
Lawrence Berkeley National Laboratory
Recent Work

Title
THC - A SIMPLE HIGH-PERFORMANCE LOCAL NETWORK

Permalink
https://escholarship.org/uc/item/7tf604fj

Authors
Knight, J.
Itzkowitz, M.

Publication Date
1980-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tf604fj
https://escholarship.org
http://www.cdlib.org/

~' '\-.

;l'. ~ ..lp I

LBL-11426
c.d-

--~ Lawrence Berkeley Laboratory
:·' E. C •:.... ; V E D

UNIVERSITY OF CALIFORNIA U\WRENCE
BE;~v:::·u:-v lJ\GOR!\TO Y

OCT 8 1980 Engineering & Technic~l
Services Division Llt::r<ARY AND

DOCUMENTS SECTION

Submitted to The Second International Conference on Distributed
Computing Systems, Paris, France, April 8-10, 1981

THC - A SIMPLE HIGH-PERFORMANCE LOCAL NETWORK

Jeremy Knight and r~arty Itzkowitz

August 1980 TWO-WEEK lOAN COPY ,
I

\

1

• This is ·a library Circulating Copy
\ which may be borrowed for two weeks.

~-------....-. for a personal retention copy, call
Tech. Info. Dioision, Ext. 6782

~~~~~-

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily const~tute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



. . 

THC - A Simple High-Performance Local Network* 

Jeremy Knight 
Marty ,Itzkowitz 

Compute~·center 
Lawrence Berkel~y Laboratory 

Berkeley, California 94720 

Tel: (415) 486-6362 or 
(415) 486-5893 

TWX: 910-386-8339 

Submitted tp 
The Second International Conference 

on Distributed Computing Systems 
Paris, 8-10 April 1981 

· Abstract 

LBL-11426 

We describe our need for a local network and the reasons we 
chose HYPERchannel as the hardware with which to implement 
it. We then present our reasons for choosing interprocess 
communication as the principal service of THC (The HYPER
channel Connection) and the design choices made in- specify
ing the-network. We then describe the structure and op~ra
tion of the network. We go on to describe the pseudocode 
technique used to complete the design and we briefly discuss 
the specific implementations for the various systems in our 
network. Finally we give performance measurements for the 
actual implementation and present our conclusions . 

* This work was supported by the U.S. Department of Energy 
under contract No. W-7405-ENG-48. 

I . 



THC - A Simple High-Performance Local Network* 

Jeremy Knight 
Marty Itzkowitz 

Computer Center 
Lawrence Berkeley Laboratory 
Berkeley, California 94720. 

Introduction 

LBL-11426 

In the spring of 1977, the mainframe configuration in 

the Lawrence Berkeley Laboratory Computer Center consisted 

of Control Data Corporation 7600, 6600, and 6400 computers 

connected by channel-to-channel couplers. These systems 

were originally developed for scientific batch processing, 

and their support of interactive computing was inadequate. 

User demand for computing services was expanding into areas 

we did not support, such as word processing and data base 

management. It seemed time to upgrade the facilities of the 

Computer Center. 

Unfortunately, no single manufacturer's computer system 

provides the best service in all areas, though there are 

powerful small computers that offer highly cost-effective 

* This work was supported by the U.S. Department of Energy 
under contract No. W-7405-ENG-48. 



Knight/Itzkowitz. 2 THC 

services in specifi~ fields. A general and flexible local 

network interconnecting various different machines would 

obviate the need for providing all services on all machines. 

Expensive peripherals like printers and tape drives could be 

concentrated on machines best equipped to handle them, but 

be ac~essible to the others. New machines and services 

could be incrementally incorporated into the network, and 

obsolete systems retired, without causing major upheavals. 

Such a network seemed the obvious choice. 

From measurement of inter-machine traffic in our exist-

ing CDC configuration, we predicted that 0.5 to 5 

megabits/second (5 to 50 times the current average data 

rate) would be an 'adequate bandwidth for the network. A 

higher bandwidth would, of course, offer more flexibility 

for future development. 

At that time, only one commercial product, the Network 

Systems Corporation HYPERchannel*, fulfilled the bandwidth 

requirements and ·allowed heterogeneous connections. It uses· 

a coaxial cable broadcast bus shared by a number of buf-

fered, microprocessor-controlled network adapters. Using a 

carrier-sense multiple-access scheme, any adapter on the 

network can send a message to any other at a nominal rate of 

40 megabits/second. Host adapters are available for a wide 

variety of minicompu~ers and mainframes. 

* HYPERchannel is a Trademark of Network Systems Corpora-
tion. 



'• 

Knight/Itzkowitz 3 THC 

We selected HYPERchannel for the network project, and 

named the protocol we were to develop "THC", The HYPERchan-

nel Connection. 

Design Philosophy 

We felt it crucial to keep the design of THC as simple 

as possible: we had a s~all staff for the project; and 

needed initially to implement it on four different syste~s. 

We decided that basic interprocess communication* was 

the most appropriate level at which to provide a general 

network service. Only a few of the services we would need 

to offer were well defined, and those had service-level pro-

tocols that were varied and quite service-specific. On the 

other hand, interprocess communication allows services to be 

provided by user-level processes and requires only three 

functions: establishing a connection (i.e., virtual cir-

cuit), sending data over it, and closing it. 

The scheme for establishing a connection is based on 

the notion of a server and a user. A service is offered; a 

user process connects to it and receives ~n acknbwledgement 

from the server. The two processes then exchange informa-

* In terms of the ISO Reference Model of Open Systems In-
terconnection, THC implements the Session and Transport lev
els of the local network protocol. The Network, Data Link; 
and Physical layers are supplied by the HYPERchannel, and 
the Application and Presentation layers by user-level code. 



Knight/Itzkowitz 4 THC 

tion as they choose, and eventually close the connection. 

By allowing the server to either accept or decline the con-

nection and by passing user-supplied text with both the con-

nect and its acknowledgement we also had an efficient 

mechanism for simple query~response services. 

We needed to provide privacy for user data, and did so 

by allowing each process on a connection to specify, at the 

time the connection is opened, the characteristics of the 

process to be permitted on the other side. To THC, a pro-

cess is characterized by the user running it, the group to 

which the user belongs, the project for which the work is 

being done, and the se6urity level assigned to the process; 

these attributes of the proriess are supplied by the operat-

ing system of each node on the network. Once a connection 

is opened, no further controls need be imposed by the net-

work. 

Ther~ seemed no compelling reason to have separate read 

and write functions, so we made data transmission full-

duplex; a single request both sends data to the process on 

the other side of a connection and receives data from it. 

We chose the simplest possible flow control technique: 

a process may issue only one request on a connection at a 

time, and the request is not completed until the process on 

the other side l1as made a corresponding request. The com-

pletion of each request serves as a user-level protocol ack-

nowledgement of the previous request. 



Knight/Itzkowitz 5 THC 

THC fully exploits the reliable message transmission 

capability of the HYPERchannel. Error detection and correc

tion are adequately handled by the hardware and microcode. of 

the adapters. No ~dditional error recovery or retransmis

sion is perf.ormed; if an error of any kind is detected, the 

connection is closed and the connected process~s are noti

fied. Generous timeout~ detect and clear network, system, 

or user-level protocol hangups. All nodes are logically 

adjacent, so no store-and~forward processing is needed. 

We wanted THC to run without operator intervention, and 

devised a d~ad-man timer scheme so that each node can decide 

on its own whether other nodes on the network are up or 

down. 

Network Structure arid Function 

The THC executive consists of four coroutines: the 

request-processor interfaces between the user and the net

work; the listener processes some incoming messages and 

dispatches the remainder to the request-processor; the 

driver transmits outgoing messages over the HYPERchannel and 

passes incoming messages to the listener; and the house

keeper generally tidies things up. These routines share a 

pool ·.of buffers and interact through network tables and 

queues of messages. 



Knight/Itzkowitz 6 THC 

A process interacts with the network by making requests 

of it. High-level language (e.g., Fortran, C) subroutines 

were written to convert these requests to the system calls 

appropriate for each operating system. The operating system 

passes the requests to the THC request-processor. 

Establishing a Connection 

Communication between two processes begins with an 

offer-request from one of them. Each node maintains a table 

of offers, called the bulletin-board, advertising the ser-

vicea offered by processes on that node. An offer is 

cl1aracterized by a service-name and a. description of the 

class of processes which are to be allowed to accep't the 

offer. A particular offer may be op~n to anyone, or it may 

be restricted to one or more particular users or to members 

of one or more groups or projects, and may require a minimum 

security level or even a specific password. No information 

about user-level protocol is contained in the offer. 

There are no restrictions in the network on multiple 

processes issuing offers with the same service-name. Multi-

ple copies of a service, if desired, may be provided by 

additional offers from a single process or by offers from 

separate processes on the same or different nodes. System-

supported services will be offered by privileged processes, 

and may be specified as such when requested by the user 

processes. User processes would normally restrict their 

services either to other processes run by the same user, or 



Knight/Itzkowitz 7 

those of fellow project or group members. The network 

prevents impersonation but ignores indiscretion. 

THC 

A single service may be offered with several aliases, 

that is, with several combinations of service-names and 

access controls. In that case, a sin~le offer-request will 

create more than one bullettn-board entry. Once the 

bulletin-board entries are made, the offer-request is 

suspended until a match is made to the offer. 

The sequence continues when a ~econd process makes a 

connect-request to match the previously entered offer

request. The connect-request specifies the service-name and 

description of the process whose offer is to be matched, 

similar to the description made by the offering process 

above. It may also include up to approximately 3800 addi

tional bytes of user-level protocol information which will 

be passed to the offering process in completing its pending 

offer-request. A connection-open-message containing this 

information is formatted to be used in se~rching the various 

bulletin-boards for a match. The message is initially 

addressed to the first node listed in the local table (by 

convention, the local node itself), unless the user has 

stipulated a specific node on which to look for the service. 

The message is placed on the send-queue for transmission, 

and the connect-request is suspended pending a reply. 

The transport level'of THC is managed by the driver. 

Outgoing messages are taken one at a time from the send-



Knight/Itzkowitz 8 THC 

queue and delivered to the HYPERchannel adapter; each mes

sage is discarded when the adapter indicates it has been 

suc~essfully sent to the adapter at the remote node. Incom

ing messages are taken from the adapter and placed in the 

receive-queue. A message addressed to the node on whi6h it 

originated is simply moved from the send-queue to the 

receive-queue. The driver keeps performanc~ statistics on 

the various types of messages sent and the number of mes-

sages and data bits transmitted to and received from each of 
I 

the nodes in the network. 

The netw6~k listener on each node removes incoming mes-

sages from the receive-queue. Messages addressed to 

processes on specific open connections are delivered to 

them; others, among them connection-open-messages, are pro-

cessed directly by the listener~ 

A connection-open-message is processed by scanning the · 

local bulletin-board for a matcl1ing service-name. Upori 

finding a match, the listener verifies that each process 

meets the requirements spe6ified by the other, and if so, 

passes the message on to the request-processor to complete 

the pending offer-request. If either_of the processes does 

not meet the requirements of the other, the match is ignored 

and the search continued. If a match is successful, but the 

offer is currently being used by some other third process, 

that fact is noted for even~ual reporting, but the search is 

continued. If the listener runs out of offers ~itho~t find-



. -

Knight/Itzkowitz 9 THC 

ing a successful and available match, a connection-

acknowledge-message containing the original text of the 

connection-open-message is sent back to the originating 

node. 

When an acknowledgement indicating no match is received 

at the originating node, it is converted back to a 

connection-open-message and sent on to the next node in 

sequence to continue the search. No copy of the original 

message is kept; the text is passed back and forth unal-

tered. 

The cost of this polling is additional message traffic; 

the benefit is simplicity. Each node maintains only its own 

bulletin-board of offers, and knows nothing of the others. 

We believe that the traffic generated by polling does not 

use an excessive portion of the available communication 

bandwidth. 

If all nodes known to be up and running have been 

unsuccessfully polled, the pending connect-request is com-

pleted with an error code indicating either that no match 

was found, or that one or more matches were found but they 

were all busy. These errors, and in general all errors 

reported in response to a properly formatted request, are 

nonfatal. Error handling is at the discretion of the 

processes involved, under whatever protocol they choose. 

In the case of a successful match, the original offer-

ing process has had its pending request completed and is now 



Knight/Itzkowitz 10 THC 

expected to issue an acknowledge-request. Up until this 

point, requests for open connections and requests for one-

time queries are processed identically. The acknowledgement 

of a request to open a connection indicates either ac~ep-

tance or rejection of the connection; the acknowledgement of 

a query always specifies rejection. In any case, an arbi-

trary block of text may be sent in response. If a connec-

tion is not to be opened, the offering proce~s may ask 

either that the offer be left open for others, or that it be 

withdrawn. Once withdrawn, it may of course be reissued 

with a subsequent offer-request. If a connection is opened, 

its offer is flagged as busy, and is not available to oth-

ers. 

Th~ acknowledge-request from the offering process 

causes the generation of a connection-acknowledge-message 

indicating both a successful match and whether or not the 

connection is to be left open. Since no further searching 

will be done, the original text of the message is replaced 

by user-supplied data taken from the request. The message 

is transmitted back to the originating node and used to com-

plete the pending connect-request. 

When a connectiori is opened, the network executive on 

each side establishes a connection-record for it. The 

connection-record contains a system-dependent process 

pointer, used to link the connection with user requests, and 

the network ID of the local and remote sides of the virtual 

--



Knight/ Itzkowitz 1 1 THC 

circuit, used to link the connecti~n with its messages. A 

network ID specifies the node (one byte) and individual con

nection on that node (two bytes). The connection-record 

also contains a sequence number (for messages) and a timer 

used by the housekeeper. 

Using the Connection 

Once a connection is opened, data is passed from pro

cess to process in response to transmit-requests. The two 

processes see the connection as symmetrical. Each side 

makes a transmit-request, the effect of which is to give 

each the other's data. Each block of data consists of a 

text of up to 3840 bytes in any one of several data formats, 

and two bytes of control information available for arbitrary 

use by the user-level protocol. 

Internally, one side of the connection, that 

corresponding to the offer, is the slave; the other is the 

master. A transmit-request from the process on the master 

side sends a data-message to the other side and is then 

suspended pending a reply. If the message arrives before 

the slave process' transmit-request, the message is held 

attached to the slave's connection-record. If the slave's 

request is made before the message from the master arrives, 

it is suspended. When both events have occurred, the 

master's data is given to the slave, the slave's data is 

dispatched in a data-message back to the master, and the 

slave's request is completed. When the slave's data-message 

J 



Knight/Itzkowitz 12 THC 

is receiv~d, its data is passed on to the master and the 

master's request is completed. 

Messages are sent alternately by the two sides of the 

connection. Each message serves as the acknowledgement of 

the previous message on that connection. This choice sacri-

fices some throughput on an individual connection, but we 

feel the total bandwidth available is more than adequate for 

the uses we envision. 

Closing the Connection 

Either side may close the connection by making a 

close-request. The executive on the side of the first 

close-request cleans up its own tables and sends a 

connection-close-message to the other side. The listener 

there flags the connection as closed. Normally the user-

level protocol would ensure that both sides issue 

corresponding close-requests. If not, a transmit-request 

will get an error indicating that the connection was closed 

by the process on the other side. Should close-requests be 

issued approximately simultaneously, the two messages will· 

cross and each will be ignored on arrival. No data is con-

tained in the connection-close-message. 

Additional Requests 

In some operating systems (e.g., UNIX*), all requests 

must be made synchronously, that is, the process must wait 

* . UNIX is a Trademark of Bell Telephone Laboratories. 



. • 

! 

Knight/Itzkowitz 13 THC 

for completion of any request; in others, requests may be 

either synchronous or asynchronous. For those operating 

systems where asynchronous processing is allowed, an addi

tional request (called a status-request) was designed to 

allow a process to pause until either a specific pending 

request or any of one or more pending requests is completed. 

One additional request was added primarily as a debug

ging aid. Any process may make a test-request, which sends 

an arbitrary block of text from the user process to any node 

(including the local node) as a test-data-message. The 

listener at the target node converts the message to a test

response-message with the same text, and transmits it back. 

There the echoed copy of the data is returned to the 

requesting process. Test-requests exercise virtually all of 

the request, data, and message handling software of the net

work executive from a single process, and their use greatly 

simplified the debugging of that software. Utility programs 

that generate test-requests for all possible THC message 

lengths and formats, and verify the data, were used for 

acceptance testing of the hardware, and even shook out a few 

bugs in the HYPERchannel microcode . 

The Housekeeper 

Besides the request-processor, listener and driver 

described above, each node has a housekeeper invoked once 

every real-time second. The housekeeper maintains histo

grams of resource allocation to be used in tuning network 



Knight/Itzkowitz 14 THC 

performance, and scans all open connection~records enforcing 

network timeouts. Timeouts are long (30 minutes), since the 

hardware is considered absolutely reliable and delays are 

presumed to be due to operating system scheduling, or even 

the response time of a human being. 

The housekeepers are also responsible for maintaining 

local state tables for each of the nodes in the network. If 

no other messages have been sent to an active node in the 

last twenty seconds, the housekeeper sends it an advice-

message. The advice-message contains no data, and is used 

merely to assure the other node that the local node is still 

active. If no message has been received from an active node 

in the last fifty seconds that node is flagged as unrespon-

sive; all subsequent messages destined for it are held in a 

wait-queue. If no messages have been received within ten 

minutes, the node is flagged as down; queued messages are 

discarded and all. open connections are closedA The receipt 

of any message from a node flags it as active again; any 

messages being held in the wait-queue are placed in the 

send-queue for transmission. 

Errors 

As we have said, we consider the HYPERchannel hardware 

extremely teliable, or, more accurately, that the microcode 

error detection and recovery is extremely reliable. We do 

checksum the control information in each message transmitted· 

and verify it upon receipt. The only ~hecksum errors found 



Knight/Itzkowitz 15 THC 

in two years of testing and production use were due to 

software bugs or solid hardware failures; no transient 

errors were seen. We plan to run on-line diagnostics 

periodically to check adapter oper~tion. 

Problems in resource allocation can cause the network 

to f~il. An incoming message must be taken fro~ the HYPER-

channel adapter as quickly as possible in order to avoid 

unreasonable delays for other adapters. If no buffer is 

available for it, the message must be discarded. In conse-

quence, each side of the connection will be expecting the 

other to transmit and will eventually time out. While the 

long timeouts are graceless to the processes involved, they 

do have the effect of stopping one source of traffic and 

decreasing the demand for buffers. The executive maintains 
I 

a histogram of buffer availability and a count of lost mes-

sages, and we allocate sufficient space so as to make lost 

messages improbable indeed. 

Since messages are never retransmitted by THC, dupli-

cate messages can arise only from an adapter error. The 

network ID contains a cycle counter used to distinguish sue-

cessive UBes of the same connection-record. Messages also 

have a sequence number incremented on each transmission, so 

as to make spurious duplicates improbable. Incoming mes-

sages ~ith sequence or ID errors, or mess~ges that are unex-

pected, are logged and discarded. 



Knight/Itzkowitz 16 THC 

Implementation 

Since THC was to be implemented on a variety of 

machines using a variety o~ lang~ages, we needed some 

system-independent way of describi'ng the detailed operation 

of the network executive. We wrote a data dictionary of the 

variables, parameters, and tables used, and a complete pseu

docode implementation of the executive. 

Pseudocode is an easily~understandable and syntacti

cally infotmal high-level language. It is unambiguoua, yet 

so flexible that it requires a human preprocessor. The 

entire THC executive fits on twenty-four pages of loosely 

packed pseudocode. An excerpt of pseudocode from the house

keeper module is shown in Figure 1. 

We are enthusiastic about this technique. Pseudocode 

is an effective design tool, as it all9ws specifying in 

great detail the behavior of a program without getting 

bogged down in the myriad details a real language demands. 

Coding a program written in pseudocode is a straightforward 

process; however, details of program packaging, storage 

allocation, request processing, and intermodule communica

tion are by necessity left as exercises for the implementor. 

It is difficult to generalize, but our experience sug

gests that implementing' THC for a new system would take one 

person six to twelve months, depending upon the familiarity 

of the implementor with the design of THC and the particular 



Knight/Itzkowitz 17 

SET UNUSED-CONNECTION-RECORD-COUNT = 0 

FOR CONNECTION-TABLE 

IF CONNECTION-RECORD.RESERVED = 'OFF' 
INCREMENT UNUSED-CONNECTION-RECORD-COUNT 

ELSE 
IF .N9DE-REMOTE .NE. 0 

IF .NODE-REMOTE.STATE ~ 'D' 

THC 

SET CONNECTION-RECORD.ERROR = 'NODE-DISCONNECTED' 
ELSEIF .NODE-REMOTE.STATE = 'X' 

SET CONNECTION-RECORD.ERROR = 'NODE-DOWN' 
ENDIF I 

ENDIF 
END IF 

ENDFOR 

Figure 1. Sample Pseudocode. 

machine and system and, of course, the system's style, 

language, and grace. 

In the implementations completed to date, the simpli-

city and relatively small size of THC has made it possible 

to inc6rporate the network executive directly into the 
·~ . . 

operating system in the same manner as a device handler, 

usually providing an efficient interface. However, beca~se 

~ unlike most device handlers THC requires substantial space 

for tables and buffers, various schemes (including the crea-

tion of a network executive process) were used to allocate a 

block of memory for use by THC. In an operating system with 

powerful and efficient interprocess communication we expect 

to implement THC as a separate process, with the 



. 

Knight/Itzkowitz 18 THC 

HYPERchannel as a dedicated I/0 device. 

The LBL Local Network 

At this writing, THC has been installed on six comput-

ers of three different types, under four different operating 

systems. Work is in progress on two more operating systems. 
\ 

A full list of machines and sy~tems is given in Figure 2. 

The CDC 7600 is the Computer Center's number cruncher, 
' ' 

and is equipped with an efficient but somewhat old-fashioned 

batch~processing operating system. THC was installed on the 

7600, but rem6ved before it was put in production when 

management decided that network aricess ~o the 7600 should be 

obtained through the 6000 stations, and that the effort 

required in utilizing the 7600's THC network connection 

could be better expended elsewhere. 

Machine System Language Size 

CDC 7600 BKY Compass 17430 
CDC 6000 (2) BKY Compass 8190 
DEC PDP-11/34 ( ~) RSX-11M Macro 13440 
DEC PDP-11/70 UNIX c 9088 
DEC VAX/580 VMS Bliss (?) 
IBM 4331 VM Fortran 

Figure 2. LBL Network Machines. 

Remarks 

cancelled 

in progress 
in progress 

The size listed above is the size of the object code in 8-
bit bytes, not including tables or buffer space. 7600 and 
6000 BKY operating systems resemble Control Data SCOPE 1 and 
KRONOS systems, respectively. 



.. 

Knight/Itzkowitz 19 THC 

The CDC 6600 and 6400 serve as front-ends to the 7600, 

both for batch submission and interactive job preparation. 

They also support a mass storage system based on a Calcomp 

Automated Tape Library, and production of print, punch, 

plot, and micrcifilm output. The first THC server, a remote 

job entry (RJE) utility, is now in production on the 6000's, 

and servers fQr mass storage and output queues are under 

development. 

The two PDP-11/34's run DEC's RSX-11M operating system. 

One is being developed as a central accounting and perfor

mance measurement machine for the network. The other is a 

DECNET gateway into the network. Remote machines communi

cate with the gateway using DEC's NSP protoco·l to send THC 

messages. The messages are removed from their DECNET 

envelopes and sent on to the THC network. .This system is in 

production. 

The PDP-11/70 runs UNIX, and is used primarily for text 

processing. A utility using the 6000 RJE service is in pro

duction, and those for mass stnra~e backup and output pro

cessing are being designed. A network mail server is being 

planned, and a second UNIX system will be added soon . 

The VAX will be used for scientif~c Fortran program 

development. It will. need the same seryices being provided 

for UNIX, and, in addition, some utilities to aid in con

verting programs and data to and from CDC Fortrah. We 

expect it to join the network in the Fall of 1981. 



Knight/I~zkowitz 20 THC 

The IBM 4331 will allow network access using IBM's 

VM/RSCS communica~ion subsjstem. We expect to use it as a 

network gateway for word-processors, and to put it into pro-

duction in the Spring of J981. 

Performance 

Performance figures between the nodes currently in pro-

duction are given in Figure 3. The values are maximum meas-

ured rates on otherwise idle production systems, and are 

based on the time required to open a connection between two 

processes, transmit one thousand data-messages in each 

direction, and close the connection. Messages per second 

were measured using minimum length messages; data bits per 

second were measured using maximum length messages in one 

direction and minimum length in the other, a situation we 



. .. 

Knight/Itzkowitz 21 THC 

feel more representative of a real application than maximum 

length messages in both directions. Figures in the column 

labeled "self" are for two processes on the same node, com-

municating through THC but not sending messages over the 

HYPERchannel . 

On the PDP-11 's, throughput is limited primarily by the 

central processor time needed to copy the data between user 

buffers and network executive buffers; multiple connections 

share this bandwidth among them. On the CDC 6000's, message 

rate is limited by the speed with which the operating system 

processes system calls, and three or four connections can 

each transmit with the reported throughput before saturating 

the executive. 

Conclusions 

We think THC is an effective design for a service-

oriented local network. Its simplicity, while sacrificing 

some performance, makes it easy to implement on diverse 

machines and Operating systems. Its straightforward user 

interface makes it easy to design a wide variety of port

able, high-level language, utility and service programs to 

run on those systems. 



Knight/Itzkowitz 22 THC 

Acknowledgements 

We would like to thank Bob Hoffmann, John Wood, and Don 

Zurlinden, our fellow workers on the project, for many valu

able discussions. We would also like to thank the many peo

ple who read ~nd criticized the manuscript. 

.. 



(i 

This report ·was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of. The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to. a company or product name· does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 

,,_, 
/.;,;,• 



G ;;J 

.io). 

/~~ 

'. 

< 

I' 

~- ,_~1;_. •!f-.. ,"'it .. , 
TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

; ' 
~-· 

·-- ' 

UNIVERSITY OF CALIFORNIA 

Bf;RKELE¥, \CALIFORNIA 9472o 
. .-.,; 

·~' 

·~ 
~ 
"" 

~~~~ 
...s::.

"

' v

"
:.

S<.·'~to. :.:...\,..a.:·

.,J

-~~~
~\~\ -·~ •.

~~~~ 

/ 

~-~ 

I~ • 




