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Novel concept for pulse compression via structured spatial energy distribution 

Venkata Ananth Tamma1, Alexander Figotin2 and Filippo Capolino1 

1) Department of Electrical Engineering and Comp. Science, University of California Irvine, CA 92697 

2) Department of Mathematics, University of California Irvine, CA 92697 

 

Abstract: We present a novel concept for pulse compression scheme applicable at RF, microwave and possibly to 

optical frequencies based on structured energy distribution in cavities supporting degenerate band-edge (DBE) 

modes. For such modes a significant fraction of energy resides in a small fraction of the cavity length. Such energy 

concentration provides a basis for superior performance for applications in microwave pulse compression devices 

(MPC) when compared to conventional cavities. The novel design features: larger loaded quality factor of the cavity 

and stored energy compared to conventional designs, robustness to variations of cavity loading, energy feeding and 

extraction at the cavity center, substantial reduction of the cavity size by use of equivalent lumped circuits for low 

energy sections of the cavity, controlled pulse shaping via engineered extraction techniques. The presented concepts 
are general, in terms of equivalent transmission lines, and can be applied to a variety of realistic guiding structures. 

Keywords: Microwaves, Pulse compression, Cavities, Degenerate band-edge modes, Quality factor, 

electromagnetic band-gap. 

I. Introduction 

Resonant cavities whose quality factor Q can be modulated externally have been used to generate narrow pulses 

with very high peak power with applications in radars, linear accelerators and electronic counter-measure systems 

[1], [2]. Typically, microwave pulse compression (MPC) devices accumulate energy in a cavity with large Q over an 

extended period of time
1 . After the accumulation of pre-determined amount of energy in the cavity, an external 

switching mechanism alters certain structural parameters of the cavity. This significantly reduces the Q causing 

rapid release of the accumulated energy within a dump time
0 [1], [2], [3] thus defining a pulse in time. The peak 

power of the outgoing pulse could be dramatically increased when compared to the power of the feeding source if 

0 1   [1], [2], [3]. Previously, MPC devices based on the above operating principle, also known as active MPC 

devices [4], have been demonstrated [5]-[15]. Typically, a coupling mechanism such as an inductive iris has been 

used to couple energy into a resonant cavity and energy coupled out of such MPC devices by use of an externally 

activated switch [3], [5]-[15]. A common aspect among the previous implementations is the use of a resonant cavity, 

typically a conventional n(λ/2) cavity resonator, formed by a transmission line (TL) or a waveguide.  

Since MPC devices use cavities to store energy for long time durations, the quality factor Q of the cavity plays an 

important role. The cavity Q is limited by the loss of the stored energy via coupling to input/output and/or as heat 

due to skin-effect (Ohmic loss) in the metallic cavity walls [3]. Various techniques are known to impedance match a 

generator with a resonant cavity; see Chap. 6 in [16] and Chap. 4 in [17]. However, in general, it must be kept in 
mind that the unloaded Q of the cavity is always reduced by the loading by the source impedance, hence limiting the 

capability to store energy. Hence, it is important to identify cavity structures with large unloaded Q which does not 

drastically change upon loading by generator impedance. 

Recently, it was shown that the stored energy in a conventional cavity with the length equal to a multiple of half-

wavelength was essentially independent of the cavity length while the extractable instantaneous power was inversely 

proportional to the cavity length [8], [9]. This presents an important design trade-off between pulse amplitude and 

pulse length in resonant cavity based tunable MPC devices [8], [9]. The trade-off is due to the constant distribution 
of stored time-averaged energy inside a conventional n(λ/2) cavity resonator shown schematically in Fig. 1 (a) in 

which we plot the spatial distribution of the sum of stored time average electric and magnetic energy density (units 

of J/m) in a conventional n(λ/2) cavity resonator of length L (numerical values are discussed in Sec. IV). Therefore, 

for a given amount of stored energy in the cavity, active MPC devices using such conventional cavities have a trade-

off between the output pulse-width and output pulse power [8], [9]. One can overcome this trade-off constraint by 

designing devices in which energy is accumulated within a fraction of the cavity volume allowing for extraction of 
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maximum amount of energy in the minimal possible time. Such a structured energy distribution, presented in this 

paper, is schematically shown in Fig. 1 (b) in which we plot the spatial distribution of the sum of stored time average 

electric and magnetic energy density (units of J/m) for a novel structured cavity having same length L as the 

conventional n(λ/2) cavity resonator. In contrast to the constant energy distribution in the conventional cavity shown 

in Fig. 1 (a), we find that most of the energy in Fig. 1 (b) is stored with a small region around the cavity center. This 

allows releasing the stored energy faster due to the reduction of the effective cavity length. Indeed, as detailed in 
Sec. II and IV, about 60 % of the total stored energy is concentrated within just 25 % of the cavity length.  

 

Fig. 1: Plots of spatial distribution of total time-average energy units of [J/m] versus position z in (a) conventional n(λ/2) cavity of length L (b) 

structured cavity of length L. In (b), about 60 % of the total stored energy is stored in just 25 % of the total cavity length. 

Such concentrated energy distribution is also helpful to control losses in structured cavity thereby improving the 

cavity Q. It is well known that the skin-effect loss is frequency dependent, see Chap. 1 in [16] and Chap. 2 in [17] 

and at lower frequencies, typically below 1 GHz, the skin-effect loss could be neglected, see Chap. 1 in [16] and 
Chap. 2 in [17]. It is possible to use cavities whose walls are coated with a thin layer low loss metal like gold or 

silver to reduce skin-effect losses. Since the energy in a conventional n(λ/2) cavity resonator is uniformly 

distributed, to control losses the entire cavity has to be coated with gold or silver. However, a structured energy 

distribution allows to engineer the losses in only a small region of the cavity reducing them and improving 

performance. 

We propose in this paper a novel structured cavity (i.e., with structured energy distribution) with applications to 

MPC devices. The cavity is composed of a cascade of N unit cells, properly designed, each supporting two distinct 

modes (four, if distinguishing between forward and backward modes), thereby leading to distributed storage of 
energy in the cavity. The cavity Q is very large and importantly it is insensitive to loading by source impedances. 

Such a cavity presents a novel feature compared to a standard cavity whose Q is dramatically reduced when loaded 

by source impedance. A crucial aspect of the structured cavity is the distribution of a large percentage of energy 

within a small volume around the spatial center of the structure shown in Fig. 1 (b). This unique feature sets the 

structured cavity apart from standard resonant cavities which have a uniform distribution of energy. The properties 

of the new proposed structured cavities aid in efficient feeding and evacuation of accumulated energy. It also 

permits for substantial reduction in cavity size by allowing for lumped circuit implementation of those unit cells 

with lower stored energy. In addition, the cavity Q could be further increased by reducing the losses only in those 

unit cells where most of the energy is stored. Another unique feature of the structured cavity is the preservation of 

spatial energy distribution around the cavity center with increasing number of unit cells N. Investigations into 

potential applications of many features of this novel cavity are already underway.  

The novel features of the structured cavity are due to degenerate band-edge (DBE) modes [18]-[20]. At the DBE 

frequency, degenerate fourth power dependence of the radian frequency ω on the Bloch wavevector k at the band-

edge was demonstrated. This leads in particular to vanishing of the group velocity and consequent dramatic increase 

in the field intensity inside a finite stack exhibiting the DBE mode [18]-[20]. The concept of DBE [18]-[20] was first 

proposed in a simple structure composed of stacked anisotropic dielectric layers [18]-[20], where the importance of 

symmetry breaking in achieving the DBE was emphasized. Planar circuits supporting DBE modes were developed 
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in analogy to propagation of light in the stacked anisotropic dielectric layers [21] [22]. Previously, it has been shown 

that field intensity enhancement varied as the fourth power of the number of unit cells N within the stack [18]-[20] 

and was found to be true only for large N [23]. The finite stack supporting DBE modes is ideally suited for highly 

frequency selective applications such as resonant cavities due to the narrow line shapes associated with the 

transmission band-edge resonance as evident from [18]-[20]. Such gigantic field enhancements and low group 

velocity are well suited for applications for the DBE modes in cavity structures for energy storage applications and 
high power generation. 

Many unique features of the DBE mode supported by finite stacks studied in [18]-[20] can occur in structured 

resonant cavities. Indeed, as shown in [18]-[20], a very large Q was obtained by simply terminating the finite stack 

of anisotropic layers with vacuum. While various different cavity configurations are conceivable, in this paper we 

study a particular cavity configuration in which we feed and extract energy from the cavity center. As in [18]-[20], 

the basic configuration of the structure consists of a finite periodic stack of unit cells but terminated here in short 

circuits instead of vacuum as was done in [18]-[20]. In line with the definition of active MPC devices [1], [2], [3], 

[9] we show that the Q of this novel structured cavity can be dramatically altered by simple modifications to the 
structure thereby enhancing its appeal for use in MPC applications. This paper is organized as follows. In Sec. II, we 

describe the structured cavity made up of a finite number of unit cells N and discuss key attributes of the cavity such 

as quality factor and density of stored energy. In Sec III, we describe the unit cell design which is made up of 

periodic multiple transmission lines (MTLs). In this work, we model the structured cavity using cascaded sections of 

MTLs. It is understood that the equivalent TL model can be an exact field representation of complex realistic 

waveguiding systems [24], [25], [26]. In Sec. IV, we present an illustrative implementation of the unit cell of Sec. III 

and describe two states of the structure with dramatic differences in the quality factors. In addition, we discuss 

applications of the structured cavity to MPC devices. Although the concept of structured cavity is being introduced 

with MPC applications, we expect that it can be applied to printed or integrated RF circuits and optical devices. 

II. Structured Energy Distribution in a Cavity 

A schematic of the structured cavity of length L =Nd, consisting of N cascaded unit cells each of length d is shown 

in Fig. 2, in terms of equivalent transmission lines, where we denote the unit cell as 
nU , with, n=1,2, .., N. A unit 

cell can be formed by a few possible constituents and by several TLs, though in the rest of the paper we focus on 
having only two TLs. In all cases, there should be coupling between the two TLs within the unit cell and there 

should be a symmetry breaking within the cell in the propagation length and between the two TLs. Details of a 

specific unit cell are presented in Sec. III although other configurations are also possible. We note the lines at 

/ 2z L  are terminated in short circuits, though other load terminations would not alter the properties discussed 

here. We choose for convenience an even number of unit cells with the cavity centered and fed at z = 0 although we 

expect similar behavior for odd number of unit cells. We define 
1 2,S SV V and 

1 2,S SZ Z  to be the source voltages and 

series source impedances feeding the upper and lower sets of TLs in the cavity and located at z = 0, though other 

source locations would be possible, even at the extremities of the cavity / 2z L  . In this paper, we assume a state-

vector of the form          1 2 1 2

T
z V z V z I z I z   ψ  where,    1 1,V z I z and    2 2,V z I z are the voltages 

and currents at a point z on the upper and lower sets of TLs in the cavity. Throughout this paper, all TLs are assumed 

to have losses represented by series line resistances only which model the loss on the surface of metals in real 

waveguides. In particular, a constant TL distributed series line resistance
sR  1 mΩ/m is used in all numerical 

calculations presented in this paper. 

 

Fig. 2: Schematic of structured cavity formed by cascading N unit cells. 
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Similar to conventional cavities, the resonance frequency of the structured cavity can be computed by applying the 

transverse resonance method to the cavity at z = 0 and the method used is briefly discussed in Appendix B. For 

example, the resonant frequencies for structured cavities with N = 8, 16 and 32 are 
0f  = 4.684 GHz, 4.874 GHz and 

4.883 GHz respectively and were calculated using the numerical parameters detailed in Appendix A. We first 
characterize the structured cavity by studying the spatial distributions of voltage, stored energy and energy loss per 

unit second along z using the methods to compute them detailed in Appendices B and C. The results are obtained for 

the structured cavity fed by one ideal voltage source 
1SV =1 [V] and 

2 0SV  . At any point z, we define 

     
2 2 2

tot 1 2V z V z V z  as the total absolute squared voltage in the cavity and denote the maximum value of 

 
2

totV z as 
2

maxV . 

 

Fig. 3: Plots of  
2

totV z  versus position z in a cavity with (a) N = 16, and  (b) N = 32 unit cells. Plots of spatial distribution of energy loss per 

unit second versus position z in a cavity in units of [W/m] with (c) N = 16, and  (d) N = 32 unit cells. Plots of spatial distribution of time-average 

energy versus position z in a cavity in units of [J/m] with (e) N = 16, and  (f) N = 32 unit cells. In (c) – (f), about 58 % of the total stored energy is 

stored in just 25 % of the total cavity length. 
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In Fig. 3 (a, b), we plot  
2

totV z  as a function of  , / 2 / 2z L z L    in the structured cavity with N = 16 and 32 

unit cells respectively and realize that plots of  
2

totV z are analogous to the field intensity (
2

E  or squared 

amplitude) plots in [18]-[20]. For the sake of illustration we assume that each unit cell has nominal length d=1 [m]. 
In Fig. 3 (c, d) we plot the spatial distribution of the energy loss per unit second (power loss density) with units of 

[W/m] in the cavity with N = 16 and 32 unit cells respectively using the formalism in Appendix C while in Fig. 3 (e, 

f), we plot the stored time-averaged energy (per unit length) with units of [J/m] in the cavity with N = 16 and 32 unit 

cells respectively using the formalism in Appendix C. As expected, the spatial profiles of the energy loss per unit 

second and stored energy distribution in the cavity follow the same spatial profile as  
2

totV z . We note that the 

spatial profiles of squared voltage and total stored time-averaged energy are not located at the spatial center of the 

structured cavity (z = 0) and is attributed to the asymmetry in the unit cell and, in general, possible asymmetries in 

impedance terminations.  

In both cavities with N = 16 and 32 unit cells, 
storedW  preserves the same spatial trend and the percentage of stored 

energy in sections of equal lengths of L/4 and centered on the geometric center of the cavity in both cavities is 

approximately equal. The cavity with N = 16 unit cells and total length of L = 16d stores about 57.8 % of the total 

stored energy within a finite section of length L/4 centered around the geometric center of the cavity while the cavity 

with N = 32 unit cells and total length of L = 32d stores about 58.4 % of the total stored energy within a finite 

section of length L/4 centered around the geometric center of the cavity. 

The Q of the structured cavity (called cavityQ ) is evaluated by use of the fundamental 

definition    0 0 stored losttime-average energy stored / time-average energy loss / second /Q W P   , where, 

0 02 f   is the radian frequency of resonance, see Chap. 6 in [16] and Chap. 7 in [17] and 
lostP is the total energy 

loss per unit second in the cavity. At their fundamental resonance frequencies, and assuming
1 2 0S SZ Z  , the 

unloaded Q of the cavity with N = 16 and 32 unit cells are  cavity 16 62000Q N   and  cavity 32 62400Q N   . 

Since the structured cavity is made up of TLs, we compare the Q of the structured cavity with that of a standard 

short-circuited TL resonator formed by a TL of length L = 16d corresponding to 31(λ/2) at a resonance frequency of 

4.843 GHz which is very close to the resonant frequency of the structured cavity with N = 16 unit cells, 
0f  = 4.874 

GHz. Previously, standard short-circuited n(λ/2)TL resonators have been explored in [3], [5]-[15] for MPC device 
applications. In [3], [5]-[15], the n(λ/2) TL resonators are typically fed using an inductive iris on a metal wall 

located on the extremity of the resonator. In this work for simplicity the source impedance is considered purely 

resistive. We assume that the TL segment in the standard cavity has per unit length inductance and capacitance 

parameters as the maximum values of the distributed line inductances and capacitances of the MTLs whose 

numerical values are in Appendix A. As before, we account for losses by use of series line resistance and assume 

zero shunt conductance. At the resonance frequency, the unloaded Q of the short-circuited n(λ/2)TL resonator 

(called 
TLQ ) is calculated to be 

TL 60000Q   using well-known formulas Chap. 6 in [16] and Chap. 7 in [17]. 

Therefore, we observe then that for the same distributed series line resistance the unloaded Q of the structured cavity 

is of the same order of magnitude as the unloaded Q of the short-circuited n(λ/2) TL resonator. It is important 
however to consider the effect of generator impedance loading on the Q in both cases of the structured and standard 

cavities. Fig. 4 (a) shows the variation in cavityQ
 
as a function of the purely resistive source impedance 

1SZ when 

the cavity is fed by 
1SV only and 

2 0SZ  . Importantly, the quality factor Q of the structured cavity is insensitive to 

different source impedances suggesting the robust nature of the cavity supporting DBE modes. 

In Fig. 4 (b), we plot the loaded Q of the standard n(λ/2) TL resonator (called 
TLQ ) as a function of a purely 

resistive source impedance located at one of the extremities of the cavity. The loaded 
TLQ  is seen to dramatically 

decrease, as expected, with increasing source impedance restricting the use of such resonators. Indeed, we 

find
TL 10Q   when loaded by purely resistive source impedance 50SRCZ  [Ω]. The choice of feeding the TL 

resonator at one of the extremities was guided by the practical location of the inductive iris in the short-circuited 

n(λ/2) TL resonator used in [3], [5]-[15]. However, similar trend in loaded 
TLQ  is expected when the resonator is 
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loaded by the source impedance at its center. In contrast, cavityQ is very stable when source impedance is varied with 

 cavity 16 61500Q N    and  cavity 32 62800Q N   when loaded by purely resistive source 

impedance
1 50SZ  [Ω], very close to their unloaded (

1 0SZ  ) values and located at the center of the cavity. 

Therefore, considering loading by source impedance cavityQ is about two orders of magnitude larger than the loaded Q 

of the standard n(λ/2) TL resonator thereby enabling the structured cavity to store significantly more energy than 

conventional designs. Similar trend for cavityQ is observed when the cavity is loaded at one of its extreme ends.  

 

Fig. 4: Plots of variations in Q of (a) a structured cavity of length L = 16d and resonant at 
0f  = 4.8748GHz, and (b) a standard 31(λ/2) TL 

resonator of same length L = 16d and resonant at 
0f  = 4.8438GHz, as a function of purely resistive source impedance. 

In Fig. 3, we observe that the peak values of 
2

maxV , the time-averaged stored energy and the energy loss per unit 

second in the structured cavity with N = 32 unit cells are all lower than those in the structured cavity with N = 16 

unit cells. To further understand the behavior of the structured cavity, we plot the variation in 
2

maxV  and 

cavityQ varying number of unit cells N, in Fig. 5. 

 

Fig. 5: Plots of  (a)
2

maxV along with an exponential fit and (b) cavityQ as function of number of unit cells, N. 

In the structured cavity, the value of 
2

maxV is found to peak at N = 12 and thereafter exponentially reduce with 

increasing N with the peak value at N = 12, 
2

max peak
V = 1.8 × 107 [V2]. This decay behavior of 

2

maxV  as a function 

of N is in contrast with the previously reported results for field enhancement in finite stack [18]-[20] where the peak 
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value of 
2

maxV  is asymptotically (for large N) proportional to N4. Indeed, for values of 12N  , we observe that  

2

maxV  exponentially decays and can be fit by 
 0.083 1271.8 10 e
N 

 . Physically, the exponential reduction in 
2

maxV  , 

though counter-intuitive (based on what said in [18]-[20])  can be attributed to the interplay between two competing 

processes: the enhancement in 
2

maxV  due to the DBE effect (discussed in [18]-[20]) and the energy lost due to 

losses in the TLs. One can see that losses dominate the enhancement due to the distributed nature of the cavity. The 

reduction in 
2

maxV with increasing N is also reflected in the values of 
storedW and 

lostP  in the structured cavity. 

Indeed, the structured cavity with N = 16 unit cells is found to store about 28 % more energy than the cavity with N 

= 32 unit cells. However,  cavity 32Q N  is only marginally larger than  cavity 16Q N  despite the lower value of 

2

maxV due to much lower 
lostP and on the whole,  cavityQ N  shows only a small increase with N. Notice that  for 

large N the energy 
storedW  in the structured reduces with 

2

maxV  and therefore, we expect an optimal value of N to 

obtain the best performance form the cavity. It should be noted that the large enhancement in 
2

maxV  experienced in 

this kind of cavities is not attributed to the use of short-circuit terminations since other loads would also prevent 

outflow of energy from the ends of the cavity. In other words, the resonance behavior here discussed would be 

preserved with a large variety of load terminations. 

III. Unit cell design and formalism 

The design of the unit cell is fundamental to the operation of the structured cavity. The unit cells consists of two 

MTL segments A, B of lengths dA and dB shown schematically in Fig. 6 (a). Each MTL segment here consists of two 

TLs. These are chosen here to be uncoupled in segment A and coupled by distributed coupling capacitance in 

segment B, though many other configurations are possible and would lead to analogous results. The theoretical 

formulation for MTLs is well known and we follow the notation presented in [27]-[29]. We denote 

 ,A s A Aj Z R L  , A AjY C  (1) 

and 

 ,BA s B Bj Z R L  , B BjY C  (2) 

to be the series impedance and shunt admittance matrices of segments A and B.  Here, we define  

 
, 1

,
, 2

0

0

s A
s A

s A

R

R

 
  
 

R ,  
, 1

,
, 2

0

0

s B
s B

s B

R

R

 
  
 

R  (3) 

as the resistance matrices (with per unit length entries) for the segments A and B, respectively. We also define  

 
A,11

A,22

0

0A

L

L

 
  
 

L , 
,11

,22

0

0

B

B

B

L

L

 
  
 

L  (4) 

as the inductance matrices (with per unit length entries) for the segments A and B, respectively and  

 
A,11

A,22

0

0A

C

C

 
  
 

C , 
,11 ,12 ,12

,12 ,22 ,12

B B B

B

B B B

C C C

C C C

  
  

  
C  (5) 

as the capacitance matrices (with per unit length entries) for the segments A and B, respectively, where, 

 , ,,i nn i nnL C  are the line inductance and capacitance, respectively, of the nth TL (n = 1, 2) in the ith (i = A, B) 

segment, ,12 ,21B BC C is the distributed coupling capacitance in segment B and ω is the radian frequency of 
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operation. To achieve DBE regime, we note the requirement of symmetry breaking along both the horizontal and 

vertical axes in Fig. 6 (a). Here, we choose the two TLs in section A, TLA1 and TLA2, to be dissimilar and the two 

TLs in section B, TLB1 and TLB2, to be identical. Absence or presence of coupling breaks the symmetry between 

segments A and B. All transmission lines in sections A and B are assumed to have some losses represented by line 

resistances series which model the Ohmic loss on the surface of metals in real waveguides. We also assume lossless 

coupling between the two guided fields, represented by the two coupled TLs. The numerical values used in the 
computations are detailed in Appendix A. 

 

Fig. 6: (a) Schematic of a unit cell capable of supporting DBE modes. (b) Plot of the k-ω dispersion diagram for a periodic MTL cascading unit 
cells using the parameter values detailed in Appendix A.  

Assuming the state-vector of the form    1 2 1 2
T

z V V I Iψ , the first order differential equations for the MTL in 

terms of the impedance and admittance matrix is written as 

    z z
z


 


ψ Mψ , (6) 

where 
 

  
 

0 Z
M

Y 0
 and Z and Y  are the impedance and admittance matrices describing the per unit parameters of 

the MTL. Denoting  0 0z ψ ψ as the initial TL values  at 
0z , assuming that M  does not change with z (i.e., for a 

uniform TL) we recognize (6) as the well-known Cauchy problem [18]-[20] with a unique solution 

   0 0( , )ψ T ψz z z z , where, we define the matrix 
0( , )T z z , which uniquely relates the state vector ( )zψ  between 

two known points 0z and z , as 0( )
0( , )

 


M
T

z z
z z e .  

Extending this concept to cascaded segments of MTL structures as in Fig. 6 (a), in the remainder of this paper it is 

convenient to resort to the definition of the “ABCD transfer matrix”, see Chap. 4 in [16] and [17], commonly used in 

microwave engineering, and used here as generalized  to multiple ports [27],[30]. We define the ABCD matrix for 

each section, A and B, of the 4 port circuits in Fig. 6(a) as A 0 0( , ) Ad
Az d z e  

M
T T , and 

B 0 0( , ) Bd
Bz d z e  

M
T T where,  

 
A

A

A

 
  
 

0 Z
M

Y 0
, 

B

B

B

 
  
 

0 Z
M

Y 0
 (7) 

and 0 is a zero matrix of order 4. It is customary to implicitly assume 0z z  in microwave engineering, see Chap. 4 

in [16] and [17], and therefore the argument is dropped in the remaining of the paper. We can express the ABCD-
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like transfer matrix 
UT of the unit cell shown in Fig. 6 (a), as the product of two matrices describing the transfer 

matrices of the individual sections of the unit cell  

 U A BT T T . (8) 

For an infinitely long stack of TL unit cells, a periodic solution for the state vector  zψ exists in the Bloch form   

 ( ) ( )jkdz d e z ψ ψ , (9) 

where k is the Bloch wavenumber. To determine the Bloch wavenumber, we can write the following eigenvalue 

equation 

 U (0) (0)jkdeT ψ ψ , (10) 

such that the four eigenvalues ijk d
i e  , 1,2,3,4i  , of the UT operator are obtained as solutions of the 

characteristic equation  

  UDet 0 T 1 , (11) 

where we define 1  to be the identity matrix of order 4. The k-ω dispersion diagram, of the unit cell structure of Fig. 

6 (a) is plotted in Fig. 6 (b), for the TL values given in Appendix A and is seen to exhibit the DBE mode at 4.887 

GHz, at the edge of the Brillouin zone. The ABCD-like transfer matrix 
UT of the unit cell derived in this section is 

used in the formulation in Appendix B to calculate the ABCD-like transfer matrix of finite cascade of unit cells.  

IV. Illustrative implementation for storage and release of energy  

We present here an illustrative implementation of the unit cell in Fig. 6 (a) using TLs and lumped capacitive 

coupling elements which readily demonstrates the possibility of Q switching by breaking the DBE mode and thus 
strongly modifying the energy distribution and the cavity Q. The unit cell needs to be specifically designed so that 

the cavity supports the DBE mode with a large Q value when in the ‘On’ state; whereas in the ‘Off’ state the DBE 

mode is destroyed by suitably designed structural modifications. We modify the unit cell in Fig. 6 (a) by replacing 

the distributed capacitance in segment B by a lossless lumped capacitor network as shown in Fig. 7 (a). Multiple 

switches are used within a unit cell as to switch the structure from ‘On’ state to ‘Off’ state. We assume ideal lossless 

switches with infinite off-state resistance, zero on-state resistance and zero switching time. The circuit of the 

modified unit cell in Fig. 7 (a) requires only lumped coupling between uncoupled TLs to create DBE mode and 

hence can easily be implemented using TEM-like waveguides, like coaxial cables, coupled by lumped capacitors or 

by real waveguides with stubs. The circuit in Fig. 7 (a) is in the ‘On’ state with the switch SM closed causing the TL 

segments A and B to be coupled, and with switches SU1 and SU2 open thereby decreasing the capacitive load of the 

circuit. The circuit in Fig. 7 (b) is in the ‘Off’ state with the switch SM open causing the TL sections A and B to be 

uncoupled from each other and with switches SU1 and SU2 closed thereby increasing the capacitive load of the two 
uncoupled and periodic upper and lower TL segments. These modifications provide for control over the 

wavenumber-frequency dispersion characteristic of the TL segments.  

The transfer matrix UT  of the unit cell in Fig. 7 (a),which uniquely relates the state vector ( )zψ between two known 

points z and z d , with 0d  , along the +z axes such that    Uz z d ψ T ψ ,  can be expressed as the product 

of three matrices describing the transfer matrices of the individual sections of the unit cell  

 U
A A B B

lA A B B

    
          

1 0C S C S
T

Y 1S C S C
, (12) 
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where we define 1 as the unit matrix of order 2, 0 as a zero matrix of order 2 and the admittance matrix 

1

2

m m
l

m m

C C C
j

C C C


  
    

Y . In addition, we define for the ith section, where i= A, B, the following matrices 

 

 
1

2

cosh 0

0 cosh

i i
i

i i

d

d





 
  
 

C , 
 

 
1

2

sinh 0

0 sinh

i i i
i

i i i

Z d

Z d





 
  
 

S , 
 

 
1

2

sinh / 0

0 sinh /

i i i
i

i i i

d Z

d Z





 
   

 
S ,  

where, 
i , 

iZ are the complex propagation constant and complex impedance for the ith section and whose values can 

be calculated from the RLGC physical parameters for the relevant segment [16],[17].The transfer matrix 
UT of the 

unit cell derived in this section is used in the formulation in Appendix B to calculate the ABCD-like transfer matrix 

of finite cascade of unit cells. 

The k-ω dispersion diagram of the unit cell in the ‘On’ state shown in Fig. 7 (a) is plotted in Fig. 7 (c) and is seen to 

exhibit the DBE mode at 3.310 GHz. However, in the ‘Off’ state, on uncoupling the circuit, we obtain two 

independent dispersion diagrams plotted in Fig. 7 (d) corresponding to the two uncoupled and periodic upper and 
lower TL segments. The difference between the k-ω dispersion diagrams corresponding to the ‘On’ and ‘Off’ states 

is clearly visible, showing in particular that the DBE dispersion phenomenon in Fig. 7 (c) has disappeared. We 

would like to stress that while we chose a simple uncoupling strategy, many other approaches can achieve the DBE 

disruption depending on the topology implementation of the structured resonant cavity. 

 

Fig. 7: Schematic of unit cell capable of supporting DBE mode in (a) ‘On’ state (b) ‘Off’ state. The k-ω dispersion diagram of the unit cell 
structure in (c) ‘On’ state and (d) ‘Off’ state, using the parameter values detailed in Appendix A. 

As an illustrative example, a structured cavity was formed by cascading N = 16 unit cells in the ‘On’ state, unit cell 

shown in Fig. 7 (a), with short-circuit terminations at the four ports located at two extremities of the cavity. The 

cavity is fed at the spatial center by only one source 
1SV =1 [V] with 

2 0SV   
and  

1 2 0S SZ Z  . We neglect 
1SZ  

since, as shown in Sec. II, it is not found to significantly affect the cavity performance. At the computed resonance 

frequency, f0 = 3.308 GHz, we plot  
2

totV z as a function of z in Fig. 8 (a, b) using the formalism in Appendix B 
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and also using a commercial circuit simulator AWR Microwave Office, respectively. The plots of  
2

totV z  obtained 

from circuit simulations are seen to be in excellent agreement with those obtained using the formalism in Appendix 

B. We state that the plots of  
2

totV z  in Fig. 8 (b) appears coarser than the corresponding plot in Fig. 8 (a) as only 

the voltages obtained at circuit nodes one per unit cell were plotted in Fig. 8 (b) whereas the voltages plotted in Fig. 

8 (a) were obtained by sampling the entire cavity length with a discrete grid of spacing 0.05 m (20 sampling points 

per d). 

 

Fig. 8: Plot of  
2

totV z  versus position z for a cavity with N = 16 unit cells obtained using (a) the formalism in Appendix B, and (b) a circuit 

simulator. 

The spatial energy distribution within the cavity with N = 16 unit cells in the ‘On’ state (unit cell shown in Fig. 7 

(a)), is plotted in Fig. 9 at f0 = 3.308 GHz using the formalism in Appendix C. In particular, in Fig. 9, the stored 
time-averaged energy in the TLs, which is a continuous curve in black color, is plotted separately from the stored 

time-average energy in the capacitive coupling network, which is discrete, in red color.  

Of the total time-averaged energy stored in the cavity with N = 16 unit cells, about 99 % is stored in the TLs while 

the remaining 1 % is stored in the lumped capacitor network. From the schematic of the unit cell in ‘Off’ state, we 

observe that the energy stored in the lumped capacitor network cannot be extracted from the unit cell as the 

capacitor is disconnected from the network by the switch SM in open state. However, about 99 % of the total energy 

stored in the upper and lower cascaded segments of TLs and the loading capacitors can be extracted from the circuit 
by employing suitable extraction circuits.  

Importantly, we find that an overwhelming fraction of the energy is stored in a small section of the cavity close to its 

center whereas sections of the cavity close to the extremities of the cavity store very little energy. Indeed, about 60 

% of the total stored steady state energy is contained within just 25 % of the total length, or z = 4d from 

3  d z d and corresponding to four unit cells from
6U  to 

9U , close to the spatial center of the stack. Such a 

distribution of energy is beneficial to both feed the cavity and extract energy from the cavity from its center and can 

lead to many advantages especially for applications in MPC devices.  

Fig. 9 shows also a proposed energy extraction scheme in the form of a TL schematic which takes advantage of the 

spatial distribution of energy in the structured cavity. In particular, this scheme could make the structured cavity 

suited for MPC applications since it would be advantageous for MPC devices to produce large amplitude yet have 

very narrow pulse-width therefore delivering higher pulsed power. Since 60 % of the total energy is stored within 

four unit cells from 
6U  to 

9U , we choose to place switches such that the unit cells 
6U  to 

9U  are isolated from the 

rest of the circuit as shown in Fig. 9. These switches, which are normally closed, are open at the very same instant 

the unit cells are switched from ‘On’ to ‘Off’ state disrupting the DBE mode in the circuit and leading to isolated 

upper and lower TL segments as shown in Fig. 9. Indeed, it can be recognized that only units cells
6U  to 

9U  need to 

be switched from ‘On’ to ‘Off’ state thereby reducing the number of switches required. In Fig. 9, we assume that the 

sources are automatically disconnected from the circuit using switches. In Fig. 9, we observe that energy can be 

extracted from the isolated upper and lower TL sections from multiple available open ports. Astute choices 
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regarding the number of open ports from which energy can be extracted simultaneously can be made thereby 

generating pulses with very short pulse-widths. Since, the dispersion of the upper and lower TL segments can be 

effectively controlled by loading the circuit using capacitances 
aC  and 

bC , it could be possible to combine the 

energy simultaneously extracted from multiple ports with different phases thereby leading to efficient control over 
the pulse shape and width by use of engineered extraction techniques.  

 

Fig. 9: Plot of the time-averaged stored energy distribution in the cavity with N = 16 unit cells showing that about 60 % of the total energy is 
stored in just 25 % of the total cavity length. Also, shown is a schematic of the energy extraction scheme with four unit cells in ‘Off’ state. 

Since most of the energy is stored in units cells
6U  

to 
9U , cavityQ can be improved substantially by reducing losses in 

only these four unit cells. Indeed, for the structured cavity in Fig. 9 in ‘On’ state, reducing the series line resistance 

sR from 1 mΩ/m to 0.1 mΩ/m in just the 4 units cells 
6U  to 

9U  
improves cavityQ by almost 100 % from 35000 to 

68000 showing significant performance improvement can be achieved by further engineering of the structured 

cavity.  

An important advantage of the structured energy distribution which is the basis for the proposed energy extraction 

scheme in Fig. 9, is the extraction of energy from the structured cavity with much narrower pulse-widths than 

conventional n(λ/2) in resonant cavities. For example, we consider a n(λ/2) resonant TL cavity having the same 

length as a structured cavity with N = 16 unit cells, L = 16d. For the case in which both the structured cavity and 

n(λ/2) cavity have a port at the cavity center for energy feeding and extraction, the output pulse-width
0  is 

proportional to g/ v , where, gv is the group velocity and  is the length of the cavity from which energy is 

extracted. Let g,Uv be the group velocity in the upper TL segments in Fig. 9 and g,TLv be the group velocity in the 

n(λ/2) cavity. Since the dispersion of the upper TL segments can be controlled by capacitive loading, for simplicity, 

we assume energy extraction from only the upper TL array and g,U g,TLv v . Assuming the Q of both the n(λ/2) 

cavity and the structured cavity is switched after accumulation of same amount of time-averaged stored energy in 

both cavities and denoting 0,TL and 0,U to be the output pulse-widths from then (λ/2) and structured cavity, 

respectively, we obtain 0,U 0,TL / 4   or the output pulse-width from a structured cavity is four times smaller than 

the pulse-width from a n(λ/2) cavity. 

Another advantage of the structured energy distribution is the possibility to substantially reduce the cavity size by 

use of equivalent lumped circuits in sections of the cavity with lower stored energy. We observe from Fig. 9 the net 
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energy stored in regions of cavity from 8 4d z d     and 4 8d z d   is only about 10 % of 
storedW . Therefore, it 

could be beneficial to implement the TLs of unit cells in these regions by lumped iterative structures. For example, 

the TLs of unit cells
6U  to 

9U  could be real waveguide segments while TLs in unit cells 
1U  to 

4U  and 
13U  to 

16U  

could be implemented as lumped iterative structures consisting of cascade of many lumped inductors and capacitors 

since they only need to host a fraction of the whole structured cavity energy. Such a scheme could result in a 

physically smaller and lighter cavity with capability to store more energy when compared to conventional designs 

and can have many implications for MPC devices since the physical size and weight of cavities restrict mobile 

applications of MPC devices.  

Finally, we studied the structured cavity for many different values of series distributed loss resistance
sR and as 

expected, found cavityQ to be inversely proportional to it. We find that the structured cavity preserves all the 

observed spatial properties for several values of 
sR . Due to the periodic arrangement of unit cells integral to its 

design, the structured cavity is scalable to any frequency with the losses only dependent on the implementation in 
that frequency. We anticipate that an all dielectric implementation could significantly reduce losses and improve the 

total stored energy and cavityQ . Such implementations could potentially be useful also at optical frequencies and we 

expect that the concept of structured cavity could be applied to printed or integrated RF circuits and optical devices. 

V. Conclusions 

We proposed a novel cavity exhibiting structured energy distribution by properly cascading N unit cells, each 

satisfying symmetry breaking in two directions. We found the cavity Q to be very large and insensitive to loading by 

source impedances. This novel result is in contrast to the Q of a standard TL cavity which is dramatically reduced 

when loaded by source impedance. We showed that the structured cavity Q could be further increased by reducing 

the losses only in those unit cells where most of the energy is stored. It was also found that a large percentage of 

energy is distributed within a small region of the cavity around the spatial center of the cavity. These features allow 

for efficient feeding and faster evacuation of accumulated energy. Several key aspects of the cavity relevant to MPC 

applications were discussed. An illustrative implementation of the unit cell using TLs and lumped capacitor 

coupling network was presented. A proposal to switch the Q of the structured cavity was discussed and a possible 
energy extraction scheme allowing for narrow pulse-width generation was considered. In addition, efficient pulse 

shaping and pulse-width control can be achieved by engineering extraction schemes. The size of the structured 

cavity can be substantially reduced by lumped circuit implementation of those unit cells with lower stored energy. 

We anticipate many applications for the structured cavity in MPC devices, integrated RF circuits and optoelectronic 

devices. 

Appendix A: Parameter values used for numerical computations and circuit simulations 

In this paper, a constant distributed loss series line resistance 
sR  1 [mΩ/m] is used in all numerical calculations. 

The distributed shunt conductance is always set to zero. All results are obtained for the structured cavity fed by one 

ideal voltage source 
1SV =1 [V] and 

2 0SV  . All unit cells in this work have a nominal length d=1 [m]. The 

following are the parameters of the MTLs for the unit cell in Fig. 6 (a): (segments A and B are mentioned in 

subscripts) 
Ad  0.265 [m], 

Bd  0.735 [m], ,11 ,22A AL L  2 [nH/m], ,11 ,22B BL L  2 [nH/m], ,11AC  20 

[pF/m], ,22AC  2 [pF/m], ,11 ,22B BC C 2 [pF/m] and ,12 ,21B BC C 1.5 [pF/m]. The following are the 

parameters of the TLs for the unit cell in Fig. 7 (a): 
Ad  0.495 [m], 

Bd  0.505 [m], ,11 ,22A AL L  2 [nH/m], 

,11 ,22B BL L  2 [nH/m], ,11AC  20 [pF/m], ,22AC  2 [pF/m], and ,11 ,22B BC C 2 [pF/m]. The following are 

parameters of the lumped capacitors: 
1 2C C  0.1 [pF], 

a bC C  5 [pF] and 
mC  3 [pF]. We use 2 [nH/m] and 

20 [pF/m] as the distributed line inductance and capacitance, respectively, of the standard short-circuited n(λ/2) TL 

resonator. 

Appendix B: Transverse resonance method for cavity 

The procedure to obtain the resonance frequencies of the resonant cavity supporting DBE modes is briefly outlined. 
In this work, for simplicity, we consider feeding the cavity using only one ideal voltage source at a time, either of 
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1SV or 
2SV . In this section, we use the ABCD-like transfer matrix 

UT of the unit cells in Figs. 6 (a) and 7 (a) derived 

in Sec. III and IV respectively, to calculate the ABCD-like transfer matrix of finite cascade of unit cells. We begin 

with a general cavity structure with N unit cells terminated in impedances , 1Load LZ  , , 2Load LZ  on the left and , 1Load RZ  

, , 2Load RZ  on the right side, respectively as shown in Fig. A1 (a). For simplicity, we assume N to be even and the 

cavity fed at z = 0. We combine the N/2 transfer matrices to the left and right of z = 0 corresponding to the chain of 

N/2 unit cells to the left and right of z = 0 and define the matrices 

2

, U
1N

N

Chain R
n 

 T T  and 

2

1
1

, U
N

Chain L
n





 T T , 

that provide    ,/ 2 0chain LL ψ T ψ  and    ,0 / 2Chain R Lψ T ψ . Such a simplified representation of the cavity in 

Fig.A1 (a) is given by Fig. A1 (b). Compared to Fig. 2, we note that in Fig. A1 (a), the terminations are general load 
impedances rather than short circuits which is a special case treated in Sec. II.  

After decomposing ,Chain RT  into 2 × 2 matrices such that 

 
,

R R

Chain R

R R

 
  
 

A B
T

C D
,  (13) 

we write 

      0 / 2 / 2R R R R Rz L L  V A V B I  (14) 

      0 / 2 / 2R R R R Rz L L  I C V D I  (15) 

where,      1, 2,

T

R R Rz V z V z   V ,      1, 2,

T

L L Lz V z V z   V ,      1, 2,

T

R R Rz I z I z   I  and 

     1, 2,

T

L L Lz I z I z   I . 

 

Fig.A1: (a) Generalized schematic of cavity with load impedances. (b) Simplified representation of Fig. A1 (a). 

 

At / 2z L  , we note that ,R Load R RV Z I  , where, 
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, 1

,
, 2

0

0

Load R
Load R

Load R

Z

Z

 
  
 

Z  (16) 

and hence (14), (15) are simplified to a two port representation at 0z  ,  

    ,0 0R Chain R RV Z I , (17) 

where,   
1

, , ,Chain R R Load R R R Load R R


  Z A Z B C Z D represents the impedance  finite length of the impedance 

terminated chain observed from the input terminals which are connected to the sources. Similarly, at 0z   we 

obtain 

    ,0 0L Chain L LV Z I , (18) 

where   
1

, , ,Chain L L Load L L L Load L L


  Z A Z B C Z D and we decompose ,Chain LT  into 2 × 2 matrices such that  

 ,

L L

Chain L

L L

 
  
 

A B
T

C D
, 

, 1
,

, 2

0

0

Load L
Load L

Load L

Z

Z

 
  
 

Z  (19) 

Denoting 

  1 2

T

S S S
V VV , 

1

2

0

0

S
S

S

Z

Z

 
  
 

Z , (20) 

we apply Kirchhoff’s Voltage law around both the source loops at 0z   to obtain 

      
1

, ,0 0R L Chain R Chain L S S


   I I Z Z Z V , (21) 

where, we assume that  , ,Chain R Chain L S Z Z Z can be inverted. Equations (14), (15) and (17), (18), (21) allow for 

evaluation of the state vectors          1, 2, 1, 2,0 0 0 0 0
T

L L L Lz V z V z I z I z        ψ and 

         1, 2, 1, 2,0 0 0 0 0
T

R R R Rz V z V z I z I z        ψ . With these state vectors, combined with the 

definition of transfer matrices and the use of boundary conditions, the state vector  ψ z at an arbitrary point 

, / 2 / 2z L z L    in the cavity can be computed.  

We compute the input impedance seen by the source for a particular case. If we assume 
2 0SV  and 

2 0SZ  , the 

input impedance seen by the voltage generator
1SV , with 

1 0SZ  , is  ,1 1 1,/ 0in S LZ V I  or  ,1 1 1,/ 0in S RZ V I . 

Using (17), (18) and (21), the input impedance seen by the voltage generator
1SV  is  ,1 ,22det /in diff diffZ Z Z , 

where, , ,diff Chain R Chain L Z Z Z  and ,22diffZ  is the (2, 2) entry of the matrix diffZ . Similarly, if we assume 

1 0SV  and 
1 0SZ  , the input impedance seen by the voltage generator  

2SV , with 
2 0SZ  ,  is  ,2 2 2,/ 0in S LZ V I  

or  ,2 2 2,/ 0in S RZ V I . Using (17), (18) and (21), the input impedance is  ,2 ,11det /in diff diffZ Z Z , where, 

,11diffZ  is the (1, 1) entry of matrix diffZ . The resonance frequencies of the cavity can be obtained either graphically 

or numerically by solving  ,1Im 0inZ   or  ,2Im 0inZ   for ω.   
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Appendix C: Energy and power loss distributions 

The formulation to calculate the stored energy and power loss is first developed for a cavity composed of the unit 
cell in Fig. 6 (a) and the modification of the formulation to the cavity composed of the unit cell in Fig. 7 (a) will be 

discussed subsequently. We follow the notations in Sec. III and IV and the notations for MTLs in [27]-[29]. The 

numbering of the unit cells begin from / 2z Nd  and starts from n = 1 ending with n = N. Knowing the voltage 

distribution      1 2

T
z V z V z   V  and current distribution      1 2

T
z I z I z   I  at any point z in the cavity 

using formalism in Appendix B, the spatial distribution of stored time-average energy (per unit length) is given by  

 ( ) ( ) ( ) em e mw z w z w z , (22) 

where  

 *1
( ) ( ) ( ) ( )

4
ew z z z z V C V  (23) 

is the spatial distribution of stored time-average electric energy (per unit length) and  

 *1
( ) ( ) ( ) ( )

4
mw z z z z I L I  (24) 

is the spatial distribution of stored time-average magnetic energy (per unit length), respectively at any point z in the 

cavity. Here, ( )C z  is the capacitance matrix (per unit length) that is either CA or CB , depending whether z is in the 

segment A or B, respectively and ( )L z  is the inductance matrix (per unit length) that is either AL or BL , 

depending whether z is in the segment A or B, respectively.  

Furthermore, the time-average power lost per unit length is defined as *1
( ) ( ) ( ) ( )

2
l sp z z z z I R I , where ( )Rs z is 

either ,s AR  or ,s BR , depending whether z is in the segment A or B, respectively. The spatial distributions of stored 

time-average energy (per unit length) plotted in Figs. 3 (e, f) and the spatial distributions of power loss (per unit 

length) in Figs.3 (c, d) were plotted using the formulation in (22)-(24). 

The total stored time-average energy in the entire cavity formed using the unit cell in Fig. 6 (a) is obtained from 

 
/2

stored
/2

( )
L

em
L

W w z dz




  , (24) 

and the total power loss in the entire cavity is calculated using 

 
/2

lost
/2

( )
L

l
L

P p z dz




  . (24) 

The formulation describing the stored energies and power loss for the cavity composed of the unit cell in Fig. 7 (a) 

can be obtained by modifications to the formulation presented in the above paragraph. In particular, note that when 

assuming a lossless capacitive network, only the expression for the stored time-average electric energy ( )ew z  needs 

to be modified while the expressions for the stored time-average magnetic energy ( )mw z  and power loss ( )lp z  

remain the same. Therefore, the formulation in (22)-(24) is still applicable but the additional stored time-average 

electric energy in the lumped capacitor network is accounted for by 
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    1 *
, , ,

2

1

4

m mC
e n cap n cap n

m m

C C C
W z z

C C C

  
  

  
V V , (25) 

where, ,cap nz  is the location of the lumped capacitor network in the nth unit cell with 1 n N  . In Fig. 9, the stored 

time-average energy (per unit length) in the TLs, which is plotted using solid black curve, was computed using 

formulation in (22)-(24) while the stored time-average electric energy in the lumped capacitor networks, which is 

plotted at discrete z locations using red color, was computed using (25). 

The total stored time-average energy in the entire cavity formed using the unit cell in Fig. 7 (a) is 

 
/2

stored ,
1/2

( )
L N

C
em e n

nL

W w z dz W




    (26) 

while (24) is still applicable to calculate the total power loss in the entire cavity. 
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