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Abstract 

I investigated water temperature, dissolved oxygen (DO), clarity, salinity, stable oxygen isotopes 

(δ18O), pH, alkalinity, dissolved inorganic carbon (DIC), the stable carbon isotope of DIC 

(δ13CDIC), silica, and nitrate in the open water of a tropical mangrove estuary and rivers feeding 

the estuary. I aimed to document how anthropogenic pollution by nutrients drives carbon cycling 

in the open water of the estuary. Salinity-δ18O mixing modeling confirmed a two-endmember 

seawater-freshwater hydrologic mixing in the estuary. The spatial distribution of alkalinity and 

DIC was modeled by a two-endmember seawater-freshwater mixing. However, a salinity-DIC-

δ13CDIC conservative mixing model revealed a mismatch in stations in the lower estuary because 

of isotopically lower-than-expected δ13CDIC. I attribute the isotopically lower than predicted 

δ13CDIC to nitrate-driven eutrophication and subsequent production of isotopically light CO2 from 

organic matter oxidation. The anthropogenic nitrate perturbation that drives the cycling of carbon 

near the mouth of this tropical estuary is not sourced from seawater or freshwater but generated in 

situ. My findings implicate anthropogenic pollution from shipping activities in the carbon cycling 

in this tropical mangrove estuary. 
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1. Introduction 

Estuaries amongst other coastal habitats are considered critical ecosystems and are known for their 

abundant biodiversity and high bioproductivity. Estuaries receive significant amounts of organic 

carbon from land which is processed and exchanged with the ocean and atmosphere (Giresse and 

Cahet 1997; Borges and Abril 2011; Chen et al. 2013; de Souza Machado 2017; Dutta and 

Choudhury 2021). A recent estimate of global estuarine CO2 degassing to the atmosphere is ~0.1 

pgC yr-1 (Chen et al. 2013), making estuaries an important interface in the conversion of terrestrial 

and coastal carbon, and their transfer to the atmospheric and oceanic reservoirs (Frankignoulle et 

al.1998; Abril et al. 2005; Borges et al. 2005; Chen et al. 2012; Houang et al. 2012). Globally, 

about 60% of estuarine systems are changing in response to anthropogenic forcing (Bouillon et al. 

2003; Borges 2005). Altered freshwater inflows and increased nutrient loading from watersheds 

of rivers that discharge to estuaries affect estuary productivity and nutrient and carbon cycling (Fry 

2002; Atekwana et al. 2003; Gazeau et al. 2004; Abril 2011; Chen et al. 2013; Dutta and Choudhury 

2021). Estuaries are therefore critical areas for research on carbon sources, sinks, and fluxes, as 

estuaries link the terrestrial, ocean, and atmospheric carbon reservoirs. 

Understanding the processes that control the occurrence, distribution, and processing of geogenic 

solutes and nutrients is critical to elucidating their role as tracers and drivers, respectively, of 

carbon cycling in estuaries (Stumn and Morgan 1993; Fry 2002; Atekwana et al. 2003). In 

estuaries, the salinity-δ18O relationship is used to trace mixing between seawater and freshwater, 

because salinity and δ18O are conservative, and seawater and freshwater endmembers are well-

defined. (Eyre 1999; Fry 2002). Therefore, the relationship between salinity and solutes, nutrients, 

and dissolved inorganic carbon (DIC) can be used to assess whether their spatial and temporal 

distribution in the water column in estuaries is from the mixing of river and seawater sources or 



2 
 

water column production (Strain and Tan 1979; Loder 1985; Dubinina et al. 2017; Joesoef et al. 

2017). The stable carbon isotope ratio of DIC (δ13CDIC) is also useful for determining marine and 

terrestrial contributions to the estuarine DIC pool and for carbon cycling. Nutrient perturbations 

(e.g., nitrate) can fuel increased productivity in the water column and promote eutrophication 

leading to a drawdown of water column dissolved oxygen (hypoxia) (Borges and Gypens 2010; 

Zhang et al. 2019; Cotovicz 2019, 2021; Dutta and Choudhury 2021; Hee et al. 2023). 

Furthermore, heterotrophic and photosynthetic processes control the behavior of δ13CDIC in the 

aqueous DIC pool in estuaries by adding or removing carbon from the DIC pool (Bouillon et al. 

2003, 2011). Therefore, the conservative and nonconservative mixing models based on salinity, 

DIC, and the δ13CDIC provide a basis for assessing and understanding the cycling of carbon in 

estuaries (Strain and Tan 1979; Peterson et al. 1994; Hellings et al. 1999; Atekwana et al. 2003). 

Tropical mangrove estuaries are an integral part of global carbon and nutrient cycling (Twilley, 

1985; Dittmar and Lara 2001; Bouillon et al. 2007; Donato et al. 2011; Palit et al. 2022). Estimates 

show that ~21% of the World’s mangroves are in Africa, with 74% occupying the coastlines of 

tropical west Africa and 26% occupying the tropical east coast of Africa (Naidoo 2023; Diop 1992, 

1993; Diop et al. 2002). Although tropical estuaries in sub-Saharan Africa harbor ~31% of the 

human population and receive far greater amounts of organic and inorganic carbon and pollutants 

compared to temperate estuaries (Diop 1993; Diop et al. 2002, 2014; Anjonina 2008; Naidoo 2023) 

tropical mangrove estuaries in sub-Saharan Africa have not been investigated for their role in local, 

regional, or even global carbon cycling. It is unclear what factors control carbon cycling in the 

open waters of tropical mangrove estuaries. Published investigations conducted in tropical 

mangrove estuaries in sub-Saharan Africa are focused on point source pollution, mangrove 

mapping, coastline evolution, and hydrodynamics (e.g., Diop 1993; Diop et al. 2002, 2014; 
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Corcoran et al 2007; Anjonina 2008; Naidoo 2023). There is a gap in our knowledge and 

understanding of the role of watersheds in delivering anthropogenic nutrients that drive 

biogeochemical processes that cycle carbon in the open water of tropical mangrove estuaries.  

In this study, I investigated the role of nutrients from anthropogenic pollution in upsetting the 

carbon cycling in the open water of the tropical mangrove Wouri Estuary, Douala, Cameroon (Fig. 

1). The Wouri Estuary is a complex and extensive mangrove ecosystem which is a critical habitat 

for biodiversity that supports the fishing industry in Cameroon. Recent studies have shown that 

seawater-freshwater hydrologic mixing in the mouth of rivers and tidal creeks is definable from 

tide-salinity relationships (Atekwana et al. 2022, Fotsi et al. 2023). An investigation of the Wouri 

Estuary and Rio Del Ray Estuary along the Cameroon coastline by Gabche and Smith (2002) 

suggests that anthropogenic activities in river watersheds pollute the Wouri Estuary. The sources 

of pollution in the Wouri Estuary include industries located at the head of the estuary and the mouth 

of the Wouri River (Gabche and Smith 2002; Atangana 2013; Ngoran 2016; Mbusnum et al. 2020). 

Although previous studies have revealed that the Wouri Estuary is polluted, there are no studies 

that assess the effect of such pollution on carbon cycling in the estuary. Thus, my goal in this study 

was to conduct a chemical and isotopic survey of the Wouri Estuary and the major rivers (Wouri 

River, Mungo River, and Dibamba River) that feed the estuary to assess if and how anthropogenic 

pollution (e.g., nitrate) perturbs the estuarine carbon cycle. The investigation was conducted during 

the peak of the rainy season (July) when the annual river discharge into the estuary is highest, and 

consequently, more pollutants from the watershed are washed into the estuary. To achieve my goal, 

I conducted an axial survey of water temperature, dissolved oxygen (DO), clarity, salinity, δ18O, 

pH, alkalinity, DIC, δ13CDIC, silica, and nitrate in the open water of the Wouri Estuary and the 

rivers that feed the estuary. I found out that: (1) seawater-freshwater hydrologic mixing controls 
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the distribution of DIC and geogenic solutes, but not anthropogenic nitrate and (2) anthropogenic 

nitrate perturbation of the cycling of carbon in the Wouri Estuary occurs near the estuary mouth 

and is not associated freshwater or oceanic sources. My findings are used to suggest that 

anthropogenic nutrient impacts from shipping activities drive carbon cycling near the mouth of the 

tropical Wouri Estuary. 

2. Study area 

The Wouri Estuary (3°42′0.00′′N to 4°11′0.00′′N and 9°14′.00′′E to 9°35′0.00′′E) is located in 

Douala, Cameroon, along the Atlantic coast of West Africa (Fig. 1). The Wouri Estuary has a low-

lying relief that varies between sea level and ~3 m above sea level (a.s.l) to the west and ~100 m 

a.s.l in the northeast (Gabche and Smith 2002; Ndongo et al. 2015; Fotsi et al. 2019; Simon and 

Raffaeli 2012; Besack et al. 2021). The Wouri Estuary has open water of approximately 1485 km2 

and is surrounded by 2300 to 2700 km2 of mangrove forest (Gabche and Smith 2002; Din et al. 

2008, 2017; Simon and Raffaeli 2012; Ndongo et al. 2015; Fotsi et al. 2019). The mangrove forest 

is composed of more than 30 species, with the red mangroves [Rhizophora racemose; Rhizophora 

harrisonii; Rhizophora mangle (Phizophoraceae) and white mangroves (cennia germnans 

(Avicenniaceae); Laguncularia racemose) and conocarpus erectus) as the dominant species (Din 

2001; Din et al. 2002, 2008; Din and Baltzer 2008; Nfotabong-Atheull et al. 2011, 2013; Fantong 

et al. 2016; Fusi et al. 2016). 

The open water of the Wouri Estuary extends from the Atlantic coast to ~35 km inland and has a 

width that varies from 23 km in the lower estuary to 1.2 km at the estuary head. The Douala seaport 

is located near the head of the Wouri Estuary. The Douala seaport serves landlocked countries of 

the Sub-Saharan Africa region (Mbusnum et al. 2020). Because of the large volume of sediment 

delivered by the Wouri River, Mungo River and Dibamba River to the estuary, a shipping channel 
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from the Atlantic Ocean to the port is periodically dredged and maintained to facilitate ship 

navigation. The maximum depth of the navigable channel after dredging is 25 m which decreases 

to 6 m around the Bonaberi bridge at the estuary head (Gabche and Smith 2002; Simon and Raffaeli 

2012; Ndongo et al. 2015; Fotsi et al. 2019; Besack et al. 2021). Also, the number of ships that can 

offload cargo usually exceeds the port’s holding capacity. Therefore, ships in transit to the port 

wait near the estuary mouth for their turn to pick up or offload cargo. 

The climate of Wouri Estuary and the coastal region is classified as a warm humid equatorial 

regime (Peel et al. 2007; Din and Baltzer 2008), with distinct dry and rainy seasons (Din et al. 

2002; Fantong et al. 2016; Mbusnum et al. 2020; Climate-Data.org 2023). The dry season spans 

December to February and the rainy season spans March to November. The daily temperature 

ranges between 23 and 33 0C and is between 25 and 33 0C in the dry season and 21 and 29 0C in 

the rainy season. The annual average temperature is 26.4 0C. The average annual precipitation is 

4000 cm and distributed such that ~75% of the rain falls in the rainy season (Gabche and Smith 

2002; Din et al. 2002; Climate-Data.org 2023). The highest monthly rainfall recorded within the 

year occurs in June, July, and August. During the dry season, the Harmattan winds blow from the 

Sahara Desert in the north, causing low humidity (as low as 48%) and high temperature; while 

during the rainy season, the moisture-laden winds blow from the Gulf of Guinea in the south 

causing high humidity. Humidity approaching an absolute maximum of 100 % during the rainy 

season is typical of this region (Din et al. 2002; Weather-forecast.com/Cameroon). 

The hydrology of the Wouri Estuary is supported by the Wouri River, Mungo River, and Dibamba 

River (Fig. 1) (Gabche and Smith 2002; Fantong et al. 2016; Ramatlapeng et al. 2021; Ndondo et 

al. 2021; Atekwana et al. 2022). The Wouri River enters the estuary at its head, and the Mungo 

River flows into the estuary from the west and the Dibamba River flows into the estuary from the 
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east about 15 km from the estuary mouth. The Wouri River has a catchment of ~8250 km2 and 

discharges 40 x 106 m3/d into the Wouri Estuary (Gabche and Smith 2002). The Wouri River and 

its tributaries drain the volcanic rocks of the Western High Plateau in the west region and 

sedimentary rocks of the Littoral region (Gabche and Smith 2002; Fantong et al. 2016; Fomenky 

et al. 2019; Besack et al. 2021). Although a large portion of the Wouri River watershed is rural, the 

river flows through the city of Douala with a population of ~8 million (Olivry 1986; Gabche and 

Smith 2002; Ako et al. 2014). The Mungo River has a catchment of 4200 km2 and discharges 60 x 

106 m3/d into the Wouri Estuary (Gabche and Smith 2002). The Mungo River and its tributaries 

drain the volcanic outpours of Mt. Cameroon. Additionally, the Mungo River and its tributaries 

flow through agricultural areas with plantations, as well as semi-urban and urban areas where 

population density reaches up to 150 inhabitants/km2 (Ako et al. 2014; Olivry 1986; Gabche and 

Smith 2002). River runoff into the estuary from the Dibamba River is 40 x 106 m3/d from a 

catchment of ~2400 km2 (Gabche and Smith 2002). The Dibamba River and its tributaries drain 

metamorphic rocks of the Nyong complex (Besack et al. 2021, Fantong et al. 2017; Gabche and 

Smith 2002). The watershed is rural; however, the river flows briefly through the eastern portion 

of the city of Douala.  

The Wouri Estuary experiences semidiurnal mixed tides with tidal ranges changing from mesotidal 

(>2 m) to microtidal (<2 m) (Onguene et al. 2014). During one tidal cycle, the tidal wave can 

propagate more than 60 km upstream from the estuary mouth in the dry season when river 

discharge is low. The estuary is described as hypersynchronous (Allen et al. 1980) because the 

tidal amplitude increases progressively towards the upper estuary, reaching a maximum of 2.8 m 

about 30 km away from the estuary mouth, before decaying in the fluvial sections (Olivry 1986). 

Numerous tidal creeks cut through the mangrove platforms and connect the mangrove forest to the 
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open water of the estuary (Fantong et al. 2016; Ndondo et al. 2021; Atekwana et al. 2022). The 

mean salinity of water in the Wouri Estuary is ~25 psu (Gabche and Smith 2002; Din et al. 2002). 

The salinity of the tidal creeks and that of the open estuary show variations influenced by tidal 

behavior, and because of seawater-freshwater mixing (Bessack et al. 2021; Atekwana et al. 2022).  

3. Methodology 

3.1 Sampling locations  

I investigated the open water of the Wouri Estuary and Wouri River (N03°52'00.9”, E009°31'55.9" 

to N04°07'02.3", E009°41'47.1") and the lower reaches of the of the Mungo River (N03°59'19.8”, 

E009°38'08.5" to N04°07'21.1”, E009°33'13.0") and the lower reaches of the Dibamba River 

(N03°54'49.9”, E009°38'55.4" to N04°00'0.5”, E009°50'54.4") (Fig. 1). I conducted my 

investigation in July 2023 during the peak of the rainy season and during high tide. The survey of 

the open estuary and the lower portion of the Wouri River was conducted at 18 sampling stations 

at ~2 to 3 km intervals along a 38 km transect on July 7th, 2023. Sampling began at the mouth of 

the estuary and the traverse was designed to intersect the flood tide-freshwater boundary in the 

upper estuary. River sampling was conducted at high tide at sampling intervals of ~2 to 3 km for 

14 stations for the Mungo River on July 11th, 2023, and for 13 stations at intervals of ~2 to 3 Km 

for the Dibamba River on July 19th, 2023. For the river sampling, the first station was located in 

the open water of the estuary and sampling proceeded upstream along the river for 28 km for the 

Mungo River and 32 km for the Dibamba River. 

3.2 Water sampling and sample processing 

Grab samples for chemical and isotopic analyses were collected at 25 cm depth. Samples for the 

determination of DIC concentrations and the δ13CDIC were collected using a plastic syringe and 

injected through 0.45 µM syringe filters into pre-evacuated 50 mL glass vials pre-loaded with 1.5 
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mL of 85% phosphoric acid and magnetic stir bars. At each sampling station, 1 L polyethylene 

(PET) bottles were pre-rinsed thoroughly with the water to be sampled before collecting samples. 

The collected samples were later (within 6 h) filtered through 0.45 µM nylon into unacidified 30 

mL PET bottles for the analyses of δ18O, silica, and nitrate. The lids of PET bottles were sealed 

with electrical tape to prevent accidental opening and evaporation during storage. All the water 

samples were kept cool and out of light and then transported to the University of California Davis, 

USA where they were kept in a refrigerator at 4°C. 

3.3 Water sample analyses  

At each sampling station, the water temperature, dissolved oxygen (DO), salinity, and pH were 

measured in situ at 25 cm depth below the water surface using a Hanna (HI98194) multi-parameter 

probe. Probe readings were recorded after the pH, temperature, and electrical conductivity 

stabilized. Water clarity was measured by lowering a Secchi disk into the water at each sampling 

location and noting the depth at disk extinction. 

Alkalinity measurements were made by acid titration with 0.16 N sulfuric acid (Hach Company 

1992) from filtered aliquots of the sample obtained from the 1 L PET bottles. Nitrate concentrations 

were measured by ion chromatography (Dionex ICS-6000). Silica concentrations were measured 

by spectrophotometry (CHEMetrics V-3000 series). Analysis for δ18O was done using a Cavity 

Ringdown Spectrometer (PICARRO Isotope water analyzer L2140-i). DIC was quantified using 

the gas evolution extraction technique (Atekwana and Krishnamurthy 1998) and the δ13CDIC was 

measured on a Micromass Optima gas source isotope ratio mass spectrometer. All the isotopic 

ratios are reported in delta notation (δ) in per mil (‰). The δ18O is reported relative to VSMOW 

standard and the δ13C is reported relative to VPDB standard. The δ18O and the δ13C have a precision 

of better than 0.1‰.  
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4. Results 

The results of temperature, water clarity, DO, salinity, δ18O, pH, alkalinity, DIC, δ13CDIC, silica, 

and nitrate for the Wouri Estuary and Wouri River are presented in Table 1, for the Mungo River 

in Table 2, and for the Dibamba River in Table 3. In describing the axial variations of the different 

parameters across the open water of the Wouri estuary, the estuary mouth is assigned 0 km and 

distances progress towards the estuary head and Wouri River. I consider stations 0-10 km as the 

lower estuary, 10-20 km as the mid-estuary, and 20-38 km as the upper estuary and river. During 

the survey, the high tide front was crossed in the upper estuary at about 23 km from the estuary 

mouth. For the river surveys, high tide was crossed at 6 and 7 km from the mouths of the Mungo 

River and the Dibamba River, respectively. 

4.1 Spatial variations in temperature, clarity, DO, salinity, and δ18O 

The water temperature for the Wouri Estuary and Wouri River ranged from 26.4 to 28.8 °C and 

averaged 27.4 ±0.1°C. The water temperature increased from the mouth of the estuary towards the 

mid-estuary, decreased, and was nearly constant in the mid-estuary before decreasing and 

remaining constant in the upper estuary and Wouri River (Fig. 2a). The water temperature in the 

Mungo River ranged from 26.5 to 30°C and averaged 27.1 ±0.1°C. The water temperature in the 

Dibamba River ranged from 27.2 to 28.4 °C and averaged 27.6 ±0.1°C. The water temperature for 

the Mungo River and Dibamba River decreased from the mouth of the rivers towards the upstream 

(Table 2; Table 3). 

In the Wouri Estuary and Wouri River, water clarity ranged from 44 to 142 cm and averaged 76 ±2 

cm (Table 1). Water clarity, which was high and ranged between 100-142 cm in the lower estuary 

decreased continuously in the upper estuary and Wouri River, where it remained nearly constant 

at 50 cm (Fig. 2b). The clarity of the water in the Mungo River ranged from 30 to 102 cm and 
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averaged 60.6 ±2 cm. The clarity of the water in the Dibamba River ranged from 20 to 110 cm and 

averaged 68.6 ± 2cm. The clarity of the water for both the Mungo River and Dibamba River 

decreased from the mouth of the river towards the upstream (Table 2; Table 3). 

In the Wouri Estuary and Wouri River, the DO concentrations ranged from 5.5 to 6.9 mg/L and 

averaged 6.3 ±1.5 mg/L. The DO concentrations were nearly constant around 7 mg/L throughout 

the lower estuary, then decreased to a minimum of ~6.0 mg/L in the mid-estuary and gradually 

increased to 7 mg/L in the upper estuary and the Wouri River (Fig. 2c). The DO concentrations in 

the Mungo River ranged from 6.3 to 7.6 mg/L and averaged 7.0 ±1.5 mg/L. The DO concentrations 

in the Dibamba River ranged from 5.7 to 7.3 mg/L and averaged 6.6 ±1.5 mg/L. The DO 

concentrations for the Mungo River and Dibamba River decreased from the mouth of the rivers 

towards the upstream (Table 2; Table 3). 

The salinity in the Wouri Estuary and Wouri River averaged 12.8 ±0.01 psu and ranged from 0.02 

to 38.8 psu. The salinity decreased continuously from 38.8 psu at the mouth of the estuary through 

the mid-estuary to a low of 0.2 psu in the mid-estuary and remained low through the upper estuary 

and the Wouri River (Fig. 2d). The salinity in the Mungo River ranged from 0.1 to 4.5 psu and 

averaged 1.1 ±0.01 psu. The salinity in the Dibamba River ranged from 0.1 to 6.2 psu and averaged 

0.8 ±0.01psu. The salinity for the Mungo River and Dibamba River decreased from the mouth of 

the river towards the upstream (Table 2; Table 3). 

The δ18O of the Wouri Estuary and Wouri River ranged from -3.8 to -1.0 ‰ and averaged -2.8 ±0.3 

‰. The δ18O decreased continuously from -1.0 ‰ in the lower estuary through the mid-estuary 

and stayed nearly constant at -3.8 ‰ in the upper estuary and Wouri River (Fig. 2e). The δ18O in 

the Mungo River ranged from -4.9 to -3.7 ‰ and averaged -4.9 ±0.3 ‰. The δ18O in the Dibamba 

River ranged from -4.0 to -2.5 ‰ and averaged -3.3 ±0.3 ‰. The δ18O for both the Mungo River 
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and Dibamba River decreased from the mouth of the river towards the upstream (Table 2; Table 

3). 

4.2 Spatial variations of pH, alkalinity, DIC, δ13CDIC 

In the Wouri Estuary and Wouri River, the pH ranged from 6.5 to 7.8 and averaged 7.2 ±0.02. The 

pH decreased slowly from 7.8 in the lower estuary to 7.2 in the mid-estuary, then increased to 7.5 

in the upper estuary before decreasing to 7.2 at the estuary head (Fig. 3a). The pH in the Mungo 

River ranged from 6.8 to 7.1 and averaged 6.9 ±0.02. The pH in the Dibamba River ranged from 

6.4 to 7.0 and averaged 6.7 ±0.02. The pH for both the Mungo River and Dibamba River decreased 

from the mouth of the rivers towards the upstream (Table 2; Table 3). 

The average alkalinity concentration in the Wouri Estuary and Wouri River was 28 ±1 mg/L (as 

CaCO3) and ranged from 12 to 60 mg/L. Alkalinity concentrations generally decreased from 60 

mg/L in the lower estuary to 20 mg/L mid-estuary and stayed nearly constant in the upper estuary 

and Wouri River (Fig. 3b). The alkalinity concentrations in the Mungo River ranged from 21.2 to 

24.4 mg/L and averaged 23.1 ±1 mg/L. The alkalinity concentrations in the Dibamba River ranged 

from 7 to 20.8 mg/L and averaged 10.8 ±1 mg/L. The alkalinity concentrations for both the Mungo 

River and Dibamba River decreased from the mouth of the rivers towards the upstream (Table 2; 

Table 3). 

The DIC concentrations in the Wouri Estuary and Wouri River averaged 7.3 ±0.1 mg C/L and 

ranged from 3.3 to 13.8 mg C/L. The DIC concentration which was 13.8 mg C/L in the lower 

estuary decreased to 5 mg C/L in the mid-estuary and remained nearly constant through the upper 

estuary and Wouri River (Fig. 3c). The DIC concentrations in the Mungo River ranged from 5.2 to 

9.9 mg C/L and averaged 5.1 ±0.1 mg C/L. The DIC concentrations in the Dibamba River ranged 

from 0.8 to 1.5 mg C/L and averaged 1.1 ±0.1 mg C/L. The DIC concentrations for both the Mungo 
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River and Dibamba River decreased from the mouth of the rivers towards the upstream (Table 2; 

Table 3). 

In the Wouri Estuary and Wouri River, the δ13CDIC ranged from -17.6 to -3.1 ‰ and averaged -11.2 

±0.1 ‰. The δ13CDIC decreased slowly from -3.1 to -4.8 ‰ in the lower estuary, and then steeply 

to -17.6 ‰ in the upper estuary before increasing slightly to -15.6 ‰ in the Wouri River (Fig. 3d). 

The δ13CDIC in the Mungo River ranged from -15.0 to -12.3 ‰ and averaged -14.0 ±0.1 ‰. The 

δ13CDIC in the Dibamba River ranged from -19.8 to -16.9 ‰ and averaged -18.6 ±0.1 ‰. The 

δ13CDIC for the Mungo River and Dibamba River decreased from the mouth of the rivers towards 

the watershed (Table 2; Table 3). 

4.3 Spatial variation of silica and nitrate 

Silica concentrations in the Wouri Estuary and Wouri River ranged from 3.7 to 13.5 mg/L and 

averaged 9.8 ±1.5 mg/L. The silica concentrations increased from 3.7 mg/L in the lower estuary to 

the mid estuary where the silica concentrations fluctuated between 12.0 to 13.7 mg/L in the upper 

estuary and Wouri River (Fig. 4a). The silica concentrations for the Mungo River averaged 16.4 

±1.5 mg/L and ranged from 10.1 mg/L in the estuary to 19.4 mg/L (Table 2). The silica 

concentrations for the Dibamba River averaged 8.4 ±1.5 mg/L and ranged from 5.2 to 10.12 mg/L 

(Table 3). The silica concentrations increased progressively upstream for both the Mungo River 

and Dibamba River.  

In the Wouri Estuary and Wouri River, the nitrate concentrations varied between 0.01 to 26.61 

mg/L and averaged 7.88 ±1.5 mg/L. The nitrate concentration increased from 14.8 mg/L in the 

lower estuary to 21.2 mg/L in the mid-estuary before decreasing to 4.2 mg/L in the mid-estuary 

(Fig. 4b). The nitrate concentrations then increased to 5.3 mg/L in the mid estuary and decreased 

to 0.1 mg/L and stayed low in the upper estuary and Wouri River (Fig. 4b). The nitrate 
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concentrations for the Mungo River averaged 6.1 ±1.5 mg/L and ranged from 0.04 to 11.18 mg/L 

(Table 2). The nitrate concentrations for the Dibamba River averaged 3.77 ±1.5 mg/L and ranged 

from 0.53 to 9.26 mg/L (Table 3). The nitrate concentrations were generally higher for river 

stations near the river mouth and decreased upstream in both the Mungo River and the Dibamba 

River. 

5. Discussion 

5.1 Axial variations of the physical and chemical parameters in the open water of the Wouri 

Estuary 

The axial trends in water temperature (Fig. 2a), salinity (Fig. 2d), and δ18O (Fig. 2e) which 

generally decrease from the mouth of the estuary towards the estuary head become nearly constant 

after the high tide front was crossed. The alkalinity (Fig. 3b) and DIC (Fig. 3c) concentrations and 

the δ13CDIC (Fig. 3d) also decreased from the estuary mouth towards the estuary head and changed 

very little after I crossed the high tide front. Silica showed a continuous increase in concentration 

from the estuary mouth towards the head and changed very little after the high tide front was 

crossed (Fig. 4a). In contrast, nitrate had higher concentrations in the lower estuary, which 

decreased towards the estuary head, and stayed low and nearly constant after I crossed the high 

tide front (Fig. 4b). I test if the spatial distribution of our measured parameters can be explained 

using a seawater-freshwater mixing model. 

5.2Hydrologic mixing in the open water of the Wouri Estuary 

Salinity and δ18O are conservative and are therefore good tracers of mixing between seawater and 

freshwater (Lewis 1980; Fry 2002). Freshwater input into the Wouri Estuary is from the Wouri 

River at the estuary head, the Mungo River, and the Dibamba River which discharge into the 
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estuary at ~15 km from the estuary mouth (Fig. 1). The freshwater endmember for salinity is held 

constant at 0 psu for the Wouri River, the Mungo River and the Dibamba River. The freshwater 

δ18O was determined by averaging the δ18O values of the three most upstream stations in the Wouri 

River, Mungo River, and Dibamba River with salinities of 0 psu (Table 1: Table 2: Table 3) and 

presented in Table 4. Because I did not measure the salinity and δ18O values for the seawater 

endmember, I initially assumed a δ18O value of 0 ‰. Additionally, I assumed a salinity of 39 psu 

which was the salinity measured for my most seaward station during the survey. My mixing 

relationships using the salinity of 39 psu and a δ18O value of 0 ‰. for the seawater endmember 

failed to describe the salinity-δ18O relationship for the open estuary and the Wouri River, the 

Mungo River, or the Dibamba River.  

I conducted a least squares regression for the salinity-δ18O data for the open estuary and the Wouri 

River which is positive and strongly correlated (δ18O = 0.068 salinity- 3.7; R² = 0.97), indicating 

a two-endmember mixing between seawater and freshwater (Lewis 1980; Loder 1985; Fry 2002; 

Xie and Wu 2023). The intercept of the regression equation to the δ18O axis at a salinity of 0 psu 

is identical to the average δ18O of -3.7 ‰ estimated for the Wouri River endmember (Table 4). 

However, if I assume a δ18O of 0 ‰ for the seawater endmember, then the salinity estimated from 

the regression equation is 54 psu, which is much higher than I measured and much higher than 33-

37 psu reported for the Atlantic Ocean (Berger et al. 2014; Da-Allada et al. 2014; Dovlo 2016; 

Nyadjro et al. 2022). Nevertheless, using a δ18O river endmember of -3.7, -4.6, and -2.9 ‰ for the 

Wouri River, Mungo River, and Dibamba River, respectively, and a seawater endmember δ18O 0 

‰ and salinity of 54 psu (Table 4) I constructed hydrologic mixing lines for seawater and the three 

rivers (Fig. 5). The data from my axial survey of the open water of the Wouri Estuary and Wouri 

River lie along the salinity-δ18O hydrologic mixing for seawater and freshwater. Furthermore, data 
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from the Mungo River and Dibamba River do not fall along the seawater-open water of the estuary-

Wouri River mixing line. The salinity-δ18O relationship for the Mungo River has a more negative 

δ18O and a lower slope (0.055), while the Dibamba River has a more positive δ18O endmember 

(Table 4) and a higher slope (0.087) compared to the Wouri River-seawater endmember 

relationship (Fig. 5). The more negative δ18O for the Mungo River is consistent with higher 

elevations in the mountainous catchment where the higher altitudes cause greater depletion in the 

δ18O (Clark and Fritz 2013). The topography of the Dibamba watershed is low and rainout of the 

air mass moving into the terrestrial interior controls the isotopic composition of the rain and stream 

water in the watershed (Clark and Fritz 2013). The δ18O for the Wouri River shows that tributaries 

of the Wouri River collect water from both mountainous areas to the west and non-mountainous 

regions to the east.  

I infer from the positive correlation between salinity and δ18O in our axial survey (Fig. 5) that in 

spite of freshwater discharge from the Mungo River and the Dibamba Rivers occurring mid-

estuary, I can characterize the hydrologic mixing by the Wouri River endmember. The Wouri River, 

Mungo River, and Dibamba River discharge 40 x 106 m3/d, 60 x 106 m3/d, and 40 x 106 m3/d, 

respectively, into the Wouri Estuary (Gabehe and Smith 2002). Yet the δ18O of the river 

endmembers indicate minimal contribution of discharge from the Mungo River and the Dibamba 

River to the open estuary during our survey. Although it appears paradoxical, I attribute this lack 

of mixing of the Mungo River and the Dibamba River to my axial sampling along seawater-Wouri 

River, different sampling dates for the Mungo and Dibamba Rivers, and tidal advance down the 

Mungo River and Dibamba River. Additionally, my experiment in the Mungo River and Dibamba 

River was focused on obtaining the freshwater δ18O endmembers that would allow me to 
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characterize the contribution of the major rivers to mixing in the mid-to-lower estuary during my 

survey and to elucidate if these rivers were sources of nutrients to the estuary. 

5.3 Nutrients in the open water of the Wouri Estuary 

Determining the sources of nutrients and their fate in estuaries is critical to elucidate the role of 

nutrient perturbation on carbon cycling (Fry 2002; Borges and Gynpens 2010; Cotovicz et al. 

2021). The Mungo River, Wouri River, and Dibamba River watersheds and the Atlantic Ocean are 

sources of nutrients and solutes delivered into the Wouri Estuary (Angwe and Gabche 1997; 

Gabche and Smith 2002; Baok 2007; Atangana 2013; Ngoran 2016; Fomenky et al. 2019). I 

measured high nitrate concentrations (up to 21.61 mg/L) in the open water of the Wouri Estuary 

(Table 1; Fig. 4b). However, the concentrations of nitrate in the surface water of the Atlantic Ocean 

over the past 10 years are low, and average 0.045 mg/L (Global Ocean Biogeochemistry Analysis 

and Forecast 2023), thus revealing that seawater is not the source of the high nitrate in the Wouri 

Estuary. Terrestrial and anthropogenic sources of nitrate in the Wouri Estuary include point sources 

from plantations and nonpoint sources from subsistence farming in the Mungo River, Wouri River, 

and Dibamba River watersheds. Additionally, improper disposal of sewage and waste from small 

towns in the Mungo River, Wouri River, and Dibamba River watersheds and improper disposal of 

domestic and industrial waste in the city of Douala are possible sources of nitrate (Gabche and 

Smith 2002; Atangana 2013; Ngoran 2016; Fomenky et al. 2019; Mbusnum et al. 2020). The 

nitrate concentrations measured in the Mungo River, Wouri River, and Dibamba River range 

between 0.04 to 11.18 mg/L, with lower concentrations at the mouths of these rivers (Table 2; 

Table 3). Therefore, to elucidate if the source of the nitrate in the estuary is terrestrial, I need to 

follow a terrestrial tracer delivered into the estuary and assess its mixing behavior. I contend that 

I should observe a coupled behavior of the terrestrial tracer with nitrate if nitrate delivered from 
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land is conserved in hydrologic mixing or observe a decay behavior over space if nitrate is utilized 

by phytoplankton or diluted by hydrologic mixing. Silica is a geogenic solute that can be used to 

trace the source and fate of nutrients in estuarine systems (Livingstone 1963; DeMaster 1981; Bell 

1994). The salinity-silica relationship for the open water of the estuary and the Wouri River (Fig. 

6a) is negatively correlated (Wouri Estuary: silica = -0.23 salinity + 12.82, R² = 0.96) indicating a 

two-end member mixing. The salinity-silica relationships show higher silica concentrations from 

the Mungo River watershed and lower silica concentrations for the Dibamba River watershed 

compared to the silica concentration from the Wouri River watershed (Fig. 6a). Similar to the 

salinity-δ18O behavior (Fig. 5), there are clear differences in the watershed signatures for silica 

(Fig. 6a). Additionally, because silica concentrations from the Mungo River and Dibamba River 

do not cluster around the freshwater endmember of the salinity-silica relationship (Fig. 6a), I infer 

that the Mungo River and Dibamba River are not contributing silica to the open water of the Wouri 

Estuary during our survey. 

I trace the source of anthropogenic nitrate pollution in the Wouri Estuary by assessing the mixing 

behavior between salinity and nitrate (Fig. 6b), which is relatively poor (Nitrate =0.43 salinity 

+2.41; R² = 0.62). This poor relationship between salinity and nitrate is used to suggest that nitrate 

pollution in the open water of the Wouri Estuary is not from a seawater or freshwater source. I 

support my contention that nitrate pollution is not from the watersheds because of the lower nitrate 

concentrations in the Wouri River, Mungo River, and Dibamba River (Table 1; Table 2; Table 3; 

Fig. 6b). Additionally, the nitrate concentrations are lower compared to higher concentrations 

observed in the lower portion of the Wouri Estuary. Moreover, if the source of nitrate was 

terrestrial, I would expect to observe progressively lower nitrate concentrations towards the estuary 
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mouth because of dilution by seawater and utilization by phytoplankton. Thus, the nitrate pollution 

in the open water of the Wouri Estuary appears to be in situ in the lower portion of the estuary.  

5.4 Dissolved inorganic carbon in the open water of the Wouri Estuary 

Two endmembers mixing between salinity and alkalinity and between salinity and DIC provide a 

means for assessing the sources and distribution of DIC in estuaries (e.g., Stumn and Morgan 1993; 

Fry 2002). DIC concentrations and the δ13CDIC in aqueous systems are controlled by CO2 input, 

carbonate dissolution and precipitation reactions, heterotrophic microbial respiration of organic 

matter, photosynthesis by phytoplankton, aquatic DIC exchange with atmospheric CO2 or from 

mixing of carbon from different pools (Cai and Wang 1998; Borges and Gypens 2010; Cotovicz 

2019, 2021). Therefore, the processes that add or remove carbon from the estuarine DIC pool will 

cause changes in the DIC concentrations and the δ13CDIC, thus forming the basis for using salinity 

and DIC parameters to model carbon mixing and processing (e.g., Sackett Moore 1966; Strain and 

Tan 1979; Spiker, 1980; Coffin and Cifuentes, 1999; Hellings et al.1999; Fry 2002). A two-

endmember mixing relationship between salinity and alkalinity (Fig. 7a) is positively correlated 

(Alkalinity = 1.1Salinity + 13.8; R2=0.96). A similar two-endmember mixing relationship (Fig. 7b) 

is observed between salinity and DIC concentrations (DIC = 0.24Salinity + 4.2; R2=0.94). The 

salinity-alkalinity and salinity-DIC relationship indicates a seawater source for alkalinity and DIC 

in the Wouri Estuary because of higher concentrations compared to freshwater sources (Table 1; 

Table 2; Table 3). I interpret the positive correlation between salinity and alkalinity and between 

salinity and DIC to result from seawater-freshwater hydrologic mixing. The alkalinity and DIC 

concentrations in the Mungo River are higher and those for the Dibamba River are lower compared 

to those of the freshwater endmember in the salinity-alkalinity (Fig. 7a) or salinity-DIC 

relationships (Fig. 7b) for the open water of the Wouri Estuary and Wouri River. 
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5.5 Carbon cycling in the open water of the Wouri Estuary 

The conservative mixing behavior of salinity-DIC-δ13CDIC is a critical tool to elucidate the 

processes that control DIC cycling in estuarine systems (Strain and Tan 1979; Peterson et al. 1994; 

Hellings et al. 1999). A three-endmember relationship between salinity, DIC concentration, and 

the δ13CDIC offers a robust approach to assessing carbon cycling beyond tidal controlled hydrologic 

mixing, and I use the approach of Fry (2002). Salinity in estuaries is conserved (e.g., Fig. 5) and 

the relationship between salinity and alkalinity (Fig. 7a) and salinity and DIC concentrations (Fig. 

7b) allows me to use a single freshwater endmember for mixing in the open water of the Wouri 

Estuary, in spite of multiple freshwater sources. The choices for my seawater endmember and the 

freshwater endmember for salinity, DIC concentration, and δ13CDIC are presented in Table 5. The 

model behavior based on my selected seawater and freshwater endmember properties is shown in 

Fig. 8 as a blue dashed line (Line 1). The δ13CDIC in the upper and mid-estuary deviated from our 

model line slightly when the salinity <15 psu and markedly in the mid to lower estuary when the 

salinity >15 psu (Fig. 8). I developed another conservative mixing model to fit our data by iteration 

which is shown as Model Line 2 in Figure 8. To fit my data with model 2, I needed a seawater 

endmember with a salinity of 70 psu which is unlikely, because salinities measured in the Atlantic 

Ocean range from 33 to 37 psu (Berger et al. 2014; Da-Allada et al. 2014; Dovlo 2016; Nyadjro et 

al. 2022). The main reason why data from the Wouri Estuary does not fit Model 1 is that the δ13CDIC 

is much lower than predicted by the conservative mixing relationship in the mid to lower estuary, 

indicating that there are additional processes controlling carbon cycling in the water column (Strain 

and Tan 1979; Peterson et al. 1994; Hellings et at. 1999).  

Deviations from salinity-DIC-δ13CDIC mixing curves that show δ13CDIC data below the 

conservative mixing curves have been previously reported (Coffin and Cifuentes 1999; Bouillon 
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et al. 2003; Bouillon et al. 2011). Such deviations are attributed to respiration of organic matter 

that adds CO2 depleted in 13C which causes depletion of the δ13C of the DIC (Bouillon et al. 2003; 

Bouillon et al. 2011). In the Wouri Estuary, the location where the δ13CDIC is lower than predicted 

by the salinity-DIC-δ13CDIC model is in the mid to lower estuary with salinities greater than 15 psu. 

The respiration of terrestrially derived organic matter can explain the addition of CO2 depleted in 

13C in the DIC pool. The δ13CDIC for the portion of the estuary dominated by freshwater is up to -

16.7 ‰ (Fig. 3d), which I use to suggest that the organic matter brought into the estuary from the 

watersheds is from C-3 vegetation (Ludwig 1996; Dittmar et al.2001; Lamb et al. 2006; Liu et 

al.2007), and consistent with measured δ13C values of dissolved organic carbon as low as -30.0‰ 

in the watersheds of Nyong River east of the Wouri Estuary in Cameroon (Nkoue and Ndondo 

2008). Additionally, marine-dominated regions of estuaries exhibit higher δ13CDIC in the water 

column that ranges from -3 to -7‰ (Fig. 3c) resulting from the predominance of seawater DIC 

(Mook and Tan 1991; Chanton and Lewis 1999). I infer that the respiration of organic matter fueled 

by higher nitrate concentrations is the likely cause for the depleted δ13CDIC in the mid to lower 

estuary (Fig. 8). The oxidation of the organic matter, in turn, causes the nonconservative response 

to the salinity-DIC-δ13CDIC relationship (Cifuentes et al. 1988; Giresse and Cahet 1997; Fry 2002; 

Bouillon et al. 2003; Cai et al. 2004; Bouillon et al. 2011 Cotovicz et al.2015,2021; Dutta and 

Choudhury 2021; Hee et al. 2023). I suggest that the nitrate that fuels the respiration of organic 

matter in the lower Wouri Estuary is from anthropogenic input related to the direct release of 

untreated sewage by ships destined for the Douala seaport but anchored in waiting in the lower 

estuary. Additionally, I suggest that the untreated sewage contributes to the organic matter that is 

oxidized in the lower estuary in situ. I surmise that anthropogenic perturbations of the cycling of 
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carbon in the Wouri Estuary which occurs in the mid to lower estuary is not from the watershed 

influx of nutrients or nutrients from anthropogenic activities in the city of Douala. 

6. Conclusions  

The physical, chemical, and stable carbon isotopic composition water collected axially across the 

open water of a tropical mangrove estuary and from three rivers that feed the estuary were used to 

characterize the key processes driving carbon cycling. A salinity-δ18O mixing model a during high 

tide survey depicts mixing between seawater and a single freshwater endmember in the open water 

of the estuary. Nitrate concentrations (up to 21.61 mg/L) recorded in the lower estuary were 

significantly higher than in rivers that feed the estuary and seawater that mixes with freshwater in 

the estuary. A salinity-silica relationship which traced the geogenic silica from the terrestrial 

watershed allowed me to suggest that a poor salinity-nitrate mixing relationship means that nitrate 

pollution of the lower estuary is in situ. I attribute the in-situ pollution of the lower estuary with 

nitrate to ships anchored in waiting to offload or pick up cargo at the seaport located at the estuary 

head. A salinity-alkalinity and salinity-DIC mixing models indicate two-endmember mixing 

consistent with tidal controlled hydrologic mixing. However, a salinity-DIC-δ13CDIC conservative 

model failed to characterize carbon cycling in the lower estuary. The poor fit to the salinity-DIC-

δ13CDIC conservative model occurred because of lower-than-expected δ13CDIC in the lower estuary, 

which was driven by isotopically light CO2 input into the water column from nitrate-induced 

heterotrophic organic matter respiration. I suggest that anthropogenic pollution by nitrate drives 

carbon cycling in the lower reaches of this tropical mangrove estuary. 
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Tables 

Table 1 : Global positioning satellite (GPS) locations, temperature (Temp), dissolved oxygen (DO), water clarity, salinity, stable oxygen isotope 

(δ18O), pH, alkalinity, dissolved inorganic carbon (DIC), stable isotopic composition of carbon of DIC (δ13CDIC), Silica and nitrate for the Wouri 

Estuary and Wouri River. 

  

Sample ID GPS reading Temp  DO Clarity Salinity ẟ18O pH Alkalinity DIC  ẟ13C Silica Nitrate 

 Latitude Longitude ºC ppm cm psu ‰ S.U. mg/L mg C/L ‰ mg/L mg/L 

WR1 N03°52'00.9" E009°31'55.9" 27.62 6.58 102 38.81 -1.1 7.76 60 13.77 -3.1 3.7 13.80 

WR2 N03°52'58.3" E009°32'59.7" 27.51 6.74 145 34.94 -1.9 7.77 44.2 11.41 -5.6 6.2 11.72 

   WR3 N03°53'48.1" E009°34'37.7" 27.76 6.82 135 31.15 -1.6 7.66 49.5 12.64 -5.1 5.4 17.04 

WR4 N03°54'44.6" E009°34'12.9" 28.08 6.7 98 28.35 -1.7 7.59 48.4 9.10 -5.3 6.1 20.50 

WR5 N03°55'37.8" E009°34'46.7" 28.11 6.62 108 29 -1.6 7.59 48.2 12.15 -4.9 5.5 19.02 

WR6 N03°56'30.7" E009°35'23.0" 28.36 6.72 102 23.51 -2.0 7.5 41.6 10.64 -6.0 7.1 10.22 

WR7 N03°57'23.1" E009°35'59.9" 28.35 6.85 88 19.65 -2.1 7.37 40.1 9.06 -7.2 7.0 8.58 

WR8 N03°58'17.2" E009°36'38.4" 28.12 6.75 79 11.64 -2.7 7.27 29.6 8.17 -9.6 8.8 21.61 

WR9 N03°59'08.2" E009°37'17.0" 27.41 6.14 57 6.24 -3.3 7.01 21.1 5.06 -12.9 11.9 2.50 

WR10 N03°59'57.3" E009°37'57.5" 27.04 6.03 53 3.69 -3.4 6.91 19.7 5.56 -14.3 11.9 7.75 

WR11 N04°00'45.5" E009°38'44.4" 27.26 5.55 44 1.97 -3.6 6.96 18.2 3.68 -15.6 12.5 6.19 

WR12 N04°01'31.7" E009°39'25.1" 27.18 5.49 46 0.52 -3.7 7.21 15.2 5.25 -15.6 13.3 2.69 

WR13 N04°02'22.2" E009°40'07.3" 27.11 5.71 58 0.12 -3.8 7.34 14.2 4.30 -16.0 13.5 0.06 

WR14 N04°03'06.9" E009°41'04.7" 27.21 6.08 47 0.1 -3.7 7.4 13.5 4.59 -17.6 12.8 0.02 

WR15 N04°03'53.5" E009°41'33.8" 26.44 6.2 52 0.04 -3.8 7.17 12.1 3.39 -16.3 12.1 0.01 

WR16 N04°04'57.3" E009°41'29.2" 26.53 6.55 56 0.04 -3.7 6.8 11.6 4.13 -16.7 13.1 0.12 

WR17 N04°05'59.4" E009°41'35.0" 26.46 6.19 50 0.04 -3.7 6.51 11.6 4.04 -13.8 13.0 0.01 

WR18 N04°07'02.3" E009°41'47.1" 26.42 6.06 51 0.022 -3.8 6.45 11.7 4.29 -16.5 12.9 0.01 
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Table 2: Global positioning satellite (GPS) locations, temperature (Temp), dissolved oxygen (DO), water clarity, salinity, stable oxygen isotope 

(δ18O), pH, alkalinity, dissolved inorganic carbon (DIC), stable isotopic composition of carbon of DIC (δ13CDIC), Silica and nitrate for the Mungo 

River. 

 

 

 

 

 

 

 

 

 

 

 

- = not measured 

  

 

Sample ID  GPS reading Temp  DO Clarity Salinity δ18O pH Alkalinity DIC  δ13C Silica Nitrate 

 Latitude Longitude ºC ppm cm psu ‰ S.U. mg/L  mg/C/L ‰ mg/L mg/L 

M1 N03°59'19.8" E009°38'08.5" 27.84 7 36 4.51 -4.9 6.88 21.2 5.15 -13.6 11.4 9.63 

M2 N03°59'41.3" E009°33'09.4" 27.42 7.13 32 3.79 -4.5 6.94 22.8 6.62 -14.1 13.9 11.18 

M3 N03°59'59.5" E009°33'04.8" 27.34 7.6 42 2.6 -4.8 7.07 23.4 6.62 -15.1 12.1 4.02 

M4 N04°00'48.4" E009°33'29.8" 29.96 7.19 30 1.95 - 6.65 22.6 5.96 -12.3 13.6 5.27 

M5 N04°01'07.5" E009°33'36.1" 26.81 7.22 32 2.29 -3.7 6.78 22.3 4.98 -13.6 15.2 7.24 

M6 N04°02'38.8" E009°34'34.7" 26.57 6.3 52 0.14 -3.9 6.99 23 5.69 -13.2 16.2 - 

M7 N04°03'12.4" E009°34'42.5" 26.51 6.28 64 0.09 -4.7 6.84 22.6 5.16 -14.4 17.5 8.56 

M8 N04°03'58.5" N04°03'58.5" 26.59 6.67 70 0.07 -4.6 6.73 22.4 6.23 -14.5 16.6 8.66 

M9 N04°04'48.7" E009°35'04.4" 26.56 6.9 72 0.05 -4.3 6.84 23.1 6.25 -13.1 19.0 0.04 

M10 N04°04'57.5" E009°35'03.0" 26.56 6.68 73 0.06 -4.8 6.81 23 7.79 -13.1 17.3 9.88 

M11 N04°05'08.0" E009°35'07.6" 26.75 7.5 90 0.05 -5.2 6.85 24 6.35 -14.5 18.9 0.11 

M12 N04°05'41.4" E009°35'55.0" 26.73 7.23 82 0.06 -4.3 6.91 23.4 6.64 -14.9 19.1 3.77 

M13 N04°06'17.4" E009°33'11.8" 26.66 7.52 102 0.06 -4.7 6.9 24.4 9.94 -14.9 19.0 9.46 

M14 N04°07'21.1" E009°33'13.0" 26.8 7.45 71 0.06 -4.6 7 24 7.49 -15.0 19.4 2.05 
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Table 3: Global positioning satellite (GPS) locations, temperature (Temp), dissolved oxygen (DO), water clarity, salinity, stable oxygen isotope 

(δ18O), pH, alkalinity, dissolved inorganic carbon (DIC), stable isotopic composition of carbon of DIC (δ13CDIC), Silica and nitrate for the Dibamba 

River.  

 

 

 

 

 

 

 

- = not measured 

Sample ID  GPS reading Temp DO Clarity Salinity ẟ18O pH Alkalinity DIC  ẟ13C Silica Nitrate 

 Latitude Longitude ºC ppm m psu ‰ S.U. mg/L  mg/C/L ‰ mg/L mg/L 

D1 03°54'49.4''N 09°38'55.4''E 28.39 6.78 20 6.21 -3.8 6.38 20.8 - - 7.3 4.91 

D2 03°55'13''N 009°40'57.7''E 28.1 6.46 52 1.7 -2.8 6.73 15.4 4.15 -16.9 7.0 6.01 

D3 03°55'58.5''N 09°42'12.3''E 27.99 6.27 52 1.65 -2.7 6.74 16.2 5.02 - 8.6 6.02 

D4 03°56'19''N 09°43'41.5''E 27.8 5.98 48 0.42 -3.4 6.57 11.7 4.72 -19.3 7.8 4.78 

D5 03°56'38.2''N 09°45'10.1''E 27.72 5.77 47 0.25 -3.4 6.9 14.2 5.03 -18.5 9.1 9.26 

D6 03°57'38.8''N 09°46'0.3''E 27.66 6.12 41 0.07 -3.5 7 9.1 3.51 -19.8 8.8 0.53 

D7 03°57'15.6''N 09°47'40.6''E 27.49 5.93 50 0.12 -3.5 6.81 8.7 4.14 -18.1 9.7 2.76 

D8 03°56'47.6''N 09°49'44.5''E 27.56 6.38 85 0.03 -4.0 6.85 7.5 2.92 -19.0 9.8 3.09 

D9 03°56'33.8''N 09°49'58.9''E 27.44 6.88 100 0.02 -3.8 6.72 7.3 2.75 -19.2 5.2 2.73 

D10 03°57'19.2''N 09°51'25.5''E 26.38 7.1 87 0.02 -3.4 6.62 7.5 2.63 -18.5 8.6 1.00 

D11 03°58'32.1''N 09°51'42.7''E 27.37 7.17 101 0.02 -2.5 6.4 7.0 2.79 -18.2 10.1 2.55 

D12 03°59'42.9''N 09°51'35.7''E 27.23 7.13 99 0.02 -2.6 6.93 7.2 2.79 -19.3 7.8 2.55 

D13 04°00'0.5''N 09°50'54.4''E 27.15 7.33 110 0.03 -3.7 6.52 7.4 2.83 -17.6 9.7 2.88 
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Table 4: Endmember values for salinity and the stable oxygen isotope of oxygen (ẟ18O) for seawater, the 

Wouri River, the Mungo River, and the Dibamba River. 

 

 

 

 

 

Table 5: Endmember values for the dissolved inorganic carbon (DIC), stable carbon isotopic of DIC 

(ẟ13C), and salinity for seawater and freshwater (the Wouri River). 

 

 

 

  

 Salinity (psu) ẟ18O (‰)  

Seawater 52 0  

Wouri River 0 -3.7  

Mungo River  0 -4.6  

Dibamba River 0 -2.9  

Freshwater Seawater 

 DIC (mmol/L) ẟ13C (‰) Salinity (psu) DIC (mmol/L) ẟ13C (‰) Salinity (psu) 

 CR ẟ13CR SR CS ẟ13CS SS 

Line 1 0.3 -18 0 1.2 0 52 

Line 2 0.3 -18 0 1.2 0 70 
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Figures 

 

 

Figure 1 : (A) Location of the tropical Wouri Estuary in Douala Cameroon, (B) a radarsat image showing 

the Wouri Estuary, (C) A Google Earth map image showing the sampling stations across the axial transect 

of the open estuary and segments of the Mungo River 
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Figure 2: Spatial variations of (a) Temperature (b) Clarity (c) Dissolved Oxygen (d) Salinity (e) δ18O 

from the mouth of the estuary (0km) to the estuary head (35km).  
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Figure 3: Spatial variations of (a) pH (b) Alkalinity (c) DIC(d) δ13C from the mouth of the estuary (0km) 

to the estuary head (35km). 
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Figure 4: Spatial variations of (a) Silica and (b) Nitrates from the mouth of the estuary (0km) to the estuary 

head (35km). 
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Figure 5: Seawater-freshwater hydrologic mixing relationship between salinity and δ18O across the open 

water of the Wouri Estuary and the Wouri River, the Mungo River, and the Dibamba River. 
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Figure 6: Plots of salinity variation as a function of (a) Silica and (b) Nitrates in the open water of the 

Wouri Estuary, and the segments of the Mungo River, and Dibamba River watersheds. 
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Figure 7: Plots of salinity variation as a function of  (a) Alkalinity (b) DIC across the open water of the 

Wouri Estuary, and the segments of the Mungo River and Dibamba River watersheds. 

  

y = 1.1389x + 13.82
R² = 0.9687

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

A
lk

al
in

it
y 

(m
g

/L
)

Salinity (psu)

Wouri Estuary and Wouri River
Mungo River
Dibamba River

y = 0.2398x + 4.2303
R² = 0.9427

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

D
IC

 (
m

g 
C

/L
)

Salinity (psu)

Wouri Estuary and Wouri River
Mungo River
Dibamba River

(a)

(b)



 

45 
 

 

 

Figure 8: Plot of salinity vs. dissolved inorganic carbon and δ13C. A three-endmember mixing from two 

conservative mixing models (line 1 and line 2) of salinity, DIC, and δ13C. Closed blue circles represent data 

from the Wouri Estuary. Model Line 2 modified from Fry, B 2002 by iteration.  
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