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COMMENTARY

Causal modeling and inference rely on strong assumptions, one of which is conditional 
exchangeability. Uncontrolled confounding is often seen as if it is the most important 

threat to conditional exchangeability although collider-stratification bias or selection bias 
can be just as important.1–4 In this issue of the journal, Flanders and Ye5 (henceforth, F&Y) 
and Smith and VanderWeele6 (henceforth, S&VW) present their results on new bounds—
limits that selection bias would not exceed in any specified context—and accompany-
ing summary measures for the values of the selection bias bounding factors that will be 
enough to explain away any observed association between the exposure and the outcome 
on the risk ratio or relative risk scale, with risk difference results given in the appendix of 
S&VW’s article. These articles on M-bias or selection bias fit into a growing body of work 
that have renewed researchers’ interests in selection bias including the recent overlapping 
literature on generalizability and transportability, and bounding factors and related sum-
mary measures for bias analysis.1–4,7–13

Both F&Y5 and S&VW6 make extensive use of directed acyclic graphs (DAGs) to 
depict the structure and the mechanism of selection or collider-stratification bias. This is 
not surprising because it would other be difficult to reason about the mechanisms involved 
in collider-stratification or selection bias without the visual aid provided by DAGs. Com-
mon selection bias structures are given in the Figure of this commentary (excluding the 
special scenario in which the exposure and the outcome jointly lead to selection). Selection 
bias can be expected when estimating the effect of the exposure (or intervention) X on the 
outcome Y in the study sample S = 1 and when Y is not independent of the selection node 
or collider S conditional on X and the measured confounder(s) Z (as in DAGs A–C).4,8,10

In their article,5 F&Y derive bounds for M-bias extending previous work.1 They 
give an expression for the maximum value of M-bias due to conditioning on the collider 
S in the DAG A (for example) when estimating the effect of the exposure on the outcome 
among the exposed on the relative risk or risk ratio scale without making a homoge-
neity assumption.1,5 Their bound is a function of three bias parameters that capture of the 
strengths of the associations between: (1) the exposure X and the unmeasured cause U1 
shared by X and the collider S, (2) S and the unmeasured causes U1 and U2, (or equiv-
alently, a binary variable N in their Figure A) and (3) U2 (or the authors’ binary N) and 
the outcome Y. At first sight, the expression for the bound may not look user-friendly to 
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the nonmethodologist but can be implemented in a spread-
sheet or a general statistical software, for example, by adapt-
ing F&Y’s own R codes in their Online Supplement. F&Y 
also work through several examples showing how to use all 
or some of the bias parameters in various applications of the 
bound expressions. As expected, their bound can sometimes 
be conservative when compared to the actual but unknown 
bias magnitude. Their numeric results represent increasingly 
extreme scenarios that demonstrate when their new bound 
begins to diverge from a previously published bound that 
assumes homogeneity. However, this divergence occurs at 
extreme bias parameters that may not be common. Notice-
ably, F&Y make frequent reference to the mechanism of the 
bias under consideration using DAGs.

In their article,6 S&VW present several results on how 
to bound the magnitude of selection bias on the risk ratio and 
difference scales, using bias parameters that capture the asso-
ciations between selection S and the unmeasured covariate(s) 
U and between U and the outcome Y. These parameters reflect 
the pathways from S to U and from U to Y in common selection 

bias scenarios such as those depicted in the Figure A–C. The 
authors present different bounds for different target popula-
tions, selection mechanisms, and effect measures with some 
illustrative applications based on examples from the literature. 
Like F&Y, S&VW make use of DAGs to capture the structure 
of various selection bias scenarios. Indeed, their bounds are 
(DAG) structure specific and can be expected to be conser-
vative in that they will provide the maximum bias possible 
for the assumed bias parameters even when those parameters 
could be responsible for less bias.6 They also present sum-
mary measures (call them “selection E-values” if you will) 
that quantify how large each of the parameters in the bounding 
factor will have to be, had they been of equal magnitude, to 
explain away any empirically observed risk ratio (RRXY+) for 
the association of the exposure with the outcome. At first look, 
it appears to me that the summary measure for the general 
selection bias scenario can be approximated by just the value 
of observed risk ratio relating X to Y when 1 < RRXY+ ≤ 3. 
Parallel simplifications of the summary measure appear pos-
sible for very large RRXY+. The properties and performance of 

A

C

B

D

FIGURE.  DAGs depicting typical causal scenarios where selection bias can potentially occur (DAGs A–C in particular). X represents 
the exposure, Y the outcome, Z the measured confounder(s), S the selection (where S = 1 means selected into the study sample), 
U the unmeasured covariate(s) or confounder(s), and W is a consequence of X that is associated with Y. In all DAGs, X does not 
cause Y, but they will become noncausally associated if selecting on S = 1. In DAGs A–C, Y is not independent of S conditional on 
measured variables X and Z; in DAG D, Y is independent of S given X, Z and W. A, This DAG denotes a selection bias structure, 
called the M-bias, due to two open backdoors between the selection node S and exposure X and the outcome Y; conditioning on 
the collider S opens up the path X ← U1 → [S = 1] ← U2 → Y leading to a type of collider-stratification bias commonly referred to 
as M-bias. B, This DAG looks like that in A except X causes S here; conditioning on the collider S opens up the path X → [S = 1] 
← U → Y. C, Again, this DAG resembles the one in A except Y causes S here; conditioning on the collider S opens up the path X 
← U → [S = 1] ← Y leading to selection bias in the effect of X on Y. (D) This DAG is the same as the one in (B) except W replaces 
S as the collider between X and Y in the path X → W ← U → Y, and W causes S; conditioning on S would appear to induce se-
lection bias between X and Y in the path X → [W] ← U → Y because conditioning on the consequence of a collider also leads to 
collider-stratification bias; nonetheless, the effect of X on Y can still be estimated without selection bias if all variables except Y are 
fully observed before selection and Y is only observed among S = 1 (hence, the Y[S = 1] notation).
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the proposed summary measures will, therefore, benefit from 
further study.

Overall, F&Y and S&VW should be commended for 
adding these new tools to our bias analysis toolbox. Whether 
epidemiologists will rise to the occasion and use them well 
is another matter. Quantitative bias–and bounding–analyses 
are infrequently used in the large well-conducted studies for 
which they might be best suited. Bounding selection bias 
should be considered in those instances where the adjusting 
for the selection mechanism using measured covariates is not 
possible, as in Figure A–C. Before resorting to or in addition to 
bounding, we have several existing options to consider when 
addressing selection bias. First, bounding may be unnecessary 
as seen in Figure D of this commentary and S&VW’s article 
because appropriate adjustment for W will remove bias due 
to the selection on S = 1 whenever X, Z, W, and S are fully 
observed, but Y is only observed for S = 1. Because Y is inde-
pendent of S given X, W, and Z,4,14 there is no selection bias in 
DAG D. For example, the causal risk ratio relating binary X to 
Y in DAG D can be obtained using

E Y do X

E Y do X
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where E Y X x W w Z z S| = = = =( ), , , 1  can be estimated from 
the data on S = 1 only but P W w X x= =( )|  and P Z z=( ) can be 
computed using the full data before selection S = 1 occurred. 
Second, we could use inverse-probability-of-selection-
weighting (IPSW)15 even when the selection mechanism 
involves an unmeasured variable as in DAGs A–C. Unlike 
in DAG D where we could use the observed data only to es-
timate and implement IPSW to overcome potential selection 
bias, we must compute the IPSWExt = 1/[P(S = 1|X = x, Y = 
y, Z = z)] in DAGs 1A to 1C using externally obtained bias 
parameters relating S to both X and Y (possibly marginalized 
over U).10 The numerator can also be replaced with P(S = 1). 
For example, on the risk ratio scale, IPSWExt could be given 
by 1/[P(S = 1|X = x, Y = y, Z = z)] = 1/[RS = 1|X = 0,Y = 0⋅RRx

XS|Y 

= 0⋅RRy
YS|X = 0⋅RRRxy

XYS] assuming binary variables for illus-
tration, conditioning or stratifying on Z = z (for simplicity 
here), and that RS =1 |X = 0,Y = 0 would represent P(S = 1|X = 0, 
Y = 0, Z = z), while RRXS|Y = 0 and RRYS|X = 0 would represent 
the corresponding risk ratios for the associations of X with 
S and Y with S, and RRRXYS the product of term between X 
and Y in the model for S = 1 on the risk ratio scale. Each of 
the last three bias parameters will be raised to the power X, 
Y, and XY, respectively based on each individual record’s X, 
Y, and XY values in the sample S = 1. We would then pro-
ceed with analyzing the S = 1 population data, weighting 
each of the individual records weighted by their computed 
IPSWExt, just as we would in any other selection or censoring 

weighted analysis.2,7,10 This IPSWExt method is quite general 
in that it can be applied to different study designs and effect 
measures.

Third, we could draw the assumed selection bias DAG 
under no true effect of the exposure on the outcome and use 
it to simulate the magnitude and direction of the selection 
bias under specified parameters for relating U, X, Y, and S 
(given Z) guided by the study under consideration. This bias 
simulation approach has been described elsewhere for un-
controlled confounding.15 The advantage here is that, unlike 
in the case of bounding, we actually specify parameters in 
the direction of the edges or arrows in our DAG, making it 
easier to reason about them causally and to use the resulting 
data to compute bounding bias parameters if we want or the 
selection bias factor for direct use in adjusting for selection 
bias in empirical data analysis. Finally, we could adapt ex-
isting bias formulas12,16 to the selection setting by making the 
formulas conditional on S = 1 and replacing the backdoor X 
← U → Y of uncontrolled confounding with X → [S = 1] 
← U → Y. This exploits the known connections between 
analytical methods for uncontrolled confounding and selec-
tion.1,5,11 In all the foregoing approaches, we are guided by 
the assumed DAG.

Neither of the articles by F&Y5 and S&VW6 aimed to 
deal with time-varying treatment and confounding, mediation, 
or multiple-bias settings. It is prudent that further simulation 
studies be conducted to examine the performance of the pro-
posed bounding factors and summary measures in different 
selection bias scenarios and for difference effect measures 
where our heuristics tend to fail. For example, it will be inter-
esting to see how the bounds and summary measures perform 
when selection bias exists without collider-stratification and 
when collider-stratification does not result in selection bias in 
the S = 1 population. More importantly, further work should 
provide more detailed guidelines for applying, reporting, and 
interpreting the bounds to avoid their misuse (e.g. purportedly 
as evidence of causality). Guidance on how to think about and 
obtain the bias parameters needed for these methods is sorely 
needed. It is also crucial to develop good practices for the 
use of bounding analysis and quantitative bias analysis more 
generally.17

In conclusion, quantitative analysis of selection bias 
using any of the methods described here and by F&Y5 and 
S&VW6 should be seen as aimed at making causal modeling 
and inference more credible. Whichever approach is chosen, 
it is important to think carefully about the assumed selection 
bias structure and mechanism. As seen in the work of F&Y 
and S&VW, drawing DAGs augmented with the selection 
mechanism was helpful, if not indispensable, in visualizing 
and reasoning about the structure of the bias and the various 
pathways that should be captured by the bias parameters. Rea-
soning about selection bias can be daunting and can lead to 
doubts about the mechanism and the relevant bias parameters. 
When in doubt, DAG it out.
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