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ABSTRACT OF THE THESIS

Using Graph Theory to Compute Sets of Cycles

in Vascular Networks

by

Adam Gomez

Master of Science in Molecular Biology

University of California, Los Angeles, 2019

Professor Luisa M. Iruela-Arispe, Co-Chair

Professor Van Maurice Savage, Co-Chair

We use graph theory in conjunction with automated vessel data extraction software to

identify and quantify looping structures in biological resource distribution networks. As

a practical biomedical application, characterizations of looping structures may serve to non-

invasively distinguish a pathological resource distribution network from a healthy one. A

network with loops is structurally different from a network without loops and may result in

a refined scaling exponent for metabolic rate. A refined scaling exponent would also have

implications for aging, lifespan, and evolutionary development. Here we focus on developing

mathematical tools to find looping structures in biological vascular networks. Looping struc-

tures in biological resource distribution networks can be extracted by using graph theory to

quantify the cycle basis of the graph of the network. Algebraic ring sums are then used to

quantify the total number of loops in the graph.
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CHAPTER 1

Introduction

In 1932 Klieber demonstrated an empirical relationship between body size and metabolic rate

[5]. It wasnt until 1997 when West, Brown and Enquist (WBE) established a generalized

model to account for the observed relationship between metabolism and mass [8]. Cardio-

vascular systems deliver essential resources to cells where the resources undergo chemical

reactions to produce energy for cellular growth, maintenance, and division. The structure of

these vascular networks directly regulates how resources acquired from the external environ-

ment are distributed to cells for metabolic processes. The link between body mass, metabolic

rate, and vascular networks is formulated mathematically using branching structures along

with measurements of vessel length and radii. WBE formally relates body mass (M) and

metabolic rate (B) with a normalization constant (B0) and a scaling exponent (alpha) [8].

B = B0M
α (1.1)

As the mass of an organism scales linearly, if that organism’s metabolic rate scales to the

3/4 power, it is following Kleiber’s Law [5]. We refer to this property as allometric scaling,

where an allometry is simply how characteristics of an organism change with its body size.

The cardiovascular system is a resource distribution network that consists of branching ves-

sels that perpetually diverge to form a measurable tree-like structure. Here I use a software

tool called Angicart to make automated measurements of vascular networks. Angicart ana-

lyzes 3D radiographic images of blood vessels to reconstruct vascular networks [6]. So what

happens when branching vessels converge with other branching vessels to generate loops or

cycles in an otherwise divergent branching structure?

This work ties together vascular looping structures, organismal mass, and metabolism by

considering resource distribution networks in the context of allometric scaling theory. The
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study of biological systems requires new and improved methods for quantifying biological

data. Resource distribution networks themselves, that is the structure and function of the

network, determine how metabolic rate scales with organismal mass, so it is important to

understand structure, function, behavior, and interactions of vessels throughout the network,

namely loops. [7].

Building upon the ever-improving WBE model, can we use graph theory in conjunction

with automated vessel data extraction software to accurately and efficiently identify, char-

acterize, and quantify looping structures in biological resource distribution networks? As a

practical biomedical application, characterizations of looping structures may serve to non-

invasively distinguish a pathological resource distribution network from a healthy one. A

network with loops is structurally different from a network without loops and may, there-

fore, result in a refined scaling exponent for metabolic rate depending on the loopiness of

the network of the organism.

Loops may not only distinguish vascular type and health, but may also have implica-

tions for aging, lifespan, metabolic rate, and evolutionary development. Here we focus on

developing the mathematical tools to find looping structures in biological vascular networks.

I hypothesize that looping structures in biological resource distribution networks can be

extracted by using graph theory to quantify the cycle basis of the graph of the network.

1.1 Why Loops?

One approach to establishing a metric that can be used to characterize vascular networks and

predict other properties related to the network is to identify loci where branching structures

of vessels that would otherwise never converge instead unite to form a looping structure.

Identifying loops in vascular networks extracted from medical imaging modalities like MRI

will allow us to contribute to modifications of WBE and distribution networking theory in

general.

WBE metabolic scaling theory has been developed over time to become ever more re-

spectful of biological systems. Assumptions and constraints are modified to optimize our
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ability to accurately and consistently model the vascular system. We progressively modify

the theory and assumptions of the model, not only to better understand human vascular

resource-distribution networks, but also to learn about fundamentals of biological dynam-

ics that affect disease, metabolism, lifespan, and evolutionary development in general. Im

following in the footsteps of a long line of researchers that have successively contributed

to WBE theory, making it more accurate. For example, finite size adjustments have been

made to the theory [7], along with asymmetric scaling adjustments [1] by colleagues in my

lab. One important factor of our theoretical understanding of the vascular network is that

it is a branching structure. Over an averaged network, we assume that the architecture of

a vascular network reflects a tree-like structure as it perpetually branches from the heart

to the capillaries where oxygen exchange occurs and vessels are restricted in diameter by

the diameter of red blood cells. There are few heterogeneous structures, like loops, which

are averaged out over the primarily branching network. Naturally occurring anastomoses

in vascular systems, by definition, connect two openings that would otherwise never have

converged. This introduces changes in the dynamics and flow of resources that are being

distributed through the network.

Although non-branching morphologies such as loops commonly occur in vascular systems

around stroke sites [9] and tumors[4], they are rare in non-pathogenic human cardiovascular

systems. Loops, therefore, can indicate pathologies, as in the case of arteriovenous fistulae,

[3] where an artery becomes connected to a vein and can contribute to congestive heart

failure. There are very few normal vascular loops that occur consistently across individual

mammals. In the case of humans, isolated examples such as the Circle of Willis and the

foramen ovale in the heart of a fetus can serve as important looping controls for healthy

loops in the quest for identifying loops [3]. The work in this thesis focuses on developing

mathematical and computational tools for identifying loops so that biomedical and basic

science researchers can use the tools to investigate looping structures.

At first glance, identifying loops in a network might seem trivial to some, but it is

deceptively complicated. Before loop analysis tools can be used for diagnostic purposes,

it must be demonstrated that we are able to identify whether loops exist, how many loops
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exist, where the loops exist, and what type of implications these looping structures have. For

example, if a vascular structure that is normally divergent instead converges at points to form

loops, distribution dynamics and blood flow are expected to differ. We have to be diligent

to ensure that the loops we find are real, and that we do not overlook any multiplicative

permutations of looping structures that might permeate throughout the network from one

single anastomosis.

1.2 Metabolic Scaling Theory

We depend on the validity of WBE allometric scaling theory to inform our investigation into

vascular resource distribution networks. The theory can be used to solve for unknowns pro-

vided there are some known variables. For example, we can determine metabolic rate given

mass, scaling exponent, and a normalized constant. As we develop methods for quantifying

looping structures, tools become available to improve scaling exponent estimations, and thus

improve solutions for metabolic rate given mass. We can also modify the formulation to solve

for many variables, like vessel volume, and flow dynamics of resources through the vascular

network. For the world at large, this is important for medical and basic research endeavors

aimed at measuring, understanding, predicting, diagnosing and designing biological systems

with implications for metabolism, development, aging, and more.

The theory relies on eight assumptions [7], and primarily functions in the algebraic realm

of mathematics, but requires knowledge of linear algebra and differential equations. To

clarify the relationships between vascular networks, resource distribution, flow, scaling ex-

ponents, and loops within the network, we must defer to the assumptions of WBE. WBE

assumes an averaged network, where network parameters are averages of the variation of

the parameters in the biological networks [7]. Averaged heterogeneous parameters result

in an estimated homogeneity that WBE assumes are homogenous throughout the resource

distribution network. This has proven effective for analyzing and predicting features of net-

works, but is also an opportunity to modify the theory to more faithfully resemble biological

systems.
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Figure 1.1: WBE network level labeling scheme[7].

WBE Assumption 1.) The distribution network determines the scaling relationship.

This assumption is necessary for connecting looping structures of networks to metabolism.

The structure of vascular resource distribution networks determines the scaling relationship

between the mass of the organism and the metabolism of the organism. By establishing a

method to quantify looping structures in naturally occurring biological systems, we can use

loops to characterize and distinguish networks. This will be an important tool for researchers

to use to modify the WBE model and improve predictions about fluid dynamics.

Assumption 2.) The distribution network is hierarchical. This assumption is necessary

for understanding the labeling scheme that describes the branching structure of vascular

networks that invokes parent-child relationships, where children are vessels that have diver-

gently branched out from a parent vessel. Later we will see an analogue between hierarchical

level as described here and length of the path of a graph as described by graph theory. The

hierarchical levels here are defined as branch points where child/daughter vessels split off

from parent vessels [Figure 1.1].

One example of how this assumption is not totally true lies in the differing number of

levels from the heart (level 0) to the capillaries in the foot (level N) versus the number of
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levels from the heart (level 0) to the capillaries in the coronary artery (N) [7]. A loop is

formed if two branches that would otherwise continue to diverge at each level, as edges in a

tree-like network do, instead converge at some level.

Assumption 3.) Vessels within the same level of the hierarchy are equivalent. This as-

sumption is important for intuiting that the distance traveled by resources being transported

through a network will be impacted by introducing a loop to an otherwise branching struc-

ture. Vessel length and, therefore, flow rate at a branch point would differ locally compared

to a loop-free branch point at the same level.

Assumption 4.) The branching ratio is constant. This assumption is important for

intuiting that branching is a process by which one vessel diverges into two vessels, while a loop

results from two vessels converging into one. It has been shown that finite size corrections

do affect the 3/4 scaling relationship in this case [7], an indication that investigating looping

structures for affects on the scaling relationship may be in order.

Assumption 5.) The network is space filling. This assumption is important for under-

standing that loops in a network could have implications for evolutionary strategies to form

space filling structures.

Assumption 6.) The energy loss of fluid flow through the network is minimized. This

assumption is important for understanding that loops, again structures where two vessels

converge into one vessel, might change the energy dissipated by both pulse reflection and

viscous forces.

Assumption 7.) Capillary characteristics are the same across species. Unless we find that

looping structures are plentiful among capillaries, this assumption stands. The tiny scale of

capillaries would require a very large number of images to capture any ratio of loops among

the terminal points.

Assumption 8.) Capillaries are the only exchange surfaces and thus directly relate blood

flow rate to oxygen supply in tissues. Red blood cell diameter reflects capillary diameter,

so more blood yields more oxygen and thus an increased metabolic rate. Changes in blood

flow rate by loops may affect oxygen supply to tissues.
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Figure 1.2: An example of a cycle in magenta.

1.3 Loops in a vascular network

Terminology used in graph theory is not standardized or consistent [2], so here I establish

our uses of terminology. In our attempt to find loops among a tree-like resource distribution

network, we defer to the language of graph theory. Most specifically, when we say we are

looking for loops in the network, we mean that we are looking for cycles of the graph of the

network. A cycle, by definition, is a non-trivial closed path [2]. That is to say, it consists of

more than a single node, the edge/node steps terminate at the node of origin, there are no

repeated vertices and there are no repeated edges [Figure 1.2].

We will find cycles by identifying acyclic subgraphs called spanning trees that generate

a set of cycles called basis sets from which one can calculate the total number of cycles by

implementing a ring sum.

In assumption 1 of WBE, we see that the network determines the scaling relationship

between mass and metabolism. A network is a graph, which consist of 2 sets. One set

consists of the vertices (V), or nodes, of the graph while the second set consists of the edges

(E) of the graph. Vertices that are joined together by edges are called endpoints and every

edge has either one or two endpoints. Of the three types of graphs to consider [2] we focus

on simple graphs.

Simple graphs do not have self loops and do not have multiple edges [2]. We do not

consider loopless graphs or general graphs here because loopless graphs contain multiple
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edges and general graphs may contain self loops and/or multiple edges. We choose to focus

on simple graphs for model simplicity, but iterations of this work that consider self loops

and multiple edges are important future directions to explore. Most important to remember

here is that we are using simple graphs to represent our vascular networks.

The WBE labeling scheme that describes the branching structure of vascular networks

that invoke parent-child relationships is described in assumption 2. In graph theory, a walk

from one vertex, V0 to another vertex, Vn, is defined as an alternating sequence between

vertices and edges starting at V0 and ending at Vn. Because we are focusing on simple

graphs, we can define a walk in terms of a sequence of vertices alone [2]. The number of

steps in a walk sequence defines the length of the walk, so if a graph consists of one vertex

and no edges, the length of the walk is zero and the graph is called a trivial walk. A walk

length represented by the number 5 indicates 5 vertices from the vertex of origin. In the

WBE model, V0 or level 0 represents the origin of the vascular network, or the heart. The

level of the network, as defined by its number of branching points, or vertices, from V0, then

reflects the length of the walk in graph theoretical terms. A path is a specific type of walk

that does not contain repeated edges nor repeated vertices. As defined above, a cycle is a

non-trivial, closed path. This definition constrains our considerations in terms of walk-type.

Again, future work considering other types of walks, and therefore other types of looping

structures beyond cycles, will further enlighten our work. Most important to remember here

is that we are using paths and path length to map to WBE vessel levels starting at the heart

in our vascular networks.

My work aims to find looping structures in vascular networks extracted from imaging

modalities, but what do we mean by loops? A loop can be the shape you make with a shoelace

where shoelaces overlap but do not become structurally integrated. A donut also forms a

loop of sorts, but it is self-contained. We are not looking for either of those types of loops. We

are looking for loops within in a branching network where two otherwise diverging branches

instead converge to form a connected edge between the branches, integrating the flow of

resources through the network. One approach to finding loops in a network is to find the

proximity of vessel edges to one another by using the x, y, and z coordinates of image voxels in
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a 3D network reproduced by angicart. Previous work done in our lab shows that background

noise presents a challenge to verifying the proximity and/or integration of vessels to one

another using this technique. It is difficult to discern whether we have identified the loops

we are interested in or shoelace-type loops. Additionally, manual parameter adjustments are

necessary for every network analyzed to find threshold values that combat noisiness.
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CHAPTER 2

Main results

2.1 Method for calculating cycles in a graph

To computationally extract loops from a 3D network requires a formal definition of loops.

In graph theory, cycles capture the looping structures we are interested in by definition.

Finding cycles in networks is not novel in graph theory, but applying the powerful algebraic

tool of ring sums to formally solve our biological problem is novel.

Because the graphs of vascular networks that we extract from 3D radiographic imaging

only capture an inset-like sample from the entire vascular network, we extract a set of

subgraphs that appear to be disconnected from one another. The subgraphs do all converge

back to one parent node of origin at the aorta, but our imaging data only captures the

collection of neighboring subgraphs within the limit of the boundaries of the image. This set

of disconnected trees is called a forest. More accurately, it is a set of trees that touch every

node of the subgraph it defines.

Our clever trick for finding cycles in a network begins with first identifying a connected

graph that has no cycles, called a tree. Trees allow us to understand graphs structurally

based on their varying equivalent characterizations, which enable a range of applications. For

example our structural understanding of isomeric structures in physical chemistry, rooted

trees in operating-system directories, and binary-search trees in information retrieval, results

from employing varying characteristics of trees [2]. In the same way that we have first

specified graph type and walk type, we must also specify what tree-characterizations we

apply to understand looping structures in vascular resource distribution networks. Our

structural understanding of a graph changes as we select varying characterizations of trees
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within the graph. Of six of the most useful tree characterizations, the following statement

is most relevant to deciphering our question about the number of cycles in a network: A

tree (T) that has n vertices, does not contain cycles, but if any new edge (e) is added to the

acyclic tree, exactly one cycle is formed. T + e has 1 cycle [2].

This particular characterization makes it possible to generate the fundamental set of

cycles of the graph. One might wonder why we are so invested in finding a spanning forest

that is comprised of acyclic spanning trees if the goal is to find cycles of the graph. Although

it may seem counter intuitive, a spanning forest (F) is associated with something called a

fundamental cycle, which is a cycle formed by adding a non-tree edge to a spanning tree of

the graph. By adding any edge (e) from the graph G that is not included in the full spanning

forest F, a fundamental cycle will be generated. The relative complement of a spanning forest

F is the difference between the graph G and the spanning forest F such that G F generates

the relative complement of F [2]. The significance of selecting an edge from the relative

complement simply lies in the need to select an edge from the graph that is not already

a part of the spanning forest. If we were to add an edge from the spanning forest to the

spanning forest, we would not change the spanning forest. If we add an edge to the spanning

forest that is otherwise not a part of the spanning forest, it must come from the part of the

graph that excludes the spanning forest, hence, it must come from the difference between the

graph G and the spanning forest F. Every non-tree edge that we add to the tree produces

a fundamental cycle, of which there may be many. The set of all of the fundamental cycles

is called the fundamental system of cycles. It is not enough to find a fundamental cycle of

a graph, because we aim to find all of the cycles of a graph. We, therefore, seek to find the

fundamental system of cycles of the graph because this set contains all of the fundamental

cycles in the graph associated with the spanning forest. We find the fundamental system

of cycles by subtracting F from G and adding each edge, one at a time, from the relative

complement to F, to generate one cycle per edge added. Each edge added equals one cycle

[Figure 2.1][Figure 2.2].

Fundamental cycles are unique because non-tree edges are part of a path in a simple

graph [2]. It is still not enough to know the set of fundamental cycles of a graph to answer
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Figure 2.1: Spanning tree in red (left) and non-tree edges in green (right). When added to

the spanning tree, each non-tree edge will generate a cycle.
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Figure 2.2: The set of cycles generated by each non-tree edge constitutes a fundamental

system of cycles (in magenta).

our question. The set of all fundamental cycles only tells us about the cycles specifically

associated with one spanning forest. From this point, we must consider the ring sum of the

graph.[Figure 2.3]

In general there is more than 1 distinct spanning tree per network and every distinct

spanning tree is going to give rise to a distinct cycle basis. A cycle basis set is not unique

because there may be other spanning trees and, thus, other cycle basis sets. All of the

possible cycles of a network, however, can be found using the cycle basis set obtained from

any spanning tree of the network, where a cycle basis set is the set of all of the distinct

and unique cycles of a spanning tree. In linear algebra, a basis is a set of vectors that are

linearly independent and that can be used to generate any element of the vector space, so it

is said to span the vector space [2][see appendix]. The ring sum operation is what allows us

to generate any element of the vector space from the fundamental system of cycles. A ring

sum operation is the sum of elements of a subset of edges of a graph, where a subset of edges

can be trees, cycles, or disjoint cycles [2]. We consider the subsets of edges that generate the
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Figure 2.3: Two cycles in magenta(top), shared edges of cycle overlap in green (bottom left),

and resulting ring sum of the two cycles in red (bottom right).

fundamental set of cycles.

Once we identified the characteristics of graphs, trees, and fundamental cycles most

appropriate for identifying cycles in resource distribution networks, we defined the vector

spaces associated with the graphs. The set of all subsets of edges of a graph is also a vector

space over GF2 [see appendix], and is called the edge space of the graph. A cycle space is a

subspace of the vector space associated with the graph and contains a null set, all cycles, and

all unions of disjoint cycles [2]. Again, we are not considering disjoint cycles. For the ring

sum, we consider the cycle space. We let T be a spanning tree of a connected graph G. Then

the fundamental system of cycles associated with T is a basis for the cycle space We(G). A

set B is a basis for V if the vectors in B span V and are linearly independent [see appendix].

A set of vectors spans V if every vector in V is expressible as a linear combination of vectors

in S. Vectors are linearly independent if none of them is expressible as a linear combination

of the remaining ones[2].

We extracted parent-child relationships from MRI data to construct a graph of the vas-

cular network. We used Mathematica to find the spanning trees of the graph from which
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Figure 2.4: Random network with each cycle of a fundamental set of cycles in red.

we then calculated the cycle basis. To ensure that the cycle extraction method works, we

generated random graphs in Mathematica, and extracted the fundamental systems of cy-

cles.[Figure 2.4]

Our lab did not have access to datasets with biologically well known anastomoses, or

loops, to use as controls. As our lab group waited to get access to additional data sets

that could prove valuable as controls, such as data sets that include well known human

vascular loops like the Circle of Willis, we processed data sets available to our lab. We

looked for cycles in the vascular networks of stroke-induced mouse models including 15

microsphere injected mouse brains, 42 photothrombosis-model mouse brains, and 9 middle-

cerebral-artery-occlusion-model mouse brains. I also looked for cycles in 1 human leg data

set, and 1 zebrafish data set. Although loops are likely rare, I anticipated finding loops in

the stroke model data sets. I did not find any loops in the data sets.

After gaining access to the BraVa database, we processed 53 human brain datasets that

contained the Circle of Willis. None of the networks contained loops. Upon further in-

vestigation, we found that the group that produced the data manually eliminated items
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Figure 2.5: Representative examples of mouse brain stroke model data without loops. Pho-

tothrombosis (top) and middle cerebral artery occlusion (bottom).

considered noise from the data, including vasculature on the outside of the skull as well as

the Circle of Willis. With the Circle of Willis eliminated, well established looping structures

were excluded from the datasets, and were no longer valuable as controls.

We then aimed to verify that our mapping of parent-child relationships from angicart

output data did not exclude looping structures. Angicart was originally written in Ocaml

and was later translated to C++ in order to capture loops, but loops may not be captured in

the parent-child relationships output by angicart. Loops could have been captured instead

in vessel adjacency data also output by angicart. We used a very simple network image

that included a loop by design, processed the image through angicart, and used the angicart

output data to reconstruct a graph in Mathematica. The parent-child relationships from

angicart output did not produce the correct graph with loops. We manually added the

missing parent-child relationship to the Angicart output data, and were able to find the

control loop that existed[Figure 2.6]. Similarly, we processed angicart vessel adjacency output

data, and found that loops were identified, but were redundant.
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Figure 2.6: Image of network with loop by design (middle), reconstruction with corrected

parent-child relationship containing loop (left), and reconstruction directly from angicart

parent-child output data (right).
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CHAPTER 3

Conclusion

Identifying and quantifying cycles in a network is a surprisingly difficult challenge that

requires the application of discrete mathematics, most specifically, graph theory. I posit

that it is difficult to find loops because cyclic structures materialize in a variety of forms

that are easily overlooked without the consideration of cycles within cycles. Furthermore,

data mapping from one computational source to another can be challenging. While the

approach to finding cycles in a vascular network is sound theoretically, it requires further

work for practical applications. Our mapping of the physical structure of a vascular network

to a network graph relies on the assumption that the parent-child relationships in the angicart

output data map directly to the graph theoretical paths taken along the graph of a network.

This requires further investigation to validate. In lieu of parent-child relationships, vessel

adjacency relationships from angicart output can also be used to produce graphs of networks

from which cycles can be quantified. At this time, we experienced redundancy in vessel edges

and cycles produced by the vessel adjacency output data. With further investigation, the

source of redundancy can be identified and eliminated.

With tools to quantify loops in a vascular network, researchers can continue to modify

the assumptions and constraints of metabolic scaling theory and generate predictions about

biological resource distribution networks that more accurately represent empirical data. The

technology and models we present here are scalable to investigate distribution networks

from the micron level to an ecosystem level of organization, because we can use any imaging

modality. Our work has shown that, given a complete description of parent-child relation-

ships, we can find the fundamental system of cycles in a spanning tree of a vascular network

and use the ring sum operation to calculate the total number of cycles. Angicart output data
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does not provide the complete description of parent-child relationships necessary for direct

mapping, but improved communication with angicart designers will reconcile any misunder-

standings about output data. We hope that our work will result in better diagnostic and

predictive techniques, both for biomedical applications and basic research [6].

3.1 Future work

Flow of resources through a vascular network is described by a Laplacian matrix and the

equilibrium flow through the network is described by the matrix tree theorem. The matrix

tree theorem gives the equilibrium solution in terms of the spanning trees of the network

which is in turn related to the cycle basis of the network. The underlying approach to finding

cycles in vascular networks can be implemented in a slightly different context to explore flow,

and to possibly further modify WBE metabolic scaling theory.
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CHAPTER 4

Appendix

4.1 Graph theory concepts

Definition 1. A undirected graph is a pair G = (N,E), where N is a set of nodes, and E is

a set of edges, which are two-element subsets of N .

Definition 2. Let G = (N,E) be a graph and C = {{x1, y1}, {x2, y2}, . . . , {xn, yn}} be a

sequence of edges. We say that C is a cycle if yi = xi+1 for i = 1, . . . , n− 1, and yn = x1. If

no node or edge appears more than twice, with the exception of the first and last nodes, we

say that the cycle is simple.

Definition 3. Let G = (N,E) be a graph and F ⊆ E be a subset of edges. We say that F

is a forest if none of its subsets forms a cycle. If, in addition, every node of G is contained

in some edge in F we say that F is a spanning forest.

4.2 Linear algebra concepts

Definition 4. GF(2) = (2,+, ·) is the two-element field, where 2 = {0, 1} is the boolean

set, and + and · are respectively the addition and multiplication operations defined in the

following tables:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

For the general definition of a field, please see e.g [reference].

19



Definition 5. A vector space over a field F is a triple V = (V,+, ·), where V is a set of

vectors, + : V × V → V is a binary operation called vector addition, and · : F × V → V

is a mapping called scalar multiplication, that satisfy the following properties for all vectors

u,v,w ∈ V and scalars a, b ∈ F :

• u + v = v + u

• There exists a vector 0 ∈ V such that 0 + u = u.

• There exists a vector −u ∈ V such that (−u) + u = 0

• (a · b) · u = a · (b · u)

• (a + b) · u = a · u + b · u

• a · (u + v) = a · u + a · v

• 1 · u = u

Definition 6. Let V = (V,+, ·) be a vector space over a field F and W = {v1, . . . ,vn} ⊆ V

be a set of vectors. If:

a1 · v1 + a2 · v2 + . . . + an · vn = 0

implies that a1 = a2 = . . . = an = 0 we say W is linearly independent. If for every vector

w ∈ V we can find scalars a1, . . . , an ∈ F such that:

a1 · v1 + a2 · v2 + . . . + an · vn = w,

we say that W spans V . If W is linearly independent and spans V we say that W is a basis

for V .

4.3 Vector spaces from graphs

Definition 7. Let G = (N,E) be a graph. We define the edge space of G, denoted with

WE(G) = GF(2)E, as the vector space with dimension |E| over the field GF(2)
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Notice that the elements of the edge space can be seen as the subsets of E. Furthermore,

vector addition corresponds to the symmetric difference of sets, which we describe below

A4B = (A−B) ∪ (B − A), A,B ⊆ E.

Definition 8. Let G = (N,E) be a graph and WE(G) its edge space. The cycle space of G,

denoted by WC(G), is the subspace of WE(G) spanned by the simple cycles of G. A cycle

basis is a basis for the space WC(G).

Notice that, in general, the cycle space will contain subgraphs that consist of disjoint

cycles. Since we are interested only on those subgraphs that consist of a single simple cycle,

our algorithm for generating the set of such cycles from the cycle basis will have to exclude

subgraphs that consist of disjoint cycles.
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