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Models of the voice source differ in their fits to natural voices, but it is unclear which differences in
fit are perceptually salient. This study examined the relationship between the fit of five voice source
models to 40 natural voices, and the degree of perceptual match among stimuli synthesized with
each of the modeled sources. Listeners completed a visual sort-and-rate task to compare versions of
each voice created with the different source models, and the results were analyzed using multidi-
mensional scaling. Neither fits to pulse shapes nor fits to landmark points on the pulses predicted
observed differences in quality. Further, the source models fit the opening phase of the glottal
pulses better than they fit the closing phase, but at the same time similarity in quality was better pre-
dicted by the timing and amplitude of the negative peak of the flow derivative (part of the closing
phase) than by the timing and/or amplitude of peak glottal opening. Results indicate that simply
knowing how (or how well) a particular source model fits or does not fit a target source pulse in the
time domain provides little insight into what aspects of the voice source are important to listeners.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4922174]
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I. INTRODUCTION

Mathematical models of the voice source have been
designed to provide high quality voicing for synthetic speech
while minimizing the bandwidth for its transmission, and to
model perceptually important aspects of the voice source. In
this study we assessed the fit of five such models of the voice
source—the Rosenberg model (Rosenberg, 1971), Liljencrants-
Fant (LF) model (Fant et al., 1985), Fujisaki-Ljungqvist model
(Fujisaki and Ljungqvist, 1986), and two models proposed by
Alwan and colleagues (Shue and Alwan, 2010; Chen et al.,
2012)—to the shape of the glottal flow derivative and to glottal
source spectra, and then examined the ability of the models to
match the target voice qualities.

The purpose of this exercise was to determine the rela-
tionship between listeners’ judgments of voice quality and
theoretically important landmark points or model segments.
As presently implemented, most models of the voice source
describe time-domain features of vocal fold vibration or of
glottal flow, including peak glottal opening/peak flow and
the negative peak of the flow derivative, which is associ-
ated with the instant of maximum excitation (Fant, 1993).
Models are typically evaluated in terms of their fit to empir-
ical pulse shapes (e.g., Fujisaki and Ljungqvist, 1986; Gobl
and N!ı Chasaide, 2010; Shue and Alwan, 2010). For

example, the LF model captures changes in the glottal flow
derivative using sinusoidal and exponential functions (Fant
et al., 1985), and Fant attributed its widespread use to its
ability to capture “essentials” of a variety of glottal wave
shapes (Fant, 1995, p. 119). The primary limitation to this
approach is that modeling and fit assessment focus largely
on the shape of the pulses, with minimal consideration of
the perceptual importance of the features on which fit is
based—the functional significance of the events being
measured (Westbury, 1991). From a functional point of
view, source models that do not capture aspects of the voice
that are important to listeners, or models that include fea-
tures that are not perceptible, are neither adequate nor theo-
retically correct.

Although models differ in the features they fit and in the
equations used (as described below), the importance of these
differences has not been determined, so we cannot identify
the “best” model in this functional sense. Developing such
an understanding is problematic, however, because voice
production occurs as changes in glottal configuration and the
air pressure waveform shape over time, but perception is bet-
ter modeled in the spectral domain (Plomp, 1964; Doval
et al., 1997; Kreiman and Gerratt, 2005). For example, we
do not hear the negative peak of the differentiated glottal
waveform; we hear its spectral consequences. Thus, percep-
tual evaluation of time-domain source models requires inter-
pretation of the spectral consequences of time-domain
events, a difficult problem that has resisted solution to date
(but see van Dinther et al., 2004, 2005, who describe the
relationship between LF model parameter Rg and a voice
quality continuum from breathy to pressed).
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One possibility for bridging the gap between the time
and spectral domains is to convert temporal parameters into
spectral ones (Ananthapadmanabha, 1984; Fant and Lin,
1988; Doval et al., 1997; Doval et al., 2006; Kane et al.,
2010). However, the correspondence between time- and
spectral-domain parameters is usually not straightforward
(Fant and Lin, 1988; Gobl and N!ı Chasaide, 2010), and pulse
shape changes have effects throughout the spectrum, rather
than altering one specific spectral component (Doval and
d’Alessandro, 1997; Henrich et al., 2001). For example,
Henrich et al. (2001) found that H1*-H2*,1 which is a per-
ceptually meaningful component of the voice spectrum
(Esposito, 2010), could be modeled only by using a combi-
nation of time-domain parameters, rather than by a single pa-
rameter (cf. Chen et al., 2011; Chen et al., 2013b).
Moreover, for any given source model, a particular value of
H1*-H2* could be obtained from several combinations of
the same parameters, so that no one-to-one correspondence
between time-domain events and spectral consequences was
observed.

Another problem with converting time-domain parame-
ters to spectral ones is the lack of perceptual validation. That
is, expressing a time-domain parameter in terms of spectral
characteristics does not establish the perceptibility of the
proposed time-domain model parameters. This is a problem
not just for spectral parameters derived from time-domain
models, but for any model of the voice source: If perceptual
validity has not been systematically assessed, it remains
unclear whether (and which) deviations in fit between the
models and the data are functionally important to the lis-
tener. We address this issue by relating physical matches
among models to perceived matches among sounds. Doing
so enables us to determine (a) which deviations between the
modeled source and natural source are perceptually mean-
ingful; (b) whether differences in the time domain matter
perceptually to a greater or lesser extent than those in the
spectral domain; and (c) what is required to make a valid
model of the voice source.

A. The source models

This paper assesses the relationship between model fit and
perceptual accuracy by studying five time-domain source mod-
els (three of which are related)—the Rosenberg model
(Rosenberg, 1971), the Fujisaki-Ljungqvist model (Fujisaki
and Ljungqvist, 1986), the Liljencrants-Fant (LF) model (Fant
et al., 1985), and two models proposed by Alwan and col-
leagues (Shue and Alwan, 2010; Chen et al., 2012)—and one
model that describes the voice source in the spectral domain
(Table I; Kreiman et al., 2014; see also Cummings and
Clements, 1995). The Rosenberg model (Rosenberg, 1971), in
contrast to the other models, describes the opening and closing
phases of the glottal flow volume velocity with separate trigo-
nometric functions that incorporate two timing parameters and
one amplitude parameter. In comparison, the six-parameter
Fujisaki-Ljungqvist model and the four-parameter LF model
represent the first derivative of the glottal volume velocity
pulse, which incorporates lip radiation effects (Gobl and N!ı
Chasaide, 2010). The LF model (Fant et al., 1985) combines
an exponentially increasing sinusoidal function and an expo-
nential function with one amplitude parameter (Ee) and three
time points; the Fujisaki-Ljungqvist model (Fujisaki and
Ljungqvist, 1986) uses polynomials to model the shape and
duration of different segments of the flow derivative wave-
form. Recent studies (Shue and Alwan, 2010; Chen et al.,
2012) have proposed models of the glottal area waveform (as
derived from high-speed endoscopic recordings of the laryn-
geal vibrations) rather than the flow pulse or its derivative.
With four parameters, the first of these (Shue and Alwan,
2010) uses a combination of sinusoidal and exponential func-
tions similar to the LF model, but with the ability to adjust the
slopes of the opening and closing phases separately. The
model of Chen et al. (2012) modified the Shue-Alwan model
by redefining parameters (speed of opening and speed of clos-
ing) to allow for lower computational complexity, faster wave-
form generation, and more accurate pulse shape manipulation.

The time-domain models differ in the number of param-
eters they use and in the functions used to model changes in

TABLE I. The source models.

Model Description Parameters

Rosenberg Models flow volume velocity with trigonometric functions Time from onset of pulse to peak

Time from peak to offset
Maximum amplitude

LF Models flow derivative with an exponentially increasing sinusoidal

function from first point to negative peak and an exponential function
from negative peak to final point

Negative peak

Time of max flow
Time of max discontinuity

Return time constant

Fujisaki-Ljungqvist Models flow derivative with polynomial functions Open phase duration
Pulse skew

Time from closure to maximum negative flow
Slope at glottal opening
Slope prior to closure

Slope following closure

Shue-Alwan, Chen et al. Model flow volume velocity; functions similar to LF OQ
Asymmetry coefficient

Speed of opening phase
Speed of closing phase
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glottal flow pulse shape over time, but also share a number of
parameters, giving the impression that these are important
determinants of voice quality and aspects of production. For
example, glottal open time of the source pulse is explicitly rep-
resented in the Rosenberg and Fujisaki-Ljungqvist models, and
occurs as part of the open quotient (OQ) parameter in the mod-
els of Shue and Alwan and Chen et al. (see Table I). Similarly,
pulse skew is represented in the models of Rosenberg, Fujisaki
and Ljungqvist, Shue and Alwan, and Chen et al.

In summary, understanding the perceptual importance
of differences among source models offers a source of
insight into the relationship between voice production and
the resultant perceived voice quality. Given that source mod-
els differ in how they fit the pulses, our plan was to deter-
mine which aspects of pulse shape are perceptually
important by examining the perceptual consequences of dif-
ferences among models in their fits to the same target source
pulses. We began by measuring physical fit of the models to
the target pulses, and then used these fits to predict which
models should provide the best perceptual accuracy. Finally,
we created stimuli that varied only in voice source, and
measured perceptual matches of stimuli synthesized with
each source model to the target stimuli, to determine the use-
fulness of time domain features of the voice sources for
modeling voice quality.

II. MODELING GLOTTAL PULSES

A. Voice samples

To widely sample the range of possible voice qualities,
stimuli were based on 40 1-s samples (20 M, 20 F) of the

vowel /a/, excerpted from sustained phonations produced by
normal speakers and by speakers with vocal pathology.
Samples were selected at random from a library of record-
ings gathered under identical conditions, and ranged from
normal to severely pathological. Samples were directly digi-
tized at 20 kHz using a Br€uel and Kjær 1/2 in. microphone
(model 4193) placed 10 cm from the speaker’s lips at a 45!

angle, with 16 bit resolution and a linear-phase sigma-delta
analog-to-digital converter to avoid aliasing.

Evaluation of the accuracy and validity of source mod-
els requires that investigators extract an accurate estimate of
the voice source from the natural voice signal, to provide a
target to which the different source models can be fitted and
compared. To accomplish this, the recordings were first
downsampled to 10 kHz. Estimates of the sources of these
voice samples were then derived via inverse filtering using
the method described by Javkin et al. (1987). Because
inverse filtering is imprecise at best (e.g., Alku, 2011), these
estimates were corrected using analysis-by-synthesis (AbS)
to create synthetic voice samples that precisely matched the
quality of the original natural voice samples (Kreiman et al.,
2010), as follows. The spectrum of a single representative
source pulse extracted via inverse filtering was calculated
and used to model the harmonic part of the voice source.
Spectra were divided into four segments (H1–H2, H2–H4,
H4 to the harmonic nearest 2 kHz [H4–2 kHz], and the har-
monic nearest 2 kHz to the harmonic nearest 5 kHz [2–5
kHz]), and harmonic amplitudes within each range were
adjusted so that slope decreased smoothly within that range
(Fig. 1). The spectral characteristics of the inharmonic part
of the source (the noise excitation) were estimated using

FIG. 1. (Color online) The spectral-
domain source model. (a) A source
spectrum before adjustment of individ-
ual harmonic amplitudes. (b) The same
spectrum after harmonic amplitude
adjustment.
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cepstral-domain analysis similar to that described by de Krom
(1993). Spectrally shaped noise was synthesized by passing
white noise through a 100-tap finite impulse response filter fit-
ted to that noise spectrum. To model frequency and amplitude
contours, F0 was tracked pulse by pulse on the time domain
waveform by an automatic algorithm. The time-domain repre-
sentation of the harmonic source was derived from the spec-
tral representation via inverse fast Fourier transform (FFT),
and a train of source pulses with the appropriate periods and
amplitudes was added to the noise time series to create a com-
plete glottal source waveform. Formant frequencies and band-
widths were estimated using autocorrelation linear predictive
coding analysis with a window of 25.6 ms (or 51.2 ms if F0
was near or below 100 Hz). The complete synthesized source
was then filtered through the vocal tract model to generate a
synthetic version of the voice (the AbS token), and all param-
eters were manipulated until the synthetic token adequately
matched the natural target voice sample. Note that all changes
to the harmonic part of the voice source were made by alter-
ing the slope and/or amplitude of the spectral segments
defined above, and not in the time domain. The experiment
described in Sec. II B below demonstrated that listeners were
unable to reliably distinguish these synthetic copies from the
original natural tokens (d0¼ 0.78).

Each AbS-derived source function was next fitted with
the five time-domain source models (Rosenberg, LF, Fujisaki
and Ljungqvist, Shue and Alwan, and Chen et al.). Models
were fitted in two ways in order to create variation in fits to
the opening versus closing phases of the cycle. In the first,
one cycle of the flow derivative signal (derived from the
source spectrum via inverse FFT) for each speaker was nor-
malized to a maximum amplitude of 1 prior to model fitting.
In the second, we fit each model to the target pulses after nor-
malizing the amplitude of the negative peak to #1.
Normalization emphasized the peaks of the glottal pulse,
because those points have traditionally been associated with
differences in voice quality (Fant, 1993). Because the models
of Rosenberg, Shue and Alwan, and Chen et al. describe the
glottal flow pulse, and not the flow derivative, first-derivative
representations were calculated mathematically in these cases,
so that all models were fitted in the flow derivative domain.
Each derivative-domain source model was then fitted to these
pulses using a mean square error (MSE) criterion, for which
each point of the waveform was weighted equally.

Eleven synthetic versions of each target voice were cre-
ated by filtering the target AbS source or one of the corre-
sponding model-fitted sources (five sources per voice, one
from each of the five different models, times two normaliza-
tion methods) through the vocal tract model created for the
voice during the AbS process. Vocal tract models, F0 and
amplitude contours, the noise-to-harmonics ratio, and all
other synthesizer parameters were held constant across ver-
sions, so that only source characteristics differed across the
eleven stimuli within a given voice “family.”

B. Experiment 1: Validating the synthesis

To verify that the AbS tokens were in fact indiscrimin-
able from the natural voice samples (and thus could fairly be

used as the standard of perceptual evaluation for the other
source models), and to quantify the discriminability of the
other stimuli from the AbS token, the following experiment
was undertaken.

1. Method

Only stimuli for which source amplitude was normal-
ized to the positive peak of the flow derivative waveform
were used in this experiment, because we had no theoretical
reason to expect an effect of normalization method on the
discriminability of voices created with the different source
models. Stimuli consisted of the 6 synthetic versions of each
of the 40 voices, along with the original, natural voice sam-
ple. Each stimulus was 1 s in duration. Stimuli were normal-
ized for peak amplitudes and multiplied by 25 ms onset and
offset ramps prior to presentation.

All procedures were approved by the UCLA IRB.
Twenty-two listeners (UCLA students and staff) participated
in the experiment. They ranged in age from 18 to 61 years
(M¼ 27.3 years; sd¼ 11.84 years). All reported normal
hearing. Following the methods used in Kreiman et al.
(2007b), listeners heard pairs of voices in which either the
natural voice sample (40 trials) or a synthetic token created
with a model-fitted source (200 trials) was paired with the
corresponding AbS-derived tokens. In an additional 56 trials,
both voices in a pair were identical, for a total of 296 trials.
The inter-stimulus interval was 250 ms.

Stimuli were presented in a double-walled sound suite
over Etymotic ER-1 insert earphones (Etymotic Research,
Inc., Elk Grove Village, IL) in random order at a comforta-
ble constant listening level. Listeners could hear the pairs of
stimuli twice (in the AB and BA orders) before responding.
They judged whether the stimuli within a pair were the same
or different, and then rated their confidence in their choice
on a five-point scale ranging from 1 (“wild guess”) to 5
(“positive”). Testing time averaged about 40 min.

2. Results

Responses were pooled across listeners to estimate over-
all discriminability. Rates of correct and incorrect
“different” responses (hits and false alarms) were calculated
for each voice. Across voices, hit rates ranged from 0% to
59.1%, with an average of 28.53% (SD¼ 14.71%). False
alarm rates ranged from 0% to 11.8%, with an average of
1.96% (SD¼ 2.67%).

Same and different responses were combined with confi-
dence ratings to create a ten-point scale ranging from
“positive voices are the same” (¼1), through “wild guess
voices are the same/different” (¼5 or 6, respectively), and
ending with “positive voices are different” (¼10). d0 was cal-
culated for each voice from these recoded ratings using
SPSS software (Version 20.0; SPSS, Inc.). Averages are
given for each source model in Table II. Results indicate that
on average the model-fitted tokens were easy to distinguish
from the target AbS token, but that the AbS token was not
reliably distinguishable from the original natural voice sam-
ple. Significant differences among models were observed
[one-way analysis of variance (ANOVA); F(5, 234)¼ 33.43,
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p< 0.01, r2¼ 0.42]. Tukey post hoc tests showed that the
natural voice was harder to distinguish from the AbS token,
and the Rosenberg model easier to distinguish from the AbS
sample, than were any other tokens (p< 0.01). The other
models did not differ from one another in discriminability
from the target AbS token (p> 0.01).

III. EVALUATING MODEL FIT TO TIME-DOMAIN PULSE
SHAPES AND SOURCE SPECTRA

A. Model fit in the time domain

The physical fit of the five source models to the source
pulses derived via AbS (henceforth the “targets”) was eval-
uated in three ways. First, we measured the distance between
the target and each modeled pulse with respect to two time-
domain landmarks on the differentiated and undifferentiated
source pulses: the moment of peak opening (tp in the LF
model, identified as the zero crossing in the flow derivative
domain), and the negative peak of the flow derivative [point
(te, Ee) in the LF model], which corresponds in theory to the
time of maximum excitation. These landmarks were selected
because they represent hypothetically important physical
events in the glottal cycle, because they are parameters used
to calculate the source models, and because they can be
marked reliably. Prior to fit estimation, for each voice
“family” (the target AbS token and the five different mod-
eled versions of that token), amplitudes were scaled such
that the peak-to-peak amplitude of the tallest pulse in the
family equaled 100 and the differences among family mem-
bers in amplitudes relative to the tallest member were pre-
served. All pulses were also normalized to a duration of 100.
(Because all pulses within a family had the same duration,
relative length was not an issue.) After normalization, time
and amplitude coordinates were recorded for the two points
on each pulse, and the differences between time and ampli-
tude coordinates of each point on the target and modeled
pulses were calculated, along with the total Euclidean dis-
tance between points, as the first indices of the fit between
the models and the data.

Second, fit was evaluated by measuring MSE fits
between the target and modeled pulses (cf. Chen et al.,
2013a). MSE fits were calculated for the complete pulses,
and also for four different pulse segments: from the first
point to the moment of peak opening (the opening phase);
from the peak opening to the last point of the pulse (the clos-
ing phase); from the first point to the time of maximum exci-
tation (the first segment of the LF model); and from the time

of maximum excitation to the last point of the pulse (the sec-
ond segment of the LF model). Landmark points and glottal
pulse segments are shown in Fig. 2.

1. Results

Values of p throughout this section were adjusted for
multiple comparisons because of the interrelationships
among segments, landmarks, and spectral-domain features
of the source pulses.

Figure 3 shows the fit of each source model to the same
target source pulse, and mean MSE fits across voices and
normalization methods are given in Table III. For both peak
opening and the negative peak of the flow derivative, points
were significantly better matched in timing (x dimension)
than in amplitude [y dimension; peak opening: matched sam-
ple t (399)¼#6.31, p< 0.01; negative peak: matched sam-
ple t (399)¼#6.11, p< 0.01]. Differences between source
models in matches to landmark points were statistically reli-
able but minimal [F(4, 1595)¼ 6.92, p< 0.01; r2¼ 0.01]:
Points were better matched overall for the LF, Shue and
Alwan, and Chen et al. models than they were for the
Rosenberg model, but only with respect to timing of the neg-
ative peak of the flow derivative waveform (Tukey post hoc
tests; p< 0.01).

No significant differences were observed among models
in their overall MSE fit to the target pulses [F(4, 395)¼ 2.70,
p> 0.01]. A two-way ANOVA comparing MSE fits for the
opening versus closing phases of the pulses showed signifi-
cantly better fits for the opening phase than for the closing
phase [F(1, 790)¼ 40.31, p< 0.01], but no differences
between models and no interaction between models and seg-
ments. A parallel ANOVA comparing fits for the first and
second segments of the LF model produced the same result
[F(1, 790)¼ 17.54, p< 0.01], reflecting the correlation
between fits to the opening phase and the first LF segment
(r¼ 0.74) and between the closing phase and the second LF
model segment (r¼ 0.79).

B. Model fit in the spectral domain

Finally, we compared the spectra of the modeled pulses
to those of the targets with respect to spectral slope in five
ranges: H1–H2, H2–H4, H4 to the harmonic nearest 2 kHz in
frequency (H4–2 kHz), the harmonic nearest 2 kHz to the
highest harmonic (nearest 5 kHz, 2–5 kHz), and to the overall
spectral slope from the first harmonic to the highest harmonic
(H1–Hn) (Kreiman et al., 2007a; shown schematically in Fig.
4). Source spectra were generated automatically by the AbS
software, which computes a pitch-synchronous Fourier trans-
form of the flow derivative of the glottal source pulse. The
AbS software provides the amplitudes of any selected har-
monic and computes the spectral slope for any selected fre-
quency range. Fits between the spectral components of the
target AbS versus model-fitted sources were calculated by first
subtracting the component slope value of the target source
from the model-fitted source, to obtain the raw difference (in
dB) in slope. The absolute (unsigned) difference in spectral
slope was then normalized across models by dividing the
absolute difference by the largest difference in spectral slope

TABLE II. Discriminability of token synthesized with each model-fitted to-

ken from the target AbS token. Standard deviations are given parenthetically.

Model Average d0

Natural token 0.78 (0.41)

Rosenberg 3.28 (0.87)

LF 2.30 (0.87)

Fujisaki-Ljungqvist 2.62 (1.46)

Shue-Alwan 2.49 (0.76)

Chen et al. 2.49 (0.74)
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(across all models) for a given voice. Normalization allows
for comparisons across models for a specific voice as well as
differences across voices.

1. Results

A two-way ANOVA (model by spectral segment)
assessed the fit of the different source models to the target
pulses in the spectral domain. It revealed significant main
effects of model [F(4, 1975)¼ 55.71, p< 0.01], spectral seg-
ment [F(4, 1975)¼ 10.44, p< 0.01], and a small but signifi-
cant interaction between model and spectral segment [F(16,
1975)¼ 6.71, p< 0.01; because of the small size of this
effect, it will not be interpreted further]. Tukey post hoc tests
indicated that spectral fits were best for the Shue and Alwan,
Chen et al., and LF models (which did not differ signifi-
cantly); the fit for the Rosenberg model was significantly
worse than for all other models, and the fit for the Fujisaki-
Ljungqvist model was better than that for the Rosenberg
model, but worse than that for the first three models (all
p< 0.01). Further Tukey tests indicated that fit to the highest
part of the spectrum (2–5 kHz) was significantly worse than
fit to the three lower frequency segments (H1–H2, H2–H4,
H4–2 kHz), which did not differ.

C. Discussion

The analyses in this section explored various aspects of
the physical fit between five source models and a large set of

target source pulses. In the time domain, models did not dif-
fer from one another in MSE fits to overall flow derivative
pulse shapes, nor did they differ meaningfully in how well
they matched landmark points on the target source pulses.
All models consistently fit the opening phase better than the
closing phase of the source pulses, and fit was better to land-
mark points in timing than in amplitude. In the spectral do-
main, the Rosenberg and Fujisaki-Ljungqvist models
provided significantly worse fit to the target spectra than did
the LF, Shue and Alwan, and Chen et al. models, which did
not differ. Spectral matches were significantly worse in the
frequencies above 2 kHz than in frequencies below 2 kHz.

These findings are not in and of themselves informative
about the importance of the differences observed. As noted
in the Introduction, models of the voice source have two pri-
mary functions: to describe phonatory behavior at the glottis,
or to capture perceptually important aspects of the voice
source, for example, for use in high-quality speech synthesis
(e.g., Fujisaki and Ljungqvist, 1986). Although validating
models with respect to glottal vibratory patterns requires
data about physical vocal fold movements (for example,
from high-speed imaging), the present data do make predic-
tions about which models should provide the best perceptual
fit, and what aspects of the pulses should be perceptually im-
portant. They can thus be used to guide assessments of the
perceptual validity of the different source models. First, dif-
ferences among the models in how well they perceptually
match the target voices should not be predictable from either

FIG. 2. The landmark points and
model segments used to measure fit of
the different source models to the tar-
get pulses. (a) The opening phase of
the glottal cycle. (b) The closing phase.
(c) The first segment of the LF model.
(d) The second segment of the LF
model.
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overall MSE fits or matches to individual landmark points,
because the models did not differ in how well they matched
these features. Second, stimuli synthesized with the Fujisaki-
Ljungqvist and Rosenberg models should provide the worst
perceptual match to the targets, because they provided the
worst matches to source parameters in the spectral domain

that are associated with differences in voice quality (Klatt
and Klatt, 1990; Gordon and Ladefoged, 2001). Stimuli syn-
thesized with the LF, Shue and Alwan, and Chen et al. mod-
els should provide good perceptual matches to the target
voices, because of the good spectral matches provided by
these models. We test these predictions in the following
experiment, which probes perceptual similarity among
tokens in detail.

IV. PREDICTING SIMILARITY IN QUALITY
FROM DIFFERENCES IN SOURCE MODEL FIT

Because similarity and discriminability are not cotermi-
nous—voices can be very similar and still be easy to distin-
guish—the following experiment examined the similarity
between versions of the stimulus voices, as a supplement to
the measures of discriminability already described.

A. The sort-and-rate task

1. Participants

Forty-eight listeners (UCLA staff and students) partici-
pated in this experiment.2 They ranged in age from 18 to 62
years of age (M¼ 26.7 years; sd¼ 9.14 years). All reported
normal hearing.

2. Stimuli and task

All procedures were approved by the UCLA IRB.
Subjects were assigned at random to one of two groups (both
n¼ 24). The first group heard stimuli created with glottal
pulses normalized to the positive peak of the flow derivative,
and the second heard stimuli created with pulses normalized
to the negative peak. In both cases, stimuli were blocked
according to voice “families,” each consisting of an original
voice sample, the AbS synthesized voice, and the five syn-
thetic tokens created with the model-fitted sources. Listeners
assessed the similarity of the different family members in a
visual sort-and-rate task (Granqvist, 2003; Esposito, 2010;
Chen et al., 2013a; Zhang et al., 2013). In this task, each
family was presented in a separate trial; each listener com-
pleted 10 trials, such that across trials and subjects each fam-
ily was judged by 12 listeners. Stimuli were presented in

FIG. 3. (Color online) The fits of Rosenberg (þ), LF (*), Fujisaki and
Ljungqvist (!), Shue and Alwan (%), and Chen et al. (") models to a single
source pulse (•). (a) Pulses normalized to the positive peak of the flow de-
rivative. (b) Pulses normalized to the negative peak of the flow derivative.

TABLE III. Average MSE fit of the five source models to the target AbS
pulses.

Model

MSE fit Rosenberg LF
Fujisaki/

Ljungqvist
Shue/
Alwan Chen et al.

Mean 0.095 0.053 0.138 0.084 0.071

SD 0.15 0.10 0.23 0.21 0.16

Range 0.007–0.94 0.002–0.74 0.008–1.29 0.005–1.22 0.004–0.98

FIG. 4. (Color online) Schematic of the spectral slope parameters measured
(frequencies are not to scale). Harmonics that do not form endpoints of com-
ponents appear as small dotted lines. The large dotted line refers to H1#Hn
(the difference in slope between the first and final harmonics).
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random order in a double-walled sound suite over Etymotic
ER-1 earphones, as before.

At the beginning of a trial, stimuli were represented at
the top of a computer screen by randomly ordered icons with
different colors and shapes. Listeners played the voices by
clicking the icons, and then dragged each icon onto an unla-
beled line, so that perceptually similar sounds were placed
close to one another and perceptually dissimilar sounds were
placed farther away from one another. Listeners were
instructed to base their sort on whatever criteria seemed
appropriate to them; no instructions were provided about the
nature of any underlying perceptual dimension(s). They
were also instructed that they could use as little or as much
of the line as they chose. Participants were able to listen to
the stimuli as many times as necessary, in any order, and
were able to reorder the stimuli until they were satisfied with
their sorting, after which testing advanced to the next trial.
Listeners had no difficulty understanding or completing the
task, which lasted about 45 min.

3. Results

For each listener and trial, we first calculated the dis-
tance between the icons representing the AbS token and
those for each of the other voice samples in that family. To
normalize for differences in scale use across listeners and tri-
als, these distance data were assembled into dissimilarity
matrices (12 matrices/voice/normalization method, one from
each listener who heard that voice in the sort and rate task)
and analyzed via non-metric individual differences multidi-
mensional scaling (MDS; 40 voices times 2 normalization
methods, or 80 total analyses).

Solutions were found in 1 dimension for all except three
analyses, for which two-dimensional solutions were selected.
R2 and stress values are given in Table IV. Matched sample
t-tests indicated that scaling results accounted for signifi-
cantly more variance for source pulses normalized to the
negative peak vs the positive peak (R2: t(39)¼ 3.06,
p< 0.01; stress: t(39)¼#2.84, p< 0.01). Perceptual distan-
ces between voice tokens were calculated from stimulus
coordinates in the resulting configuration for use in subse-
quent analyses.3

As might be expected, similarity and discriminability
are significantly, but only moderately, correlated (r¼ 0.47,
p< 0.01). One-way ANOVA revealed significant differences
among models in goodness of perceptual match to the AbS
target voice [F(4, 395)¼ 48.54, p< 0.01, R2¼ 0.33]. Post
hoc Tukey tests (p< 0.01) indicated that the Rosenberg
model provided a significantly worse match to the target
than any other model. Significant differences were also
observed between the Fujisaki-Ljungqvist model and the LF,
Shue and Alwan, and Chen et al. models, consistent with the
predictions discussed previously.

B. Relating model fit to perceptual fit

Using stepwise multiple regression (p to enter/remove
¼ 0.05), we next assessed the extent to which different aspects
of model match to the targets predicted perceptual similarity.
The dependent variable in these analyses was the MDS-

derived perceptual distance between each modeled token and
the AbS target token. Three sets of predictor variables were
examined: (1) total MSE fit and fit to the opening and closing
phases; (2) distances in time, amplitude, and total distance
between landmark points; and (3) differences in spectral
slopes. None of the MSE fit variables, and no combination of
variables, was significantly associated with perceived similar-
ity between AbS and modeled tokens across models and voices
(p> 0.05). With respect to landmark points, the extent of per-
ceptual match between the target and model-based tokens was
best predicted by match to the negative peak of the flow deriv-
ative in both time and amplitude [F(2, 397)¼ 79.60, p< 0.01;
R2¼ 0.29]. Similarity in quality was better predicted by spec-
tral match in the ranges H1–H2, H2–H4, H4–2 kHz, and
H1–Hn [F(4, 395)¼ 71.33, p< 0.01; R2¼ 0.42].

V. GENERAL DISCUSSION AND CONCLUSIONS

To recapitulate, in the time domain the LF, Shue and
Alwan, and Chen et al. source models provided the best per-
ceptual matches to the target AbS stimuli, although stimuli
created with all these models were easy to distinguish from
the targets (Table II). Consistent with predictions, the per-
ceptual match provided by the Fujisaki-Ljungqvist model
was worse, and that for the Rosenberg model was worse still.
Thus, a larger number of model parameters does not imply a
better perceptual match; e.g., the six-parameter Fujisaki-
Ljungqvist model provided a worse perceptual match than
the four-parameter LF model. Also consistent with predic-
tions, neither MSE fits to pulse shapes nor fits to landmark
points predicted these patterns of difference in quality.
Finally, the source models fit the opening phase of the glottal
pulses better than they fit the closing phase, but at the same
time similarity in quality was better predicted by the timing
and amplitude of the negative peak of the flow derivative
(part of the closing phase) than by the timing and/or ampli-
tude of peak glottal opening. Reminiscent of the admonition
of Westbury (1991) that analyses relying on “identifying
‘magic’ moments in time and places in space” (p. 1870)
ignore the functional significance of the events being meas-
ured, we conclude that simply knowing how (or how well) a
particular source model fits or does not fit a target source
pulse in the time domain tells us very little about what is im-
portant to listeners.

These results show that we do not know what events in
the time domain are responsible for what listeners hear. This
lack of perceptual validity is a serious deficiency that reveals
a limitation to traditional approaches to source modeling,

TABLE IV. R2 and stress values for the multidimensional scaling analyses.

Normalization method

Positive peaks Negative peaks

R2 Stress R2 Stress

Mean 0.77 0.22 0.83 0.2

SD 0.1 0.05 0.1 0.06

Range 0.5–0.94 0.12–0.33 0.5–0.96 0.1–0.33
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which begin with attempts to copy pulse shapes and then
seek to explain perception in terms of timing of glottal
events. For example, the LF model (Fant et al., 1985) was
developed to describe the time course of glottal flow.
Subsequent research focused on relating the timing of events
to their spectral consequences (Ananthapadmanabha, 1984;
Fant and Lin, 1988; Fant, 1995; Doval et al., 1997, 2006;
Kane et al., 2010). However, as discussed in Sec. I, the cor-
respondence between timing events and spectral configura-
tion is hardly straightforward (Fant and Lin, 1988; Doval
and d’Alessandro, 1997; Henrich et al., 2001; Gobl and N!ı
Chasaide, 2010).

The present results suggest an alternative approach:
determining the spectral features of sounds that predict what
listeners hear, and then seeking (and modeling) the time-
domain causes of those specific spectral changes. This alterna-
tive has received little attention (but see Kreiman et al.,
2014). Traditionally, spectral-domain modeling of the voice
source was discouraged because it was time-consuming,
yielded artifacts, and still required some temporal informa-
tion, such as period length. Moreover, the relevant spectral
parameters had yet to be identified, and were less closely tied
to physiology than were time-domain parameters
(Ananthapadmanabha, 1984, p. 10). However, these concerns
have become largely irrelevant. Computational constraints
and artifacts are no longer common (Doval et al., 1997;
Kreiman et al., 2010), and much progress has been made in
determining spectral parameters that vary across voices and to
which listeners are sensitive (Kreiman et al., 2007a; Kreiman
et al., 2014). Both approaches (modeling in the time domain
vs in the spectral domain) share the goal of mapping between
voice production and perception; but in the second case the
functional significance of the magic moments or places is
established a priori, ensuring that results will be perceptually
meaningful, however complex the associations between phys-
ical and psychoacoustic events prove to be.

Two limitations of the present study must be noted.
First, although spectral slope parameters predicted voice
quality much better than did glottal pulse shapes, spectral
slope still accounted for only 42% of the variance in our per-
ceptual data. Because of the large number of voices and
source models studied here, no one listener heard more than
12.5% of the stimuli (10 voice families out of 80), so that
data used in the MDS analyses were cumulated across sub-
jects, which presumably added variability to the data.
Examination of subject weights for the MDS analyses
revealed no systematic differences among listeners, consist-
ent with this interpretation. Second, with the normalizations
applied during model fitting, more weight was assigned to
peaks in the glottal pulse. This may have led to suboptimal
matches in terms of overall MSE in the time domain model
fitting. This experimental design is a compromise between
achieving the best model fitting in terms of MSE and priori-
tizing the points which been traditionally considered to be
perceptually important. However, because normalization
may have limited the extent of model fit to the pulses, results
cannot be interpreted as a definitive test of how valid each
model is. In any event, our data indicate that substantially
more variance is accounted for by spectral parameters than

by time-domain features of the source pulses, so that predic-
tion of quality is much more straightforward in the spectral
domain.
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