UC Berkeley Archaeological X-ray Fluorescence Reports

Title

An Energy Dispersive X-ray Fluorescence (EDXRF) Analysis of 57 Obsidian Artifacts from Seligman to Sunset Crater, Northern Arizona

Permalink

https://escholarship.org/uc/item/7tb728j5

Author

Shackley, M. Steven

Publication Date

1991-11-06

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at <u>https://creativecommons.org/licenses/by-nc/4.0/</u>

AN ENERGY DISPERSIVE X-RAY FLUORESCENCE (EDXRF) ANALYSIS OF 57 OBSIDIAN ARTIFACTS FROM SELIGMAN TO SUNSET CRATER, NORTHERN ARIZONA

by

M. Steven Shackley

Lowie Museum of Anthropology University of California, Berkeley

6 November, 1991

INTRODUCTION

The analysis of archaeological obsidian in northern Arizona lags somewhat behind other areas of the Southwest. This x-ray fluorescence analysis of 58 specimens through the Mount Floyd and San Francisco Volcanic Fields of northern Arizona constitutes the most extensive transect sample of prehistoric obsidian artifacts in the region.

Six obsidian sources are represented in the sample, highly dominated by the Partridge Creek source, one of the best artifact quality glass sources in the Southwest (Shackley 1988, 1990). In addition to reporting the results of this x-ray fluorescence analysis, some comments regarding the distribution over the transect is offered. All the sources mentioned here are discussed by Lesko (1989) and Shackley (1988, 1990).

ANALYSIS AND INSTRUMENTATION

Unlike the earlier study of Southwestern obsidians (Shackley 1988, 1990), these data are generated under different analytical conditions. These results are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981;

Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984).

The trace element analyses were performed in the Department of Geology and Geophysics, University of California, Berkeley, using a Spectrace 440 (United Scientific Corporation) energy dispersive x-ray fluorescence spectrometer. The spectrometer is equipped with a Rh x-ray tube, a 50 kV x-ray generator, with a Tracor X-ray (Spectrace) TX 6100 x-ray analyzer using an IBM PC based microprocessor and Tracor reduction software. The x-ray tube was operated at 30 kV, .20 mA, using a .127 mm Rh primary beam filter in an air path at 250 seconds livetime to generate x-ray intensity data for elements lead (Pb), thorium (Th), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), and niobium (Nb). Trace element intensities were converted to concentration estimates by employing a least-squares calibration line established for each element from the analysis of up to 26 international rock standards certified by the U.S. Bureau of Standards, the U.S. Geological Survey, Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France Further details concerning the petrological choice of these (Govindaraju 1989). elements in Southwestern obsidians is available in Shackley (1988, 1990).

In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards. Table 1 shows a comparison between values recommended for two international rock standards, one rhyolite (RGM-1) and one obsidian (NBS-278). One of these standards is analyzed during each sample run to insure machine calibration. The results shown in Table 1 indicate that the machine accuracy is quite high, and other instruments with comparable precision should yield comparable results.

Trace element data exhibited in Tables 1 and 2 are reported in parts per million (ppm), a quantitative measure by weight. Source probability is based on a comparison

with 1-sigma levels of variability. Although Pb and Th ppm concentrations were reported, they generally are not used as diagnostic indicators given their general lack of inter-source variability. Table 2 exhibits the trace element concentrations for the 58 samples. Table 3 and Figure 1 display the frequency distribution of obsidian source provenience in the sample. All samples except the one discussed below were assignable to source.

One sample (ATX 47) appears to be a basalt based on the megascopic and geochemical attributes. It, like the obsidian, was probably procured in the northern Arizona region.

DISCUSSION

The distribution of the provenience of obsidian sources in the assemblage is rather diverse, but not surprising. All the material was derived from regional, northern Arizona sources (see Table 2, 3, and Figure 1). The assemblage is dominated by Partridge Creek material which is a high quality material that happens to be located nearest most of the sites in the sample. However, proximity to source is not completely operative here. Presley Wash obsidian, particularly the glassy gray material was recovered from sites near the source on the west end to sites quite distant from the source near Sunset Crater east of Flagstaff. Government Mountain, often considered the most frequently used northern Arizona material, was only third most frequent, tied with RS Hill/Sitgreaves Peak (see Table 3 and Figure 1).

The Black Tank source, not frequently mentioned in archaeological context, occurs in black and black and mahogany colors. Three specimens were noted in this transect, including one on the eastern end of the transect, a considerable distance from the source.

Perhaps most interesting is the presence of one piece of glass derived from the O'Leary Peak or Robinson Crater source near Sunset Peak. This is quite an inferior raw material, but was apparently used locally.

Based on this study, it appears that Partridge Creek glass may have been considered equal to Government Mountain glass as a raw material prehistorically. It is important to note, however that Government Mountain material was located in sites west of the source and Partridge Creek material was located in sites east of the source in an overlapping distribution suggesting that there was considerable transport of *many* obsidian source materials in the northern Arizona region in all directions.

1

REFERENCES CITED

Govindaraju, K.

1989 Compilation of Working Values and Sample Description for 272 Geostandards. *Geostandards Newsletter* 13 (special issue).

Hampel, Joachim H.

1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In *Obsidian Studies in the Great Basin*, edited by R.E. Hughes, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley.

Lesko, Lawrence M.

1989 A Reexamination of Northern Arizona Obsidians. Kiva 54(4):385-399.

McCarthy, J.J., and F.H. Schamber

1981 Least-Squares Fit with Digital Filter: A Status Report. In Energy Dispersive X-ray Spectrometry, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In X-ray Fluorescence Analysis of Environmental Samples, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Shackley, M. Steven

- 1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53(4):752-772.
- 1990 Early Hunter-Gatherer Procurement Ranges in the Southwest: Evidence from Obsidian Geochemistry and Lithic Technology. Unpublished Ph.D. dissertation, Department of Anthropology, Arizona State University, Tempe.

Table 1.

8

÷

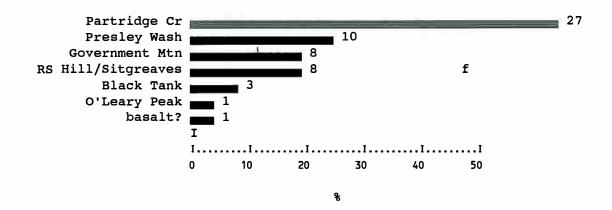
£

SITE/SAMPLE	Pb	Th	Rb	Sr	Y	Zr	Nb	SOURCE
NA 20//2								
NA 20662	26 720	14 424	07 10/	10/ /50	4/ 227	150.00	10 70/	Duran Law Manh
1 2	26.329 32.687	16.624 22.28	87.124	186.458 109.593		150.09 100.916	19.304	Presley Wash Black Tank
3	43.292	41.067	242.087		39.224	106.137		Partridge Cr
4	43.696	39.588	250.013		41.897	105.278		-
4 5								Partridge Cr
NA 20663	29.133	13.52	72.781	242.621	10.404	149.328	20.000	Presley Wash
6	46.079	42.671	254.852	7 676	39.738	108.563	55 / 21	Partridge Cr
7	48.079	28.26	220.651		38.971	101.636		Partridge Cr
8	40.58	47.302	249.004		39.702	101.838		Partridge Cr
	40.58	47.302	247.004	4.712	39.702	101.909	JO.400	Partinge Cr
NA 20664 9	45.639	10 400	265.737	5 /51	39.08	108.083	57 51	Dontridgo Cr
	43.037	48.622	203.131	5.451	37.00	100.005	12.1	Partridge Cr
NA 20666 10	// 071	/5 201	252 2/2	7 407	70 001	110 015	EE E73	Dentridae Cr
	44.831	45.201	252.242	5.021	38.981	110.915	55.572	Partridge Cr
NA 20667	2/ 81/	6.814	79 774	140 90/	15 257	1/0 1/1	17 92	Dreal ov Useh
11 12	24.814 45.462	44.888	78.776	169.804		140.141		Presley Wash Partridge Cr
	43.402	44.000	247.821	4.795	39.16	103.997	20.009	Partridge ur
NA 20668	15 270	17 (17	2/7 0/7	/ 509	/0.97/	10/ 170	F/ 0/	Danénidan Ca
13	45.279	43.613	247.067		40.874	106.138		Partridge Cr
14 NA 20670	42.351	38.478	238.516	4.0/0	42.681	102.407	52.200	Partridge Cr
NA 20670	/1 557	7/ 070	2/0 /1	/ 595	77 007	107 700	52.25	Danénidaa Ca
15	41.553	36.078	240.41	4.585	37.807	103.789		Partridge Cr
16 NA 20671	23.704	20.273	73.661	249.762	19.400	151.899	22.214	Presley Wash
NA 20671	7/ 0/7	25 //4	447 774	11/ 07/	22 / 25	10/ 270	20.0	Diask Task
17	34.847	25.641		114.076		104.279		Black Tank
18	41.072	37.767	248.421		43.855	104.057		Partridge Cr
19	47.51	40.607	222.134		39.295	94.885	48.184	Partridge Cr
20	35.533	27.51	203.633		31.746	88.578	29.309	Partridge Cr
21	25.197	24.435	86.942	206.938		160.444		Presley Wash
22	39.316	36.767	214.089	3.191	35.811	100.882	50.502	Partridge Cr
NA 20672	// /07	10 207	2/1 027	7 070	77 5/4	107 05/	52 / 42	Dentridae Ca
23	44.683	40.283	241.823	3.032	37.561	103.854	52.402	Partridge Cr
NA 20676	79 (09	77 557	270 100	7 544	70 001	107 107	E1 200	Danénidaa Ca
24 25	38.698	37.557 39.686	230.199		39.801	103.123		Partridge Cr
	44.183	39.000	245.637	2.097	39.848	105.169	52.070	Partridge Cr
NA 20680	70 775	77 092	227 774	4 750	70 177	07 77	52.147	Dentridae Cr
26	39.335	37.982	227.331	0./39	39.173	97.77	52.141	Partridge Cr
NA 20681 27	36.392	34.27	225.51	3.76	39.784	103.564	E/ 044	Partridge Cr
NA 20682	30.372	34.21	223.31	5.10	37.704	103.304	J4.700	Partinuge Cr
28	41.212	70 140	242.948	7 / 17	11 176	10/ 010	EE E27	Partridge Cr
		38.168 31.216			41.436	104.019	50.834	•
29 30	41.002		218.792 68.713		37.613	97.373		Partridge Cr
	25.019	14.778	00./13	235.895	17.443	151.765	11.307	Presley Wash
NA 20684 31	42.226	33.499	234.482	/ 897	42.154	104.315	51 434	Partridge Cr
NA 20686	46.220	JJ.477	234.402	4.003	42.134	104.313	J1.024	
32	26.127	15.172	89.486	191.335	1/ 105	150.175	20 155	Presley Wash
	20.121	12.172	07.400	171.333	14.105	120.112	20.100	mash
NA 20687 33	75 07/	/1 571	27/ 1/	2 007	86 / 40	178 597	25/ 401	DC Hill /Sitanonyca
55	75.034	41.531	374.14	2.997	86.469	10.30/	274.071	RS Hill/Sitgreaves

Table 2. X-ray fluorescence concentrations for obsidian artifacts from northern Arizona sites. All values are in parts per million (ppm).

 $\mathfrak{F}^{(i)}$

i.


SITE/SAMPLE	Pb	Th	Rb	Sr	Y	Zr	Nb	SOURCE
NA 20689								
34	33.991	16.172	113.234	79.771	21.754	96.12	55.19	Govt Mtn
35	39.305	33.493	230.844	2.538	40.953	103.089	55.898	Partridge Cr
NA 20691								
36	37.437	31.293	232.762	5.313	40.733	100.433	53.371	Partridge Cr
37	78.564	51.231	394.186	3.59	89.386	180.866	259.645	RS Hill/Sitgreaves
NA 20692								
38	42.195	41.129	238.892	3.093	39.444	102.577	50.544	Partridge Cr
NA 20693								
39	80.719	50.14	396.011	2.536	93.723	183.138	257.321	RS Hill/Sitgreaves
40	73.625	41.26	372.909	4.642	89.668	179.284	247.736	RS Hill/Sitgreaves
41	28.134	22.827	92.266	200.289	12.781	151.01	19.353	Presley Wash
42	75.359	55.438	396.427	3.196	92.337	181.146	258.38	RS Hill/Sitgreaves
NA 20694								
43	29.956	12.014	101.219	76.175	19.076	93.634	53.586	Govt Mtn
NA 20695								
44	31.347	16.663	102.535	73.232	21.426	91.532	53.388	Govt Mtn
45	79.036	54.393	411.304	3.541	93.811	183.738	266.173	RS Hill/Sitgreaves
46	25.534	23.428	82.817	181.2	18.403	140.849	22.141	Presley Wash
47	23.041	8.535	58.072	934.509	32.48	403.208	53.485	basalt?
NA 20696								
48	27.187	9.263	70.957	155.59	32.636	238.542	47.35	O'Leary Peak
NA 20700								
49	32.727	17.52	109.152	81.836	21.089	89.542	51.711	Govt Mtn
50	31.321	14.66	110.631	79.923	21.283	96.536	53.945	Govt Mtn
51	33.589	17.77	109.594	78.179	22.463	87.447	52.721	Govt Mtn
52	33.883	13.414	110.949	76.409	21.132	91.041	51.917	Govt Mtn
53	89.293	52.049	424.649	4.599	93.299	190.143	258.753	RS Hill/Sitgreaves
54	40.369	31.118	240.274	2.978	38.544	101.462	53.396	Partridge Cr
55	88.914	63.121	403.028	3.533	84.19	174.099	255.466	RS Hill/Sitgreaves
56	23.446	18.888	85.304	184.308	15.168	139.057	18.241	Presley Wash
57	33.839	26.627	120.932	109.75	19.086	105.186	29.452	Black Tank
58	35.707	9.212	112.461	78.399	19.411	97.108	58.059	Govt Mtn

J. . . .

Table 3. Frequency distribution of obsidian source provenience.

Source	Frequency	Percent
Partridge Cı	ceek 27	46.6
Presley Wash	n 10	17.2
Government N	ítn 8	13.8
RS Hill/Site	j. 8	13.8
Black Tank	3	5.2
O'Leary Peal	K 1	1.7
basalt?	1	1.7
TOTAL	58	100.0

Figure 1. Frequency and proportional histogram of obsidian source provenience.

