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REVIEW ARTICLE

Systematic benchmarking of omics computational
tools
Serghei Mangul1,2, Lana S. Martin2, Brian L. Hill 1, Angela Ka-Mei Lam1, Margaret G. Distler3,

Alex Zelikovsky 4,5, Eleazar Eskin1,6 & Jonathan Flint3

Computational omics methods packaged as software have become essential to modern

biological research. The increasing dependence of scientists on these powerful software tools

creates a need for systematic assessment of these methods, known as benchmarking.

Adopting a standardized benchmarking practice could help researchers who use omics data

to better leverage recent technological innovations. Our review summarizes benchmarking

practices from 25 recent studies and discusses the challenges, advantages, and limitations of

benchmarking across various domains of biology. We also propose principles that can make

computational biology benchmarking studies more sustainable and reproducible, ultimately

increasing the transparency of biomedical data and results.
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Many new algorithms1,2 have been developed to accom-
modate today’s flood of genomic data; however, sys-
tematic assessment of software tool performance

remains a challenging and laborious process3. Without a stan-
dardized comparison, potential software users lack an adequate
guide for selecting tools that best suit their data. A researcher with
a limited computational background may lack sufficient con-
textual knowledge to weigh the advantages of adopting a new
tool, which promises specific gains, against discarding an existing
tool with proven capability. Unsystematic assessment of new
algorithms creates a communication gap between tool developers
and biomedical researchers, the end users of the developed tool.

The developer–researcher gap can be addressed with bench-
marking studies, which inform the research community about the
most appropriate tools for specific analytical tasks and data
types4,5. The general purpose of benchmarking is to develop
scientifically rigorous knowledge of an analytical tool’s perfor-
mance6, which can be used to guide researchers in selecting a
software tool, matching methods with hypothesis formation and
testing, and developing tool optimization (i.e., monitor perfor-
mance as a process control measure).

Assessment of a newly published algorithm is typically per-
formed by the researchers who develop the tool. An unsystematic
assessment practice can lead to biases in published results, a
phenomenon referred to as the self-assessment trap. Many
computational laboratories use simulated data, as they lack ade-
quate resources to generate or access gold standard experimental
data when self-assessing a newly developed tool. Using solely
simulated data to estimate the performance of a tool is common
practice yet poses several limitations. First, the models under
which the simulated data are generated can differentially bias the
outcomes of algorithms. For example, the algorithm itself could
be trained on simulated data prior to running. Second, simulated
data cannot capture true experimental variability and will always
be less complex than real data7. Third, not all simulated data are
validated with real-world data, and many methods used to
simulate data have yet to be validated by the research commu-
nity8. Even small errors resulting from improperly selected or
inaccurately used software tools—or from ignoring the assump-
tions used by certain tools—can have profound consequences in
downstream analyses, potentially producing both false positive
and false negative results. A more-comprehensive approach is to
complement the simulated data with experimental data, which
was generated by the previous studies and is publicly available.

Systematic benchmarking based on gold standard data would
inform the biomedical research community of the strengths and
weaknesses associated with each analytical tool available in
computational biology9. A benchmarking study first runs avail-
able measurement protocols to produce the raw omics data,
which serve as the input for the computational tools (see Fig. 1).
Results obtained by running computational tools are compared
against the gold standard data; comparison of these results with
the gold standard allows researchers to use statistical and per-
formance metrics to explicitly differentiate among existing com-
putational algorithms in a standardized way. Ultimately, the
generated data and robust scoring methodologies produced by
benchmarking studies would be a valuable resource when shared
with the research community (Box 1).

Our review summarizes established principles for guiding the
design of new benchmarking studies. We separately discuss the
challenges and limitations of benchmarking studies and highlight
domains of computational biology where, owing to a lack of an
accurate gold standard, benchmarking is impossible or limited.
We discuss different strategies that can be used to optimize
benchmarking, including crowdsourcing and challenge-based
benchmarking10–12. We also identify and discuss aspects of

challenge-based benchmarking relevant to tests performed by
individual research groups. Finally, we propose step-by-step
instructions for using containerization, common data repre-
sentation, open data, and systematic parameter description to
increase the reusability, transparency, and reproducibility of
benchmarking studies.

In this review, we only focus on the benchmarking of the
computational tools which inform downstream users about the
methods with the best performances. However, benchmarking
can be defined more broadly, where estimating the tools with the
best performance is only one aspect of the benchmarking. Other
goals of the benchmarking may include building community
(through competition), stimulating innovation, driving biology,
and providing a forum for exchanging ideas and results13.
Simultaneously balancing all aspects requires concerted effort.
For example, a competition-based benchmarking study that
publicly releases results on unproven tools could, in some cases,
discourage participants from submitted novel tools. In such cases,
to keep in mind stimulation of innovation, benchmarking
study coordinators may only release prediction results internally.
Similarly, in new fields, one cannot always identify proper
performance metrics, especially if a challenge is held for the
first time.

Benchmarking studies. A benchmarking study consists of a
robust and comprehensive evaluation of the capabilities of
existing algorithms to solve a particular computational biology
problem. These studies use gold standard data sets to serve as a
ground truth and well-defined scoring metrics to assess the per-
formance and accuracy of each tool when applied to a variety of
analytical tasks and data types. Gold standard data sets are often
obtained using highly accurate experimental procedures that are
cost prohibitive in the context of routine biomedical research. For
example, Sanger sequencing can be considered a gold standard as
it is a highly accurate DNA sequencing technology capable of
accurately identifying discrete differences between the human
reference and sequencing reads (also known as genetics variants).
However, at the time of publication Sanger sequencing costs ~
250 times more per read than less accurate sequencing platforms.

There is little consensus among researchers about what
constitutes a gold standard experimental data set for each
particular application (e.g., error correction, genome assembly,
microbiome analysis). For example, what is the minimum
number of samples that should be included in a benchmarking
study? What are adequate levels of coverage and/or fidelity of
data? Should there be molecular confirmation of data? These
fundamental questions are presently unresolved; systematic
benchmarking studies can provide the data and tools to support
informed dialog necessary to explore these inquiries.

Owing to the extremely complex nature of biological systems,
many domains of modern biology presently lack tools capable of
defining and obtaining gold standards. Even when such gold
standards are possible to define, producing a gold standard for
use in benchmarking studies is an extremely complicated and
laborious process14–16. (In Supplementary Note 1, we discuss the
significant limitations imposed on benchmarking studies by the
current lack of an accurate gold standard.) In this section,
we summarize three categories of techniques for preparing raw
data for the gold standard: techniques involving analysis of
raw data, techniques involving an integration and arbitration
approach, and techniques that do not require processing of raw
data (see Table 1 and Fig. 1e, f).

Developers can prepare a gold standard by analyzing raw data
with currently available technologies (Fig. 1e, f). If possible, a
trusted technology (e.g., Sanger sequencing) needs to be applied
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to a data set in order obtain the gold standard benchmark
(Table 1). Trusted technology may not be available; in such cases,
alternative technology can be applied. An alternative technology
likewise requires minimal or no computational inference,
allowing the tools to avoid biases introduced during computa-
tional processing of data. In many cases, the accuracy of
alternative technologies may be inadequate. The produced gold

standards should be applied with caution in such cases. For
example, qPCR—widely considered the gold standard for gene
expression profiling—shows strong deviations of ~ 5–10% across
various targets17.

Alternatively, developers can prepare the gold standard with an
integration and arbitration approach4, which integrates results
from multiple ordinary experimental procedures and generates a
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consensus that serves as a gold standard (Fig. 1e, f). For example,
the Genome in the Bottle Consortium (GIB) successfully
generated a gold standard reference genome that includes a set
of single-nucleotide polymorphisms and small indels by integrat-
ing and arbitrating across five sequencing technologies, seven
read mappers, and three variant callers4. This approach, when

compared with each individual technology, is capable of reducing
the number of false positives, yet disagreement between used
technologies can result in an incomplete gold standard. Such
incompleteness challenges the assumption that elements from the
gold standard completely overlap with the elements from the
sample of the study18. Inflated true positive, false positive, and

Fig. 1 Study design for benchmarking omics computational tools. to evaluate the accuracy of benchmarked computational tools, results obtained by running
the computational tools are compared against the gold standard data (ground truth). First, biological samples are probed by regular measurement
protocols (processes that generate omics data) (a). Raw omics data generated by these protocols serve as the input for examined computational tools
(b, c). Results obtained by running computational tools are the final output of the omics pipeline (d). Gold standard data are produced by the benchmarking
procedure and are based on technological protocol, expert manual evaluation, synthetic mock community, curated databases, or computational simulation
(e). (Types of technologies available for use in the preparation of gold standard data are described in the section Preparation of Gold Standard Data.) Some
of the techniques used to generate the gold standard data produce raw data, which needs to be analyzed (f); other techniques directly produce the gold
standard data (g). Gold standard data obtained by or in conjunction with the raw omics data generated by regular measurement protocols enables
researchers to use statistical metrics (h) and performance metrics to assess the computational cost and speed required to run the benchmarked
computational tools (h), allowing the researcher to draw explicit, standardized comparison of existing computational algorithms. Methods with the best
performances are located on the Pareto frontier and are identified as Pareto-efficient methods (i). A method is considered to be Pareto efficient if no other
benchmarked method improves the score of one evaluation metric without degrading the score of another evaluation metric. (Evaluation methods and
criteria for selecting the methods with the best performances are described in the section Selecting a Method with the Best Performance).

Box 1 Principles for rigorous, reproducible, transparent, and systematic benchmarking

Our review of publications identifies seven principles to guide researchers in designing a benchmarking study that increases reusability, transparency,
and reproducibility of benchmarking studies.

1. Compile a comprehensive list of tools to be benchmarked. Identify the software tools that are most suitable for the analytical tasks and data types in
the benchmarking project. For example, perform a PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) search for relevant articles. Include software
tools mentioned in references of each identified publication. A tool may be impossible to install and run in a reasonable amount of time. We suggest
documenting such cases in log files to save the effort of other researchers. (Instructions on how to create log file are provided in Supplementary
Note 2.)

The number of applicable methods may be extremely large; some domains of biology have up to 200 tools currently available60. Researchers can
scale up a benchmarking study using a competition-based benchmarking model. Alternatively, researchers may review all published tools and select
the most popular algorithms for the benchmarking study based on the number of citations or the reputation of the journal. However, selecting the
best tool a priori is risky, as tool popularity, journal impact, and citation frequency do not necessarily imply a particular algorithm is optimal3,61.

2. Prepare and describe benchmarking data. Maintain a spreadsheet summarizing your benchmarking data. Explain the protocols used for preparing the
raw and gold standard data sets. Describe potential limitations of the data. For example, can the benchmarking data bias the performance of any
specific type of algorithm? Record methods of benchmarking data preparation, complete provenance, and, if applicable, code for gathering and
cleaning data.

3. Select evaluation metrics. Metrics for evaluating the accuracy of software tools need to be carefully selected and packed in the form of scripts, which
the community can later use to evaluate the performance of any new algorithms. Benchmarking studies need to consider and document nuances in
data representation. For example, comparison of variant calls may be confounded by different representations of insertions, deletions, and multiple
nucleotide polymorphisms—particularly when exploring complex regions of the genome62.

4. Consider parameter optimization. Parameter optimization is often best understood by the method developers, as deciding how a method is applied to
a data set usually involves selecting specific parameters and input pre-processing. In a competition-based model, participants will determine for each
tool the optimal parameters. In an independent model, authors need access to all useful combinations of parameters to identify combinations of
parameters that perform best for a given algorithm.

5. Summarize algorithm features and share commands for installing and running tools. Update your spreadsheet with the benchmarked algorithm’s
features, underlying algorithm, software dependencies, and citation of publication (e.g., Hatem and Ayat et al.63). We provide a template of a
benchmarking spreadsheet in Supplementary Table 1.

Provide detailed instructions for installing and running the benchmarked tools. For example, note when a large number of dependencies are
required to run a tool. A centralized source of information on issues such as dependencies would be a valuable resource to the research community,
as complex computational tasks can be a significant barrier for potential users.

When many dependencies are required to run a tool, share the benchmarked tool in the form of a computable environment (e.g., virtual machine
images, containers, Docker (https://www.docker.com/)55). Easy-to-use interfaces that package software with all required dependencies and
parameters enable flexibility and portability of the software tool across platforms and operating systems. Consider consulting with tool developers to
ensure the correctness of chosen commands, parameters, and other contents in your spreadsheet.

6. Define a universal format (if necessary). When the output of each tool is different, develop and share a script capable of generating a universal
format. Data types and formats in many fields of computational biology rapidly change, yet software developers and benchmarking studies can take a
lead in standardizing data types and formats. For example, the QfO consortium defines common file formats for orthology inference methods49.

7. Provide a flexible interface for downloading data. Sharing an easy-to-use interface that can be used to download the input raw data and the gold
standard data helps maximize data reusability. We recommend also sharing the raw output data of each benchmarked tool, so an end user can apply
their own evaluation metrics. Scripts available via such interfaces can also be used to reproduce the results and figures of benchmarking studies,
ultimately increasing the transparency and computational reproducibility of benchmarking studies28.

REVIEW ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09406-4

4 NATURE COMMUNICATIONS |         (2019) 10:1393 | https://doi.org/10.1038/s41467-019-09406-4 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.docker.com/
www.nature.com/naturecommunications


false negative estimates can result when we ignore the fact that
some variants present in the sample are missing in the GIB gold
standard set results.

Developers preparing a gold standard may choose from several
approaches that do not require computational processing of data
(Fig. 1e, f). Owing to the complexity of biological systems, it
is impossible to obtain the ground truth in many applications
(e.g., microbiome analysis). In these cases, instead of obtaining
the golden standard, one can design a mock community (often
referred to as a synthetic mock community) by combining
titrated in vitro proportions of community elements. The most
popular mock communities are prepared as mixtures of known
microbial organisms19,20. When microbial organisms are closely
related to similar sequences, such as intra-host RNA-virus
populations, one should include closely related pairs and
challenge computational methods with various frequency pro-
files20–23. Mock community gold standards offer numerous
advantages, but they are artificial and typically comprised of a
small number of members when compared with real commu-
nities; a smaller number of members increases the risk of
oversimplifying reality.

In some cases, expert manual evaluation of output of the
technology can be used to produce the gold standard. For
example, a trained pathologist can manually evaluate a histolo-
gical image to determine the infiltration levels of lymphocytes in a
tumor. This process allows the pathologist to assign a tumor-
infiltrating lymphocyte score—a robust evaluation metric gen-
erally supported in the scientific community24. Unfortunately, the
procedure for manually produced output cannot scale across
multiple samples and lacks formal procedure, thereby limiting
comparison of results produced by different experts.

Curated databases promise to deliver a highly accurate set of
genes, gene variants, and other genomic elements in the form of
an encyclopedia. Building large curated databases is a tremendous
effort exercised across multiple institutions and agencies and uses
a combination of computational analysis, manual annotation, and
experimental validation techniques. For example, GENCODE is a
database of highly accurate gene features that appear across the
entire human genome25. Another example of a large curated
database is UniProt-GOA, which uses concepts in gene ontology
to describe the functions of specific genes26,27. Ideally, the content

of different gene ontology databases would be synchronized,
but, in practice, they have historically contained different
annotations28.

Such databases can serve as a gold standard, assuming that
elements from the database cover the elements from the sample
in the study. However, this assumption can be invalid owing to
the incompleteness of some large curated databases; the fact that
some elements present in the sample are missing in the database
may limit our ability to define true positives, false positives, and
false negatives. Despite those limitations, large curated databases
grant a high level of sensitivity to the researcher by allowing
comparison of the number of elements in a sample and in a
database.

The challenge of unsystematic benchmarking may, at times,
represent a more fundamental problem couched within a multi-
step pipeline intended to solve a complex biological problem. The
preceding step in a pipeline may introduce errors in its output, of
which the succeeding step may not be aware. Then benchmarking
of the succeeding step may require as the gold standard a curated
software input, in which errors introduced by the previous step
are eliminated. For example, the scaffolding problem is a part of
the assembly pipeline that starts with assembly of reads into
contigs and ends with the output of a scaffold, a set of chains each
consisting of ordered oriented contigs bearing estimated gaps
between neighbors. The input contigs may be misassembled or
may repeat each other; therefore, a “real” benchmark requires
curation in order to produce a valid ground truth29,30.

At last, researchers can use computational simulation to
generate the golden standard, data often referred to as simulated
or in silico gold standard data. Simulated data can be generated at
no cost, but the application of such data in benchmarking can
only complement the real experimental gold standard data.
Simulated data cannot be used as a gold standard because it will
always be less complex than real data and fails to capture true
experimental variability. Lack of an experimental gold standard
for the problem of evolutionary inference models and methods
(e.g., sequence alignment, phylogenetic tree inference, orthology
calling) has resulted in diametrically opposite conclusions
provided by different benchmarking studies30,31.

Methods designed to simulate experimental data are constantly
in development8, and numerous attempts have been made to

Table 1 Advantages and limitations of various techniques used to prepare gold standard data

Technique Advantages Limitations

Trusted technology High accuracy
Direct, usually, no computational inference is required

Carries high cost
Does not scale

Alternative technology Direct, usually, no computational inference is required Not necessarily more accurate
Multiple ordinary
technologies

Using a consensus between the technologies allow reducing
the number of false positives compared with each individual
technology

Disagreement between used technologies results in the
incompleteness of the gold standard

Mock community Ground truth is fully known, because raw data are generated
from prepared gold standard

The small number of items (e.g., microbial species)
compared with reality
The designed community is artificial

Expert manual evaluation Most suitable for specialist understanding Does not scale
Lack of formal procedure, limiting comparison of results
produced by different experts

Curated database Allows access to sensitivity, by comparing the number of
elements in the sample and the database

Incompleteness of curated databases results in limited
ability to define true positives and false negatives

Curated software input Ground truth is fully known, because raw data are generated
from prepared gold standard

Does not validate on real inputs, which usually contain
errors

Computational simulation Ground truth is fully known, because raw data are generated
from prepared gold standard
Cost-free generation of multiple gold standards

Technology is simulated, and cannot capture true
experimental variability and will always be less complex
than real data
Gold standard data are artificial
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improve the quality of simulated data (e.g., incorporating real and
simulated data in one comprehensive, semi-real data set).
Analogously, Ewing et al. 14 proposed improving the quality of
the sequencing data by introducing simulated cancer mutations
into real sequencing data. This approach uses real, rather than
simulated, sequencing data and maintains the true properties of
sequencing reads. Other techniques create semi-real data by
subsampling real data sets to generate new data sets with known
properties. For example, Soneson et al.32 created a null (i.e., no
differential expression expected) data set by subsampling from a
single group.

Once a gold standard has been prepared for a particular
application, the performance of a method can be evaluated using
numerous factors (Fig. 1h). Selecting evaluation criteria requires
an understanding of statistical assumptions, the differences
between an estimate and true performance, the incompleteness
of gold standard data sets, and the nature of biased gold
standards. This topic is reviewed elsewhere33. In this section,
we summarize the most commonly used measures that can be
used to identify the best-performing methods for a particular
analytical task.

Defining statistical measures is a complicated, ambiguous, and
context-specific process that requires careful examination. For
example, there are numerous ways to define correct alignment of
a read against the reference genome. Researchers must decide if
the experiment requires that (a) only the start position of the read
needs to be correctly mapped, or (b) all bases of the read need to
be correctly mapped. More challenging scenarios arise in cases of
gapped alignment of RNA-Seq reads, and with the presence of
insertion or deletion of bases in the sequence of reads.

According to the confusion matrix, all predictions can be
classified as true positives, false positives (i.e., type I error), false
negatives (i.e., type II error), and true negatives. These output are
the number of correct predictions (i.e., hits), false predictions,
missed predictions, and correct rejections, respectively. Once the
element from the confusion matrix is defined, one can condense
them into various statistical measures. One common measure is
precision (i.e., positive predictive value), the percentage of
positive predictions made by a test that are true. The other most
commonly used measure is sensitivity (i.e., true positive rate or
recall), the percentage of known positives that are correctly
predicted by a test.

If true negatives are defined, one can calculate the specificity
(i.e., true negative rate), accuracy, and Matthews correlation
coefficient34. Precision and sensitivity are often combined into an
F-score (also known as F1 Score or F-measure) measure, a
harmonic mean of precision and recall rates. A high F-score
indicates a reliably precise and sensitive method. Frequently, the
positive or negative prediction is based on a threshold value of a
certain parameter which is not always clear how to determine.
Rather than assessing prediction just for a single threshold, the
performance over a range of cutoffs, including area under the
ROC curve or area under the precision-recall curve metrics, is
commonly reported.

When the benchmarked method predicts the relative frequen-
cies of members or elements (e.g., microbial species), one can use
the correlation between true and predicted relative frequencies to
assess each tool’s performance. When few elements are account-
ing for the majority of frequencies, correlation cannot accurately
account for rare items. In such cases, correlation is completely
dominated by the most commonly occurring frequencies. To
avoid this, one can partition the items in several frequency
intervals (e.g., four quartiles) and separately report correlation for
each interval. An alternative metric treating all frequencies
equally can be represented by the median percent error, which
is the computed median of absolute percent errors by which

predicted frequencies differ from the true frequencies35,36. In
some benchmark studies, a binary classification may be
insufficient for capturing complexity. For example, a study design
may need to predict a structured object (e.g., a consistent
subgraph of the gene ontology graph, which would be protein
function).

Even the most-accurate software tool will fail to be maximally
used if the required computational infrastructure is unaffordable
or the program’s running time is exceptionally long. Computa-
tional cost of a tool is an important criterion for which there are
several means of evaluation. In computer architecture, execution
time or runtime is the amount of time a computer spends
completing a task. As execution time may vary across different
servers, benchmarking studies should report server specifications
and number of processors used. The running time of a software
package is usually measured in CPU time (i.e., process time). The
maximum amount of RAM required to run a software package is
a common proxy indicator of required computational resources.
Although not easy-to measure, factors critical for the wide
adoption of a tool by the scientific community include ease of
installing and ease of performing tasks with the tool, as well as
availability of analytical options and developers’ timely response
to users’ requests.

A benchmarking study can rarely identify a single winner
according to all evaluation metrics. Instead, a valid outcome may
include identifying multiple methods with excellent performance
under different evaluation criteria37. We can identify the top-
ranked benchmarked tools from the set of Pareto efficient
benchmarked methods, which forms a Pareto frontier (Fig. 1i). A
method is considered Pareto efficient if no other benchmarked
method improves one of the evaluation metrics without
degrading another evaluation metric. A benchmarking study
cannot blindly classify all Pareto efficient methods as top-ranked
tools—how significant one of the evaluation metrics improve-
ment is and how acceptable another metric degradation is should
ultimately be subject to expert examination. For example, a
method that performs exceptionally well in speed yet mediocre in
accuracy—and a method that performed poorly in speed yet
exceptionally well in accuracy—could both be identified as Pareto
efficient. In such cases, both methods would be reported as
winners, and an informed user must use discretion in determin-
ing the best method for a given study (see Fig. 1i).

The comprehension and accuracy of a benchmarking study
ultimately depends on the quality of work at each step of the
benchmarking pipeline outlined in Fig. 1e. The quality of a
benchmarking study typically increases with the number of
computational tools assessed and consistency of assessment
protocol. Our review of current benchmarking practices reflects
the most common approach to benchmarking study coordina-
tion: the independent model, where single research groups
conduct individual benchmarking studies of relevant computa-
tional problems. Here, we focus on the challenges, advantages,
and limitations of the competition-based model, a less commonly
used approach in which participants compete to solve problems
in an organized competition.

Challenge-based competitions aim to solve a fundamental
research problem in a short period of time by building a scientific
community around the topic. First, organizers provide partici-
pants with a training data set to develop novel methodologies.
Next, participants apply developed methodologies to real data
and submit results to a centralized hub, where the evaluation is
performed38. The limitations and challenges of competition-
based benchmarking have been reviewed elsewhere10,39–41.

Challenge-based benchmarking was pioneered by Critical
Assessment of protein Structure Prediction42, the first
community-wide contest held in 1994 to assess protein structure
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prediction methods. The inaugural challenge-based benchmark-
ing event was followed by Critical Assessment of Massive Data
Analysis (http://www.camda.info/), the first community-wide
experiment in genomics, transcriptomics, metabolomics, and
other omics domains39,42,43. Since then, community-driven,
challenge-based benchmarking efforts have been recognized as
effective tools that are capable of enabling the evaluation of novel
or existing computational methods39.

A survey of current benchmarking practices. In order to begin
identifying and understanding trends in benchmarking of com-
putational omics tools, we surveyed 25 benchmarking studies
published between 2011 and 2017. For each study, we docu-
mented the area of application (e.g., error correction, genome
assembly, microbiome analysis) and the number of tools included
in the study (Table 2). To identify trends in benchmarking study
design, we noted use of benchmarking study model (e.g., indivi-
dual, competition-based), raw omics data type (e.g., real, simu-
lated), and gold standard data preparation method (e.g.,
alternative technology, mock community) (Table 2). In order to
assess the types of documentation provided, we assessed whether
the published benchmarking study performed parameter opti-
mization, summarized the algorithms’ features, measured the
computational cost of the program, shared commands to install
and run benchmarked tools, or shared the benchmarking data
generated (Table 3). (See legend of Tables 2 and 3 for a detailed
account of each criterion.)

We have observed some differences in benchmarking practices
across different domains. For example, in the domain of read

alignment, there is no feasible mechanism for obtaining the gold
standard experimentally. All read alignment benchmarking
studies surveyed in this project used computationally simulated
data. Similarly, we observed several other domain-specific trends
in specific techniques used to simulate gold standard data. For
example, surveyed benchmarking studies in the domain of
microbiome analysis exclusively used mock community, and the
domain of flow cytometry analysis used only expert manual
evaluation. On the other hand, we observed that certain gold
standard preparation techniques are widely used across domains:
computational simulation and curated databases are two methods
that carry no cost and were used in benchmarking studies across
four different domains.

Approaches to coordinating a benchmarking study. Most (68%)
benchmarking studies are performed by a single research group
(see Table 2). In order to generate data, 17 out of 25 surveyed
benchmarking studies used the individual model, whereas seven
studies used the competitive model. One study included in our
review is driven by a hybrid approach that features both bench-
marking types.

Approaches to selecting tools for a benchmarking study. An
overwhelmingly large number of software tools are currently
available, and an increasing number of applications are released
each month. For example, over 200 computational tools have
been developed for variant analysis of next-generation genome
sequencing data33. Independent benchmarking teams would need
to invest substantial effort in systematically assessing the accuracy

Table 2 Summary of benchmarking study design and methods

Benchmarking study Application No. of
tools

Model
of study

Raw input
data type

Gold standard data
preparation method

Parameter
optimization

Yang et al. 2013 Error correction 7 I R SIMUL N
Aghaeepour et al. 2013 Flow cytometry analysis 14 C R EXPERT N
Bradnam et al. 2013 Genome assembly 21 C R ALTECH n/a
Hunt et al. 2014 Genome assembly 10 I R, S SOFTWARE N
Lindgreen et al. 2016 Microbiome analysis 14 I S SIMUL No
McIntyre et al. 2017 Microbiome analysis 11 I R, S MOCK N
Sczyrba et al. 2017 Microbiome analysis 25 C S SIMUL n/a
Altenhoff et al. 2016 Ortholog prediction 15 I DB DB Y
Jiang et al. 2016 Protein function prediction 121 C R DB n/a
Radjvojac et al. 2013 Protein function prediction 54 C R DB n/a
Baruzzo et al. 2017 Read alignment 14 I S SIMUL Y
Earl et al. 2014 Read alignment 12 C R, S SIMUL n/a
Hatem et al. 2013 Read alignment 9 I R, S SIMUL Y
Hayer et al. 2015 RNA-Seq analysis 7 I R, S ALTECH N
Kanitz et al. 2015 RNA-Seq analysis 11 I R, S ALTECH N
Łabaj et al. 2016 RNA-Seq analysis 7 I R ALTECH N
Łabaj et al. 2016 RNA-Seq analysis 4 I R DB N
Li et al. 2014 RNA-Seq analysis 5 I R ALTECH Y
Steijger et al. 2013 RNA-Seq analysis 14 C, I R ALTECH n/a
Su et al. 2014 RNA-Seq analysis 6 I R ALTECH Y
Zhang et al. 2014 RNA-Seq analysis 3 I R ALTECH Y
Thompson et al. 2011 Sequence alignment 8 I DB DB N
Bohnert et al. 2017 Variant analysis 19 I R, S I&A Y
Ewing et al. 2015 Variant analysis 14 C S SIMUL n/a
Pabinger et al. 2014 Variant analysis 32 I R, S SIMUL N

Surveyed benchmarking studies published from 2011 to 2017 are grouped according to their area of application (indicated in column “Application”). We also recorded the number of tools benchmarked
by each study (“Number of Tools”). We documented the coordinating model used to conduct the benchmarking study (“Model of Study”), such as those independently performed by a single group (“I”),
a competition-based approach (“C”), and a hybrid approach combining elements of “I” and “C” (“C, I”). Types of raw omics data (“Raw Omics Data”) and gold standard data (“Gold Standard Data
Preparation Method”) were documented across benchmarking study. When a benchmarking study uses computationally simulated data, we marked the study as “S”; when real raw data were
experimentally generated in the wet-lab, we marked the study as “R”. When the study used both simulated and real data, we marked the study as “R, S”. Gold standard data types included data that were
computationally simulated (marked as “SIMUL”), manually evaluated by experts (marked as “EXPERT”), prepared by alternative technology (“marked as ALTECH”), prepared as curated software input
(marked as “SOFTWARE”), prepared as mock community (marked as “MOCK”), prepared from curated databases (marked as “DB”), and prepared using an integration and arbitration approach (marked
as “I&A”). In competition-based benchmarking studies, parameter optimization (“Parameter Optimization”) is performed by each team and is not mandatory (marked here as “n/a”). More details about
the characteristics of techniques to prepare gold standard data sets are provided in Table 1
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of the extraordinary volume of new analytical methods. Tools are
often excluded from a benchmarking study if they lack compre-
hensive documentation, require a complicated installation pro-
cess, or are impossible to install and run in a reasonable amount
of time44. Other benchmarking studies focus only on well-known
or frequently used computational tools45–47.

On average, each surveyed benchmarking study evaluated 18.3
tools that had been designed to solve a specific problem in
computational biology (see Table 2). Benchmarking studies
performed under the independent model evaluated an average
of 10.7 computational tools, with the total number of tools
surveyed by each study ranging from 3 to 32. Competition-based
benchmarking studies evaluated an average of 37.3 computational
tools; the number of tools evaluated using the competitive model
range from 12 to 121 tools.

Approaches to preparing gold standard data. The most com-
mon method used to prepare gold standard data for a bench-
marking study is alternative technology; eight out of 25 surveyed
benchmarking studies use various alternative technologies (see
Table 2). The second most common gold standard preparation
technique is computational simulation, observed in eight studies.
As previously mentioned, simulated data are not capable of fully
capturing true experimental variability and should only be used to
complement real gold standard data. Other techniques for gold
standard preparation include expert manual evaluation21 and
curated databases comprised of available databases and literature
references47–50.

Approaches to selecting default parameters versus parameter
optimization. The process for evaluating a software tool is

complex; a researcher must choose specific parameter settings
and input pre-processing techniques. Using parameter optimi-
zation in a benchmarking study can substantially improve the
accuracy of results compared with using default parameter set-
tings. Parameter optimization is computationally intensive and
requires running the same tool multiple times, each with different
combinations of parameter settings. For example, tuning para-
meter settings of RNA-Seq aligners is observed to consistently
increase the number of correctly mapped reads by an average of
10% across all 14 state-of-the-art aligners51. Forty-four percent of
surveyed benchmarking studies performed parameter optimiza-
tion (see Table 2). The remaining benchmarking studies in our
review used tools with default parameter settings.

Approaches to sharing benchmarking data. All the data gen-
erated by a benchmarking study offer substantial value to the
software development and research community—yet these data
are often not shared in the publication nor supplementary
materials. Factors contributing to the current low rate of data and
code sharing with newly developed methods include an absence
of journal policies, requiring the public sharing of these resources
and infrastructural challenges to sharing large data generated by
the benchmarking studies52. Ideally, a benchmarking study
should make publicly available all benchmarking data and code
necessary to process data and reproduce results21.

Although the vast majority of surveyed benchmarking studies
are widely disseminated benchmarking data, only 40% of the
surveyed studies completely shared benchmarking data (includ-
ing the raw output of omics tools) (see Table 3). Most studies
adopted the “shared upon request” model, which is a less
reliable and less reproducible method of data dissemination as it

Table 3 Summary of information types provided by benchmarking studies

Benchmarking study Application Summary
provided

Computational costs
reported

Supporting
documentation

Data
provided

Yang et al. 2013 Error correction Y ExTIME, RAM N P
Aghaeepour et al. 2013 Flow cytometry analysis Y None Y Y
Bradnam et al. 2013 Genome assembly Y None Y Y
Hunt et al. 2014 Genome assembly Y CPU, RAM Y P
Lindgreen et al. 2016 Microbiome analysis Y ExTIME Y N
McIntyre et al. 2017 Microbiome analysis Y ExTIME, RAM Y P
Sczyrba et al. 2017 Microbiome analysis Y None Y Y
Altenhoff et al. 2016 Ortholog prediction Y None N P
Jiang et al. 2016 Protein function prediction N None N P
Radjvojac et al. 2013 Protein function prediction Y None N P
Baruzzo et al. 2017 Read alignment Y ExTIME, CPU,RAM Y P
Earl et al. 2014 Read alignment N None Y Y
Hatem et al. 2013 Read alignment Y ExTIME, CPU,RAM Y Y
Hayer et al. 2015 RNA-Seq analysis N None N P
Kanitz et al. 2015 RNA-Seq analysis Y ExTIME, CPU,RAM Y Y
Łabaj et al. 2016 RNA-Seq analysis Y None P Y
Łabaj et al. 2016 RNA-Seq analysis Y None P Y
Li et al. 2014 RNA-Seq analysis Y None P Y
Steijger et al. 2013 RNA-Seq analysis Y None P P
Su et al. 2014 RNA-Seq analysis N None Y Y
Zhang et al. 2014 RNA-Seq analysis Y None Y P
Thompson et al. 2011 Sequence alignment N None N P
Bohnert et al. 2017 Variant analysis Y None Y P
Ewing et al. 2015 Variant analysis N None N P
Pabinger et al. 2014 Variant analysis Y None N N

Surveyed benchmarking studies published from 2011 to 2017 are grouped according to their area of application (indicated in column “Application”). We documented whether benchmarking studies
summarized the benchmarked algorithm’s features (“Summary Provided). We recorded whether commands to install and run benchmarked tools were shared (“Supporting Documentation Provided”).
We documented whether the benchmarking data are shared publicly (“Data Provided”). We consider the benchmarking data to be fully shared (“Y”) if the gold standard data, raw omics data, and raw
output of each benchmarked tool are shared. When any one or more of those data sets is not shared publicly, we recorded the study as partially (“P”). We recorded the computational resources required
to run the benchmarked tools (‘Computational Costs Reported”). When the benchmarking study used none of the statistical measures from the confusion matrix, the study was marked as none (“N”).
We recorded three measures of computational costs: Execution time (marked as “ExTIME”), CPU time (marked as “CPU”), and the maximum amount of RAM required to run the tool (marked as “RAM”)
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relies on individual authors’ availability to perpetually share
data52,53. In some circumstances, not sharing data and not
being fully transparent is acceptable. For example, in the case
of competition-based benchmarking groups with unpublished
methods may request not to share their results until the
corresponding method paper is published.

Approaches to sharing supporting documentation. Maximum
computational reproducibility of a benchmarking study is only
possible when the commands and parameters required to opti-
mally run and install each tool are made publicly available54.
Providing supporting documentation helps the scientifically
community more easily adopt a tool and is particularly important
for benchmarked tools that have complicated installation pro-
cesses or that require prior installation of dependencies54. We
note that many peer-reviewed journals known for publishing
benchmarking studies do not require the sharing of bench-
marking data nor supporting documentation.

Only 52% of surveyed benchmarking studies share supporting
documentation helpful for a user when installing and running a
benchmarked tool (see Table 3). Sharing a tool’s supporting
documentation through an easy-to-use interface, rather than
through a paper and/or supplementary materials, both of which
make it easier for researchers to adopt the method recommended
by the benchmarking study5,55.

Approaches to evaluating computational costs. In our review of
publications, the vast majority (72%) of benchmarking studies
failed to report computational resources and time required to run
the evaluated tools (see Table 3).

Recommendations for a systematic benchmarking study. The
interdisciplinary field of computational biology could leverage a
systematic benchmarking practice to rapidly assess, disseminate,
and implement the many new tools developed and published each
month. The results of our review of benchmarking studies pub-
lished between 2000 and 2017 provide a foundation for discussing
potential paths forward in systematic benchmarking of omic
computational tools. In addition, benchmarking studies have the
potential to combine the strengths of individual tools for a par-
ticular application or from a specific technology into a more
accurate consensus tool. For example, Aghaeepour et al.21 showed
that the accuracy of cell population identifications from flow
cytometry data can be improved by combining predictions from
individual computational algorithms.

Avoiding overfitting the gold standard data set. Despite the
many advantages of reusing benchmarking data, there is a risk of
overfitting the developed software to produce the best results on a
particular gold standard data set. This process is known as
overfitting and can cause the software to produce unreliable
results with future data sets. In effort to avoid overfitting,
Kanitz et al.44 and Altenhoff et al.49 have implemented an online
interface that evaluates the results of newly developed algorithms.
However, mere access to the algorithm evaluation provides no
realistic guarantee against algorithm overfitting.

One potential approach to avoiding overfitting is to split
benchmarking data into training data and test data, where
training data are publicly available and test data are reserved for
evaluating the performance of new algorithms. We can detect
algorithm overfitting by checking for identical performances
of the new algorithm based on the training data and on the test
data. Nevertheless, it is important to continuously extend and
update gold standards by incorporating novel benchmarks into
training and test data sets. This approach avoids overfitting and is

capable of meeting newly demanding modifications in usage and
technology.

Parameter optimization. Parameter optimization presents a
challenge to independently performed benchmarking studies.
Considering even a small number of parameters can produce an
intractable number of potential parameter combinations for each
tool under study. Several heuristic devices can be used to narrow
the search space. The most common narrowing technique
involves prioritizing parameters for optimization.

Baruzzo et al.51 recommend that benchmarking studies identify
parameters that have the most effect on the quality of a tool’s
results, then optimize this effect over several combinations of the
parameters. For example, the most influential parameter settings
for RNA-Seq alignment tools are the number of allowed
differences between the reference and the sequencing read, which
the tool can tolerate, and seed length51. In competition-based
benchmarking studies, parameter optimization is optional; such
benchmarking studies rely on the expertize of the tool’s developer
to choose optimal parameters.

Sharing benchmarking data. The primary goal of a bench-
marking study is to produce a robust assessment of existing
algorithms, yet the data generated by benchmarking studies can
also be a valuable resource for the research community56.
Benchmarking data ultimately include gold standard data
(Fig. 1g), raw omics data (Fig. 1b), and data generated by
benchmarking tools (Fig. 1d).

Access to data generated by benchmarking tools can easily
improve the precision of newly developed tools by comparing a
new method to the tools previously indexed in the benchmarking
study. Results of the benchmarking study can either be down-
loaded and the analysis locally run, or researchers can upload
their own results and obtain a comparison through an online
interface44,49. In both cases, benchmarking data allow researchers
to easily compare newly developed tools against existing tools
without installing and running third-party software—often a
complicated, time-consuming process, especially when the soft-
ware lacks detailed documentation44.

A particularly effective interface was implemented by The Critical
Assessment of Metagenome Interpretation (CAMI)5 and is available
via GitHub (https://github.com/dkoslicki/CAMIProfilingAnalysis).
This approach permanently archives the repositories that store code
and data (e.g., Zenodo: https://zenodo.org/) and prevent stored
materials from being changed or removed. To the best of our
knowledge, only a single published benchmarking study (CAMI)5

wrapped tools as portable containers.

Incentivizing community adoption. Widespread community
adoption of a systematic benchmarking practice remains a chal-
lenge. In numerous domains of modern biology, recommenda-
tions to create benchmarking studies have yet to be adopted by
the community. For example, numerous benchmarking
studies51,57 have established the best-performing RNA-Seq
aligners. However, the recommendations of benchmarking stu-
dies would have little impact on which RNA-Seq aligners
researchers are choosing. TopHat2 was not on the list of the
recommended tools because of its relatively long runtime and
comparatively low accuracy. Despite the lack of recommendation,
TopHat2 was used in at least 30% of published manuscripts based
on RNA-Seq data, pushing the developers of TopHat2 to officially
announce the retirement of the tool. When researchers choose a
less accurate tool, the decision may translate into billions of
dollars lost owing to low productivity and any influence the
downstream analyses.
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Many aspects of benchmarking are open questions. For
example, how can we encourage the research community to
work on benchmarking while simultaneously working on regular
projects (e.g., develop novel computational tools)? Benchmarking
is time-consuming and can divert a researcher’s work hours from
core scientific projects. Many researchers are concerned that
benchmarking work may foster negatively competitive sentiments
in the research community and may, ultimately, impact on their
careers by discouraging development of new tools. Even if a
centralized international organization could manage benchmark-
ing efforts, the source and duration of funding remains open an
open problem.

Finally, although funding agencies are interested in novel
computational methods, there is little funding available for the
benchmarking efforts. Allocating funding for benchmarking
research could attract more researchers willing to conduct
benchmarking studies. Nevertheless, several feasible mechanisms
can promote the attractiveness of benchmarking to researchers.
Scientific journals could allocate a special track in each issue for
benchmarking papers. Researchers at universities could recruit
undergraduate students to test the installation and performance
of benchmarked software tools58,59.

Crowdsourcing benchmarking. Individual benchmarking only
evaluates published tools, whereas competition-based studies also
include novel methods that have not yet been published. A
standardized benchmarking approach could use crowdsourcing
motivated by competition to develop and run analytical algo-
rithms on proposed data. A competitive crowdsourcing approach
has been successfully applied across various domains of compu-
tational biology10. However, this approach may fail to account for
potentially useful tools whose developers did not participate in
the competition. In addition, the crowdsourcing approach
requires the organization of an active working group, and may
not be suitable for independent groups planning to perform
extensive benchmarking studies.

Continuous benchmarking. Benchmarking studies are ephem-
eral in nature; results can become obsolete in a short period of
time as benchmarked data types and analytical techniques decline
in use. The fast pace of new method development and publication
dictates the need for continuous benchmarking. Further, bench-
marking is only able to evaluate methods implemented in a
current release of the software. New releases of a method can
potentially differ in accuracy and runtime, suggesting a
community-wide need for a permanent benchmarking effort58. In
addition to accounting for new method development, bench-
marking practice also needs to incorporate changes in reference
databases (such as Gene Ontology)48. Routinely updating a
benchmarking study may require that developers determine the
intersection between the previous and current versions of the
databases. None of the bioinformatics problems should be con-
sidered as solved at any given point in time; continuous bench-
marking needs to be performed in order to inform the user about
the best algorithms currently available for a problem.

Discussion
Following our proposed practices would help biomedical
researchers leverage the current technological expansion to
optimize accuracy and potential of their projects. The life science
and biomedical research community is interested in systematic
benchmarking of previously published methods, but running
algorithms developed by other researchers is a challenging task
for tools with many dependencies and limited documentation.
The extraordinary volume of new analytical methods that are

published each month compounds the challenge of accurately
testing each tool. These challenges should not discourage the
research community from performing systematic benchmarking
studies of computational biology methods. Instead, these chal-
lenges motivate the need for clearly articulated, transparent,
systematic, and standardized benchmarking practices. Proposed
principles will make computational biology benchmarking studies
more sustainable and reproducible, ultimately increasing the
transparency of biomedical data and results.
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