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Abstract

We describe a novel integration method for RA synovial transcriptional profiling to provide 

predictive insights on drug responses. A normalized compendium consisting of 256 RA synovial 

samples that cover an intersection of 11,769 genes from 11 datasets was compared with similar 

datasets derived from OA patients and healthy controls. RA-relevant pathway activation scores and 

four machine learning classification techniques led to a predictive model of patient treatment 

response. We identified 876 up-regulated DEGs including 24 known genetic risk factors and 8 

drug targets. DEG-based subgrouping revealed 3 distinct RA patient clusters with distinct activity 

signatures for RA-relevant pathways. In the case of infliximab, we constructed a classifier of drug 

response that was highly accurate with an AUC/AUPR of 0.92/0.86. Our work argues that the 

construction and analysis of normalized synovial transcriptomic compendia can provide useful 

insights for understanding RA-related pathway involvement and drug responses for individual 

patients.
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1. INTRODUCTION

Rheumatoid arthritis (RA) is a complex autoimmune disease involving a multitude of 

environmental and genetic factors that exhibit nonlinear dynamic interactions [1]. The 

disease is characterized by chronic inflammation of the synovium, which results in 

irreversible damage to the bone tissue over time, leading to pain and joint function 

impairment. Severity and clinical course of the disease is highly variable across the different 

patients and hence difficult to predict [1]. Despite the success of tumor necrosis factor (TNF) 

inhibitors, over 30% of patients do not respond fully to therapy [2]. Moreover, a 

considerable subset of the patients who showed initial good response experience [2]. A 

personalized treatment that provides the best possible drug combination for a patient is 

likely to improve our ability to treat RA and avoid patient relapse. Despite the fact that RA 

pathophysiology is actively researched, we still have partial understanding regarding the 

mechanistic basis of disease progression, which is critical to administer personalized and 

precise care.

In RA, gene expression profiling has been used to gain insights regarding pathogenesis and 

drug response [3]. Unfortunately, these studies have been conducted in unrelated small 

sample size cohorts, that exhibit high heterogeneity (sex, age, and ethnicity), differences in 

technical protocols, microarray platform, and data analysis methods, thus hindering a 

comprehensive analysis across all available datasets. In addition, most studies have collected 

samples from whole blood or peripheral blood mononuclear cells, which are easier to 

acquire but have a limited capacity to adequately reflect local joint inflammation [4–6].

In this study, our aim is to elucidate the various transcriptional and signaling signatures of 

RA by performing a comprehensive meta-analysis of the publicly available datasets. We 

focus on the American College of Rheumatology (ACR) classification criteria and analyze 

exclusively synovial tissue samples to avoid the high false discovery rates coming from 

blood samples. We have applied several preprocessing and normalization steps to create a 

cohesive, homogenized compendium of genome-wide gene expression signatures for 

downstream analysis. We used this compendium to separate expression-driven subgroup, 

understand the key cellular components in each group and then use genes and pathways with 

high information value that we have identified to create predictive models for drug 

responsiveness.

2. METHODS

2.1. Systematic search and data collection

We used the keywords “Rheumatoid Arthritis (RA)”, “Synovium or synovial tissue”, 

“Transcriptomics or microarray”, “Dataset” in Google Scholar and PubMed to find relevant 

publications to the topic of synovial gene signatures of patients with rheumatoid arthritis 

(figure 1). We retrieved all publications that used the American College of Rheumatology 

(ACR) classification criteria for diagnosis of RA [7] and relevant criteria for OA [8] (20 

studies in total). From the resulting set, we removed entries that had been duplicated and 

selected datasets measuring over 10,000 genes to secure the largest size of genes and 

samples. Since there was a trade-off between the number of studies to include and the 
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number of genes that are within the intersection from all datasets, we optimized the product 

of the two by selecting the point where these two trends cross (Supplementary Fig. S1). The 

final RA sample count was 256, the osteoarthritis (OA) count 41, and 36 normal (NC) 

samples were included as controls. Clinical characteristics of the RA patients were 

summarized in Supplementary Table 1. Ultimately, the final RA compendium was 

constructed out of 11 studies with a total of 333 samples, one per patient, covering 22,721 

genes total (common core of 11,769 genes).

2.2. Data normalization and removal of batch effects

For one-channel arrays, the image data was first imported and then the Robust Multi-array 

Average (RMA) method was applied for a set of replicates for background correction, 

normalization, probe-set summarization. For dual-channel arrays, the image data were 

imported and background correction was performed using normexp as it was shown to 

outperform other methods. Red and green channels were separated and quantile-normalized 

for each set of replicates. The vectors for the matrices were normalized using the quantile 

normalization method. Residual technical batch effects arising due to heterogeneous data 

integration were corrected using the ComBat function within the empirical Bayes package. 

Quality assurance and distribution bias was evaluated by Principal Component Analysis 

(Supplementary Fig. S2).

2.3. The RA compendium

After preprocessing, the gene expression profiles have a significant reduction of systematic, 

dataset-specific bias in comparison with the same dataset before normalization and batch 

correction (Supplementary Fig. S2). The resulting compendium has a gene size of 11,769 in 

333 samples, including 256 RA patients, 41 OA patients, and 36 normal controls. In 105 of 

the RA samples, synovial tissue sampling was conducted before the start of certain drug: 11 

for adalimumab, 62 for infliximab, 8 for methotrexate, 12 for rituximab, and 12 for 

tocilizumab. For these patients, assessment of disease activity and response was performed 

per the EULAR response criteria [9] 12–16 weeks after initiation of therapy: 32 were good, 

47 were moderate, and 26 were poor responders

2.4. Filtering of differentially expressed genes

In order to identify the differentially expressed genes (DEGs), we employed three widely-

used methods: (a) an empirical Bayesian method using the Benjamini and Hochberg 

procedure with a significance threshold at an adjusted p-value < 0.05; (b) the Significance 

Analysis of Microarray (SAM) method, with a significance threshold of false discovery rate 

(FDR) < 0.05; (c) the Rank Products (RP) method with a significance threshold set at 

percentage of false prediction pfp < 0.05. The resulting list of DEGs is the intersection of the 

three individual DEGs sets for each method to minimize the FDR statistic.

2.5. Functional enrichment analysis

We performed functional enrichment analysis focusing on the up-regulated DEGs using the 

Database for Annotation, Visualization, and Integrated Discovery (DAVID) software [10]. 
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Terms were regarded significant if the p-value (EASE score) is lower than 0.05, the 

enrichment score higher than 1.3, and the fold enrichment was larger than 1.5.

2.6. Gene set enrichment analysis

Gene set enrichment analysis (GSEA) analysis was carried out using the GSEA software 

from the Broad Institute to assess the overrepresentation of RA-related gene sets [11, 12]. 

The enrichment results were visualized with the Enrichment Map format, where nodes 

represent gene-sets and weighted links between the nodes represent an overlap score 

depending on the number of genes two gene-sets share (Jaccard coefficient) [13]. To 

intuitively identify redundancies between gene sets, the nodes were connected if their 

contents overlap by more than 25%. Clusters map to one or more functionally enriched 

groups, which were manually circled and assigned a label.

2.7. Construction of protein-protein interaction network

To assess the interconnectivity of DEGs in the RA synovium samples, we constructed a 

protein-protein network based on the interaction data obtained from public databases 

including BIOGRID [14], HPRD [15], IntAct [16], Reactome [17], and STRING [18]. In the 

network, nodes and edges represent genes and functional or physical relationships between 

them, respectively. Graph theory concepts such as degree, closeness, and betweenness were 

employed to assess the topology of this network. Hub molecules were defined as the shared 

genes in top 10% with the highest rank in each arm of the three centrality parameters [19].

2.8. Non-negative matrix factorization and determination of the optimal number of 
clusters

To classify the RA patients into subgroups based on their molecular signatures, we used the 

non-negative matrix factorization (NMF) method. NMF clustering is a powerful 

unsupervised approach to identify the disease subtype or patient subgroup and discover 

biologically meaningful molecular pattern [20, 21]. We applied the consensus NMF 

clustering method and initialized 100 times for each rank k (range from 2 to 6), where k was 

a presumed number of subtypes in the dataset. For each k, 100 matrix factorizations were 

used to classify each sample 100 times. The consensus matrix was used to assess how 

consistently sample-pairs cluster together. We then computed the cophenetic coefficients and 

silhouette scores for each k, to quantitatively assess global clustering robustness across the 

consensus matrix. The maximum peak of the cophenetic coefficient and silhouette score 

plots determined the optimal number of clusters [20]. To confirm unsupervised clustering 

results, we used t-distributed stochastic neighborhood embedding (t-SNE) [22], a powerful 

dimensionality reduction method. The t-SNE method captures the variance in the data by 

attempting to preserve the distances between data points from high to low dimensions 

without any prior assumptions about the data distribution.

2.9. Scoring of pathway activation

To quantify certain biological pathway activity, we calculated the gene expression z-scores 

[21, 23]. Briefly, a Z-score is defined as the difference between the error-weighted mean of 

the expression values of the genes in each pathway and the error-weighted mean of all genes 
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in a sample after normalization. BCR-, chemokine-, Jack-STAT-, MAPK-, NFκB-, p53-, 

PI3K-AKT-, RIG-I-like receptor-, Fc ε RI-, TCR-, TGFβ-, TLR-, TNF-, VEGF-, and Wnt 

signaling pathways and their gene sets were imported from Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database [24] and IFN type I- and type II signaling pathways and 

their gene sets referred to Reactome database [17]. Z-scores were computed using each 

pathway in the signature collection for each of the samples, resulting in a matrix of pathway 

activation scores.

2.10. Supervised learning analyses for the prediction of drug responsiveness

We used Naïve Bayes (NB), Decision Trees (DT), k-Nearest-Neighbors (KNN), and Support 

Vector Machines (SVM ) to create drug responsiveness predictors.[25, 26] Each binary SVM 

was built using Gaussian Radial Basis Function (RBF) kernel and the Sigma hyperparameter 

was determined from the estimation based upon the 0.1 and 0.9 quantiles of the samples. For 

soft margins, the C parameter that achieved the best performance was in the range of 2−4 to 

27. For KNN, the k parameter was tuned in the range 2 to 20. All tuning hyperparameters 

were separately determined for each bootstrapped training dataset.

To determine the optimal feature set that enables distinguishing ‘good’ from ‘not good’ 

responders with the highest accuracy according to the EULAR response criteria [9], we 

employed the wrapper feature selection method [26]. The wrapper method uses the classifier 

as a black box to rank different subsets of the features according to their predictive power. In 

the wrapper method, a feature set is fed to the classifier and its performance is scored and 

the feature set with the highest rank is selected as the optimal feature set. The predictive 

power of each predictor was assessed through Receiver-Operator Characteristics (ROC) and 

Precision-Recall (PR) curve [27]. Data was separated into independent training and test sets 

in a three-to-one sample-size ratio in a way of stratified random sampling. To make up for 

small sample size and minimize the error, we constructed the pool of resampled dataset by 

applying bootstrapping with 1000 iterations and subsequently applying a stratified 10-fold 

cross-validation (CV) for each bootstrapped dataset [25, 26]. Tenfold CV measures the 

prediction performance in a self-consistent way by systematically leaving out part of the 

dataset during the training process and testing against those left-out subset of samples. 

Compared to the test on independent dataset, CV has less bias and better predictive and 

generalization power. The predictive ability of the models generated from all the approaches 

was tested by performing the CV test at all the ten locations under study. Given the unequal 

numbers of trials in each class, balanced accuracy formula was employed to calculate the 

accuracy [28]. The baseline is estimated by random expectation based on the pre-determined 

ratio of each condition. In case of infliximab, a probability of 0.29 (18/62) for a “good” and 

0.71 (44/62) for a “not good” responder was applied.

2.11. Statistical analysis

For continuous distributed data, between-group comparisons were performed using the one-

way ANOVA, unpaired t-test or Mann-Whitney U test. Categorical or dichotomous variables 

were compared using the chi-squared test or Fisher’s exact test. To investigate the difference 

of pathway activation score across the subgroups, we fitted the one-way ANOVA model 

using logistic regression. All analyses were conducted in R (The R Project for Statistical 
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Computing, www.r-project.org) and R packages used in the analysis and their references 

were summarized in the Supplementary Table S3.

3. RESULTS

3.1. The RA transcriptomics compendium

To get a list of RA-related DEGs, gene expression profiles of RA patients were compared 

with samples from the OA and NC groups. We identified 2,762 DEGs for RA versus OA, 

and 3,087 DEGs for RA versus NC (Fig. 1). Distribution of DEGs was assessed after the 

DEGs were divided into up- and down-regulated groups (Fig. 2A). The number of up-

regulated DEGs was 1,486 for RA versus OA and 1,774 for RA versus NC. The intersection 

between two up-regulated DEG sets was 876, which we considered as RA-unique (Fig. 2A 

and supplementary File S1).

3.2. Enriched biological processes and protein-to-protein interaction network

We performed a gene-set enrichment analysis [11, 12] where 206 gene ontology processes 

were identified (Fig. 2B and Supplementary Fig. S3). As expected, immune-related 

biological processes including adaptive and innate immune response, T and B cell activation 

and response, and cytokine-related responses, were enriched. These occupied the main 

positions in the network and closely connected to each other. Among cytokine-related 

processes, interferon-β (IFN–β), interferon-γ (IFN-γ), interleukin (IL)-4, IL-10, IL-12, 

IL-17, toll-like receptor (TLR), and TNF-related processes stood out as being substantially 

more enriched.

Interestingly, several biological processes associated with viral invasion and defense 

response against viruses were newly identified (Supplementary Fig. S4). Metabolic 

processes such as calcium ion regulation and protein synthesis/transportation were enriched 

(all P<0.01), suggestive of active intracellular signaling and enhanced protein production 

and enzyme activity.

Identification of central attractors in the gene and protein network can provide targets for 

further experimentation and/or drug discovery. For this reason, we constructed the protein-

to-protein interaction network of RA (Fig. 2C). We identified 3563 interactions among the 

876 DEGs. Thirty-one of DEGs were overlapped with RA genetic susceptibility loci 

previously discovered [29] (Supplementary Fig. S5) and a total of 56 genes were ranked as 

hub molecules based on the centrality analysis. The CD2, PTPRC (protein tyrosine 

phosphatase, receptor type C, also known as CD45), and PRKCQ (protein kinase C theta) 

were RA-susceptible genes having hub position in the network and products of these genes 

are involved in signal transduction of T cells. Eight genes including primary targets (JAK2, 

SYK, CTLA4, MS4A1) and counterpart receptor molecules (TNFRSF14, TNFRSF17, 

TNFRSF18, and IL21R) of cytokines targeted by the drugs currently in use or under clinical 

trial or development are also differentially expressed [30, 31]. Interestingly, the targets of 

small molecule therapeutics, JAK2 and SYK are central hub nodes, in contrast to the targets 

of biologic agents, such as CTLA4, MS4A1 (also known as CD20), TNFRSF14, 

TNFRSF17, and TNFRSF18. We found 219 RA-associated genes from the DisGeNet 
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database [32], which are genes and variants having an important role in RA 

pathophysiology. Forty-six of them were overlapped with the RA synovial DEG. To assess 

topological proximity between RA-associated genes and drug targets in PPI network of 

synovial DEGs, the shortest distance between nodes was calculated (Supplementary Fig. 

S6). Mean distance of JAK2 and SYK was 2.11 ± 0.69 S.D. and 2.09 ± 0.68, respectively, 

and significantly shorter than those of other target molecules (range, 2.65 ~ 3.39) (in all 

cases P<0.05).

3.3. Identification and characterization of molecular subgroups

Next, we assessed whether RA patients can be categories in subgroups based on their 

expression profiles through consensus non-negative matrix factorization (NMF) clustering 

[20]. To identify the optimal number of clusters and to assess robustness of the clustering 

result, we computed the cophenetic coefficient and silhouette score for different numbers of 

clusters from 2 to 6, where we found that 3 clusters are the optimal representation of the data 

(Fig. 3A, Supplementary Fig. S7, and Supplementary Methods). Segregation of RA 

subgroups was also reproduced by t-distributed stochastic neighborhood embedding (t-SNE) 

and principal component analysis (PCA) (Fig. 3B and 3C). To understand the differences 

among the three clusters, we curated the 17 representative RA-relevant signaling pathways 

from the result of gene-set enrichment analysis (Fig. 2B) based on the literatures[31, 33–35] 

and analyzed the activation of individual pathways. As shown in the chord diagram, these 

pathways are strongly connected, with only TGFβ-, P53-, and Wnt signaling pathways more 

isolated than others (less shared DEGs). Especially TGFβ- and Wnt, have an opposite trend 

in their DEG expression (higher in cluster 1, mid in cluster 2 and low in cluster 3), which is 

the opposite of the trend we observe in most of the other pathways (Fig. 4 and 

Supplementary Fig. S8). P53 signaling pathways shared fewer genes with other pathways 

but strongly correlated with BCR-, chemokine-, TCR-, TLR-, and TNF signaling pathways.

While the activation scores of all pathways exhibited significant difference across the 

various clusters, all clusters exhibited one of the two trends in a statistically significant 

manner (P<0.05 in all cases) and in accordance with the observation through DEG-driven 

enrichment (all cases except TNF). Compared with RA cluster 2 and 3, RA cluster 1 had 

moderate activation scores for most of the proinflammatory signaling pathways but high for 

PI3K-AKT-, TGFβ- and Wnt signaling pathways, which are principally involved in synovial 

proliferation and tissue remodeling.[36] RA cluster 2 and 3 showed comparable activities for 

most of the proinflammatory pathways. More active in RA cluster 2 were the P53- and 

PI3K-AKT signaling pathways, which were reported to play a role in regulating survival of 

synoviocytes or macrophages [37, 38]. In RA cluster 3, TCR-, Jak-STAT-, and NFκB 

signaling pathways were more activated and it is noteworthy that IFN signaling pathways 

were most scored. Cellular processes affected by these pathways are in agreement with the 

DEG-driven enriched gene ontology (GO) terms in each cluster (Supplementary Fig. S9). 

This result indicates that there exist RA subgroups representing a distinct mode of 

inflammation deflected toward a certain combination of signaling pathways (Supplementary 

Table S4).
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3.4. Clinical implication of the 3 molecular subgroups

Next, we examined the relationship between identified 3 subgroups and the pertinent clinical 

features based on the provided information. There was no difference in gender ratio, age 

distribution, and tissue sampling method across the subgroups (P>0.10 in all cases, see 

Supplementary Fig. S10). The frequency and distribution of 3 subgroups by seropositivity 

was estimated on basis of the information available in the 9 datasets (233 samples). Cluster 2 

and 3 were predominant in the seropositive, while cluster 1 prevailed in the seronegative 

(P<0.001) (Fig. 5A). Because data on the disease duration and activity were not fully 

provided for each sample, we compared two distinctively opposing datasets from 

compendium: the first (GSE45867) includes naïve, untreated RA patients with disease 

duration of <1 year, moderate disease activity and with arthroscopic needle biopsy 

performed before methotrexate or tocilizumab therapy [39]. The second (GSE21537) is a 

cohort of the long-standing RA patients with high disease activity who had failed at least 

two DMARDs (including methotrexate) and did arthroscopic needle biopsy before 

infliximab therapy.[40] Disease duration and activity were significantly longer and higher in 

the latter dataset (all P<0.001) while there was no difference in age, gender, and RF positive 

between two datasets (all P>0.10). Distribution of 3 subgroups did not differ between two 

datasets (P=0.754) (Fig. 5B), indicating gene expression pattern by 3 subgroups would be an 

intrinsic characteristic irrespective of disease duration and activity.

3.5. Towards a predictor of drug response

For 105 RA samples that we had drug effectiveness data, we tested the hypothesis that there 

is an association between drug responsiveness and cluster membership. Out of the 5 drugs 

that we had data on (adalimumab, infliximab, methotrexate, rituximab, and tocilizumab) we 

were not able to identify any such association (Supplementary Fig. S11). Cluster 1 patients 

had an encouraging response to tocilizumab but at a low statistical significance level 

(P=0.082). In addition to the intricacy of the pertinent pathways, the small size of samples 

treated by the specific drug, and their potential heterogeneity make the association between 

drug responsiveness and RA clusters difficult.

Since the differential expression of genes and pathways is at a higher resolution than general 

clustering signatures, we tested whether drug response can be predicted by using such 

features. We focused on the patients that were treated with infliximab due to the larger 

sample size (n=62). To test this hypothesis, we applied outcome to a binary classification 

(labels of “good” and “not good” responder according to the EULAR response criteria [9]) 

and tried two approaches: pathway-driven and DEG-driven models. Note that PCA analysis 

does not reveal separating distributions between the “good” and “not good” responders both 

for pathway activation score and DEG values (Supplementary Fig. S12).

As features, we used the 17 pathways that are represented by continuous variables through 

their activation scores (refer to the pathway activation score for each pathway in the 

Supplementary File S2). To reduce the number of dimensions we performed feature 

selection through recursive elimination (Supplementary Table S5). Based on those results 

made a predictive model using 4 supervised machine learning methods (NB, DT, KNN, and 

SVM) for selected key pathway scores and calculated the performance. All models 
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outperformed the baseline (all P<0.001) (Fig. 6A, left plot) and SVM, the best performing 

model, had an average performance AUC (area-under-curve of ROC / AUPR (AUC of PR)) 

of 0.87/0.78 (all P<0.001) (Fig. 6A, middle and right plots). The selected key predictors for 

SVM model were NFκB-, FcεRI-, TCR-, and TNF signaling pathways. Next, models based 

on expression values of DEG were fit in order to sort out the informative genes and compare 

their performance with pathway-driven models. DEG-driven models showed superior 

performance as compared with pathway-driven models (Fig. 6B, left plot). The AUC of the 

ROC curves exceeds 0.85 (Fig. 6B, middle and right plots). SVM showed the best 

performance AUC/AUPR of 0.92/0.86 and with the HMMR, PRPF4B, EVI2A, RAB27A, 

MALT1, SNX6, and IFIH1 genes as features. The expression of these genes provide a 

distinct signature between two different outcomes (P<0.05 in all cases, see Supplementary 

Fig. S13).

4. DISCUSSION

Here, we built the largest RA compendium made by synovial transcriptomes. DEGs 

extracted from this compendium encompassed the susceptible genes and target molecules. 

Their topology in the network has opened new possibilities to elucidate biological roles and 

offer a cue for existing clinical questions. Unbiased cluster analysis of RA compendium 

resulted in meaningful categories of RA patients with distinct activity for relevant pathways. 

The pathway-based analysis allowed refinement in our understanding of RA subgroups and 

it was also feasible to construct pathway- or DEG-driven predictive model for intended 

treatment by machine learning methods.

Synovial tissues are considerably more difficult samples to obtain, as they are obtained 

during joint replacement surgery, synovectomy or by arthroscopy at 4–8 sites of the affected 

joint. However, they are more suitable to understand the mechanism and response to RA, 

since blood-derived samples are a distant and hence more noisy proxy to the disease, with 

known quality issues [4–6]. Moreover, to refine the RA-unique genes, we compared RA 

samples with two control sets (OA and NC groups) and adopted the DEGs shared by three 

independent methods. We found that 24 of the DEGs are the known RA-associated genetic 

loci and take a central position in the synovial network. Since functional implications of risk 

allele were often obscure, it would be helpful to elucidate the biological mechanisms in 

which risk alleles operate. STAT1, a transcription factor downstream of IFN signaling 

pathway, highlighted as a key molecule in the previous reports [41, 42], was found to be one 

of the hub genes. Other hub genes, such as JAK2, SYK, and BTK are small molecules that 

have increasingly drawn attention as novel therapeutic targets following the cytokine-

targeting biologics [31]. In contrast, molecules such as TNF receptor molecules, CTLA4, 

IL6R, and MS4A1 were located at the functional periphery of the network although drugs 

against these molecules are widely used in clinical practice. Moreover, these molecules were 

placed farther from RA-associated genes than JAK2 and SYK in the network, inferring part 

of their less potent efficacy in active RA. This was in good harmony with a recent clinical 

trial that baricitinib, an inhibitor of the Janus kinases JAK1 and JAK2, showed a stronger 

therapeutic effect as compared with ADLM, a TNF inhibitor [43].
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Biological processes and pathways identified from RA compendium show what is happening 

in the inflamed synovium of RA and are in good line with the previous studies [5, 41, 44]. It 

is worthy of note that processes concerning viral cycle and anti-viral response were found to 

be enriched. This could be the internal process analogous to or the vestige of viral infection 

such as Chikungunya virus [45, 46]. A series of studies pointed out activation of IFN-related 

gene signatures in a subset of RA patients and its substantial similarity to viral infection [5, 

41, 44, 46–48] and one reported that the type I IFN signature negatively predicts the clinical 

response to rituximab treatment in patients with RA [47]. Here, our results suggest that such 

a probable link between the IFN signature and the anti-viral response may exist [46].

Interestingly, we were able to identify three distinct subgroups through NMF analysis of the 

RA compendium and they differed in activation level of RA-relevant signaling pathways 

[20, 21]. Various combinations of molecular perturbations might converge to dysregulation 

of common pathways and lead to the similar phenotype [49]. Since combinations of 

genomic perturbations are variable across the patients, pathway- or module-based 

approaches are desirable for a better understanding of complex inflammatory disease like 

RA. We looked at the enriched pathways derived from DEGs, which were commensurate 

with the pathway activation scores calculated from the whole gene list in the compendium. 

The RA cluster 1 was weighted toward signals regarding synovial proliferation and tissue 

remodeling (PI3K-AKT-, TGFβ- and Wnt signaling pathways) [36]. RA clusters 2 and 3 

showed a strong disposition for proinflammatory signaling pathways (Chemokine-, TNF-, 

TLR- and VEGF signaling pathways). Apoptosis-related pathways (P53- and PI3K-AKT 

signaling pathway) were much prominent in RA cluster 2 [37, 38], while BCR-, Jak-STAT-, 

NFκB-, and TCR signaling pathways were stronger in RA cluster 3. It is known that 

synoviocytes are the main culprit of invasive synovium and quantitative and qualitative 

activities of synovial macrophage reflect therapeutic efficacy [50, 51]. They add to the 

cellular resistance to apoptosis and increase of the potential for proliferation, hence they 

contribute to the progression and perpetuation of destructive joint inflammation. Therefore, 

we speculate that an aggressive suppression of pro-inflammatory signals would be better 

pertinent to RA cluster 3, while therapeutic strategies to control propagation and survival of 

synoviocytes and macrophages together with anti-inflammatory treatment should be 

considered in RA cluster 1 and 2 (Supplementary Table S4) [52]. This insight, together with 

the candidate gene targets for drug development that we have identified in each cluster, may 

provide good starting points for delivering precision and personalized treatment.

Machine learning has become ubiquitous and indispensable for solving complex problems in 

most sciences [53]. Since the problem of unresolved heterogeneity is prevalent to medicine, 

the same methods are expected to open up vast new possibilities in medicine and actively 

employed in a variety of clinical research [53]. We tried to make a predictive model for 62 

samples that were obtained from the synovial tissue of RA patients before administration of 

IFXM. Because key features are informative for predicting the outcome rather than being 

directly implicated in the major pathways or usual suspects related to the RA synovium, they 

could be different depending on drugs and models. The fact that we achieved high 

performance scores in RA response prediction from mining the RA compendium, despite 

this was not attainable through individual statistical techniques in the past [40], argues that 

similar techniques can guide us to narrow choices for more effective drugs. Interestingly, 
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DEG-driven models outperformed models that were relying on pathways as features. Among 

7 featured genes in SVM model, HMMR (Hyaluronan-mediated motility receptor, also 

known as RHAMM) exacerbated collagen-induced arthritis by supporting cell migration and 

up-regulating genes involved with inflammation[54] and MATL1 (Mucosa associated 

lymphoid tissue lymphoma translocation gene 1) was recently identified to play a crucial 

role in the pathogenesis of RA as MATL1-deficient mice were completely resistant to 

collage-induced arthritis [55]. Direct connection to RA was not revealed for the rest of the 

identified informative genes so far and it remains to be investigated how and why these 

features are indicative of drug response.

There are some limitations to be addressed in this study. First, removal of batch effects is not 

ideal which adds to the noise in the compendium. Second, we did not fully address the 

association of RA subgroup with clinical factors including age, sex, disease duration, and 

antibodies against anti-cyclic citrullinated protein due to lack of complete annotation for 

each RA sample. Third, a limited number of samples were treated with other drugs except 

for infliximab precluded us from making a predictive model. In general, more meta-data 

would be desired, although this is to be expected as these studies were performed in different 

clinical environments, with different procedures and goals, which did not include their 

aggregation to a single compendium and application of advanced machine learning 

techniques. In the future, we anticipate that the construction of datasets with sufficient 

metadata for machine learning analysis would enable critical insights and may lead to novel 

drug targets for RA treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations

BCR B cell receptor

CV cross-validation

DAVID Database for Annotation, Visualization, and Integrated Discovery

DEG differentially expressed genes

DT Decision Trees

FDR false discovery rate

GO Gene ontology

GSEA Gene set enrichment analysis

IFN interferon

IL interleukin

KEGG Kyoto Encyclopedia of Genes and Genomes
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KNN k-Nearest-Neighbors

NB Naïve Bayes

NC normal control

NMF non-negative matrix factorization

OA osteoarthritis

PR Precision-Recall

RA Rheumatoid arthritis

ROC Receiver-Operator Characteristics

SVM Support Vector Machines

t-SNE t-distributed stochastic neighborhood embedding

TCR T cell receptor

TGF transforming growth factor

TLR toll-like receptor

TNF tumor necrosis factor

VEGF vascular endothelial growth factor
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Fig. 1. Overview of the data processing steps.
(A) Twenty studies maximally covering 20,511 genes were retrieved from the literature. (B) 
Selected were 11 datasets adequate to integrated analysis, which included 256 RA, 41 OA, 

and 36 NC samples covering 11,769 gene. (C) The merged dataset was normalized using 

quantile method and its batch effect was corrected. (D) DEG of RA compared to OA or NC 

were obtained using three methods, eBayes, SAM, and RP. Intersection of three DEG sets 

was chosen as significant DEG. The number of DEG was 2762 in RA versus OA and 3087 

in RA versus NC. (E) A list of strategies for integrated analysis. (Abbreviation: RA, 
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rheumatoid arthritis; OA, osteoarthritis; NC, normal controls; DEG, differentially expressed 

genes; eBayes, empirical Bayes; SAM, significance analysis of microarray; RP, rank 

products).

Kim et al. Page 17

Clin Immunol. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Differentially expressed genes and their functional network.
(A) Venn diagram showing the overlap of up- and down-regulated DEG between RA versus 

OA and RA versus NC. (B) Gene-Set enrichment map for up-regulated DEG. Nodes 

represent GO-termed gene-sets. Their color intensity and size is proportional to the 

enrichment significance and the gene size, respectively. Edge thickness represents the degree 

of overlap between gene sets and only edges with a Jaccard coefficient larger than 0.25 were 

visualized. Clusters of functionally related gene-sets were manually curated based on the 

GO parent-child hierarchy and assigned a label. (C) Protein-Protein interaction network of 
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up-regulated DEG. Red and blue nodes indicate the known RA-susceptible genes and drug 

target molecules, respectively. Drug targets were defined subject to the targets of drugs 

currently in use or under clinical trial and development. Yellow nodes correspond to the hub 

molecules, which are determined as the shared genes in top 10% with the highest rank in 

each arm of three centrality parameters; degree, closeness, and betweenness. Orange, green, 

and purple colored-nodes are the overlapped between red and yellow, yellow and blue, and 

red and blue ones, respectively. Right-side inset box is the schematic diagram of the 

interesting genes.
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Fig. 3. Identification of novel RA subgroups according to synovial signatures.
(A) Reordered consensus matrices on RA compendium. The samples were clustered using 

average linkage and 1-correlation distances. Deep-red color indicates perfect agreement of 

the solution, whilst blue color indicates no agreement (Right-side color bar). Basis and 

consensus represent clusters based on the basis and consensus matrices, respectively. The 

silhouette score is a similarity measure within its own cluster compared to other clusters. (B) 
t-SNE and (C) PCA reduces the dimensions of a multivariate dataset. Each data point is 

assigned a location in a two-dimensional map to illustrate potential clusters of neighboring 

samples, which contain similar gene expression patterns.
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Fig. 4. Pathway activation scores according to RA subgroups.
Chord diagram shows interrelationship among pathways and link thickness is proportional to 

the overlap between two pathways, calculated using the Jaccard coefficients. Turkey 

boxplots reveals pathway activation scores across the RA subgroups and ANOVA test was 

used to analyze the differences among groups. *, P<0.05; **, P<0.01; ***, P<0.001.
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Fig. 5. 
(A) Frequency and distribution of 3 subgroups by seropositivity. Estimation was on basis 

of the information available in the 9 datasets (233 samples). (B) Frequency and 
distribution of 3 subgroups by the two-opposing datasets. To examine the association of 

disease duration and activity, two distinctively opposing datasets were selected from the 

compendium for comparison. GSE45867 is a group of samples with shorter duration and 

moderate disease activity and GSE21537 is with longer duration and high disease activity. 

The number of samples assigned by subgroups and characteristics of the dataset was 

summarized. Distribution of 3 subgroups did not differ between two datasets (P=0.754).
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Fig. 6. Predictive models and their performance.
(a) Pathway-driven models. (b) DEG-driven models. (Left plot) The training and testing 

balanced accuracy for each classifier as compared with the baseline. All models 

outperformed the baseline (all P<0.001) and the performance of the trained models was 

significantly compromised in testing sets (all P<0.001). (Middle and right plots) Averaged 

ROC and PR curves showing the performance of each classifier.
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