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Targeting the Mucosal Barrier: How Pathogens
Modulate the Cellular Polarity Network
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The mucosal barrier is composed of polarized epithelial cells with distinct apical and baso-
lateral surfaces separated by tight junctions and serves as both a physical and immunological
barrier to incoming pathogens. Specialized polarity proteins are critical for establishment
and maintenance of polarity. Many human pathogens have evolved virulence mechanisms
that target the polarity network to enhance binding, create replication niches, move through
the barrier by transcytosis, or bypass the barrier by disrupting cell–cell junctions. This review
summarizes recent advances and compares and contrasts how three important human path-
ogens that colonize mucosal surfaces, Pseudomonas aeruginosa, Helicobacter pylori, and
Neisseria meningitidis, subvert the host cell polarization machinery during infection.

The mucosal barrier is composed of one or
more layers of epithelial cells that have dis-

tinct apical and basolateral surfaces with spe-
cialized functions. These cells form a selective
permeability barrier between biological com-
partments that serves as both a physical and
immunological barrier to invading microbes
(Wang and Margolis 2007; Martin-Belmonte
and Mostov 2008). However, pathogens cir-
cumvent this barrier using a diverse array of
strategies including transcytosis through epi-
thelial cells, disrupting cell–cell contacts, or
killing epithelial cells. In this review, we discuss
three pathogens that specifically target the po-
larity signaling network and discuss the mech-
anisms they use.

The apical and basolateral membrane do-
mains are distinguished by unique assemblies

of proteins and lipids, creating specific mem-
brane domains with distinct roles in formation
and maintenance of barrier function. The apical
surface contains transporters and enzymes that
are specialized to interact with the external en-
vironment. The basolateral plasma membrane
is enriched in phosphatidylinositol 3,4,5-phos-
phate and contains many transporters and re-
ceptors that are involved in nutrient uptake
from the blood (Shewan et al. 2011). Tight junc-
tions sit just below the apical membrane on the
lateral surface. They have a “gate” function that
regulates paracellular transit of molecules and a
“fence” function that regulates movement with-
in the cell membrane. Several transmembrane
proteins are localized to tight junctions, includ-
ing claudins occludin, tricellulin, marvel, and
junctional adhesion molecules (JAMs), that
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play roles in tight junction adhesion, perme-
ability, and signaling (Anderson and Van Itallie
2009; Shen et al. 2011). Cytoplasmic proteins,
like those of the zonula occludins family (ZO-1,
ZO-2, ZO-3), link the tight junction to the actin
cytoskeleton. The adherens junction sits basal
to the tight junction and physically connects
neighboring cells to give the epithelial sheet me-
chanical resiliency. Cadherin, a type I single-
pass transmembrane protein, forms homotypic
bonds with cadherin molecules on neighboring
cells in a calcium-dependent fashion. These
cross-cell protein–protein connections gener-
ate the adhesive forces that hold epithelial
cells together. The cadherin tail interacts with
the cytoplasmic catenin proteins (b-catenin,
a-catenin, p120-catenin) to control adhesive
function, connection to the actin cytoskeleton,
cadherin internalization, and other signaling
functions (Capaldo et al. 2014). Like cadherin,
the transmembrane protein nectin forms intra-
molecular bridges between cells. However, the
cytoplasmic tail of nectin binds to the cytoplas-
mic protein afadin, which connects nectin to
the actin cytoskeleton (Ogita et al. 2010).

Three polarity complexes play crucial roles
in the establishment and maintenance of polar-
ity, the partitioning defective (PAR) complex,
the Crumbs (CRB) complex, and the Scribble
(SCR) complex. The identity of these complexes
is based on genetic screens performed in Cae-
norhabditis elegans and Drosophila melanogaster
in the context of several different types of cell
polarization (Kemphues et al. 1988; Tepass et al.
1990; Tepass and Knust 1993; Tabuse et al. 1998;
Bhat et al. 1999; Bilder et al. 2000; Bilder and
Perrimon 2000). The Par complex is composed
of three core protein components, Par3, Par6,
and atypical protein kinase C (aPKC) (Kem-
phues et al. 1988; Tabuse et al. 1998). Par3 and
Par6 are both scaffolding proteins, and aPKC is
a kinase that phosphorylates a number of po-
larity proteins (McCaffrey and Macara 2009).
The mammalian CRB complex has four core
protein members: Crumbs (Crb), Pals1, PatJ,
and MUPP1. Crumbs is a transmembrane pro-
tein that localizes to the apical domain, whereas
Pals1, PatJ, and MUPP1 are scaffolding proteins
(Roh et al. 2002). The SCR complex consists of

three scaffolding proteins, Scribbled (Scrb),
Discs large (Dlg), and Lethal giant larvae (Lgl)
(Navarro et al. 2005; Su et al. 2012).

The PAR, CRB, and SCR complexes all play
an important role in epithelial cell polarity;
however, there are important differences in
how the polarity complexes act in the context
of mammalian cell polarity compared to other
types of cell polarity operative during embryo-
genesis, cell division, or neuronal polarity. For
example, in mammalian epithelial cells, the
PAR unit does not form a stable complex.
Rather, Par3 localizes to the tight junction,
whereas aPKC and Par6, along with the Rho
GTPase Cdc42, localize to the apical mem-
brane (Bryant et al. 2010). In addition, the
kinase Par1 functions as part of the basolateral
SCR complex (Goehring 2014). The CRB com-
plex along with aPKC, Par6, and Cdc42 define
the apical membrane, Par3 defines the apical
junction, and the SCR complex along with
Par1 define the basolateral domain. A series
of antagonistic signaling events maintains this
asymmetric distribution by creating zones of
mutual exclusion between the apical, junction-
al, and basolateral domains (Assemat et al.
2008). If Par3 moves into the apical space it
can be phosphorylated by aPKC, disrupting
its membrane localization (Morais-de-Sa et
al. 2010; Walther and Pichaud 2010). In a sim-
ilar fashion, if Par3 migrates into the baso-
lateral space it is phosphorylated by Par1 and
diffuses away (Benton and St Johnston 2003;
Wang et al. 2012). In addition, aPKC/Par6 and
Par1/Lgl are mutually inhibitory (Rodriguez-
Boulan and Macara 2014). These negative in-
teractions set up the basis for apical basolateral
polarity (Fig. 1) (Goehring 2014). The pres-
ence of multiple paralogs and splice isoforms
of the polarity proteins adds to the complexity
of polarity signaling. For example, the human
genome encodes two paralogs of Par3 each
with multiple splice isoforms (ten for PARD3A,
and five for PARD3B). The role of so many
potential isoforms is not fully understood,
but may allow for signaling plasticity that al-
lows the network to regulate cell polarity in a
wide range of cell types (Assemat et al. 2008;
McCaffrey and Macara 2009; Apodaca et al.
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2012; Rodriguez-Boulan and Macara 2014;
Flores-Benitez and Knust 2016).

Cell culture models have been critical for
increasing our understanding how polarity
signaling intersects with pathogens. To properly
model the barrier, cell lines must be able to
polarize in culture. Commonly used lines such
as Madin–Darby canine kidney (MDCK),
Calu-3 (human lung adenocarcinoma), 16-
HBE (human bronchial epithelial) Caco-2 (co-
lorectal adenocarcinoma), and hCMEC/D3
(human brain endothelial cell) form highly po-
larized and impermeable monolayers with dis-
tinct apical and basolateral membrane domains
when grown on porous filter supports. In con-
trast, growth of these cells on plastic surfaces
does not fully allow recapitulation of mucosal
barrier polarity. Furthermore, these simplified
systems facilitate the study of pathogen-polar-
ized cell interactions without the confounding
effects of the underlying stroma or immune

cells. In addition, microbes can be added di-
rectly to the apical and basolateral side of the
cells without disrupting the monolayer allowing
for the study of domain-specific responses to
pathogens. This reductionist approach creates
an experimental system to analyze host–patho-
gen interactions, which can then be translated
into more complex cell culture models, includ-
ing three-dimensional cultures, organoids, and
animal models.

Pseudomonas aeruginosa

P. aeruginosa is a Gram-negative environmental
bacterium that is a frequent and often fatal
cause of opportunistic infections in humans.
Its preference for injured tissue explains its
ability to cause ventilator-associated pneumo-
nia, skin and soft tissue infections in burn pa-
tients or at surgical incisions, and bacteremia
in patients receiving cytotoxic chemotherapy.
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Figure 1. Antagonistic signaling events maintain epithelial cell polarity. The major inhibitory interactions
between the apical, junctional, and basolateral domains are shown. Color coding shows apical domain
(blue), basolateral domain (green), adherens junction (orange), and tight junction (yellow).
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P. aeruginosa is also a cause of chronic lung
infections and ultimately death in patients
with cystic fibrosis (Bennett et al. 2015). Multi-
drug-resistant strains of P. aeruginosa are in-
creasingly frequently seen in the clinical setting,
and the Centers for Disease Control listed P.
aeruginosa as a “serious” threat to public health.

Most P. aeruginosa infections, such as acute
lung infections, are initiated by binding at the
mucosal barrier through two major adhesins,
flagella, and retractile type IV pili (Zanin et al.
2016). Once colonization is established, P. aeru-
ginosa unleashes its virulence factors to cause
disease. These include toxins directly injected
into the host cell by the type III secretion system
(TTSS), a needle like nanosyringe that is re-
quired for virulence in cell culture models, in
animal models, and in human infections (Engel
2003; Hauser 2009). Polarized cell culture mod-
els have provided important insights into early
events during infection that might have other-
wise been missed when studying bacterial–host
interactions in incompletely polarized cells. In
polarized MDCK or human lung epithelial cells,
P. aeruginosa binds to the apical surface at or
near cell–cell junctions through its flagellum
or its retractile type IV pili (Engel and Eran
2011). The binding of a few sentinel bacteria
leads to recruitment of free swimming bacteria,
with the resultant formation of an antibiotic-
resistant biofilm-like bacterial aggregate com-
posed of ten to hundreds of bacteria on the
cell surface encased in a polysaccharide matrix
(Lepanto et al. 2011; Tran et al. 2014b). Forma-
tion of the bacterial aggregate is associated with
a dramatic remodeling of the apical membrane
in MDCK cells within 30 min of infection. Ini-
tially, phosphatidylinositol 3-kinase (PI3K) is
recruited to and activated underneath the ag-
gregate, leading to the synthesis of the basolat-
eral phosphoinositide PIP3 at the apical mem-
brane (Kierbel et al. 2005). Generation of apical
PIP3 then leads to activation of the kinase Akt
and remodeling of the apical actin network into
a protrusion through Rac1-mediated signaling
(Kierbel et al. 2007; Tran et al. 2014a). The pro-
trusion acquires basolateral proteins (such as
p58) through a dynamin-specific pathway and
loses apical markers (such as podocalyxin),

consistent with an inversion of membrane po-
larity underneath bacterial aggregates (Kierbel
et al. 2007). Tight junction components, such
as ZO-1 and occludin, are not recruited to
the protrusion, and tight junction function is
not disrupted during protrusion formation.
However, adherens junction components accu-
mulate, including E-cadherin, Nectin-1, and
b-catenin, suggesting that the protrusion may
resemble a nascent adherens junction (Kierbel
et al. 2007; Tran et al. 2014a). In addition, the
PAR complex (Par3/Par6/aPKC) is recruited to
the apical membrane underneath aggregates
and is required for polarity inversion (Fig. 2)
(Tran et al. 2014a). Because both aPKC and
Par6 are found at the apical membrane in po-
larized cells, relocalization of Par3 from the
tight junction to the apical membrane may be
the driver of polarity disruption. Indeed, forced
apical relocalization of Par3 is sufficient to re-
capitulate apical membrane remodeling, with
cell polarity inversion and formation of an api-
cal bulge (TR Ruch et al., in prep.). At later time
points postinfection P. aeruginosa is able to
bypass the epithelial barrier in other ways,
such as killing cells or causing a redistribution
of junctional proteins using its repertoire of
T3SS toxins (Soong et al. 2008; Hauser 2009).

Formation of the apical protrusion requires
a bacterial aggregate, as protrusions are not ob-
served underneath individual bacteria, but it
remains unknown how formation of the aggre-
gate is linked with changes to cell polarity (Tran
et al. 2014a). Recent work suggests that aggre-
gate formation requires the TTSS. Studies using
a panel of isogenic TTSS mutants of P. aerugi-
nosa showed that formation of the bacterial ag-
gregate and subsequent polarity disruption
required an intact TTSS needle complex, but
did not require any of the known TTSS toxins.
Indeed, addition of cell-free supernatants from
MDCK cells infected with wild-type bacteria
but not TTSS mutants was sufficient to induce
bacterial aggregate formation on MDCK cells or
on plastic surfaces. Together, these results sug-
gest that membrane damage may be the inciting
event (Tran et al. 2014b). However, other mech-
anisms, such as receptor clustering underneath
aggregates, may still play a role.
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What is the purpose of protrusion forma-
tion and remodeling of the apical membrane?
It may create a specialized replicative niche,
and/or it may serve as a portal of entry for
P. aeruginosa to be internalized into epithelial
cells (Kierbel et al. 2005, 2007; Tran et al. 2014a;
Wang et al. 2016). The latter event may lead to
transcytosis (Hirakata et al. 2000), or it could
represent a dead end for the endocytosed bac-

teria, which are trafficked to the autophagoly-
sosome and killed (Heimer et al. 2013). Indeed,
the change in cell polarity underneath P. aeru-
ginosa aggregates may explain its preference
for binding at sites of cell damage or extrusion
(Engel and Eran 2011). Since P. aeruginosa uses
distinct mechanisms to bind the apical and ba-
solateral domain, it is possible that recruiting
basolateral proteins to the apical membrane al-
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Figure 2. Pseudomonas aeruginosa aggregates drive apical membrane polarity inversion and NF-kB activation.
(1) P. aeruginosa forms aggregates on the apical surface by recruiting free swimming bacteria. (2) Phosphati-
dylinositol 3-kinase (PI3K) is recruited to sites of aggregate formation where it facilitates apical accumulation of
PIP3. (3) Rac1 recruitment drives actin rearrangement, and the partitioning defective (PAR) complex is recruit-
ed underneath the bacterial aggregate where it drives a change in apical polarity. (4) Polarity inversion involves
the gain of basolateral markers via membrane trafficking and loss of apical markers without disruption of
junctions. (5) NF-kB is activated following polarity inversion through an undefined mechanism involving the
PAR complex and the P. aeruginosa aggregate.
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lows more efficient colonization at the apical
surface (Bucior et al. 2010, 2012).

Alternatively, protrusion formation may
represent a host response. Indeed, P. aeruginosa
aggregate formation and subsequent apical
membrane remodeling is linked with activation
of the innate immune response, as shown by
localized nuclear translocation of NF-kB un-
derneath aggregates but not beneath single bac-
teria. NF-kB activation is dependent on the
presence of Par3, suggesting that a link exists
between cell polarity and innate immunity
(Tran et al. 2014a). However, in subsequent
studies “forcing” Par3 to the apical membrane
using chemically induced dimerization, while
sufficient to cause polarity inversion, was not
sufficient to activate NF-kB (TR Ruch et al.,
in prep.). Thus, polarity alterations alone can-
not drive innate immune activation on its own,
and NF-kB activation may require both alter-
ation to polarity and the presence of a patho-
gen-associated molecular pattern (PAMP) such
as flagellin or lipopolysaccharide.

In summary, the disruption of cell polarity
may allow for P. aeruginosa to efficiently bind to
the host cell, begin the early steps in biofilm
formation, and shield the bacteria while it un-
leashes its virulence factors. This creates an in-
teresting paradigm for the how mucosal patho-
gens must subvert the barrier. Modulation of
host cell polarity may create a specialized niche
for pathogens. However, host cells may moni-
tor changes in apicobasolateral polarity as a
danger signal that warns of an incoming threat.
Thus, from the pathogen side, colonization
must either be silent or rapidly toxic to bypass
detection by the innate immune response.

Helicobacter pylori

H. pylori is human-adapted Gram-negative
curved bacilli that is present in the gut of nearly
50% of the human population, with increasing
frequency with age and with increasing preva-
lence, up to 97%, in underdeveloped nations
(Marshall and Warren 1984; Blaser 2006). The
majority of those infected carry the bacteria
asymptomatically for years; however, in up
to 3% of the infected population H. pylori is

associated with gastritis, peptic ulcer disease,
metaplasia, atrophic gastritis, and malignancy,
including gastric adenocarcinoma and lympho-
ma (Bennett et al. 2015). Indeed, H. pylori–as-
sociated malignancies are the only cancer that
can be cured with antibiotics (Calvet et al.
2013). The spectrum and severity of disease re-
sults from a complex and finely tuned interplay
between host susceptibility, environmental de-
terminants, and H. pylori strain differences,
which reflect coevolution between the pathogen
and host for .100,000 years (Amieva and Peek
2016).

H. pylori infection begins in the stomach
where the bacteria use a urease to neutralize
and survive in the low pH environment (Krul-
wich et al. 2011). H. pylori then moves into the
gastric mucosa via flagellar-based motility,
where the mucus layer shields the bacteria
from the low pH of the stomach. Approximately
20% of bacteria attach directly to gastric epithe-
lial cells with a preference for binding at cell–
cell junctions, whereas the remainder remain
within 25 mm of the epithelial surface (Hessey
et al. 1990; Amieva et al. 2003). More recent
studies have suggested that in addition to bind-
ing to gastric epithelial cells, H. pylori also in-
teracts selectively with stem or progenitor cells
in the crypts (Amieva and Peek 2016). The ma-
jor adhesins mediating H. pylori binding are
blood–antigen binding protein A (BabA) and
sialic acid binding adhesin (SadA) (Ilver et al.
1998; Mahdavi et al. 2002). The epithelial cell
bound H. pylori locally changes cell polarity and
trafficking to promote growth and establish a
replicative niche using two secreted toxins: cy-
totoxin-associated gene A (CagA) and vacuolat-
ing toxin A (VacA). Much has been learned
about these toxins by studying their effects on
polarized cell lines, short-term ex vivo primary
cell cultures, infected rodents, and, more recent-
ly, gastroids, three-dimensional cell cysts that
model gastric glands (Barker et al. 2010).

VacA is a chromosomally encoded toxin that
produces a 140-kD precursor protein, which is
cleaved to generate an 88-kD protein that is se-
creted via the type V autotransporter secretion
system (Cover and Blaser 1992; Telford et al.
1994). VacA forms a hexameric anion selective
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pore that can insert into host cell membranes
and change cellular permeability (Czajkowsky
et al. 1999; Szabo et al. 1999; Tombola et al.
1999). For example, in HeLa and MDCK cells,
VacA intoxication leads to the disruption of po-
larized trafficking, including the delivery of ly-
sosomal and basolateral cargo to the apical
membrane (Satin et al. 1997; Tan et al. 2011).
VacA can also drive the breakdown of tight junc-
tions, leading to an increase in paracellular per-
meability (Papini et al. 1998). However, the ex-
act mechanism that drives these changes is not
fully understood.

CagA is a polymorphic, multidomain scaf-
folding protein with multiple copies of a tyro-
sine phosphorylated E-P-I-Y-A motif (Hata-
keyama 2014). It is encoded in the Cag
pathogenicity island, a horizontally acquired lo-
cus that encodes the type IV secretion system
(T4SS) (Tegtmeyer et al. 2011). The tip compo-
nents of the T4SS bind to the integrin a5b1 to
trigger CagA delivery into the cytoplasm of gas-
tric epithelial cells where it associates with the
host cell plasma membrane (Odenbreit et al.
2000; Stein et al. 2000; Kwok et al. 2007; Tegt-
meyer et al. 2011). Bacterial binding and/or
CagA injection may preferentially occur at junc-
tions, because integrins are localized to the ba-
solateral membrane. Once translocated, CagA
undergoes tyrosine phosphorylation, serves as
a signaling hub to recruit a diverse array of host
cell proteins, including key components that
regulate cell polarity, and is linked to a multi-
tude of changes at the cellular level. These effects
include a dramatic change in cellular shape
(originally termed “the hummingbird effect”)
along with an increase in cell motility, cellular
proliferation, and modulation of host antimi-
crobial activities (Peek et al. 1997; Segal et al.
1999; Churin et al. 2001; Hatakeyama 2014).
Microinjection of H. pylori into gastroids results
in mislocalization of claudin-7, and increased
proliferation, similar to what has been observed
in H. pylori–infected gastric epithelial cells in
vitro and in vivo (Wroblewski et al. 2015). Over-
expression of CagA in MDCK cells recapitulates
many of these phenotypes, including break-
down of junctions, loss of cell polarity, and in-
duced cell migration (Bagnoli et al. 2005).

Once inside of host cells, CagA is phosphor-
ylated on its E-P-I-Y-A motifs by members of
the Src and Abl tyrosine kinase families (Asahi
et al. 2000; Stein et al. 2002; Tammer et al. 2007).
These events allow it to interact with the SH2
domains of a number of proteins and may cor-
relate with its oncogenic potential (Ohnishi et
al. 2008; Hatakeyama 2014). The tight junction
proteins ZO-1 and JAM relocalize to sites of
bound bacteria in a CagA-dependent manner
(Noach et al. 1994; Amieva et al. 2003; Lai et al.
2006). CagA also interacts with E-cadherin and
disrupts b-catenin signaling, leading to im-
paired cell–cell adhesion (Suzuki et al. 2005;
Murata-Kamiya et al. 2007). Finally, CagA binds
directly to and recruits the basolateral polarity
determinant Par1b to the apical domain (Saadat
et al. 2007; Zeaiter et al. 2008). Par1b localiza-
tion is tightly regulated and is normally restrict-
ed from accessing the apical space by phosphor-
ylation by aPKCz, which forces Par1b to
relocalize to the basolateral domain (Goehring
2014). CagA forms a complex with Par1b and
aPKCz through binding to the substrate binding
cleft of Par1. By serving as a substrate mimic for
Par1b, CagA sterically blocks Par1b from access-
ing its normal targets, thereby inhibiting PAR1
kinase activity and disrupting both Par1b and
aPKCz function (Saadat et al. 2007; Nesic et al.
2010). Disruption of Par1b function is likely the
main mechanism by which H. pylori disrupts
cell polarity, as expression of a dominant-neg-
ative Par1b phenocopies CagA expression, and
overexpression of Par1b can inhibit the polarity
changes elicited by CagA (Saadat et al. 2007;
Zeaiter et al. 2008). As Par1 is required for the
development and maintenance of tight junc-
tions, inhibition of Par1 activity by CagA leads
to the disruption of tight junctions, loss of ep-
ithelial apicobasolateral polarity, extrusion of
cells from the surrounding polarized epithelial
monolayer, initiation of multiple rounds of cell
division, and epithelial-to-mesenchymal tran-
sition (EMT). However, CagA may use other
mechanisms to disrupt mucosal barrier polari-
ty. For example, CagA directly interacts and in-
hibits the function of protein kinase C–related
kinase 2 (PRK2), a protein that signals down-
stream of Rho GTPases and plays in role cell
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polarity and cytoskeleton remodeling, in a gas-
tric adenocarcinoma (AGS) cell line (Mishra
et al. 2015). Thus, H. pylori mediates polarity
disruption through secreted toxins that target
key polarity proteins and disrupt their function
(Fig. 3).

What are the consequences of H. pylori–
mediated disruption of epithelial cell polarity,
and how does this relate to its ability to cause
ulcer disease and malignancy? Disruption of
cell polarity and cell–cell junctions may allow

for bacteria in the lumen of the gut to access
nutrients present on the basal side of the epi-
thelium. However, H. pylori bound to polarized
epithelial cells are able to replicate and survive
in conditions, whereas free swimming bacteria
are killed, suggesting that the apical membrane
serves as a protective replicative niche (Tan et al.
2009). Loss of cell polarity may also reroute
membrane traffic to acquire intracellular cargo.
For example, in MDCK cells CagA- and VacA-
mediated polarity disruption drives the delivery
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Figure 3. Helicobacter pylori alters cell polarity via the secreted bacterial toxins VacA and CagA. (1) H. pylori
binding recruits components of tight junctions (ZO-1, junctional adhesion molecules [JAMs]) and adherens
junctions (E-cadherin) to the apical membrane and activates b-catenin signaling. (2) CagA is translocated into
the host cell via type IV secretion, where it directly interacts with the polarity proteins Par1 and atypical protein
kinase C (aPKC) and inhibits their kinase activity, leading to polarity disruption. CagA also independently
interacts and inhibits the kinase activity of PRK2. (3) As a consequence of polarity disruption, basolateral cargo,
such as the transferrin receptor (TfR), are delivered to the apical membrane via transcytosis, allowing H. pylori
direct access to intracellular micronutrients. (4) Both CagA and VacA drive the breakdown of junctional
complexes and weakening of junction function, which drives paracellular diffusion of macromolecules, such
as sugars and iron, to move into the apical space.
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of intracellular fully saturated transferrin to
H. pylori on the apical membrane (Tan et al.
2011). Acquisition of external iron is essential
for growth of extracellular pathogens; thus, this
mechanism allows H. pylori, which does not
encode siderophores, to use host-derived trans-
ferrin as an iron source. Since partially saturated
transferrin can be toxic to H. pylori, it seems that
H. pylori uses epithelial cells as a filter to acquire
micronutrients (Tan et al. 2011).

In cultured cells, ectopic expression of CagA
can drive EMT that resembles the early stages of
carcinogenesis, likely through targeting Par1
(Stein et al. 2013). CagA-mediated dedifferen-
tiation may lead to acquisition of cancer stem-
cell-like traits (Hatakeyama 2014). In vivo, how-
ever, these surface mucous cells turn over every
few days, whereas evolution of H. pylori–in-
duced cancer takes decades. It has been suggest-
ed that the ability of H. pylori to bind to and
interact with gastric stem cells may also play an
important role in gastric metaplasia and cancer
(Amieva and Peek 2016).

Neisseria meningitidis

N. meningitidis is a Gram-negative diplococcus
that is an obligate human pathogen. N. menin-
gitidis colonizes the nasopharynx of �10% of
the human population (Caugant and Maiden
2009). Spread occurs by nasal droplets or per-
son to person spread. Individuals are typically
colonized with a single clone, which clears with-
in several months, and some clones are more
invasive than others (Coureuil et al. 2014; Dwi-
low and Fanella 2015). In a very small percent of
colonized individuals, N. meningitidis is able to
cross the nasopharyngeal epithelial barrier and
enter the bloodstream. Bacteremia can lead to
sepsis (meninogoccemia), with severe vascular
leakage and bacterial proliferation within the
capillaries (purpura fulminans). In up to 50%
of bacteremic individuals, blood-borne N. men-
ingitidis is able to cross a specialized endothelial
barrier, the blood–brain barrier, to infect the
meninges and cause a severe and often fatal
meningitis (Bernard et al. 2014). Below we dis-
cuss how N. meningitidis uses barrier-specific
strategies that differ between epithelial and en-

dothelial surfaces, such as the nasopharyngeal
epithelium and the blood–brain endothelial
barrier.

During the course of infection, N. meningi-
tidis encounters polarized epithelial and endo-
thelial cells. In both settings, it initially attaches
to the apical surface via direct binding of the
bacterial type IV pili to the host receptor
CD147 (Carbonnelle et al. 2006; Bernard et al.
2014). However, other bacterial surface pro-
teins may play a role in attachment, including
the opacity proteins Opa and Opc, the auto-
transporter NhhA, the adhesion protein App,
and the trimeric autotransporter NadA (Virji
2000; Hadi et al. 2001; Comanducci et al.
2002; Serruto et al. 2003; Capecchi et al. 2005;
Scarselli et al. 2006; Sjolinder et al. 2008). Once
bound to apical surface, N. meningitidis repli-
cates and forms microcolonies, which, similar
to P. aeruginosa, elicit a dramatic change in the
apical membrane of the underlying cell (Pron
et al. 1997; Pujol et al. 1997). The host cell forms
a honeycomb-shaped “cortical plaque” that sur-
rounds the bacteria. These plaques are enriched
in components of the actin cytoskeleton and
provide a link between the bound bacteria and
the actin network (Merz and So 1997; Merz
et al. 1999).

The morphological changes, including cor-
tical plaque formation at the apical membrane,
are driven by several polarity signaling mole-
cules. Initially, the host proteins ezrin and moe-
sin, ERM proteins that cross-link actin filaments
at the plasma membrane, localize around the
bound bacteria leading to clustering and en-
richment of receptors, such as CD44, ICAM-
1,-2, and E-selectin at the site of N. meningitidis
binding (Merz et al. 1999). Subsequently, cor-
tactin is recruited to and phosphorylated at
the cortical plaque where it acts as a nucle-
ation-promoting factor for the Arp2/3 complex
and drives actin remodeling (Ammer and Weed
2008). In addition, the activity of Rho and
Cdc42 are required for actin remodeling down-
stream of ezrin recruitment (Eugene et al.
2002). The formation of cortical plaques allows
the bacteria to solidly anchor at the apical mem-
brane and may allow acquisition of iron by re-
cruiting the transferrin receptor to the cortical
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plaque (Fig. 4A) (Barrile et al. 2015). During
asymptomatic colonization of the nasopharynx,
this may be the extent of the interaction of
N. meningitidis with polarized cells. However,
as described in more detail below, it can also
cross the barrier, enter the bloodstream, and
access the endothelial barrier, leading to severe
disease.

N. meningitidis uses a different mechanism
to cross the endothelial and epithelial barrier. At
the endothelial barrier, N. meningitidis disrupts
junctional components and is able to efficiently
cross the blood–brain barrier by movement of
bacteria through a paracellular route (Fig. 4B).
N. meningitidis binding to the human brain
endothelial cell line hCMEC/D3 leads to the
activation of the G-protein-coupled receptor
(GPCR) b2-andrenergic receptor (b2AR) inde-
pendent of GaS, a process known as biased ago-
nism (Coureuil et al. 2009, 2010). Following
b2AR activation, there is recruitment of b-ar-
restins, which are molecular scaffolds that mod-
ulate GPCR function (Smith and Rajagopal
2016). The b-arrestins then recruit ezrin, radi-
xin, and moesin (ERM) proteins and Src kinase,
and cluster receptors to initiate signaling at cor-
tical plaques (Coureuil et al. 2012). In addition,
the growth factor receptor ErbB2 clusters un-
derneath N. meningitidis aggregates where it
activates Src kinase signaling (Hoffmann et al.
2001). Sustained GPCR activation and arrestin
recruitment is accompanied by relocalization
of the PAR signaling complex (Par3/Par6/
aPKC/Cdc42), along with components of tight
junctions and adherins junctions, including
p120-catenin, b-catenin, vascular endothelial
(VE)-cadherin, ZO-1, ZO-2, and claudin-5,
away from apical junctions to the site of N.
meningitidis binding (Coureuil et al. 2009).
Cortactin is recruited away from the nucleus
and is phosphorylated by Src kinase, leading
to actin reorganization, which stabilizes micro-
colony adhesion. By building what is essentially
an ectopic junction, N. meningitidis disrupts
cell polarity and weakens junctions by titrating
away components necessary for their function.
This process, combined with the fact that the
tight junction protein occludin is cleaved, al-
lows N. meningitidis to access the paracellular

space and efficiently cross endothelial barriers
(Schubert-Unkmeir et al. 2010).

In contrast, at the epithelial surface N. men-
ingitidis is internalized through the binding of
Opa to the CEACAM1 receptor (Griffiths et al.
2007). Formation of N. meningitidis microcol-
onies on a polarized human bronchial epithelial
cell line (Calu3) did not result in activation of
b2AR, recruitment of the PAR complex, or in
breakdown of junctional structures (Lecuyer
et al. 2012). Instead, N. meningitidis subse-
quently crossed the epithelial barrier by trans-
cytosis in a taxol and nocodozole-sensitive
manner, suggesting that a microtubule-depen-
dent mechanism is required for either moving
through the cell, or for efficient exit at the baso-
lateral surface (Fig. 4A) (Sutherland et al. 2010).
The mechanisms underlying these differences
are incompletely understood. The b2AR/PAR
pathway is present in both epithelial and endo-
thelial cells, but is only activated following bind-
ing at the endothelial surface. This may reflect
variations in bacterial adhesins, host cell recep-
tors, and/or endothelial versus epithelial specif-
ic tight junctional proteins, such as E-cadherin/
VE-cadherin or different claudin isoforms (Le-
cuyer et al. 2012).

The cortical plaques formed at endothelial
cell surfaces differ in some respects from those
formed at epithelial surfaces. At the endothelial
surface, N. meningitidis induced cortical plaque
formation allows the bacteria to resist shear flow
in vitro, which may serve as a protective mech-
anism to prevent blood-flow-mediated dis-
lodgement of bacteria in vivo at the endothelial
surface (Mikaty et al. 2009). The large size of the
microcolony on the endothelial cells may inter-
fere with receptor-mediated endocytosis and
prevent transcytosis across the endothelial bar-
rier (Coureuil et al. 2014). In contrast, micro-
colony and cortical plaque formation at the ep-
ithelial surface does not resist shear stress, and
the flatter microcolonies may be more suscep-
tible to internalization (Lecuyer et al. 2012).

The related human-specific species Neisseria
gonorrhoeae, is a primary pathogen of the genital
tract and, even if asymptomatic, is almost always
associated with disease at the tissue level and
with inflammation (Bennett et al. 2015). Rarely,
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Figure 4. Neisseria meningitidis crosses polarized barriers using transcytosis (epithelial barrier) or paracellular
movement (endothelial barrier). (A) Interaction of N. meningitidis with epithelial cells. (1) N. meningitidis type
IV pilus-mediated binding to the apical surface leads to recruitment of ERM proteins and basolateral membrane
proteins. (2) The actin network is remodeled to form a cortical plaque through the action of Rho, Cdc42, and
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cortical plaque, similar to what occurs on epithelial cells. (2) N. meningitidis binds and activatesb2AR leading to
b-arrestin recruitment and Src activation. (3) Recruitment of the PAR complex and junctional proteins leads to
the breakdown of cell–cell contacts and opens up the paracellular route. The PAR complex, along with Src, also
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N. gonorrhoeae can cross the mucosal barrier
into the bloodstream and disseminate to joints
to cause infectious arthritis (Bennett et al.
2015). During initial colonization, both N. men-
ingitidis and N. gonorrhoeae interface with the
apical surface of polarized epithelial cells in
their respective niches, the nasopharynx and
the genital tract mucosa, respectively. However,
N. gonorrhoeae is always associated with disease,
whereas N. meningitidis is most commonly an
asymptomatic colonizerof the nasopharynx. In-
terestingly, N. gonorrhoeae can also asymptom-
atically colonize the oropharynx, which serves
as a reservoir for person-to-person spread, but
little is known about host–pathogen interac-
tions in this specific niche. Through the careful
histological studies of diseased human tissue,
the use of polarized epithelial and endothelial
cell tissue culture models, a humanized mouse
model in which human skin is engrafted onto
severe combined immunodeficiency (SCID)
mice and human brain sections (Bernard et al.
2014), we have learned that although N. menin-
gitidis and N. gonorrhoeae use common strate-
gies of microcolony formation, binding via
type IV pili, and cortical plaque formation
infection leads to very different outcomes. N.
gonorrhoeae dissemination/bacteremia occurs
,3% individuals, and gonococcal meningitis,
which would involve the bacteria crossing the
blood–brain barrier, is extraordinarily rare

(Martin et al. 2008). Together, these observa-
tions highlight differences in the ability of N.
meningitidis and N. gonorrhoeae to surmount
the epithelial/endothelial barrier and suggests
that the ability to subvert the polarity signaling
network via hijacking of the PAR complex is
important for crossing the blood–brain barrier.

CONCLUDING REMARKS

An emerging theme in microbial pathogenesis
is the recognition that pathogens exploit or dis-
rupt components of the mucosal barrier to fa-
cilitate colonization, to create a specialized
niche for replication where they remain shielded
from the host immune response, and/or to dis-
seminate to distant tissues or to new hosts. This
property is not unique to bacteria; several virus-
es, including adenovirus, a-herpes viruses, reo-
viruses, coronaviruses, and hepatitis C target
junctional complexes and polarity regulators
(Bergelson 2009). Host cell polarity determi-
nants are logical targets for pathogens, as
control of epithelial cell polarity requires cons-
tant sensing of external cues. In addition, the
signaling polarity signaling network may inter-
face with the host innate immune response,
although this connection has just begun to be
explored.

In this review, we have summarized recent
developments in our understanding of how

Table 1. Summary of interactions of Pseudomonas aeruginosa, Helicobacter pylori, and Neisseria meningitidis
with polarized cells

Events P. aeruginosa H. pylori N. meningitidis

Polarized cells
encountered
during infection

Lung epithelia Gastric epithelia Nasopharnyx epithelia,
microvascular epithelia

Type of pathogen Opportunistic, free living Commensal, obligate
human pathogen

Commensal, obligate human
pathogen

Virulence factors
that target cell
polarity

Flagella, type IV pillus,
TTSS, toxins

Flagella, type IV secretion
system, Cag A, VacA

Type IV pillus

Polarity proteins
directly targeted

PAR complex Par1, PRK2, cadherin PAR complex

Effect Polarity inversion (early),
activation of NF-kB,
barrier breakdown
(late)

Leaky junctions,
acquisition of basal
and intracellular
micronutrients

Leaky junctions, acquisition of
basal nutrients, transcytosis
(epithelial), paracellular
movement (endothelial)
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three important human bacterial pathogens,
P. aeruginosa, H. pylori, and N. meningitidis,
that target polarity complex components to
successfully colonize the apical surface of polar-
ized barriers. Despite these commonalities,
these bacteria colonize different niches within
the human host and cause vastly different dis-
eases (Table 1). Both P. aeruginosa and N. men-
ingitidis use retractile type IV pili to bind to
apical surfaces, where they form microcolonies
and recruit the PAR complex, but the functional
consequences are distinct. During P. aeruginosa
infection, junctional components are not lost
and the epithelial barrier remains intact at early
stages. In contrast, N. meningitidis recruits junc-
tional components to the site of microcolony
binding, depleting and disrupting barrier func-
tion. From a disease point of view, the con-
sequences are enormous. These cell biological
processes may explain the why blood-borne
N. meningitidis is able to cross the blood–brain
barrier and cause meningitis, whereas P. aerugi-
nosa, even during bacteremic episodes, is rarely
reported to cause meningitis (Bennett et al.
2015). In contrast, H. pylori uses CagA and
VacA to establish a very long-lived privileged
niche. It disrupts polarity signaling partly
through molecular mimicry, where CagA serves
as a Par1B substrate mimic that disrupts Par1B/
aPKC signaling. In addition, CagA-mediated
polarity disruption is associated with EMT and
the development of cancer, showing that repro-
graming of the cellular polarity network cannot
only disruption junctional function, but can
lead to loss of cell identity.
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