as t~O+. 

~* Thus, the evaluation of ( 3 ~)+ depends on the full solution of the GRP. On 

the other hand, (~~). is computed by first taking the t-drivative at t=O 

(which requires only the initial data and the system (2.7)) and then 

letting e~o+. So, we can form the following groups of variables and their 

derivatives: 

Q±,(~~)±, are the given initial data; 

(~)± are evaluated from (2.7) and the initial data; 

Q*,Q± are derived from the associated RP; 

(~)*,(~); are derived from the solution to the GRP. 
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3. Resolution of a Centered Rarefaction Wave (CRW) 

The jump discontinuity of the initial data is resolved in terms of a 

shock, contact discontinuities and centered rarefaction waves. The main 

analytical ingredient in the GRP scheme is a detailed resolution of the 

CRW. We refer the reader to Section 3 of (4] for a full discussion of this 

issue. The basic idea is to use characteristic coordinates (a.~) 

throughout the CRW, so that the singularity is "blown-up" into a "full 

segment" a=O in the characteristic plane. 

Consider Figure 1, where a CRW travelling to the left is shown. We 

let r·:a =canst. be the family of chracteristic curves associated with the 

slope +gA (see (2.8)) and r-:~ =canst. the family associated with the 

slope -gA. In accordance with the Proposition stated in the Introduction, 

the values of flow variables along r--curves converge (as the singularity 

is approached) to the corresponding values for the associated RP. In 

particular, we can take the coordinate ~ as the normalized slope of r at 

~=0, so that 

(3.1) 

at the head characteristic, 

g* 
at the tail characteristic 

g 

Figure 1 

The characteristic coordinate a, for a given r• curve, is taken as the 

~-coordinate of its intersection with the head characteristic (~=1) of the 

r rarefaction fan. Thus a=O is the singularity. 



- 13 -

All variables, including ~.t, are taken as functions of a.~. In 

particular, the connection between the solution V(a.~) to the GRP, and its 

associated RP, can be expressed as, 

(3.2) V(O,~) = RL(-g_A(O)~;V.,V_) (see Table I of Section 2). 

(Of course we can normalize here, A(O) = 1). From the last two equations 

in (2.7) we see that S,z, are allowed to jump only across a contact 

discontinuity (~=0), so that (3.2) implies, 

(3.3) z(O.~) = z . 

As for the transformation (a.~)~ (~.t), one can prove, in a way which is 

completely analogous to the proof of Proposition 3.1 in [4] that, 

(3.4) 
a~~+ e(a.~) • a 2 , 

-1 -1 -~ 
- g_ A(O) ~ a+ ~(a.~) • a 2 • 

Next, we note that even though the limiting values S(O.~), z(O.~) are 

constant (see (3.3)), the limiting values of the gradients (along r 

characteristics) Sa(O.~). za(O.~) do not necessarily vanish and, in fact, 

depend on ~. This is due to the presence of source terms in the equations 

(2.7) for S,z. The following proposition describes the way in which these 

gradients vary with ~. Observe that the variable cross section does not 

play any role here while the initial slopes enter the equations only 

through the initial conditions (3.6). The proof of the proposition follows 

verbatim that of Proposition 3.2 in [4] and will be omitted. 
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Proposition 3.1. Let f,k in the system (2.7) be expressed in terms of the 

variabLes p,S,z. Then the functions Sa(O,~). za(O,~) satisfy (as functions 

of ~. ~*~~~1) the foLLowing reLations, 

-1 -1 -2 I ) - g_ A(O) ~ flp(O,~),S_,z_ , 

(3.5) 

-1 -1 -2 ( ) - g_ A(O) ~ k p(O,~),S_,z_ , 

supplemented with the initiaL conditions (at ~=1), 

(3.6) 

(ii) z (0,1) 
a 

Having at our disposal the functions Sa(O,~). za(O,~). we can now 

proceed to derive expressions for the gradients Qa(O,~) of all flow 

variables. This is indeed the heart of the GRP method [1,2,3,4]. As in 

previous applications of this method, it turns out that it is easiest to 

start out with an expression for ua(O,~). In what follows we use the 

functions A,n as in (2.3),(2.7), respectively. We have, 

Theorea 3.2. Let a(~) = ~au(a,~)la=O' and let g pc be represented as 

g(p,S,z). Then a(~) satisfies, 

(3.7) 

where, 

(3.8) Y(~) 

d 
d/3a(/3) y (~). 

- ~g= 1 ~- 1 ·[g5 (o.~)·Sa(O,~) + gz(O,~)·za(o.~)J·=~u(O,~) 

-1 -1 -~ d ( ) -1 -1 -%. 
- ~g_ A(O) n(O)·~ ·d~ u(O.~)·c(O,~) - ~g_ A(O) ~'(0)~ 
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This equation is suppLemented by the initiaL condition, 

(3.9) (au) -1(ap) -1 -1 a(1) = a~ _ + g_ a~ _ + A(O) g_ $' (O). 

The proof of the theorem proceeds along the same lines as that of 

Theorem 3.3 in (4] and will be omitted. We note that Y(~) is the sum of 

four terms which are related to different effects in the system (2.7) (or 

(1.1)). Thus the first one is a contribution of the chemical source term, 

the second originates from the non-zero slopes of initial data, the third 

is due to the variation of cross section and the fourth comes from the 

presence of a non-constant external potential. 

Once the theorem is established, it is easy to derive expressions for 

the characteristic slopes of other flow variables. They are obtained from 

the characteristic relations (2.8) and the representation of p in terms of 

p,S,z (where we have (2.2)). 

Corollary 3.3. The characteristic sLopes of p,p in the rarefaction fan are 

given by, 

(3.10) 

c(0,~)- 2 ~(O,~) + ~(p(O.~).s_.z_)·~~(O.~) 

+ *(p(O,M .s_.z_)·~~(O.M. 
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4. The Lagrangian Solution of the GRP 

In this section we give the full solution of the generalized Riemann 

problem (1.3)-(1.4) in the Lagrangian setting (2.7). We seek here 

expressions for (~~)* (see Table I in Section 2) in terms of the initial 

data, having a jump discontinuity at ~=0. Velocity and pressure are 

continuous across the interface, and since the time derivatives of S,z 

are given by the system (2.7) directly (different on the two sides of ~=Ol) 

an * au * it remains only to evaluate (at) ,(at} . An essential feature of the GRP 

method is that these two derivatives can be easily determined from the 

initial data and the solution V* of the associated RP. In fact, we have, 

Theorem 4.1. Assume the configuration of Figure 1 (Section 3). The 

derivatives (~)*, {~~)*satisfy a pair of tinear equations, 

( 4. 1 ) 

(402) {au)* + b {~)* = d a. at + at + 
0 

The coefficients a.,b.,d. (respo a_, b_, c_) are determined explicitly 

from the values of the RP soLution V* and the initiaL conditions v •. (~~). 

(respo V_,{~~)_)o More specifically, on the rarefaction side we have, 

a 
(4o3) 

d 

where a(~) is as in Theorem 3.2 and the functions A,n, are defined by 

(2o3). (2o7) 0 
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For a.,b.,d+ one uses the Hugoniot (u,p) relation. Explicit 

expressions for a y-law gas are given in Theorem 6.3 below. 

The proof of this theorem is again parallel to that of Theorem 4.1 in 

[4] and will be omitted. Observe that while the variation of the cross 

section, n(O), appears in the expression ford , the potential~ does not 

play a role here. 

Once the time derivatives of p,u along ~=0 (a streamline) are 

determined, it is easy to compute the full array of such derivatives, 

( av)* namely at . Furthermore, using once again the notation of Table I, 

S t · 2 th t · 1 d · t · ( av) * h d · · · ec !On , e Spa la er1va lVeS a~ ± at t e COntact lSCOntlnUlty can 

be evaluated with the help of the basic equations (2.7). We refer the 

reader to the Appendix below for the detailed expressions. However, the 

following observation is important. 

Proposition 4.2. In Lagrangian coordinates, along any line ~ canst., one 

has, 

(4.4) 
ap 
at 

-2[ap ] c at + A(e,p,z) . 

Proof. Write p in terms of p,S,z, so that along a particle path, by 

(2.2),(2.5), 

ap 
at 

-2 ap as az 
c at + Ps at + Pz at 

-2 ap k[ as(e,p,z) J 
c at - Ps az + Pz · 

But using the identity p = p(p(e,p,z) ,S(e,p,z),z) we get by differentiation, 

as(e.p,z) 
Ps az + Pz 

- ap(e,p.z) 
PP az 

which implies (4.4) (see (2.3) for the definition of A). 

0 



- 18 -

It is interesting to compare (4.4) with its ''non-reactive" analogue 

~ - -2 2.1?. at- c at· Thus, the deviation along a streamline is proportional to A. 

This is in line with the characteristic expressions (2.8), where the 

magnitude of A reflects the strength of the coupling between the fluid-

dynamical (compressible) phase of the flow and the chemical (reactive) 

phase. 
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5. The Eulerian Solution of the GRP 

In this section we address the main goal of this work, namely, the 

solution of the GRP (1.3)-(1.4) for the system (1.1). 

Once again we assume the wave configuration of Figure 1, with the jump 

located at r=O. As an auxiliary tool we shall use the Lagrangian 

coordinate~. defined by (2.6). As was shown in the previous discussion, 

the time derivatives at the singularity depend only on the spatial slopes 

as ~-o. We may therefore assume that the initial values of flow variables 

are simultaneously linear in r and ~ (on either side of the jump), with 

slopes related 'by, 

( 5.1) -1 -1(~) 
A(O) P± ar ±. 

Using the notation in (1.4) we see by (1.7) that; 

(5.2) U(O,O) 

au In order to evaluate at(O,O) we shall simply use the chain rule and the 

derivatives along ~=0. To this end let ~(t) denote the representation of 

r=O in the (~.t) frame. Clearly, r(~(t),t) = 0 and (2.6) imply, 

(5.3) ~I ( t) - A(O)p(~(t),t)•u(~(t),t), ~(0) 0. 

Thus, if Q is any flow variable which can be expressed either in the 

Eulerian or Lagrangian coordinates (displaying coordinates for clarity), 

we obtain 

aQ(r,t)l 
at r=O 

ao < ~ • t > I ao < ~ • t > I at ~=~(t) - A(O)p(O,t)u(O,t) • a~ ~=~(t) . 
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Observe that when t~o. the left-hand side in this equation converges to the 

GRP solution ~~(0,0) while in the right-hand side we get limits which are 

all known from the Lagrangian solution. Indeed, by (1.7) we have, 

p(O,t)u(O,t) ~ p(O,O)u(O,O), 

which is the associated RP solution along r=O. Also, the limits of the 

derivatives ao~~,t) and aQ(~kt) are determined by the position of ~(t) 

relative to the various waves. For example, if ~(t) lies between the 

contact discontinuity (~=0) and the shock moving to the right, then by the 

notation of Table I, Section 2, 

ao<~.t)l (aQ)* 
at ~=~(t) ~ at +' 

ao<C t) I (aQ)* 
a~ ~=~(t) ~ a~ +' as t~o. 

Of course, these considerations are only valid if r=O is not contained in a 

rarefaction fan, namely, that it is not a sonic line. 

To summarize the above, we have, 

Theorea 5.1. (Non-Sonic Case).. In the non-sonic case the EuLerian soLution 

to the GRP is given by 

(5.4) au . [au(~.t)l au(~.t)l J at(O,O) = l1m at ~=~(t)- A(O)p(O,O)u(O,O)• a~ ~=~(t) . 
t-o 

The derivatives in the right-hand side are determined from the Lagrangian 

soLution to the GRP and the position of ~=~(t) (i.e., r=O) in the wave 

configuration. 

We remark that by the discussion following the Proposition in the 

Introduction, the position of ~(t) is also determined by the solution to 

the associated RP. 
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Finally, let us turn to the Sonic Case. Here, of course, (5.4) is 

meaningless and we have to go back to the characteristic structure of the 

fan as discussed in Section 3. Throughout the fan, a variable Q is 

expressed as Q(a,~). The line r=O is sonic, so that it is tangent to some 

r -curve (Figure 1) ~=~ 0 . The slope ~ 0 is determined by, 

(5.5) 

where u(O,~). c(O,~) are as in (3.2). 

Now r=O is represented in the fan by (a(t),~(t)) (replacing ~(t) of 

(5.3)) and instead of (5.4) one obtains, 

(5.6) au 
at(O,O) 

The right-hand side in (5.6) is known from the solution (Section 3) of the 

CRW. More specifically, we have, 

Theorem 5.2. (Sonic Case). Let r=O be a sonic Line represented by 

(a(t).~(t)) with (a(O).~(O)) = (0,~ 0 ) in the f--rarefaction fan. Let 

U(a,~) be the soLution of the GRP in the fan, where U(O,~) is (by (1.7)) 

the solution for the associated RP and the variation --3
3 U(a.~) I 

0 
is 

a a= 

obtained in Section 3 (Theorem 3.2 and CorolLary 3.3). Then the solution 

of the GRP in Eulerian coordinates is given by Equation (5.6) where, 

(5.7) 

a 1 
( o) 

~I ( 0) 

~ 
A(O)g_•~ 0 , 

The proof of the formulae (5.7) is identical with that given in 

Section 5 of [4] and will be omitted. 
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6. A Specia~ Case: y-Law Gas and a Simp~ified Arrhenius Mode~ 

In this section we give explicit formulae for the case in which the 

equation of state is given by 

( 6.1) p (y-1)p(e-q 0 z), Y > 1, q 0 > 0, 

where q 0 is the constant chemical energy released when a unit mass of 

unburnt gas is totally burnt and the adiabatic exponent y is fixed 

independently of the other thermodynamic variables. 

From our definition of entropy (2.1), combined with (6.1), we see that 

a suitable choice for S could be, 

(6.2) s 1 p 
y-1 y 

p 

1-y 
p (e-q 0 Z). 

In addition to equation (6.1) we take a reaction rate (the function k 

of (1.1)) which is a "simplified Arrhenius" model, as in [4,7], 

(6.3) k 

where, 

H(x) 
} 1 • 

~o. 
X > 0, 

X ~ 0, 

and Tc is a given ("critical") temperature. The variation of entropy along 

a streamline (see equation (2.5)) is then given by, 

(6.4) f 
1-y - Kq 0 p z•H(T-Tc), 

and the function A (see Equation (2.3)) which represents the contribution 

of the chemistry to the variation of the Riemann invariants (see Equation 

(2.8)) is given by, 

(6.5) A(p,p,z) 
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Observe that the magnitude of A is essentially determined by the product 

Kq 0 , which therefore reflects the amount of "coupling'' between the chemical 

and the fluid dynamical phases of the flow (compare with the remarks 

following Equation (2.8)). 

In the case at hand, the solution of the GRP can be obtained 

explicitly. This means that one has explicit expressions for the 

characteristic derivatives in the CRW (Section 3), and in particular for 

a(~) (Theorem 3.2). Also, the Hugoniot curve in this case is given by an 

explicit algebraic expression. Hence one can calculate (in closed form) 

the coefficients a±, b± and d± in Theorem 4.1, as well as ~ 0 and the other 

quantities needed in the sonic case (Theorem 5.2). 

Clearly, the solution to the associated RP in our case is identical 

with that of [4], so we skip it completely. The reader may find the 

details in Proposition 6.1 there. Also, all the expressions in the 

simplified model here are obtained by straightforward substitution in the 

general formulae of Sections 3,4 above and an application of the explicit 

expression for the Hugoniot curve, taking into account the additional 

features of variable cross section and external fields. So in what follows 

we simply list the results. The reader may consult Section 6 of [4] for 

more details. 

Corresponding to the critical temperature Tc we have in the 

rarefaction fan a value ~c for which the associated RP yields, 

(6.6) T(O,~ ) c = 
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Theorem 6.1. Let Sa(O,~). za(O,~) and a(~) = ua(O,~) be as in Proposition 

3.1 and Theorem 3.2. Then in our model we have the following expressions: 

(6.7) s (0.~) a 

(6.8) s (0,1) a 

(6.9) z (0,~) a 

(6.10) z (0,1) a 

(6.11) a(~) 

where, with >.. 

~c~1. l ~~sa ( o . 1 ) . 

~ ~~[sa(0,1) - K•q 0 A(0)-1z_g=1p=-y· ~;= 1 (~~:~Y-1)]. 1>~~~c' 
( ~ -~ ( ) 
( ~ ·~c sa 0 ·~c ' ~<~ <1, c 

(as) -1 -1 1-y ( ) 
a~_- Kq 0 A(O) z_g_ P_ • H 1-~c . 

~ ~1 ,...c ' 

~[ -1 -1 ~ za(0,1) +Kg_ A(O) z 

~ -~ ( ) ~ ·~ z o.~ , c a c ~<~ <1. c 

( az) + K -1A(0)-1 H(1-~ ). a~ - z_g_ • ,...c 

-(y-1)Kq 0 z_p_ • H(1-~c)' (see (6.5)), 



• 
(6.12) a (/3) 

p 

(6.13) a (/3) 
n 

ReiiUlrks 6.2. 
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( -1 3y-1 
( a(1) - c_s_ (as) (132(y+1)_1), 
( (3y-1 )y a~ -

l 
1 

! 

a(1) 

1-3y 

a(/3 +0) + ~g-2A 132(y+1) 
c - - c 

1-3y 
·(132(y+1)_1) 

13 ~1. c 

1>/3~13 , c 

- 3v-1 g_ P_l3c 8a(0,/3c) R2(v+t) 2(v+t) 
y-1 -1 y -~ [ 3y-1 3y-1 l 

' ~ ' - 13c ' , 13<13c<l. 

[ 

y-3 3y-5 l (y-l)u +2c 4c 
- p-lA(O)-ln(O) - -·(132(y+1)_1) - -----·(132(y+1)_1) , 

- y-3 3y-5 

(a) Observe that ap(/3),an(l3) and a~(/3) reflect, respectively, 

the planar part, the contribution due to the variable cross section 

(n(O) = :~~~) by (2.7)) and the contribution due to the external field. 

(b) It is interesting that the expression (6.13) for an(/3) is singular for 

5 
y = 3,3. For these two values one obtains the correct expressions by 

taking the analytic limits as y- 3 or y- ~(compare [3]). 

(c) The case 13c ~ 1 means simply that there is no chemical reaction 

throughout the whole rarefaction wave, since clearly the temperature 

decreases in the direction of decreasing /3. 
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Recall that by (4.3) the coefficients a_,b_ and d_ in (4.1) are known 

once a(~) (and the solution of the associated RP) are known. Thus, it 

remains to derive explicit expressions for a+,b+ and d+. In this setting 

(Fig.1) we are assuming that there is a shock wave travelling to the right. 

Obviously, the Hugoniot (p-u) relation for this shock is not affected by 

the variable cross section and the presence of an external potential. 

However the transition from spatial to time derivatives (and vice versa) 

involves these two additional ingredients. Thus, the method of derivation 

for the formulae in the following theorem is identical with that of Section 

6 in (4], but there are additional terms. 

Theorem 6.3. Assume the wave configuration of Figure 1 as well as 

(6.1), (6.3) for the equation of state and the reaction rate. Then the 

coefficients a+,b+,d+ in (4.2) are given by the following expressions, 

where w+ 

and n(O) 

(6.15} 

( 6. 16) 

(6.17) 

where, 

(6.18) L 
u 

A(O)p*-p* 
u*-u+ 

A' ( 0) 
A( 0) . 

is the (Lagrangian) speed of the shock, ~ 2 = y- 1
1

, 
y+ 

1 u*-u+ ( *)-2 -1 -1 
2 * 2 - g+ A(O) W+ - A(O)W+ , 

p +~ p+' 



(6.19) L p 

(6.20) L p 

(6.21) L n 

(6.22) LA. 

(6.23) Lcp 
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- ~(u*-u ) 2p. + • 

_u_*~-_u..;:;.+ [u + 
2 + 

* -1 ( *)-2 + A.+ • A(O) w. g. , 

~ ~( ) ~* = ~( * * ) "'• = "'p.,p.,z. , ""• "'P •• p ,z. (see ( 6. 5) ) , 

- 2 + p*-p. 
2(p*+JJ2p.)" 

This concludes the discussion of the special case. The formulae of 

this section enable one to work in the context of the Lagrangian solution 

of the GRP (Section 4) or the Eulerian solution (Section 5) with fully 

explicit expressions for the fluxes. Our numerical examples in the next 

section are all built on this special case. 
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7. Numerical Examples 

The GRP scheme is based on a direct application of the analytic 

solution at cell-boundaries, as outlined in the Introduction, Equations 

(1.2) and (1.5). However, using the special case of Section 6 we have a 

non-smooth reaction rate, involving a jump discontinuity at the critical 

temperature Tc (see Eq. (6.3)}. Hence some care is needed when 

discretizing the fourth equation in (1.1). 

Let us summarize briefly the steps taken in the implementation of the 

GRP method. 

We assume that at time t = tn = nAt we are given all cell averages U~ 

as well as the variations (AU)~. These can be translated into either 

Lagrangian or Eulerian (constant) slopes using (2.6). We now proceed as 

follows. 

Step 1. At each cell boundary the GRP is solved according to Section 

n+~ . 
5 and Ui+~ 1s evaluated as in (1.5). 

n+~ n+~ 
Then the fluxes F(U)i+~' G(U)i+~ are 

determined. 

Step 2. Using the difference scheme (1.2) for the first two 

equations in (1.1), the new densities and velocities 
n+1 n+l 

pi and ui are 

calculated. 

Step 3. The source term for the chemistry equation (the fourth 

component of H(U~+~) in (1.2)) is calculated as follows (we are using the 
1 

special form (6.3) and the solution U~+~ to the GRP). 
1+'2 

( 7. 1) 

Step 4. The third and fourth equations in (1.2) are then solved 
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. 1 1 h bt . . . f. t . . Nn+l Nn+l s1mu taneous y, t us o a1n1ng tne 1rs approx1mat1ons zi ,ei and hence 

Nn+l TNn.+l. also pi and 
1 

Here we are using (7.1) for the fourth equation. 

Step 5. A new source term for the chemistry equation is determined by 

(kp)~+~ = (~)~+~ 
i~+l + T~ 

( 7. 2) • H( 1 1 - T ). 
1 1 2 c 

Step 6. If in (7.2) (kp)?+~ ~ 
1 

~)n+~ i , we repeat Step 4 with the new 

t (k ) n+~ h b . . f. 1 1 f n+l n+1 n+1 source erm p i t us o ta1n1ng Jna resu ts or pi , zi , ei 

Step 7. The new variations in cells are determined by, 

(7.3) ( Au)n.+1 = n+l n+l 
Ll u. v- u. v , 

1 1+~ 1-~ 

and a simple monotonicity algorithm is applied [1,15]. 

This concludes the discussion of the scheme and we can now proceed to 

discuss concrete numerical examples. We have made an attempt to exhaust 

the various combinations of ingredients in (1.1), namely, chemical 

reactions, variable cross section and external fields. Table II lists 

those ingredients included in each example. 

Table II -·- Various ingredients in the numerical examples 

example external field chemistry j variable cross section 

1 -- -- Yes 

2 -- Yes Yes 
I 

3(a) Yes -- Yes 

3(b) Yes Yes Yes 

As a rule, we work with a constant time-step llt in all examples. This 

forces a relatively low CFL number. Of course, the presence of a "stiff" 

reaction rate and our explicit discretization of the chemistry equation 

also require a low CFL number. 
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Example 1. (Infinite Reflected Shock). As our first example we take 

a test problem involving an infinite reflected shock in spherical geometry, 

proposed by W.F. Noh [13] in an unpublished memorandum. 

An infinite sphere of gas is initially cold with pure kinetic energy. 

Thus, the equation-of-state (6.1) is used withy 5 = - and the initial 
3 

(uniform) val~es for the thermodynamic variables are (in any convenient 

units), 
p = 1, p = 0. 

At time t = 0 the gas is uniformly imploding with velocity u = -1. 

Clearly the initial conditions imply that at t = 0 an infinite shock 

is reflected from the origin and brings the incoming gas to rest. Since 

the infinite shock compression is J+
1
1 = 4 it follows directly from the y-

Rankine-Hugoniot conditions that the (uniform) speed of the reflected shock 

. w 1 
lS = 3· At time t = 3 it reaches the radius r = 1 where it encounters 

fluid particles that originated at r = 4. Hence the (uniform) density 

behind the shock is given by ~n p = ~n • 4 3 , that is, p = 64. The Rankine­

Hugoniot condition now implies that the (uniform) pressure behind the shock 

64 
is p = ~- The velocity and pressure profiles ahead of the shock are equal 

to their initial values. The density varies due to geometrical 

compression. 4 The spherical shell of width dr, initially located at r ~ 3t, 

reaches the radius r-t at timet, so that 4nr 2 dr = 4np(r,t)(r-t) 2 dr, whence, 

p(r-t,t) (r-t) 2 ' 

This concludes the analytic solution for this problem. In the 

calculation we took 100 (Eulerian) points equally spaced with ~r = 1. We 

used a time step of ~t = 0.25. The results after 900 time steps (t ~ 225) 
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are shown in Figure 2. The solid line gives the exact solution while the 

dots represent the calculated quantities. It is seen that the average 

calculated density is 63.14 (compared with 64 for the exact one}. The 

location of the shock is obtained with very high accuracy, and so is the 

density profile ahead of the shock. 

Figure 2 

Example 2. (TayLor BLast Wave). In this example we calculate the 

. flow profiles behind a spherical detonation wave initiated at the origin 

r=O. We assume that the explosion propagates into a uniform unburnt gas at 

rest, where p = P0 , P =Po· 

Using the Chapman-Jouguet model (namely, a sharp reaction front} and 

the assumption that the outward blast wave travels at the C-J speed, G.I. 

Taylor [14] has shown that the solution is self-similar in the sense that 

r all quantities depend on I only. Thus, the system (1.1) is reduced to a 

set of coupled ordinary differential equations in terms of the similarity 

coordinate x = f· 
In our numerical treatment we started (at t=O) with Taylor's profile 

where the shock is located at x = 2. We are using 100 (Eulerian) points 

equally distributed over the interval 0 ~ x ~ 10, and take a constant time 

step ~t = 4.10-3 ~sec. Following Taylor, we take in the unburnt gas ahead 

of the shock, 

-6 
Po = 1.0135•10 Mbar, 

gr 
Po = 1.51 cm3· 

For both the burnt and unburnt gas we take the same equation-of-state (6.1} 
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Mbar cm 3 

gr 

For the reaction rate we take the simplified Arrhenius model (6.3), 

with Tc = .13245•10-1 Mbar cm
3
(recall that T = £}. 

gr p 

Our calculations were carried out for 2500 time steps, up to t 10 

~sec, using two different values forK in (6.3). 

-1 UCJ 
(a) K 159.5 J,Lsec 25 . Tx""") , 

-1 ( 
UCJ 

(b) K = 254.2 ~sec = 40 . Tx"""). 

The resulting profiles are shown in Figures 3(a) and 3(b) respectively. 

The solid line represents Taylor's exact solution (C-J model). 

Note that while Taylor's solution is obtained by assuming the 

Chapman-Jouguet theory as well as a C-J uniform shock speed, the reaction 

rates in the numerical calculation are finite. Thus there is no apriori 

reason to assume that the reaction zone should move at exactly the C-J 

speed. 

Figure 3(a) 

Figure 3(b) 

Example 3. (Gas in Cluster). This problem is taken from [16]. We 

consider a uniform gas, initially at rest, and subject to an external 

potential of the form, 
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The gas starts to collapse under the external force (directed inward) and 

pressure, density and temperature begin to rise. We shall now examine what. 

happens in two cases: (a) Non-reactive flow; (b) Reactive flow. In both 

cases the uniform initial values (in any convenient units) are, 

Po = 0.0067, 

5 The equation-of-state is (6.1) withy = 3· 

Po = 1. 

In both cases we are using an equally spaced (Eulerian) grid of 100 

cells with 6r = 0.03. Non reflective boundary conditions are applied at 

r = 3. 

Case (a): Non-reactive ftow. As the pressure gradient builds up, a 

shock is formed close to the center {Figure 4(a) where only the first 67 

cells are shown), bringing the collapsing gas to a halt. At this point 

Figure 4(a) 

the density near the center increases by a factor of about 100, while the 

pressure there is about 2000 times its initial magnitude. In Figure 4(b) 

we show the flow profiles at t = 4. The outgoing shock is very sharp and 

the calculated profiles are very smooth. Our results here are in good 

agreement with those obtained by Yahil et al [16]. 

Figure 4(b) 

Case (b): Reactive flow. The initial conditions here are the same as 

in Case (a), but the gas is reactive. The equation-of-state is again 

(6.1), with 

5 
3' Qo 5, 
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and the reaction rate is given by (6.3), with 

K = 20, Tc = 0.1. 

Note that our reaction equation is different from that of (16]. 

The initial stages of the flow are similar to those of Case (a). 

However, as the gas collapses it heats up and the temperature near the 

center rises above Tc· At this point the gas is ignited and brought to a 

halt. This happens approximately at t = 1.55, much earlier than the 

formation of the fluid dynamical shock in Case (a). Figure 5(a) shows the 

flow profiles at this time, just before ignition. The subsequent flow is 

of course very different from that of the former case. In Figure 5(b) we 

plot the flow profiles at t 1.6 just after ignition. The density is 

about 55 times its original value, while the pressure is around 10,500 

times its original value p0 . Thus, compared to the non-reactive case, the 

temperatures reached here are much higher (in the temperature graph the 

critical temperature Tc is marked by a horizontal line). In Figure 5(c) we 

show the flow at a later stage t = 2.4. Note the change of scale between 

Figures 5(b) and 5(c). We observe that the outgoing wave consists of a 

precompressive shock followed by a reaction zone which occupies about 10 

cells. As in the previous case the shock is sharp and the profiles behind 

it are smooth. Even though our reaction equation is not identical with 

that of [16] (and the calculation there is Lagrangian), our results are 

qualitatively in good agreement with those obtained there. 

Figure 5(a) 

Figure 5(b) 

Figure 5(c) 
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Appendix 

Following Theorem 4.1, we stated that once the time derivatives 

( av)* at are known (along a contact discontinuity), the spatial derivatives 

(av)* can be evaluated. The method of derivation is identical to that of 
a~ ± 

Section 4 in [4], but extra terms appear as a result of the additional 

external fields and variable cross section. We are using the wave-

configuration of Figure 1. 

Derivatives behind the shock (w. = A(O) • p*-p. 
u*-u. 

Lagrangian shock speed) 

( ap)* -1[ au)* J (A.1) a~+=- A(O} (at + !fl'(O}, 

au * 
(A.2) (a~). -1( *)-2[(~)* ( * * *)] -1( *)-1 * - A(O) g. at +A p.,e.,z. - A(O) P. • n(O)u , 

n(O) 
A I (0) 

A(O) . 

az * 
(A.3) (a~). (~~). + w: 1

• [k(p!,e!,z.) - k(e.,p.,z.)J (with k as in (1.1)). 

2( *)2 -2(~) ( *)2 -2(2£) + 3A(O) P. w. a~ + + P. P. a~ + 

[ 
2 2 -1] ( *)2 -2(au) 3W+ + A(O) g.W. • A(O) P. W. ~ + 

[ -1 ( *) -2 ( * * ) 2 ( *) 2 -3 ( ) ] - 3W. c. A p.,e.,z. - A(O) P. W. A p.,e.,z. 

( *)2 -2r -1 2 -1 -1 -1 -1( *)-1 J - A(O) P. w. •A(O)W. g.u.p. +A(O) u.W.P. +2W.A(O) P. u* •n(O). 
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Derivatives behind the rarefaction wave 

an * Here we list the derivatives (3t)- behind a rarefaction wave (in the 

configuration of Figure 1). They are obtained either from the equations 

(2.7) or from the directional derivatives ~~(o.~*) along the tail 

characteristic of the rarefaction fan. In the latter case one simply uses 

the chain rule, 

(A.5) 

(see Equation (3.4)). The derivative ~(o.~*} is known from Theorem 3.2 

an * and Corollary 3.3, while (~}- (along the left-hand side of the contact 

discontinuity) is known from the analysis of Section 4. Thus (A.5) can be 

.2.Q* solved for (a~}_. E.£* This method applies especially for the case of (a~)_, 

which cannot be recovered from the system (2.7). 

We list the relevant formulae, 

ap * 
(A.8) (~)-
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Figure Captions 

Setup for the generalized Riemann problem 

Reflection of spherical infinite shock 

Figure 3(a) Taylor explosion profile: K 

Figure 3(b) Taylor explosion profile: K 

-1 
159.5 ~sec 

-1 
254.2 ~sec 

Figure 4(a) Non-reactive collapsing gas: Shock is formed 

Figure 4(b) Non-reactive collapsing gas: A sharp shock is moving out 

Figure S(a) Reactive collapsing gas, shortly before ignition 

Figure 5(b) Reactive collapsing gas, shortly after ignition 

Figure 5(c) Reactive collapsing gas, when most of the gas is burnt out 
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' NOH S FIRST PROBLEM 

L= 100. OX= 1.000 

GRMR= 1.67 
CFLMRX= . 311 

VELOCITY RT T= 225.0 

DT= .25000 

PRESSURE RT T= 225.0 
.JOE•OD,-------------------, .25£•02,------------------, 

-.! lE•Ol'------------------' Q,QQE•OOL-----------_..l._----J 
0 .QQE•OO .J OE•03 0 .QQE•OO .JQE•03 

DENSITY RT T= 225.0 ENTROPY RT T= 225-0 
. 7DE•02,.------------------, Q.QOE•OD,------------------, 

.J DE•OlL------------------' - .25E•02L __________ _.::::::::~ 
Q.QQE•DO .JQE•03 Q.QQE•OO .JOE•03 

Figure 2 



TAYLOR's SPH~RICRL EXPL.OSION 

- 42 .. 

L= 100. OX= .lOOOE+OO DT= .40000E-02 
EXPLICIT=.TRUE . TC= .132E~01RRTE= 25.00 *OCJ/OX 
GRMR= 3·. 09 
CFLMRX= . 231 E-0 1 0= . 60948 

VELOCITY AT T= 10-00 PRESSURE AT T= 10.00 
.2DE•OD,----------------, .2DE•OO,-----------------, 

.. .. .. .. ·· 
. . 

. . 

-o!DE•OD'---------------.....1 Q.ODE•OD'-------------..._-.-l 
Q.QQE•OO .tOE•02 Q.OOE•OO . 10E•02 

DENSITY AT T= 10.00 ENTROPY AT T= 10.00 
.2SE•Ol,.----------------, Q.OOE•OD,-----------------, 

.SOE•OD'---------------.....1 -oiDE•02'------------------' 
Q.QQE•OO o!OE•02 0 .QQE•OO 

TEMP AT T= 10.00 
.IOE•OD,---------------, 

~--... _____ .....,.... ............... 

. 
.... ·· 

..... 

.t2E•O 1 

Q.OOE·OO'----------------~ -.2DE•O 0 

z 

Q.QOE•OO .IQE•02 Q.OOE•OO 

Figu~e 3 (a) 

.tOE•02 

AT T= 10.00 

. 

.tOE•02 



TAYLOR S SPHERICAL EXPLOSION 
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L= 100. OX= .lOOOE+OO DT= .40000E-02 
EXPLICIT=.TRUE • TC= .132E-01RRTE= 40.00 *DCJ/OX 
GRMR= 3.09 
CFLMRX= . 225E-0 1 D= . 66008 

VELOCITY AT T= 10.00 PRESSURE AT T= 10.00 
-ZOE•OO.------,-------------, .ZOE•OO,...-----------------. 

·"" ;,." .. 

-.tOE•OO'--------------------' 0-00E•OO'----------------'-__.. 
0 -OOE•OO -10E•02 0 .QOE•OO .tOE •02 

DENSITY AT T= 10.00 ENTROPY AT T= 10.00 
.ZSE•Ol.-----------------, Q.OOE•OO.--------------,-----, 

-

.SOE•OO'--------------------' -.tOE•02'-----------------' 
0-00E•OO -10E•02 O·OOE•OO ·10E•02 

TEMP AT T= 10.00 Z AT T= 10.00 
.toE-00,....-----------------., -12E•Ol,...------------------, 

__________ ...-
-.. .,. . . ~ 

// 

a.OOE•ODL-------------~ ··20E•OOL----------------l 
Q.OOE•OO ·10E•02 Q.QOE•OO .tOE•02 

Fig~re 3 lb} 
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GR5 COLLRP5[ UNDER POTEN=-1 /5QRT ( 1 +R)IotE2 J 

(NO MICROPHY5IC5 l 

L= 100. OX= .3000E-01 

GRMR= 1.67 
CFLMRX= .145 

VELOCITY RT T= 2.000 
.tOE•OD,-----------------, 

... ... 

················ 
.. .. 

.. .. .. .. 
.. .. .. .. 

.. ~~··· .... 
.... ~~·· ... 

- .SOE•ODL-----------------l 
0 .QOE•OO ·20E•OI 

DENSITY RT T= 2.000 
.IOE•03,-----------------, 

·. 

·. 
0 · OOE •OOL---··_··_···-··-·•--•••=••=••=•••=••=••=•••=••=••...._•••=••=••=•••=••=••=•••=••=sll•• 

O.OOE•OO ·20E•OI 

DT= .50000E-02 

PRESSURE RT T= 2-000 
.ISE•02·,-------------------, 

. . 

0 .QOE•OOIL...O .-OO-E+-::0::-=-"••!U&o...._ ________ ~·20~E•OI 

ENTROPY RT T= 2.000 
-.40£•01,.-----------------, 

eee 11 •••••••••••••••••••••••••••••oeee••••••r~IIID•••o•••••••a•••• 

- .SOE•OIL------------------' 
Q.QOE•OO .20E•OI 

Figure 4 (a) 
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GAS COLLAPSE UNDER POTEN=-1 /SORT ( 1 +Rllo~E2 l 
(NO MICROPHYSICS 

L= 100. OX= .3000E-01 

GAMA= 1.67 
CFLMAX= .167 

VELOCITY RT T= 4-000 
.tOE•OD,...----------------, 

.. .. .. .. .. .. 
.. .. .. .. ········ .. 

.. 
-.BOE•00'L--------r""'-""----------' 

0 .QOE•OO · ZOE•OI 

DENSITY RT T= 4-000 
.IOE•03,...----------------, 

···. 

.. 
··········· 

DT= .50000E-02 

PRESSURE RT T= 4.000 
.tSE•02~,..----------------, 

···· ... . . 
····· ... .. . . . . ··· . 

Q.QOE•OOI__-------------....1 
Q.QQE•OO ·ZOE•OI 

ENTROPY RT T= 4.000 
-.,OE•Dl,...----------------, 
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····· .. ····· 
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Figure 4 (b) 



GR S C 0 L L R P S E UN 0 E R P 0 TEN=- 1 IS Q R T ( 1 + R llo~ 2 l 
(WITH MICROPHYSICS 

L = 1 0 0 • 0 X = • 3 00 0 E - 0 1 OT= .lOOOOE-02 
EXPLICIT=.TRUE • TC= • 100 RATE= 20.0 
GRMR= 1 • 6 7 
CFLMRX= .240E-01 

VELOCITY RT T= 1.550 PRESSURE RT T= 1.550 
-20E•Ol,-----------------, .80£•02,.---------------, 

. . 
~ ~ 

-.SOE•OOL-_: .... ~~==----------_j O.OOE•OOL....!o·------------,.__,1 
O.OOE•OO .30E•OI o.OOE•OO . 30E•OI 

DENSITY RT T= 1 .550 ENTROPY RT T= 1.550 
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Q.OOE·OO~o;;;;;:;=============J c·20E•OOL-------------___J 
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F~gure 5 ta,) 
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GAS COLLAPSE UNDER POTEN=-1/SQRT( 1+RllotE2 l 
(WITH MICROPHYSICS l 

L= 100. OX= .3000E-01 DT= .lOOOOE-02 
EXPLICIT=.TRUE • 
GRMR= 1 • 67 
CFLMRX= .483E-01 

TC= .100 RATE= 20.0 
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GR S C 0 L L R P S E UN 0 E R P 0 TEN=- 1 IS Q R T ( 1 + R ~olE 2 l 
lWITH MICROPHYSICS l 

L= 100. OX= .3000E-01 DT= .10000E-02 
EXPLICIT=.TRUE • 
GRMR= 1 • 67 
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