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A Water-Soluble 3D Covalent Organic Framework 

That Displays Enhanced Enrichment Effect of 

Photosensitizers and Catalysts for the Reduction of 

Protons to H2

Zhong-Zheng Gao,† Ze-Kun Wang,† Lei Wei,‡ Guangqiang Yin,§ Jia Tian,† Chuan-Zhi Liu,† Hui 

Wang,† Dan-Wei Zhang,† Yue-Biao Zhang,‡ Xiaopeng Li,§ Yi Liu,*,¶ and Zhan-Ting Li*,†

†Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative 

Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China

‡School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

§Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA

¶The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, 

Berkeley, California 94720, USA

KEYWORDS: covalent organic framework, supramolecular organic framework, three-

dimensional polymer, visible light photocatalysis, hydrogen generation

ABSTRACT: Covalent organic frameworks (COFs) are emerging porous polymers that have 2D 

or 3D long-range ordering. Currently available COFs are typically insoluble or decompose upon 

dissolution, which remarkably restricts their practical implementations. For 3D COFs, the 
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achievement of non-interpenetration, which maximizes their porosity-derived applications, also 

remains a challenge synthetically. Here we report the synthesis of the first highly water-soluble 

3D COF (sCOF-101) from irreversible polymerization of a preorganized supramolecular organic 

framework through cucurbit[8]uril (CB[8])-controlled [2 + 2] photodimerization. Synchrotron X-

ray scattering and diffraction analyses confirm that sCOF-101 exhibits porosity periodicity, with 

a channel diameter of 2.3 nm, in both water and the solid state and retains the periodicity under 

both strongly acidic and basic conditions. As an ordered 3D polymer, sCOF-101 can enrich 

[Ru(bpy)3]2+ photosensitizers and redox-active polyoxometalates in water, which leads to 

remarkable increase of their photocatalytic activity for proton reduction to produce H2.

INTRODUCTION 

The physical and chemical properties of COFs are, to a considerable extent, dictated by the nature 

of the covalent linkages.115 In most cases, reversible bonds, such as boroxine,1 imine,1620 or 

hydrazine,21 are used as linkages to achieve regularity. Nevertheless, the resulting structures 

frequently suffer instability in aqueous media, which has been one of three key issues needed to 

be resolved for any practical/industrial applications of COFs.15 Thus, in recent years, less 

reversible or irreversible bonds, including triazine,2224 phenazine,25 dioxin,26,27 imide,28 or 

olefin,2932 have been explored for the generation of COFs with increased stability. Examples of 

irreversible covalent “locking” of dynamic frameworks by forming oxazole and thiazole have also 

been reported.3335 However, all the reported structures maintain their frameworks only in the solid 

state, and examples of water-stable structures are very scarce.23,24,36 We envisioned that COFs that 

are soluble in water, the best environmentally benign solvent, might help to realize increased 

processability and scalability,37 another two key issues that are needed to address for practical 
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3

applications.15 To the best of our knowledge, strategies for the generation of water-soluble COFs 

have not been available. 

Taking the above considerations in mind, we herein report the synthesis of the first water-

soluble 3D covalent organic framework, termed sCOF-101, by utilizing a periodic supramolecular 

organic framework as template to direct the [2 + 2] photodimerization of the styrylpyridinium 

units. We demonstrate that sCOF-101, as a new 3D ordered polymer, is highly stable in harsh 

acidic and basic media, does not suffer from interpenetration, which substantially decreases the 

pore size of 3D COFs but can be rarely avoided,38 and is able to enrich Ru2+-complex 

photosensitizers and redox-active polyoxometalates, which leads to significant increase of their 

photocatalytic activity, as compared with an irregular polymer counterpart.

EXPERIMENTAL SECTION

General methods. All reagents were obtained from commercial suppliers and used without further 

purification unless otherwise noted. All reactions were carried out under a dry nitrogen 

atmosphere. All solvents were dried before use following standard procedures. 1H and 13C NMR 

spectra were recorded on 400 MHz spectrometers in the indicated solvents at room temperature 

(298 K). Solid-state or solution-phase synchrotron X-ray scattering experiments were performed 

on the BL16B1 beamline of Shanghai Synchrotron Radiation Facility (SSRF), using a fixed 

wavelength of 0.124 nm, a sample-to-detector distance of 1.85m and an exposure time of 2000 s. 

The 2D scattering pattern was collected on a charge coupled device camera, and the curve 

intensities versus q were obtained by integrating the data from the pattern. Solid-state synchrotron 

X-ray diffraction experiments were performed at beamline BL14B1 of the Shanghai Synchrotron 

Radiation Facility (SSRF) at a wavelength of 0.688 Å. BL14B1 is a beamline based on bending 

magnet and a Si (111) double-crystal monochromator was used to monochromatize the beam. The 
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4

size of the focus spot is about 0.5 mm and the end station is equipped with a Huber 5021 

diffractometer. NaI scintillation detector was used for data collection. Scanning electron 

micrographs of the samples were obtained on a Nova nano SEM 450 Field Emission Scanning 

Electron Microscope at 3.00 kV with the material adhered to the SEM sample holder directly or 

on a Phenom Scanning Electron Microscope at 15.00 kV after the material that adhered to the 

sample holder was been gilded to 10-1-10-2 vacuum degree. Transmission electron micrographs 

were recorded on a JEM 2011 FETEM microscope at 200 kV aligned for low dose (10 e Å-2 s-1) 

diffractive imaging. Dynamic light scattering (DLS) measurement were conducted on a Malvern 

Zetasizer Nano ZS90 using a monochromatic coherent He–Ne laser (633 nm) as the light source 

and a detector that detected the scattered light at an angle of 90°. Thermogravimetric analysis 

(TGA) experiments were performed on a Model TGA/SDTA 851 instrument. Samples were placed 

in alumina pans and heated at a rate of 5 °C per minute from 30 to 800 °C under a nitrogen 

atmosphere. Isothermal titration calorimetry (ITC) experiment was carried out using a MicroCal 

PEAQITC instrument. Association constants and associated thermodynamic parameters were 

obtained through computer simulations (curve fitting) using MicroCal ITC analyze software. UV-

Vis spectra were detected on a Perkin-Elmer 750s instrument from 200-800 nm at the scan rate of 

3 nm/internal. Fluorescence measurements were performed on a VARIAN CARY Eclipse 

Fluorescence Spectrophotometer and PerkinElmer LS 55 Luminescence spectrometer. The EtOH 

vapor adsorption isotherms were collected using MicrotracBELSopr-Aqua3 adsorption apparatus 

with a water circulator bath. Anhydrous EtOH was used for vapor adsorption, which degassed at 

least five times before isotherm collection. The crystal data for complex (M1)2CB[8] has been 

deposited at The Cambridge Crystallographic Data Centre (CCDC) (no. 1951214).

Page 4 of 25

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

The synthesis of sCOF-101. A solution of SOF-s (0.20 g) in water (10 mL) was stirred and 

subjected to a 300-W solid state light source. The solution was kept at 25 C using a powerful fan. 

After 4 hours, SOF-s was converted into sCOF-101 completely, which was confirmed by 1H NMR 

for a sample of SOF-s of the same concentration in D2O.

The synthesis of P-irr. This polymer was prepared from T1 by using the procedures described 

above for sCOF-101.

Photochemical reactivity studies. Photoirradiation was carried-out with a 300 W solid state light 

source. Prior to irradiation, the samples were degassed with N2 gas for 30 min. The samples were 

kept under magnetic stirring during the irradiation process. The solution was kept at 25 C using 

a powerful fan.

The H2 production reactions in the aqueous solution. The reaction was carried out in an external 

illumination-type reaction vessel with a magnetic stirrer. Samples were prepared in 10 mL septum-

sealed glass vials. Each sample was made up to a volume of 2.0 mL of methanol (20%, v/v) 

aqueous solution with the pH value of 1.8 (adjusted by adding 2 M HCl). Sample vials were capped 

and deoxygenated by bubbling nitrogen through them for 30 min to ensure complete air removal. 

The solution was irradiated by a 300 W solid state light source. The H2 gas formed in the headspace 

of the vial was analyzed by GC.

RESULTS AND DISCUSSION

The [2 + 2] photodimerization of 1,2-disubstitued ethylenes is robust for the synthesis of 

polymers,39 which can be further accelerated by cucurbit[8]uril (CB[8]) encapsulation.4044 We 

prepared compound M1 (Figure 1) to study its binding with CB[8]. The X-ray crystal structure 

analysis revealed that CB[8] encapsulates two molecules of M1 (Figure 1), with the two 4-

vinylpyridinium (VP) units stacking in an anti-parallel manner in its cavity. This anti-parallel 2:1 
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6

binding motif is ideal for the construction of 3D networks from multitopic building blocks.4547 

We then prepared highly water-soluble tetrahedral molecule T1 (Figure 1) and studied its co-

assembly with CB[8] for the formation of a new reactive 3D SOF. The 1:2 mixture of T1 and 

CB[8] in water maintained homogeneity at [T1] =  4.0 mM. 

3.5 nm 2.3 nm

[2 + 2] photodimerization

N Me
+

NMe +

SOF-s sCOF-101

N Me
+

NMe +

H+

H2

N

N

N

N

N
N

N
N

Me

Me

Me

Me +

+

+

+

+

+
+

+

T1

HO2C

N
Me+

Cl-

M1

8Cl-

Ha

Hb
(M1)2CB[8]

hv, water, 4 h, >99%

POM

Ru2+ complex

Figure 1． Monomers T1 and M1, the crystal structure of complex (M1)2CB[8] (CCDC no. 1951214) and 

schematic representation of supramolecular organic framework SOF-s, water-soluble covalent organic 

framework sCOF-101 and its promotion of visible light-induced reduction of protons into H2 through enrichment 

of POM catalysts and Ru2+-complex photosensitizers.

Our previous work had established the co-assembly of a prototype tetrahedral monomer and 

CB[8] into a water-soluble periodic supramolecular organic framework (SOF).48 We envisioned 
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7

that the co-assembly of T1 and CB[8] should give rise to a similar system, which we characterized 

using the established methods.48 In brief, 1H NMR titration experiments in D2O indicated that the 

ethylene units of T1 were encapsulated in the cavity of CB[8] (Figures S1 and S2), while 

fluorescence and absorption experiments supported their 1:2 stoichiometry and the 2:1 binding 

pattern between the styryl units of T1 and CB[8] (Figures S3S5). The apparent association 

constant (Ka) of their 2:1 complex was determined by the isothermal calorimetric titrations (Figure 

S6) to be 7.7 ( 0.8)  1012 M-2. The related H and TS were 7.9 ( 0.25) and 5.2 kcal/mol, 

respectively, which indicates that the binding was both enthalpy and entropy-driven. The Ka was 

substantially larger than that (1.1 ( 0.047)  1011 M-2) of the 2:1 complex formed by M1 and 

CB[8] (Figure S6), which reflects the multivalence of the binding of T1 with CB[8].49,50 Dynamic 

light scattering (DLS) experiments for the 1:2 solution of T1 and CB[8] in water revealed the 

formation of nano-scaled assemblies (Figure S7). At [T1] = 4.0 mM, the hydrodynamic diameter 

(DH) was determined to be 220 nm. The DH value decreased with the dilution of the solution. 

However, even at [T1] = 15 M, DH was still as high as 14 nm. In contrast, at 4.0 mM, T1 formed 

much smaller entities (DH = 6.5 nm) (Figure 2a) due to intermolecular stacking. All these 

observations supported that, similar to the reported prototype,48 styrene-derived T1 and CB[8] co-

assembled in water into a new 3D supramolecular organic framework (SOF-s, Figure 1). 
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Figure 2.  (a) DLS profile of sCOF-101 and T1 in water at 25 C. The concentration indicated for sCOF-101 

represents that of T1 of SOF-s for the preparation of the polymers. (b) The UV−vis absorption spectrum of 

sCOF-101, SOF-s, P-irr and T1 in water at 25 C ([T1] = 10 M).
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Figure 3.  (a,b) Solution-phase SAXS profile of SOF-s and sCOF-101 ([T1] = 4.0 mM) in water. (c,d) SAXS 

profile of SOF-s and sCOF-101 microcrystals (inset: 2D profile). (e,f) TEM images of sCOF-101 and SOF-s 

microcrystal with the SAED pattern.

The synchrotron small-angle X-ray scattering (SAXS) profile of SOF-s ([T1] = 4.0 mM) in 

water gave rise to a broad, but conspicuous peak centred around 1.9 nm (Figure 3a). The d-spacing 

can be assigned to the {222} of the SOF-s model. The broadness of the peak reasonably reflected 

the dynamic nature of the self-assembled framework in solution. Slow evaporation of the above 

solution at room temperature produced microcrystals. Synchrotron SAXS profile of the 

microcrystals displayed one sharp peak centered at 1.8 nm (Figure 3c), which was also reflected 
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on the 2D profile (Figure 3c, inset). This peak matched with the calculated {311} spacing (1.7 

nm). All the experiments, joining together, provided consistent evidences to support that SOF-s 

possessed periodicity in both solution and solid states. Thermogravimetric analysis showed that 

SOF-s was stable up to 360 C (Figure S8). The weight loss of ~8% under 100 C might be ascribed 

to the evaporation of adsorbed water.

1H NMR spectra in D2O showed that SOF-s was stable at room temperature. However, upon 

visible light irradiation, the ethylene units of the T1 molecules readily underwent [2 + 2] 

photodimerization to afford new water-soluble covalent organic framework sCOF-101 (Figure 1). 

The photodimerization was completed after about 4 hours, as indicated by 1H NMR spectrum, 

which revealed the vanishing of their diagnostic H-a and H-b signals (Figures 1 and S9). UV−vis 

absorption experiments further confirmed this photodimerization process. Upon irradiation, the 

absorption band of the styrene-incorporated conjugated aromatic arms, which centered around 368 

nm, weakened quickly during the first ten minutes, then further decreased slowly, and finally 

vanished after about 8 hours (Figures 2 and S10). Accompanied with the weakening of this 

absorption band, an absorption band centered at 308 nm was generated, which could be assigned 

to the 4-phenylpyridinium units, the remaining largest conjugated moieties of the resulting sCOF-

101. By comparing the absorbance at 368 nm before and after the irradiation, we could determine 

the yield of the photodimerization to be >99%. Irradiation also caused the emission of sCOF-101 

around 500 nm to disappear completely and the resulting sCOF-101 gave rise to a strong emission 

around 450 nm (Figure S11). sCOF-101 was soluble in water at the studied highest concentration 

([T1] = 4.0 mM). DLS revealed that sCOF-101 obtained from the SOF-s solution at [T1] = 4.0 

mM had a DH of 165 nm, which was notably smaller than that (220 nm) of the corresponding 

precursor SOF-s of the identical concentration. This reduction might partially reflect the contracted 
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aperture (2.3 nm) of sCOF-101 as compared with that of the SOF-s (3.5 nm) (Figure 1). The DH 

value of sCOF-101 decreased with the decrease of the concentration (Figures 2 and S12), 

indicating that the larger polymeric particles were formed through the aggregation of smaller ones. 

Synchrotron SAXS profile of the solution of sCOF-101 ([T1] = 4.0 mM) in water gave rise 

to a broad, but discernible peak centered around 2.0 nm (Figure 3b), which matched with the {113} 

spacing (2.1 nm) obtained for the modelled structure. Slow evaporation of the above solution 

afforded microcrystals of sCOF-101. Their synchrotron SAXS profile gave one sharp peak 

centered at 1.5 nm (Figure 3d), which was also displayed on the 2D profile (Figure 3d, inset). This 

peak matched with the calculated spacing (1.5 nm) of the {400} spacing of the modelled structure. 

The synchrotron XRD profile of the microcrystals exhibited two broad, but distinguishable peaks 

around 0.8 and 1.5 nm (Figure S13), respectively, which could be assigned to the {262} and {400} 

spacings of the modelled structure. All these results supported that sCOF-101 possessed regularity 

or periodicity in aqueous solution as well as in the solid state. Thermogravimetric analysis showed 

that the stability of sCOF-101 was comparable to that of SOF-s (Figure S8). The formation of 

microcrystals by sCOF-101 and SOF-s was also confirmed by transmission electron microscope 

(TEM) with the selected area electron diffraction (SAED) (Figures 3e and 3f), which showed their 

electron diffraction patterns both in the 112 zone. The SAED pattern of sCOF-101 showed the 

{440} and {222} lattice spacings (1.0 nm and 1.3 nm), whereas that of SOF-s pointed to the 

{440} lattice spacing (1.4 nm) and the {222} lattice spacing (2.0 nm). The results further 

supported the crystallinity and regularity of the new COF, which was realized through the direction 

of SOF-s. High-resolution TEM image also exhibited lattice fringes for the selected particle 

(Figure S14). The fringe spacing is about 2.1 Å, fitting the modelled {220} spacing. Elemental 
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mapping analysis for the microcrystals of SOF-s and sCOF-101 also confirmed the compositions 

of the C, N, O and Cl elements (Figures S15 and S16). 

To reveal the role of CB[8] for the formation of the regularity of sCOF-101, we further 

investigated the [2 + 2] photodimerization of T1 in water. Upon visible light irradiation, T1 also 

underwent the photodimerization reaction to afford irregular porous polymer P-irr. Irradiating the 

solution for 4 hours caused the absorption band, centered at 362 nm, of the peripheral styrene-

incorporated conjugated units of T1 to disappear completely (Figures 2 and S17), which indicated 

that the photodimerization took place quantitatively. Moreover, at [T1] = 4.0 mM, no precipitate 

was observed after the photodimerization. DLS experiment for the solution of the resulting P-irr 

([T1] = 4.0 mM) in water afforded a DH value of 164 nm (Figure S18). The DH also became smaller 

with the dilution of the solution, which again indicated that the larger particles were generated via 

the aggregation of smaller polymeric particles. Thermogravimetric analysis showed that the 

polymer was stable up to 280 C (Figure S19). As expected, no peaks were observed in the SAXS 

or XRD profile of P-irr in solution or the solid state, reflecting the irregularity of its polymeric 

backbone. DLS experiments also revealed that sCOF-101 maintained its framework in harsh acidic 

(HCl, 3 M) or basic (NaOH, 1 M) solution (Figure S20). In contrast, in the identical acidic or basic 

solution, P-irr turned into insoluble, dark solids, which supported that CB[8] stabilized the 

encapsulated cyclobutene units of sCOF-101. However, 1H NMR spectrum showed that hearting 

the solution of both samples in D2O at 95 C for 10 hours did not cause the occurring of the peaks 

of the CHCH unit, indicating that both samples were stable at high temperature.

Vapor adsorption isotherms of ethanol and water were collected on sCOF-101, SOF-s and P-

irr at 283 K (Figures 4a and 4b). Although the uptake patterns were a little different, all the three 

polymers displayed high adsorption ability for either of the solvents, as observed for reported 
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crystalline covalent organic frameworks.51,52 The pore volume calculated from the uptake of the 

two solvents was very close, supporting that the backbones of the polymer maintained the rigidity 

with no important deformation. In contrast, both SOF-s and P-irr gave rise to different values with 

the two solvents. For SOF-s, this difference may be rationalized by considering different levels of 

the sliding of the styrylpyridinium units encapsulated in the CB[8] cavity upon solvent uptake. For 

P-irr, we tentatively attributed the difference to different levels of deformation of the backbones 

caused by solvent uptake.
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Figure 4.  (a) EtOH and (b) water vapor adsorption isotherms of sCOF-101, SOF-s and P-irr at 283 K.

Structural modelling revealed that sCOF-101 and SOF-s had a 3D framework that resembles 

that of the diamond net. Their void volumes were calculated to be 88% and 90%, respectively, 
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whereas the apertures, defined by the six CB[8] rings that produced a cyclohexane-like chair 

conformation, was calculated to be 2.3 and 3.5 nm (Figure 2), respectively. Fluorescence 

quenching experiments indicated that both sCOF-101 and SOF-s adsorbed ruthenium-complex 

photosensitizers (Ru(BDC)3]4−, as K+ salt, BDC = 2,2’-bipyridyl-5,5’-dicarboxylate) and 

Ru(BPY)2(BDC), BPY = 2,2’-bipyridine) and redox-active POM catalysts (Wells–Dawson-type 

[K6P2W18O62] (WD-POM) and Keggin-type Na3PW12O40 (K1-POM) and K4W12SiO4O36 (K2-

POM)) in water (Figures S21S26). DLS experiments in water showed that both frameworks 

maintained the nano-scaled structures after guest uptake (Figures S27 S29).

The capacity of sCOF-101 and P-irr in improving the photocatalytic efficiency of the Ru2+-

POM systems for the reduction of protons to H2 was then investigated using conditions established 

for a fully rigid SOF.53-55 Compared with that of the control solution that contained neither of the 

polymers, the turnover number (TON), defined as n(1/2H2)/n(POM), of the solution containing 

sCOF-101 and P-irr, obtained for six combinations of the sensitizers and catalysts, was increased 

by 5.9-8.8 and 2.0-2.8-fold, respectively (Figure 5a), which indicated that the regularity of sCOF-

101 significantly promoted the catalyzing ability of the bi-component catalytic systems.

  

0

100

200

300

400

500
 control
 P-irr
 sCOF-101

TO
N

(a)

Page 14 of 25

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

1 2 3 4 5 6 7 8 9 10
0

150

300

450

TO
N

Recycling Times

P-irr
sCOF-1

(b)

Figure 5.  a) TON values in H2O and MeOH (4:1, v/v, pH = 1.8/HCl) containing different photosensitizer (20 

M) and POM catalyst (2.0 M) in the absence (control) or presence of sCOF-101 or P-irr ([T1] = 0.1 mM). b) 

TON versus recycling times for the K4Ru(BDC)3/K1-POM system in the solution of sCOF-101 or P-irr. 

Irradiation time: 22 h.

In the absence of the ruthenium complexes, no H2 production was observed in the solution of 

sCOF-101 or P-irr. Under the conditions used for the system of sCOF-101, SOF-s of the identical 

concentration also promoted the production of H2. However, the promotion was generally lower 

than that of sCOF-101 (Figure S30), even though the irradiation would lead to partial conversion 

of SOF-s to sCOF-101. Compared with that of a previously reported SOF assembled from a fully 

rigid tetrahedral component,54 TON realized by SOF-s was comparable.

For all the catalytic systems, H2 evolution could last for a long time. For the combination of 

[Ru(BDC)3]4− and WD-POM, the time was about 60 hours. Further elongating the irradiation could 

not lead to observable amount of H2. However, after being left to stand for about 12 hours, without 

adding new polymer, photosensitizer or POM catalyst, irradiating the solution could bring about 

the generation of H2 again. After repeating for 10 times, the system could still exhibit a 

considerable catalytic activity. The results for the K4Ru(BDC)3/K1-POM system are provided in 
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Figure 5b. DLS profile of the solution after repeated use for 10 times afforded a DH of 64 nm, 

which was comparable to that (65 nm) of the originally prepared solution, indicating that sCOF-

101 was very stable and could survive after repeated irradiation. P-irr-mediated catalytic system 

could also be used repeatedly. Nevertheless, its catalytic activity was consistently lower by 3.1-

4.0 times than that of sCOF-101, which again reflected the importance of the regularity of sCOF-

101 in improving the catalytic activity. In the absence of either of the polymers, irradiating the 

solution also resulted in the evolution of H2, which could last about 45 hours. However, after 

standing overnight, further irradiating the solution could not cause the evolution of H2. These 

results appeared to indicate that the inclusion of the photosensitizer and catalyst molecules into the 

polymer could increase their stability. UV-vis absorption spectrum showed that, after the acidic 

photocatalysis conditions, irradiating the solution of sCOF-101 for 5 hours did not cause 

observable ring opening of the [2 + 2] photodimers. Synchrotron SAXS profile of the solid sample, 

obtained by slow evaporation of the solution of sCOF-101 after photocatalysis, exhibited the [400] 

peak as observed for the original sCOF-101 example, which supported the integrity of the material.

CONCLUSIONS

In summary, by making use of the covalent locking of a new periodic supramolecular organic 

framework, we have realized the construction of the first water-soluble covalent organic 

framework that possesses periodic porosity in solution. The new ordered 3d polymer exhibits 

strong inclusion ability for ruthenium complex photosensitizers and redox-active polyoxometalate 

catalysts of very low concentration. The inclusion leads to important enrichment effect that, as 

compared with an irregular system, significantly enhances electron transfer from photo-initiated 

Ru2+-complex sensitizer triplet species to the POM catalysts and consequently photocatalytic 

reduction of protons into hydrogen. The result represents the first step for the synthesis of regular, 
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rigid three-dimensional polymer frameworks using the “conventional” synthetic strategy to form 

non-dynamic covalent bonding. The methodology should open new opportunities for the 

construction of soluble 2D and 3D COFs with tunable structures and functions.
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