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Abstract

The existence of rational rotation–minimizing frames on polynomial space curves is
characterized by the satisfaction of a certain identity among rational functions. Part
2 of Remark 5.1 in the original paper states an inequality among the degrees of the
denominators of these rational functions, but the proof given therein was incomplete.
A formal proof of this inequality, which is essential to the complete categorization
of rational rotation–minimizing frames on polynomial space curves, appears to be a
rather formidable task. Since all known examples and special cases suggest that the
inequality is correct, it is restated here as a conjecture rather than a definitive result,
and some preliminary steps towards the proof are presented.
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1 Introduction

Let r(t) be a spatial Pythagorean–hodograph (PH) curve, generated [2] from a primitive1

quaternion polynomial A(t) = u(t)+v(t) i+p(t) j+ q(t)k according to r′(t) = A(t) iA∗(t),

where A∗(t) is the conjugate of A(t). The parametric speed of r(t) is σ(t) = |r′(t)| = |A(t)|2

= u2(t)+v2(t)+p2(t)+ q2(t). An adapted orthonormal frame (f1, f2, f3) on r(t), where f1 is

the curve tangent, is a rotation–minimizing frame (RMF) if its angular velocity ω satisfies

ω · f1 ≡ 0 [1]. For a rational RMF, it is sufficient and necessary [7] that the condition

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=

ab′ − a′b

a2 + b2
(1)

be satisfied by relatively prime polynomials a(t), b(t). PH curves that satisfy (1) are called

RRMF curves. Solutions defining true space curves were identified in [3] for A(t) quadratic,

and in [4] for A(t) of any degree, under the assumption that a2 + b2 = σ.

Part 2 of Remark 5.1 in [4] stated that deg(a2+b2) ≤ deg(σ) is necessary for the satisfaction

of (1), and a proof of this claim was briefly sketched. Subsequently, the authors identified

non–planar RRMF quintics in [5] that satisfy (1) with deg(a2 + b2) < deg(σ), and used this

claim to give a complete classification of all RRMF quintics.

The existence of solutions to (1) with deg(a2 + b2) 6= deg(σ) and the complete classification

of RRMF quintics in [5] prompted the authors to re–examine the claim in Remark 5.1 of [4],

that solutions must satisfy deg(a2 + b2) ≤ deg(σ), and in this context it became apparent

that the proof is incomplete. Concerted efforts to definitively prove this inequality have

thus far proved unsuccessful. However, all known examples and special cases suggest that

it is correct. Part 2 of Remark 5.1 in [4] is therefore restated as follows.

Conjecture 1 Let A(t) = u(t) + v(t) i + p(t) j + q(t)k and a(t) + i b(t) be primitive, and

satisfy (1). Then deg(a2 + b2) ≤ deg(u2 + v2 + p2 + q2).

2 A rational function bound

The remainder of this note gives some preliminary results on Conjecture 1. Let H denote

the skew field of quaternions, e(t), f(t), g(t), h(t), c(t), d(t) ∈ R[t], and Q(t) = e(t)+f(t) i+

g(t) j + h(t)k ∈ H[t]. As in [4], it is convenient to introduce the notations

[Q ] = [ e, f, g, h ] =
ef ′ − e′f − gh′ + g′h

e2 + f 2 + g2 + h2
and [ c, d ] =

cd′ − c′d

c2 + d2
. (2)

1A quaternion polynomial A(t) = u(t)+v(t) i+p(t) j+q(t)k is said to be primitive if gcd(u, v, p, q) = 1.
Similarly, a complex polynomial a(t) + i b(t) is primitive if gcd(a, b) = 1.
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Lemma 2.1 Let a(t), b(t), c(t), d(t), e(t), f(t), g(t), h(t) ∈ R[t], C ∈ H, and r = α+ i β ∈ C

with β 6= 0. Then the following results hold.2

(a) Condition (1) remains unchanged if A(t) is replaced by CA(t) for any C 6= 0.

(b) [ e, f, g, h ]± [ c, d ] = [ E, F, G, H ] where E+F i+G j+H k = (e+f i+g j+hk)(c± i d).

In particular, [ e, f ] ± [ c, d ] = [ C, D ], where C + i D = (e + i f)(c ± i d). In addition,

[ (t − r)A(t) ] =
β

(t − α)2 + β2

u2 + v2 − p2 − q2

u2 + v2 + p2 + q2
+ [ u, v, p, q ] .

(c) If c + i d = (t− r)m, then [ c, d ] = m β [(t−α)2 + β2]−1. Also, if [ a, b ] = 0, then a, b are

linearly dependent over R.

(d) If (a, b) and (c, d) are primitive with [ a, b ] = [ c, d ] then a + i b = z (c + i d) for z ∈ C.

Proof:

(a) First, note that uv′−u′v−pq′ +p′q is the i component of −A′∗(t)A(t). Now if A(t) →

CA(t), then A′∗(t)A(t) → A′∗(t) C∗CA(t) = |C|2A′∗(t)A(t) and |A(t)|2 → |C|2 |A(t)|2.

Thus, condition (1) clearly remains unchanged when A(t) → CA(t).

(b) This can be verified by straightforward calculation.

(c) If m = 1, then c = t− α, d = −β and thus [ c, d ] = β [(t − α)2 + β2]−1. Now, induction

on m and the second part of item (b) verifies the first part of this item. Suppose now that

[ a, b ] = 0. Then, ab′ = a′b, and thus the Wronskian W (a, b) vanishes, which implies that

a, b are linearly dependent (over R).

(d) Assume first that a + i b and c + i d are monic. In this case, note that deg(a) > deg(b)

and deg(c) > deg(d). Now since [ a, b ] = [ c, d ] and (a + i b)(c− i d) = ac + bd + i(bc − ad),

item (b) shows that [ ac + bd, bc − ad ] = 0, and hence ac + bd and bc − ad are linearly

dependent. But deg(ac + bd) > deg(bc − ad), and hence bc − ad = 0. The latter implies

that a = c and b = d. Finally, let z1, z2 ∈ C be such that z1(a + i b) and z2(c + i d) are

monic. Item (a) shows that [ z1(a + i b) ] = [ z2(c + i d) ] and thus z1(a + i b) = z2(c + i d).

Therefore, a + i b = z−1

1 z2(c + i d), as required.

Note that item (d) verifies Conjecture 1 in the case (u, v) = (0, 0) or (p, q) = (0, 0).

Now for t ∈ R, let A(t) = u(t) + v(t) i + p(t) j + q(t)k be monic, primitive, and of degree

n ≥ 1. Then Theorem 2.1 of [6] shows that constants C1, C2, . . . , Cn ∈ H exist, such that

A(t) = (t − C1)(t − C2) · · · (t − Cn) . (3)

2Henceforth the imaginary unit i and quaternion element i are considered equivalent.
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We derive a slightly different factorization of A(t), suited to the present context. Writing

Ci = Re(Ci)+Im(Ci), we note that ri = Re(Ci)+i |Im(Ci)| ∈ C is a root of |A(t)|2. Moreover,

since Ci and ri are similar in the sense that a quaternion Si 6= 0 exists such that Si Ci = ri Si

(see Proposition 1.3 of [8]), using (3) we obtain

A(t) = S−1

1 (t − r1)S1 S
−1

2 (t − r2)S2 · · · S−1

n (t − rn)Sn . (4)

We are now ready to bound [A(t) ], for any primitive quaternion polynomial. In view of

item (a) of Lemma 2.1, we may suppose that A(t) = u(t) + v(t) i + p(t) j + q(t)k is monic.

Let A(t) be of degree n, and have the factorization (4). Then we define

Bj(t) = uj(t) + vj(t) i + pj(t) j + qj(t)k = Sj

n∏

i=j+1

(t − Ci)

for j = 1, 2, . . . , n−1, and Bn = Sn. Then, writing ri = αi+i βi and φi = βi/[ (t−αi)
2+β2

i ],

repeated application of items (a) and (b) in Lemma 2.1 yields

[A(t) ] =
n∑

i=1

φi

u2
i + v2

i − p2
i − q2

i

u2
i + v2

i + p2
i + q2

i

.

Since u2
i + v2

i + p2
i + q2

i is a positive polynomial, we note that

−1 ≤
u2

i + v2
i − p2

i − q2
i

u2
i + v2

i + p2
i + q2

i

≤ 1 ,

and thus
n∑

i=1

− |βi|

(t − αi)2 + β2
i

≤ [A(t) ] ≤
n∑

i=1

|βi|

(t − αi)2 + β2
i

. (5)

Based on the above results, we conclude with a special case of Conjecture 1.

Corollary 2.1 Let A(t) = u(t) + v(t) i+ p(t) j+ q(t)k and a(t) + i b(t) be monic primitive

polynomials of degrees n and k satisfying (1) with |A(t)|2 having precisely two distinct zeros

α ± i β ∈ C with β > 0. Then k ≤ n.

Proof: Assume that k ≥ 1. We have [ u, v, p, q ] = [ a, b ], and thus a2 + b2 has precisely

the (two distinct) zeros α ± i β. Therefore, either a + i b = (t − r)k or a + i b = (t − r)k,

r = α + i β. Suppose first that a + i b = (t − r)k. Then, in view of item (c) of Lemma 2.1

and formula (5), we see that k ≤ n. The case a + i b = (t − r)k is treated similarly.
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