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Abstract

The development of models for shape memory alloys and other ma-
terials that under-go martensitic phase transformations has been mov-
ing towards a common generalized thermodynamic framework. Sev-
eral promising models utilizing single martensitic variants and some
with multiple variants have appeared recently. In this work we de-
velop a model in a general multivariant framework that is based upon
lattice correspondence variants and the use of dissipation arguments
for the generation of specialized evolution equations. The evolution
equations that appear are of a unique nature in that not only are the
thermodynamic forces restricted in range but so are their kinematic
conjugates. This unusual situation complicates the discrete time inte-
gration of the evolution equations. We show that the trial elastic state
method that is popular in metal plasticity is inadequate in the present
situation and needs to be replaced by a nonlinear programming prob-
lem with a simple geometric interpretation. The developed integration
methodology is robust and leads to symmetric tangent moduli. Exam-
ple computations show the behaviour of the model in the pseudoelastic
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range. Of particular interest is the fact that the model can predict
the generation of habit plane-like variants solely from the lattice cor-
respondence variants; this is demonstrated through a comparison to
the experimental work of Shield [35].
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1 Introduction

Alloys that undergo martensitic phase transformations provide a unique
medium from which to design a variety of novel engineering devices. In
particular, the class of alloys that are known as shape memory alloys pos-
sess unique features that make them attractive in applications ranging from
simple eyeglass frames all the way to jet engine components and advanced
medical prosthetics; see for example Duering, Melton, Stockel, and Wayman
[16] or Funakubo [17]. There are two basic effects that are exploited in the use
of such alloys: (1) is the production and consumption of martensites under
the application of stress and (2) the production or consumption of martensite
during the cooling or respectively heating of the alloy. What makes these
alloys even more interesting is the fact that both of these effects are reversible
through the application of an appropriate stress and temperature excursion.

1.1 Modeling Overview

We are interested, in this work, in the macroscopic modeling in multi-dimensions
of materials with an evolving martensitic structure. We are not interested
in fine details of the microstructure but rather gross measures of it, its evo-
lution, and its affect on the macroscopic stress strain behavior of such ma-
terials. The governing free energy and evolution equations of such a model
have been presented in part in several works; see for example Boyd and
Lagoudas [12, 13], Siredey, Patoor, Berveiller, and Eberhardt [39], Bo and
Lagoudas [11], Idesman, Levitas, and Stein [26], Levitas, Idesman, and Stein
[28], Sun and Hwang [41], and Huang and Brinson [25] where aspects of
continuum thermodynamics, often in conjunction with Eshelby arguments,
are utilized to generate a model. Alternatively, see Abeyratane and Kim [2],
Abeyaratne, Kim, and Knowles [1], Achenbach [3], Achenbach, Atanackovic,
and Miiller [4], Achenbach and Miiller [5], Miiller and Xu [33], Govindjee
and Hall [20, 19], and Hall and Govindjee [23] where methods of statistical
physics are applied to generate a suitable evolutionary model structure.

1.2 Model Time Integration

The time integration of such constitutive models has not received as much
attention as their modeling. By time integration we mean the integration of
the constitutive equations in time under, say, strain and temperature control



as would be common in a FEM code. There are two primary difficulties in
time integrating models of the type referenced above. One is that the internal
variables are constrained to lie in a convex polytope. This restriction is a
consequence of mass conservation and comes into play numerically at the
completion of a transformation process. The second is associated with the
selection of what type of transformation if any is actually taking place during
a discrete time step during the integration process; this is a branch selection
(uniqueness) issue.

Time integration work has been done on models of the Tanka [42] type
by Brinson and Lammering [14]; see also Govindjee and Kasper [21]. These
models are, however, in general essentially only one-dimensional models and
their extension to multi-dimensions is somewhat unclear; for one such ex-
tension see Lubliner and Auricchio [29]. Further, they suffer from a branch
switching pathology that does not have a clear solution [21]. In the con-
text of multi-dimension models, the recent work of Qidwai and Lagoudas
[34] examines a model that is formally similar in mathematical structure to
classical plasticity. They apply both the return map and the convex cutting
plane algorithm to a shape memory alloy model with a single martensite
variant. The model that is presented, while multi-dimensional, is essentially
restricted to proportional loading due to certain assumptions on the charac-
ter of the transformation strain. It is not clear if the numerical model suffers
from the branch selection problem but it is noted that the numerical pro-
cedure is based on a trial stress approach which has been shown in 1-D for
Tanaka type models to not fully characterize the branch; see Govindjee and
Kasper [21]. It is also noted that while the authors propose methods to deal
with transformation completion, the techniques are introduced in an ad hoc
fashion since the time continuous equations do not explicitly account for the
polytope constraint. In Hall and Govindjee [23] a multi-dimensional model
that includes the polytope constraint and its computational realization is pre-
sented. This model is based on notions from statistical physics and involves
the direct integration of a Markov process. While [23] presents a model that
is anisotropic and valid for non-proportional loading it lacks in its structure
the explicit notion of an interaction energy between martensite and austenite
variants and is thus only qualitative. The computational technique is based
upon unconstrained integration and a polytope projection algorithm to deal
with the mass conservation issue. The model does not suffer from branch
selection problems due to its Markov structure. Unfortunately, the numeri-
cal methods proposed depend crucially on the Markov structure of the rate
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equations and are not generalizable to other model types. In Siredey et.al.
[39] a model is proposed that explicitly accounts for the polytope constraint
in the time continuous equations. Huang and Brinson [25] have used this
model structure and briefly present an integration method in an appendix
that relies on penalty methods to effect the integration of the model. The
geometric setting of the model and its numerical approximation are, however,
not explored in detail.

1.3 Goals and Characteristics of the Proposed Model

The goals of this paper are multi-fold but generally revolve about the issues
of the creation and numerical approximation of an evolutionary martensitic
model. As with the literature cited above we will introduce a continuum
model that is based on internal variables — the phase fractions. In particu-
lar, we will consider a model that is based only upon lattice correspondence
variants since these are the fundamental transforming units in the material
systems of interests. The introduction of habit plane variants (see for ex-
ample Siredey et.al. [39] or Gao, Huang, and Brinson [18]) is avoided as
we feel a well posed model should automatically generate such structures
through “natural” evolution under appropriate loading conditions. Further
a model based on lattice correspondence variants also possess the ability to
handle complex phenomena such as detwinning and reorientation transfor-
mations. Lastly, a model based on lattice correspondence variants avoids
the difficulties associated with enumerating all the possible habit plane so-
lutions. This can be a particularly difficult problem for materials with low
symmetry martensites. For example, in Ni-Ti alloys there are 12 monoclinic
lattice correspondence variants (martensites) but the number of habit plane
variants is (at least) 192; see Hane and Shield [24].

Like, Siredey et.al. [39] and Huang and Brinson [25] we will develop
our model equations by appealing to methods of continuum thermodynam-
ics. In particular we will borrow their notion of the replacement of the free
energy density of the material with a Lagrangian potential that explicitly ac-
counts for the mass conservation constraints on the internal variables (phase
fractions) in the model. In extension of these previous works, we formalize
a number of model development details and elaborate upon the geometric
setting of the model equations in an effort to aide in understanding their
continuum structure as well as in exploiting the geometry for numerical ap-
proximation purposes. Note that the discussion will take place in the setting
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of a relatively arbitrary criteria for the phase transformation as opposed to
a reliance upon the infinity norm as been previously considered by these
authors.

The concrete form of the free energy function that we base the model
upon is from the work of Govindjee and Mielke [22]. These authors develop
a free energy structure from the view point of quasi-convexity; a notion which
amounts to the minimum known mathematical structure required for exis-
tence of solutions to such models. In particular they consider the n-variant
problem within a context appropriate for an evolutionary model. In the
present work we will utilize an estimate to the structure that emanates from
the quasi-convexity arguments to develop our evolutionary model. Note that
these developments are similar to those contained in the works of Kohn [27]
and Smyshlyaev and Willis [40] where attention is focused on an equilibrium
problem for two and three variants, respectively — not on an evolutionary
system.

Our numerical approach will be based as in classical plasticity upon a trial
state methodology. In contrast to the work of Qidwai and Lagoudas [34], we
will not use the trial stress, for reasons mentioned above, but rather we will
utilize a trial conjugate driving force method. The conjugate driving force
being referred to here will be the thermodynamic conjugate to the internal
variables. Of special interest is the geometric setting of this trial state and
how one can determine from it when phase transformation will take place
and when it will not. It will be shown that the trial state procedure in the
space of conjugate forces in conjunction with a simple nonlinear programming
problem can be used to detect transformation steps from elastic steps. For
ease of discussion and presentation, we will primarily consider the case of a
C* transformation criteria. It is noted, however, that the methods presented
are also equally valid for the case of non-differential transformation surfaces
when one introduces the notion of a sub-differential.

1.4 Outline

The outline of the paper is as follows. We first define the time continuous
equations that define our phase transformation model. This includes the pre-
sentation of our free energy function and its associated Lagrangian, the stress
strain relations and the definitions of the generalized thermodynamic forces,
the transformation criteria, and phase transformation evolution law. This is
followed by a discussion of the rate equations and the geometry associated
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with the time evolution of the model. Next, we apply a finite difference
method to integrate the time continuous equations and discuss in detail the
geometry of the solution of these discrete equations. We then apply the model
in a finite element simulation of the extension and unloading of a rectangular
tension specimen with a non-homogeneous deformation state. The results of
the computation are compared to experimental data and good agreement is
seen with respect to overall response as well as to microstructural response
measures. The paper closes with a brief discussion of the presented material
and issues that remain outstanding.

2 Model Equations

In this section we develop the time continuous equations for our model. We
begin by first stating the free energy structure of our material. This is fol-
lowed by the replacement of our free energy with a Lagrangian potential
that accounts for certain kinematic constraints of the material. This leads us
to the expression for the stresses and the generalized thermodynamic forces
associated with the phase transformation. Utilizing a postulated transfor-
mation criteria we are then able to close our system of constitutive equations
with an evolution law for the internal variables of the model that represent
the phase fractions of the variants. This evolution law emanates from an as-
sumption of maximum dissipation and gives rise to a symmetric structure to
the rate equations. The geometric setting of the model is also discussed with
a view towards its exploitation in the development of numerical algorithms.

2.1 Free Energy

Our goal is to describe the evolution of a martensitic phase transformation
within an internal variable formulation. Our point of departure is the free
energy function of Govindjee and Mielke [22]

U(e, &) =€ () + TY(), (1)

where € € R" is the vector of phase fractions and is understood as the in-
ternal variable of the formulation. The decoupling present in Eq. (1) arises
naturally from the quasi-convexification formalism employed in its develop-
ment and is intimately connected to the notion of homogenization of optimal



microstructures; see Govindjee and Mielke [22] for additional details and ref-
erences. Above, n is the number of martensitic variants plus one for the
austenite variant, ¥™ is the free energy of mixing which is convex and non-
positive, € € S is the symmetric small strain tensor for a d-dimensional
problem (d € {1,2,3}), and 9 € R" is defined in the standard orthonormal
basis in terms of the components

@ba:%(s—sa):C:(e—sa)+M°‘. @)
Throughout the paper, we utilize a single dot (-) to denote the standard
inner product for vectors in R* and the double dot (:) to denote double
contraction between rank-2 tensors and between a rank-2 tensor and a rank-
4 tensor in R?. The superscript greek letters are indices that range from 1
to n the number of crystallographic variants in the problem. For simplicity
we assume each martensite and austenite is governed by the same rank-4
isotropic elasticity tensor C. €® is the generalized transformation strain for
the a variant and M® is the minimum free energy value at each variant. The
explicit expressions for the generalized transformation strain is

e* =™ + Afe* | (3)

where AO = 0 — 0, is the temperature difference from a reference absolute
temperature 6,, €* is the thermal coefficient of expansion tensor for variant
o, and €* is the stress free martensitic transformation strain for variant o
with reference to a zero strain austenite. The minimum of each potential is
given by Abeyratane and Kim [2] and Abeyaratne, Kim, and Knowles [1] as

M® = pc(l - log(H/G,,)) - plo‘(l - 9/60) — %A02€°“’ :C: e, (4)

where p is the mass density of the material, c is a heat capacity, and [ is
the latent heat of transformation for each variant. For simplicity we assume
all the variants share the same mass density and heat capacity. Eq. (4) was
designed to take into account the relative motion of the free energy minima
of the variants with respect to temperature.

The expression for the free energy of mixing can be developed in a num-
ber of different ways. Following along the lines of Kohn [27] for the two vari-
ant problem and Smyshlyaev and Willis [40] for the three variant problem,
Govindjee and Mielke [22] have utilized the quasi-convexification method to
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determine an expression for the mixing energy for the general n-variant prob-
lem. The form for this expression is posed as an optimization problem with
respect to H-measures of the material microstructure and in the n-variant
case can not be given in closed form. However, good bounds can be deter-
mined for it as shown in Govindjee and Mielke [22]. In the examples section
of the paper, we will use a Reufl-like lower bound

TH () > Wrews(€) (5)

which for many values of the phase fractions is actually the exact solution
to the H-measure optimization problem; for more details on H-measures see
Tartar [43]. The explicit form of the Reufl bound is given as

oM (€)= —% D g% Cre” + %ZZ&%Q .C:€%. (6

a=1 a=1 =1

There are a variety of different means to derive Eq. (6). Perhaps the most
transparent derivation comes by first constructing a Gibbs mixture potential
and then taking its Legendre transformation. The needed Gibbs energy is
given by

G(o,§)=¢-g, (7)
where the components of g are g* = —%a :C'!':0—0:¢€"and o is the
stress tensor. The Legendre transformation of Eq. (7) gives

sup{§-g+0:e} =& ¥+ Vpo(8). 8)

Thus we see that U . (¢) simply embodies the notion that there is no mixing
energy in the “stress-ensemble” picture.

The kinematic internal variable & is restricted by the principle of mass
conservation to satisfy the following two constraints

e-E-1 =
3

where e* € R” is a vector whose components have value unity in the standard
basis for R™; i.e. it serves as the trace operator for vectors in R*. Eq. (9)
shows that the model has more internal variables than are actually necessary.
This point has important implications in understanding and exploiting the

0, ©)
0, (10)

IA
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geometric setting of the proposed formulation. In fact, these conditions re-
strict the admissible values of £ to live in a convex polytope, P*~! C R"; i.e.
¢ € P"1. The geometric form of P! is that of a hyper-tetrahedron. For
example, if n = 3, then P? is simply the (111) plane in the positive quadrant;
ie. it is a triangle as visualized in Fig. 1. The presence of these constraints
suggests the replacement of the free energy function (1) by a Lagrangian po-
tential as has been put forward by Siredey et.al. [39] and Huang and Brinson
[25]:

L(e, &7,0)=V(e,&) —v-E+6(e"-€£-1), (11)

where the vector of multipliers, v, must satisfy the Kuhn-Tucker conditions
v-€=0 and ¥>0 (12)

in order to enforce the uni-lateral constraint that the phase fractions can
not be negative; J is a multiplier that enforces the constraint that the phase
fractions must sum to unity.

Figure 1: Constraint on internal variable. The internal variable vector § of
phase fractions is constrained to lie in the convex polytope P*~! C R". For
n = 3, P2 C R? is the shaded triangle shown above with orientation (normal

*

vector) e*.
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2.2 Stress Response and Generalized Thermodynamic
Forces

The generalized stress-strain relation for the material can be determined by
appealing to the theory of materials with internal variables and the Coleman
and Noll argument [15]. This delivers after standard manipulations of the
potential (11) the relation for the stress o as

C=0cL=¢ Ocp=) £%0%, (13)
a=1

where 0% = C : (¢ — %) and the relation for the thermodynamic conjugate
forces to the phase fractions as:

f= —35,6 = -1 — 8§\I/M + v —de*. (14)
This well-established argument also leads to the dissipation inequality
D=f-£>0. (15)

What remains is to set up an evolution criteria and evolution equation for the
internal variables that satisfies Eq. (15). These two steps are accomplished
next.

2.3 Transformation Inequality

With the preceding definitions in place, we now construct a condition that
will determine when phase transformation can take place. In the spirit of gen-
eralized internal variable models, we require the generalized thermodynamic
forces to be always bounded. We express this condition as

¢=I[fll-fe<0, (16)

where f, is a given constant that represents the effective critical thermody-
namic force required for phase transformation to occur and || - || is any well
defined norm on R™. Define the elastic conjugate force domain as

E={f|¢(f) <0}. (17)

Implied in this nomenclature is the assumption that transformation can only
take place when the norm of the conjugate force is equal to f.. Points in the
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space of conjugate thermodynamic forces that satisfy this condition, (¢(f) =
0), define a surface that we will call the “transformation surface”; this is the
set of points f € OE. Note that for well defined norms this surface will be
convex. For f € E, we assume that no transformation takes place. In the
works of Boyd and Lagoudas [12] and Huang and Brinson [25], for instance,
they have effectively chosen to utilize the infinity norm (though they do not
express it as such). In our examples, we will show that even the 2-norm
can be utilized to give reasonable results and thus the differentiability issues
associated with the infinity norm can be avoided if desired.

2.4 Maximum Dissipation Hypothesis

To complete the constitutive model requires the specification of an evolution
law for the phase fractions. As has also been done by Boyd and Lagoudas [12]
for shape memory alloys we appeal to the maximum dissipation hypothesis in
the absence of other physical information. The actual dissipation structure
from a physical viewpoint is an open question. We note in passing that Hall
and Govindjee [23] have looked in detail at the generation of a physically
based kinetic model for martensitic phase transformations. Their resultant
equations which can simulate a wide class of thermomechanical processes
possess an unsymmetric tangent structure and thus would not fall within
the framework of maximum dissipation. Putting aside this single point of
evidence which is in contradiction to maximum dissipation, we proceed to
maximize the dissipation (15) with respect to the constraint (16). The ex-
amples shown in Section 4 indicate that this is a reasonable course of action.
To begin, we consider the stationary conditions for the Lagrangian po-

tential
I(f,\) = —D + A (18)

under the Kuhn-Tucker conditions
A>0, $» <0, and Ap=0. (19)
This leads to the desired evolution equation with normality structure
€=, (20)

which is also seen to satisfy the dissipation inequality Eq. (15) and is visu-
alized in Fig. 2. Note that for non-differential norms one needs to introduce

13



Table 1: Summary of Time Continuous Constitutive Equations

Stress — Strain

o=) £C:(e—e) (21)
a=1

Transformation Criteria

o(f)=Fll-fe<0 (22)

Ap =0 (23)

A>0 (24)

Conjugate Force

f+v(e) —7+8€\I!M(£)+6e* =0 (25)

Evolution Equation

= Mg =0 (26)

Polytope Constraint

-£<0 (27)

—y-€=0 (28)

¥>0 (29)

e-£-1=0 (30)

the sub-differential to the set of admissible conjugate forces; see for example
Moreau [32, 31]. The practical meaning of this is the need to introduce mul-
tiple Lagrange multipliers in Eq. (18) in a manner similar to what is done for
multisurface plasticity; see for example Simo, Kennedy, and Govindjee [37].

At this stage the constitutive formulation is complete; the central equa-
tions are summarized for convenience in Table 1. We next discuss the rate
structure of the model.
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2.5 Rate Equations

The rate structure of the equations during a possible active evolution (A # 0)
of the phase fractions can be determined by enforcing the condition that the
conjugate force must have norm f. and remain at f, during evolution; i.e.

b=0p0-F =0 61

as is visualized in Fig. 2. Employing (14) we find that
0=0p- [*aeqp:é—aé&w-&ﬁ—ée*]. (32)

Note that the restriction & € P"! forces the last two terms in this expression
to be zero. The last term is zero by requirement (9) that the phase fractions
sum to one, which implies by differentiation with respect to time that e* § =
0. Using Eq. (20) yields the result that the normal to the transformation
surface during evolution must be orthogonal to e*; i.e. 6f¢ -e* = 0. The
penultimate term is zero by the requirement that the phase fractions be non-
negative. For phase fractions with inactive constraints (£* # 0 or £&* = 0
and £* > 0), the corresponding components of 4 will be zero; for those phase
fractions that are zero and continue to be zero the evolution equation (20)
will require the corresponding component of aqu to be zero. The net result,
is that

Opd-4 =0 (33)

during phase evolution. Based on these observations and the introduction of
Eq. (20) we can solve for the multiplier ) to give:

8f¢-65¢:é

A:_aqu-Bé&\IlM-afqﬁ'

(34)

Thus the stress rate may expressed in a symmetric form during active evo-
lution entirely in terms of the present state and the rate of change of the

strain: Dpd-0etp ® Dp- Ot
e Al fe v
8f¢-8§§\IfMo8f¢ (€. (35)

Clearly, in the case of no evolution, A = 0, one merely retains the first term
inside the square brackets.

o=
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2.6 Discussion

The model that appears in the previous sections is formally similar to that
of classical plasticity with the notable exception of the constraints on the
evolution of the internal kinematic-like variables €. These constraints are
embodied in the multipliers v and §. The geometric picture that emanates
from these equations is as follows. The conjugate forces, f, are constrained
to a convex domain in R*. Active evolution can only take place when the
force f is on the boundary of the convex domain. When evolution takes
place the rate of change of the force, f, obviously must lie in the tangent
space to the transformation domain. To this point the picture is exactly as
in classical plasticity. However, the presence of the requirement & € P!
provides further restrictions. In particular, since Eq. (9) must hold at all
times, so must its time derivative. This implies that during evolution the
force must lie at a point on the transformation surface where the normal is
in the hyperplane orthogonal to €*; this is visualized in Fig. 2 for the case
of the 2-norm. This forces f to be in the space orthogonal to both e* and
af¢. Further, since Eq. (10) must also hold and a component of 4 can not
be changing unless the corresponding component of £ is zero, we have the
added restriction that evolution points of the transformation surface must
have a normal in the hyperplane orthogonal to «v. The intersection of these
conditions defines a markedly reduced set of points on the transformation
surface where transformation can actually take place. Other points on the
transformation surface are in a sense inaccessible for purposes of evolution in
the model. This occurs because as one tries to approach these other points, it
is always possible to choose admissible values for § and « that keep the norm
of f strictly less than f. and thus A is forced to be zero and no evolution
can take place. These observations are explicitly exploited in the numerical
approximation to the model.

Part of the reason for this situation is the fact that we have chosen not to
eliminate one of the phase fractions from the model as we could have easily
done using the constraint on the sum of the phase fractions being unity. This
is the cause for the first requirement of a transformation surface normal to
be in a hyperplane orthogonal to e*. It is worth pointing out that we avoid
the urge to work in a reduced dimensional space on two grounds: (1) We
prefer to work in the natural coordinates of pure phase fractions where no
variant is given a preferential treatment by its elimination. (2) By working
in the full space we actually simplify some of the geometry of the evolution.
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Figure 2: Elastic conjugate force domain and transformation surface. The
thermodynamic force f is constrained to lie in the elastic domain E C R™.
Phase transformation can take place for points f on the transformation sur-
face OE. For n = 3 and the 2-norm, the entire set E is orthogonal to e* as
shown.

This is especially true when trying to view the model when the chosen norm
is a p-norm with co > p > 2.

The more interesting restriction that is associated with the constraint of
positive phase fractions is more fundamental to the modeling of martensites
and can not be avoided. Its geometric picture is more complicated to explain
and we defer that discussion to the section on time integration where its
meaning is slightly more transparent.

3 Time Integration

In this section we discuss the time integration of the constitutive model
outlined in the previous section. In particular, we focus on the integration of
the constitutive model under strain and temperature control as is common in
the majority of FEM codes. Thus we assume the entire state of the material is
known at a time ¢, and we wish to advance the state to time t,,1 = t, + At,
where At > 0 and €, and 6,4, are given. For ease of discussion and
presentation, we will mainly consider the case of a C* transformation surface.

17



Table 2: Summary of Discrete Equations to be solved at t,,;

Transformation Criteria

o(f)=Ifll - fe<0 (36)
Al =0 (37)
AX>0 (38)
Conjugate Force

f+ple) —v+0g UM (€) +de" =0 (39)
Evolution Equation

€&, — AN =0 (40)
Polytope Constraint

—£<0 (41)
-y-£€=0 (42)
¥>0 (43)
e-£-1=0 (44)

3.1 Backward Euler

To integrate the equations we first apply a finite difference method to the
evolution equation (26). Then we require all the remaining constitutive equa-
tions to be satisfied at time ¢, ;. This results in a set of algebraic equations
that must be solved for (f,, 1, An+1, Yny1> Ont1,€npr)- For specificity we will
work with the Backward Euler method which is first order accurate and un-
conditionally A-stable. In classical plasticity this method has been shown
to be B-stable (Simo and Govindjee [36]); in the present context this has
not been shown yet but we believe it to be so. The discrete equations to be
solved are summarized in Table 2 where for clarity we utilize the subscript
indicating time only on quantities at time ¢, and omit it for quantities at
time t,,1. In keeping with the conventions of computational plasticity, we
designate AX = AtA.
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3.2 Active Set Solution Strategy

To solve the equations in Table 2 we must for a given value of € determine the
independent variables (A, «,d). Knowing these three quantities allows us
to determine all the other relevant quantities in the Table. The fundamental
difficulty is associated with the fact that one does not a priori know which
variants will have active constraints associated with the —& < 0 condition.
This implies that one needs to have an active set strategy for solving the
equations which are in general non-linear. The strategy that we find most
robust is one where we first guess the set of active constraints as

B={a| & =0}. (45)

Having guessed B, we then completely solve the constitutive equations, and
then check the constraints. The set B is then adjusted using the following
two rules:

1. All phase fractions with negative components in 4 are removed from
B.

2. The most negative phase fraction, if any, and those of equal numerical
value are added to the set B.

The equations are then re-solved and the constraints re-checked until all
equations have been satisfied. In what follows we discuss the issue of solving
the equations in Table 2 for a given active set B with m active constraints.
Because the set B may not be physically correct, the solution strategy must
be able to handle non-physical cases such as negative «. Additional details
regarding the active set procedure can be found in Appendix B.

3.3 Determination of an Elastic Time-step

The determination of an elastic time step is approached by an “elastic trial”
method in the space of conjugate thermodynamic forces. During an elastic
step no evolution of the phase fractions takes place and thus for an elastic step
AMX = 0. In such a situation, the discrete Kuhn-Tucker conditions require
that ||f|| < fe. The question that arises is: Is this possible?

We can immediately eliminate this possibility if £ # 0 for some o € B.
The reason for this is that for active constraints the phase fractions have to
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be zero at t,.;. Thus if £ is not already zero for all a € B, then there must
be phase evolution to satisfy the assumed active constraint.
If £ = 0 for Vo € B, then we define a trial elastic conjugate force based
on A\ =0:
7= —p(e) +y — 9TV (E,) — be”. (46)

Unfortunately, this relation does not explicitly define f*" due to the presence
of 6 and «. The multiplier 4 can be removed by dotting Eq. (46) with e* and
solving for 4. If we plug this result back in, we obtain the following result:

P+ s =Py, (47)

where s = P*[(e) + 8£\IIM(§n)], P* =1- 1e* ®e* and [ is the rank 2
identity tensor on R™. Note that we need not invoke Eq. (44) to determine §
since we are assuming an elastic step and that the state at time ¢,, completely
satisfies the constitutive relations. While we still do not know what = is, our
original question can now be given the following geometric interpretation
based on Eq. (47): An elastic step can occur if the known point s is within
a f. neighborhood of the projection of the positive span

K*={z |z=> e andy >0} (48)
i€B

onto the hyperplane orthogonal to e*; this is the set of points P*K' as
visualized in Fig. 3. Fig. 3 shows a case with two active constraints in B;
in the figure d; denotes the distance of the point s to the projected positive
span. In the definition of the positive span K, e; are the basis vectors
of the canonical orthonormal basis on R*. One also needs to consider the
possibility of a non-physical elastic step. This can arise during the active set
selection process if too many phase fraction constraints are assumed to be
active. Such a situation occurs, when there is a solution to Eq. (47) but with
negative components in the vector 7. To express this more precisely we can
introduce the total span

K={z|z=>) ve; andy R}, (49)

i€B
which is visualized in Fig. 4. Fig. 4 shows a case with one active constraint
in B; in the figure d, is the distance from s to the projected span. A non-

physical elastic step will take place if the known point s is within a f, neigh-
borhood of P*K and not within a f, neighborhood of P*K*.

20



S[d1 > fc,dQ = O]

PR

Figure 3: Underlying geometry of the proposed optimization algorithm for
the case of three variants and two active constraints utilizing the 2-norm.
Shown is s[d; = 0] and s[d; < f.] implying elastic steps and s[d; > f., d2 =
0] implying an incorrect active set.
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sldy > fe,dy > f]

DK+ - Lo Pk
” ‘ d,

3[d1 > fc;d2 < fc]

evolution

Figure 4: Underlying geometry of the proposed optimization algorithm for
the case of three variants and one active constraints utilizing the 2-norm.
Shown is s[d; < f., d2 = di] implying an elastic step, s[d; > f., do > fJ
implying evolution, s[d; > f., d2 < f.] implying an incorrect active set.
K- =K\K.

These statements can be understood by considering Figs. 3 and 4 which
show the geometry for a variety of possible outcomes when one considers three
variants and the 2-norm. Example points for s are shown in the figures. The
distance to K* is denoted in the Figures by d; and the distance to K is
denoted by dy. We are now led to the following 2 nonlinear programming
problems for determining when an elastic step is taking place:

Constrained Elastic Minimization Problem 1:
i = min |ls ~ V), (50)
where V' = [P*epq) - P*epm)], Yp € R™, and v5 - w; = v - ep().
The w; are the basis vectors of the canonical orthonormal basis of R™.
Unconstrained Elastic Minimization Problem 2:
de =min||s — Vg . (51)
Vs

Based on these values of d; and d; we can provide the following elastic
step selection algorithm:

22



Selection Algorithm: If d; < f, then the time step is elastic. If d; > f,
and dy < f. then the step is a non-physical elastic step with some
negative ~y’s.

In the case of the 2-norm the stated problems are classical quadratic
programming problems and can be easily solved using standard methods.
Methods for solving Eq. (50) are discussed in Luenberger [30, §14.3] and
Bertsekas [8]; Eq. (51) is simply solved via a direct solution of the normal
equations. It is noted in both cases that the problem is very well posed as
the columns of V' are nearly orthogonal. In fact the dot product between any
two columns is equal to —%. It is also noted that the needed normal operator
and its inverse for the solution of the quadratic programming problems can
be given in closed form. The algorithmic details for the case of the 2-norm
are given in Appendix A. For more general norms, the problems are still
well behaved and can be solved via iteration; see again Luenberger [30] and
Bertsekas [8].

3.4 Evolution:

Only in the cases where d; > f. and dy > f. or £ # 0 for any o € B can A\
be non-zero and evolution of the phase fractions take place. In these cases
there are n+m + 2 unknowns to be determined from the following n+m + 2
equations:

ftple) —v+0g T (€, + ANdgd) +de* =0 (
€§+A)\8fa¢:0 a€B (
¢(f) =Ifll = fe=0 (54
e (€, +ANp0) —1=0 (

In general the equations are non-linear and need to be approached using
an iterative technique such as Newton Method. When considering p-norms
only the infinity norm yields a system of linear equations; this simplifica-
tion, however, is offset by the need to introduce an additional active set
search due to the introduction of the sub-differential. In the examples be-
low we use full Newton with line-search to solve these equations. If the
unknowns are collected in a single vector X € R**™*+2 in the following order
X = (f,vp, A\, 6) and the residual equations are collected into a single
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vector R € R™™*2 in the order shown in Eqs. (52)-(55), then the necessary
iteration tangent is given by

]I+A/\8§£\I;M(§) Pepd —Ip R ,VM(E)-0p0 €

K:a_R: AN B.f¢ 0 a.f3¢ 0
0X aqu 0 0 0
Ale* - 8,21’f¢ 0 e 8f¢ 0

(56)
Here fp € R™ and fp-w; = fpu). Ip € R*™™ and e;-Ipw; = 1 for i = B(j)
and zero otherwise.

3.5 Global Tangent Operator

For general finite element computations the variation of the stress is needed
with respect to the strain for the global equilibrium solution. Since the con-
stitutive equations are evaluated using an algorithm, the continuum tangent
operator (35) will not lead to quadratic convergence when utilizing a Newton
method on the global level. The variation of the algorithm itself is needed for
this purpose (Simo and Taylor [38]). For the two possible elastic steps this
is just the elastic tangent. In the case of evolution, we can take the variation
of the stress with respect to the strain to give

fo = Y C:de+» 5°C: (e —e°) (57)
a=1 a=1
= C:de+» 6%, (58)
a=1

The variation of the phase fractions is given by the discrete evolution law as:

06 = (&, +ANf9) (59)
= 6A)\8f¢+A)\8§cf¢-5f. (60)

The variation of the incremental multiplier AX and the conjugate force f
are found by taking the variation of the residual equations (52)—(55) with
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respect to the strain. This yields the system of equations

5f —Oetp : Be
v | _ 0

K1 sax| = 0 (61)
56 0

By noting that e, - [0g® : de] = o® : de we can write the desired tangent
operator as

n
Ce° =C — Z Dopo® @’ (62)
a=1

B=1
where D,g are the components of a symmetric rank-2 tensor on R* which is
given as

D=0pp®@v+AN%pé-A. (63)

v is a vector whose components are the first n values of the (n +m + 1)®
row of K™, and A is the upper-left n x n block of K.

4 Examples

In this section we partially examine the behavior of the proposed material
model and its numerical approximation. In particular we consider the ex-
perimental observations of Shield [35] during tension tests on single crystal
CuNiAl specimens. This material undergoes a cubic to orthorhombic trans-
formation and has 6 martensite variants and 1 austenite; i.e. n = 7. The
mixing energy form that we adpot for the examples is the Reufllower bound.
The experiments details are given by Shield and are not repeated here. We
merely note that the essential experiment was a tension test with unload-
ing on single crystal specimens with different orientations. Reported data
includes among other items stress-strain loops, observations of martensitic
variants, and Young’s moduli for different orientations. Below we examine
the ability of the model to predict orientational changes in the stress strain
behavior, the production of correct martensitic variants, and its general nu-
merical behavior.

For the numerical comparisons we concentrate on the tension tests with
clamped-clamped end conditions. The specimen utilized by Shield was dog-
bone shaped. In our comparisons we utilized a simpler rectangular geometry
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6 mm

clamped and driven

Figure 5: Chosen geometry and boundary conditions for simulations. Shown
are 8-node fully integrated displacement formulation bricks.

since not all the relevant details of experimental set-up are reported in the
paper; see Fig. 5. In particular, we note that many of the fine details of
the simulations that are shown below are sensitive to end conditions on the
tested material. Thus in what follows, we also make no great attempt to fit
the reported data. Our interest is only in showing that the model without
much effort can give modestly accurate predictions of stress-strain behavior
as well as detailed microstructural information.

The precise material property values used in the simulations are given in
Table 3. The values of the critical transformation force and the well minima
were chosen to roughly produce the stress-strain loop for specimen T1-A3b.
It is noted that the well heights control the stresses at which transformations
takes place and the critical force controls the amount of hysteresis seen. The
Poisson’s ratio was chosen to simply be something reasonable for a metal
(isotropy is assumed throughout). The remaining properties are as reported
in Shield [35]. The transformation strains are generated from the data given
in the Table 3 by computing the transformation right stretch tensors, U%, for
the martensites using the relations given in Bhattacharya and Kohn [9, 10];
for the austenite U? is the identity. The transformation strains are then
taken as e* = %(U"‘2 —1). Lastly the transformation strains are rotated into
the proper orientation as € = Qe*Q”, where Q € SO(3) is such that its
first row is ¢!, its second ¢2, and its third ¢' x ¢2.
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Table 3: Material Properties for Simulations

fe 0.9 N-mm/mm?®
Poisson’s Ration 0.25
M« (-7.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) N-mm/mm?
Young’s Modulus A1-T1b 26,700 N/mm?
Young’s Modulus A1-T2b 72,000 N/mm?
Young’s Modulus A1-T3b 158,000 N/mm?
Principal Transformation Stretches (1.0619, 0.9178, 1.0230)
Cubic Axes A1-T1b t' =(0.925, 0.380, 0.0)

2 =(-0.380, 0.925, 0.0)
Cubic Axes A1-T2b £ =(-0.477, -0.477, 0.775)

t? =(0.707, -0.707, 0.0)
Cubic Axes A1-T3b £ =(-0.577, -0.577, 0.577)

t> =(0.707, -0.707, 0.0)

4.1 Stress Strain Response

The top of Fig. 6 shows the data of Shield [35] for 3 of his specimens. The
bottom of Fig. 6 shows the results from the proposed model. The parameters
as mentioned before are visually adjusted to roughly correspond to specimen
A1-T3b. The lowering of the transformation stress with orientation and the
decrease in hysteresis with orientation are all natural products of the model.
They appear without “tuning” of any kind. The inhomogeneous distribution
of the austenite in the bar is shown in Fig. 7 for specimen A1-T3b at three
different times during the forward transformation process — once near the
start, once in the middle, and once near the completion.

4.2 Phase fraction histories

Shown in Figs. 8, 9, and 10 are the time histories of the phase fractions for
a single Gauf} point close to the center of the specimen. As was observed
by Shield [35] certain martensite variant combinations appear during the
phase transformation process. These combinations correspond to those that
are computed from the theory of martensites see Wechsler, Liebermann, and
Read [44], Ball and James [6, 7]; see also Shield [35]. For specimens Al-
T2b and A1-T3b, the proposed model correctly predicts the experimentally
observed production under load of martensite variants (2,6) and (2,3,6),
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Figure 6: Stress Strain response for 3 different crystal orientations. Top:
Experimental data of Shield [35]. Bottom: Model output. The model results
are loosely adjusted to correspond to A1-T3b. The results for A1-T2b and
A1-T1b are then predicted by the model using this fixed data set.
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Austenite Phase Fraction

8.29E-01
8.54E-01
8.78E-01
9.02E-01
9.27E-01
9.51E-01
9.75E-01
1.00E+00

Time Step 5

Austenite Phase Fraction

3.00E-01
4.00E-01
5.00E-01
5.99E-01
6.99E-01
7.99E-01
8.99E-01
9.99E-01

Time Step 10

Austenite Phase Fraction

1.23E-19
1.16E-01
2.32E-01
3.48E-01
4.64E-01
5.80E-01
6.96E-01
8.12E-01

Time Step 16

Figure 7: Inhomogeneous distribution of austenite in A1-T3b specimen at
time step 5, 10, and 16. Note the strong gradient at the end of the bar.
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Figure 8: Phase fraction histories for an element in the center of test specimen
A1-T1b.

respectively. The numbering convention is that of Shield [35]. For specimen
A1-T1b, Shield observed martensite variants (1,2, 3). We, however, only find
variant 3 in the center of the bar in our evolutionary simulations. The most
likely cause for this discrepancy is that our mixing free energy is a lower
bound. This has the effect of permitting lower energies of mixing of variant
3 with the austenite than are realistic. This then provides for a false low
energy path of evolution for the model. With a higher value of the mixing
energy between variant 3 and the austenite the system would presumably
move into a twinned martensite state such as what we observe for the other
two specimen orientations.
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Figure 9: Phase fraction histories for an element in the center of test specimen
A1-T2b.
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Figure 10: Phase fraction histories for an element in the center of test spec-
imen A1-T3b.
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Table 4: Typical global residual norm patterns for specimen A1-T3b. Su-
perscript numbers indicate the number of line searches performed during the

time step.

Global Iteration Residual Norm
Time Step 5 Time Step 10 Time Step 16

1 6.2515596E+03 | 6.2346314E+403 | 5.6211250E+03
2 1.8463011E4+02 | 1.7456376E+02 | 1.4111144E+03
3 4.7733559E+02 | 1.9988936E+02! | 5.6113686E+01
4 9.1232153E+01 | 4.1771859E+01 | 2.8559476E+012
5 8.4598797E+01! | 3.3998000E+01 | 2.0835611E+01
6 5.1326364E+01 | 3.7914935E+01' | 1.6620460E+013
7 2.2723693E+01 | 1.2553766E+01 | 1.0787363E+01
8 8.6149914E+00 | 1.4303171E+400 | 1.0336966E4-00
9 3.8917006E+00 | 5.4039193E-02 1.9291230E-07
10 8.2638571E-01 1.5377304E-04
11 5.4361158E-02 9.8204387E-10
12 2.3645387E-04
13 4.5677205E-09

4.3 Global Convergence Behavior

Shown in Table 4 are the global residual patterns from the FEM simulation
on specimen A1-T3b at the same time steps as were shown in Fig. 7. The
computation was carried out using a symmetric full Newton solver with line
search. There were 16 time steps during the loading and 16 on the unloading.
Thus the time step sizes are moderate in size. Clearly the global equations are
somewhat difficult to solve but once the solution is approached the iteration
procedure shows quadratic convergence. Most of this difficulty arises from
the very constrained conditions at the end of the bar where Newton’s method
has some difficulty in finding the solution.

5 Closure
In this paper, we have developed a model for the simulation of the evolution

of the martensitic structure of alloys. The model has a distinct geometric
structure which we have been able to exploit for the purposes of understand-
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ing the model as well as constructing a viable numerical approximation to it.
Without a clear geometric picture, the development of the algorithm would
not have been possible. Overall the predictions of the model are quite sur-
prisingly good even though many important issues have not been explicitly
dealt with. In particular the model is seen to generate naturally orienta-
tion dependent results and most importantly the model is seen to generate
the correct (observed) martensite combinations. This occurs in spite of the
fact that we have ignored issues of finite deformation and elastic anisotropy.
These last two points are the subject of on going research as is research into
the behavior of the model when coupled to heat transfer.
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A Algorithms for d; and d;

A.1 di 2-norm

To solve for d; we employ the feasible set method described in detail in the
text of Luenberger [30, §14.3]. The critical point of problem (50) is the same
as the critical point to

. 1 T T
%1%{5’73"/ V-V 3‘73} ) (64)

where s = P*[y(e) + 8€‘I!M (&¢,)]- This problem is solved for vz using an
active set method; the solution point can then be used to evaluate d; using
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the distance formula from (50). The active set here refers to the components
of v which are zero in the present optimization problem and should not be
confused with the active set B used in the residual equations. For purposes
of differentiation we will denote this new active constraint set by A; the
multipliers associated with the active set A will be denoted as ® € RP,
where p is the size of A. We further define z* € RP as the vector of all ones
in the standard basis. The algorithm is as follows where the tolerances given
are appropriate for a double precision implementation:

1. Initialize:

A = {1,2,---,m} (65)
F =19 (66)
vp = 107 (67)
p = size[A] (68)
TOL; = 107*2 (69)
TOL, = 107" (70)

2. Set up constraint matrix:

“’2(1)
. w
A=| O (71)
T
Wap)
3. Get local multipliers:
. ~71-1 . .
©= [A(VTV)—IAT] {—A(VTV)-IVTS - A'yB} (712
where . 1
~ ~T7—
[A(VTV)‘lA ] —l-—— 2" ®2 (73)
n—m-+p
and 1
(VIV) =1+ w* @ w*. (74)
n—m
4. Obtain search direction:
d=(VTV)! (AT@ + VTs) P (75)
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10.

11.

Compute convergence tolerance:

MAG = Max Order of Magnitude[AT(B, VTs, vz (76)
TOL; = TOL, x MAG (77)

Check convergence: If ||d|| < TOL3, then GOTO 9, else continue.

Line search to boundary of cone:

— _ B
9 = ‘3&?{1’ d(a)} (78)
Yp = Yp+gd (79)

. Reset active constraints:

A = {a]|+% <TOL;} (80)
F = {1,2,---,m}\ A (81)
p = size[A] (82)

(83)

GOTO 2.

Check for validity of vg: If v5, > —TOL;, then GOTO 11, else
continue.

Drop all active constraints with negative O:

F = Fn{a|©*<TOL} (84)
A = {1,2,---,m}\F (85)
p = sizel] (86)
(87)
GOTO 2.
Converged, Compute d;:
di = |[P*[p(e) + 8¢ T¥(€,)] — Vgl - (88)
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A.2 dy 2-norm

Here the optimization problem is unconstrained and quadratic. Thus the
solution is simply given as the solution to the normal equations; i.e.,

vp = (VIV)lvTs (89)
and
dy = ||s = Vg (90)

See Eq. (74) for the closed form to the inverse of the normal operator.

B Overall algorithmic details

In this Appendix we describe the details of the overall algorithm used to
solve the discrete constitutive equations including the details of the active
set method. The tolerancing given is appropriate for use in double precision
computations.

1. Set main tolerance: TOL = 1012

2. No constraint case check: Let f° = —s. IF ¢(f"°) < TOL, then
the step is elastic STOP. ELSE CONTINUE.

3. Initialize active set: B = {a | {2 < TOL}

4. Elastic non-linear programming problem: IF B # () and &2 <
TOL for all a € B, then compute d; and d, as described in Appendix
A. ELSE GOTO step 6.

5. Elastic checks: IF d; < f, and &? @ - TOL, then the step is elastic.
Set

£ = &, (91)
VB@ = VB (92)

where ~ is taken from the d; computation. GOTO step 9. ELSE IF

dy < f. and ff (@) - TOL, then the step is elastic with an incorrect
active set B. Set

£ = &, (93)
B = VB (94)
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6.

10.

where v is taken from the dy computation. GOTO step 9. ELSE
GOTO step 6.

Initialize evolution computation: Set

Bl = Ae (using v from the d; computation)  (95)
f = —s+P (96)
di
AN = (97)
5% A0 (€,)0760F)]

5= et (o) — %WV (E, + ANIgS) + ] (99

Using Eqgs. (52) — (55), compute the initial residual associated with
the n + m + 2 discrete evolution equations and assemble them in the
vector R. Let TOLg = TOL x ||R||. GOTO step 7.

Newton Iteration: Using Eq. (56) compute a newton search direction
as dX = —K 'R. Compute the residual associated with X +dX. IF
the norm of the new residual is greater than one-half of the previous
residual, then perform a line search. GOTO step 8.

Newton Check: IF ||R| < TOLg, then the iteration is converged;
GOTO step 9. ELSE IF AX < 0, then reset A\ = TOL; then GOTO
step 7.

Check validity of active constraint set B: IF v > —TOL and
& > —TOL, then B is valid and the constitution is converged; STOP.
ELSE CONTINUE.

Correct active constraint set B: First remove un-needed con-
straints.

B=B\{a|vy*< -TOL}. (99)

Second add constraints for phase fractions that have gone negative.
é-min = H};in gﬂ (100)
IF &min < —TOL, then B = BU{a | £*=&mn}  (101)

GOTO step 7.
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