
UC Irvine
ICS Technical Reports

Title
A limitation of higher-order languages

Permalink
https://escholarship.org/uc/item/7tf69467

Author
Feign, David

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tf69467
https://escholarship.org
http://www.cdlib.org/

L"JNCUAC S

David F.::i<Jn

University of C lj.f;.)rn a; It:v ri.E'

Technical Report #82

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A I MI 'I' AT' I 0 N 0 F' IH G f.-IE rz ·~, 0 HD ER L Z:\ NG U Z:\ GE S

by

Dav:l.d Ft:dgn

University of California
Irvine

Dec r 30, 1975

l\ CI\ N 0 \1J LE D G E f :1 EN rr S

'I'he work on which this r is ba.':?ed was originally done a.s part
of a computer subsystem ucly for a vehicle avionics system at Rockwell
International I would like to thank Mt·. 3aak Jur ison of Hackwell
Internation for the opportunity to do this study and for his guidnnce
during the st y. I would so 1ike to the,mk Prof, Tim Standish of the
University of California at I vine for his comments in reviewing thj_s
report.

l\BSrfizACT

The use of Higher-Order Languages as a programming tool tends to
reduce the developmer1'c co t of ftware. However, there is a penalty in
memory space and e ecution t that must be paid for the use of HOLs
In spite of the fall ng cost of compu er hardwarer there are now, and
will continue to be, nificant set of computer applications where
the penalt in hardware co t exceeds the Software cost saving
associated th the us of HOLs. For such applications there is an
economic justification for coding in Ass ly language.

The tradeoff between HOL Assembly-level coding depends
primarily on the number of systems being develo for the particular
application. The breakeven point is dependent on the hardware
technology, the compiler available, and the size and ed requirements
for the application. For any combination of parametE~rs, there is always
some breakeven point beyond ich Assembly-level coding gives minimum
cost

INTRODUC'l1 ION

Almost everyone agrees that computer programs should be written in
some Higher-Order Language (HOL). It's quicker, easier, cheaper, more
readable, etc. than. writing the same program in an Assembly
Language (AL) ., Yet, a survey of commercial and ind us trial users of
computers (reference 1) revealed that nearly 1/3 of all programs were
being written in Assembly Language. Why is this so? Can it be due to
the clinging to old habits, or ignorance? Or can there be some good
reason for using Assemblers in this day and age?

The answer is that Assemblers are still cost effective in many
applications. I recently completed a design study to select a computer
configuration for an Avionics system. The costs for different
arrangements was derived, and the effects of software on the costs were
also considered. For this system, the software was estimated to cost
approximately $1,500,000 if coded in Assembly Language and somewhat less
than $1,200,000 if a Higher-Order Language was used.

However, there was a penalty involved in using the Higher-Order
Language: the computer would have to be faster and have a larger memory
to meet the requirernentso This increased the unit computer cost from
about $32,000 to about $37,000. While this additional $5,000 was
certainly less than the $300,000 difference in the software cost, this
system was to be inst.alled in 200 to 400 vehicleso At this rate the

'$300,000 savings in software cost would be more than offset by the $1 to
$2 million additional for the hardware. In fact, for any number of
systems beyond 60, using the Assembler turned out to less expensive
overall.

This paper describes
Assembly Language rather
economically.

some conditions under which the use of
than some Higher-Order Language is justified

BACKGROUND

While the analysis presented here was originally part of a study to
select a computer configuration ·for a military aircraft. The analysis
applies in general to any computer application which will be. used in
many copies. Thus, it applies to most applications of microprocessors
and microcomputers.

In aerospace systems, computer hardware is configured carefully not
merely from cost considerations, but also because of restrictions on
allowable. weight, size and power. Thus, reducing the amount of computer
hardware is very important in such systems. But,. as
microminiatur ization is continuing to reduce the physical . restr ictior.s,
cost is emerging as the major factor in minimizing computer size.
Therefore, cost is the item to be minimized in this analysis, and other
factors, such as scheduling, and availability of trained personnel are
ignored a

The costs considered in this paper are the procurement cost for the
computer hardware and the development cost for the software.

Hardware-Software Tradeoffs. In the past, systems have been built by
speci fyTng-t~hardwar-efir st and then designing· the software to tie the
system together. Until complete functional specifications are
available, the software cannot be designed, or even reasonably well
estimated. If the computer system design is frozen before good software
estimates are available, the computer sizing may be wrong.--1I too much
capacity is designed into the system, the cost will increase;
approximately linearly with memory and with the square-root of the speed
(Grosch's law). If too little capacity is designed, the software cost
will go up with the effort to "squeeze" the requirements into the
available capacity, ai shown in Figure 1, taken from reference 2.

0

3

.µ
U'I
0
u
0)

c
•r-
E
E
ro
S-
o;

2 0
S-

0...

(1)

>
•r-
..µ
rd
r-
(]J

cY

1
/

,.;/ /

/ . I

0 00
Excess Computer Capacity, percent

Figure 1. Effect of Computer Capacity on Programming Costs.

The original figure in reference 2 was qualitative Three points
were derived from cost data for software development for the Minuteman
missile, where speed and memory capacity were restricted. These data
verify the trend mentioned in reference 2.

Since many aerospace applications, and ·most applications of
microprocessors involve hundreds or thousands, or even millions (as in
calculators or automobile controls) of duplicates of the hardware, a
small saving in unit cost will be worth some additional expenditure in
software development cost, as long as the software cost does not climb
too high up the curve in Figure 1.

§~f twaf_§_~O ~ts. For many years, the gr owing costs of developing
software has been of concern to many people Several technical symposia
and workshops have been devoted to considerations of software
development cost:

1. How to anticipate and estimate them,
2. How to reduce them.

A summary of the problems and considerations was
reference 3.

presented in

Where software and hardware are developed together, the total costs
of software and hardware have been of the same order of magnitude.
However, if an off-the-shelf production computer has been purchased for
some application, the software costs can exceed the hardware cost by
factors of tens or hundreds. The cost of producing hardware has been
dropping at the rate of about 20% per year (reference 2), which means
that in the future, software development costs may greatly exceed
hardware purchase costs, for single computer systems, perhaps by factors
of thousands.

I

Many suggestions have been made to reduce the cbst of software.
Software Engineering has become a recognized discipline that is
replacing the Art of Programming. Among the tools that have been
developed to reduce the cost of software are Higher-Order Languages in
which procedures and data organization may be expiessed, and compilers
for translating such procedures and data into machine code. Compilers
are sometimes significant software development efforts themselves, but
are usually used sufficiently frequently to justify the cost of their
development. Assembly Languages ~e only slightl~ removed from machine
code and require more time and effort on the part of programmers to
express procedures and data organizations. Th~y alsorrequire a detailed
knowledge of the operati6ns and idiosyncracies of the particular
computer for which the code is being generated. However, this detailed
knowledge permits the user to take advantage of these idiosyncracies to
make more efficient use of the memory capacity and speed of the
computer.

PROGRAMMING LANGUAGE CONSIDERATIONS ----------__,=-____ _,_. ___ ---.....~-------------~-----

In her book on programming languages (reference 4), Jean Sammet
doesn't even consider that Assembly Languages are worthy of the label
"programming language 11

• Nevertheless, since assemblers are still being
used for writing programs, I will refer to Assembly Language in this
paper as an alternative to Higher-Order Language. The purpose of this
paper is to compare Higher-Order Languages (HOLs) with Assembly
Languages (ALs) from the point of view of the economics of designing
computer systems for multiple-copy applications. For this purpose, we
are interested mainly in one of the disadvantages of the HOLs relative
to the ALs.

Advantages of HOLs. Experience over about 20 years has shown a
significant--advantage -of HOLs over f\Ls in increasing proqrammer
_productivity. For the .same effort, 2 to 5 times as much code can be
generated with HOLs as with ALs In addition, debugging is simpler:
the compiler catches a great many errors that cannot be caught at the AL
level, the code is much easier to read, and the debugging is done at a
less detailed level. Also, the documentation is simplified, programmer
training is reduced, and the programs, being less machine-dependent, can
be transferred more easily from one machine to another.

In general, experience has shown triat HOLs can reduce a part of the
software development process to between 20% and 60% of the cost of using
ALs~ A rule of thumb that is generally used is that a programmer can
produce so many lines of code in a given time. Since a single line of
HOL code will be compiled into several machine instructions, while a
single line of AL code generally produces only one machine instruction,
the piogrammer is obviously more productive with HOLs .

. r

1r01rAL 330 ---------------]

VALIDA'rION

100

DEBUGGING

80

CODING

50

ANALYSIS

100

RELATIVE
COS 1I1

TOTAL 260

VALIDATION

75

DEBUGGING

60

, CODING
25

ANALYSIS

100

Figure 2u Relative Software Development Costse

Disadvantages of HOLs. The code generation, debugging and testing are
only~par-t of the software development cost. Figure 2 taken fr om
reference 5 shows a summary of Air Force experience with HOLs indicating
a saving of only about 20%, although more recent experience has shown
greater savings; sometimes as much as 50%. But these savings are not
completely free. The development of' the HOL and its associated
compilers is also a significant software development that costs money.
In addition, the code generated by the compiler from the HOL statements
takes more memory and execution time than the code for the same function
generated from AL statements by the assembler. This latter is reflected
in higher hardware costs for a~ditional memory and increased speed. The
HOL and compiler development cost may be ignored if an off-the-shelf
computer with an available compiler is used. The compiler cost will be
buried in and amortized with the computer development cost (and
therefore show up as a slightly higher computer cost, which cannot b0

avoided once the compiler has been developed).

But the additional hardware penalty cannot be ignored if some large
number of computers is to be purchased. Simple compilers may cause
penalties of 100% or more in ~emory and speed, but such inefficient
compilers should not even be considered for the· cases discussed in this
paper. Reference 5 indicates that a penalty of some G0% in space and
70% in time was experienced in some aerospace programs when HOLs were
used. More recent experience, however, with a HOL designed for
aerospace use, shows better performance. In reference 6, Intermetrics
indicates what can be done with a compiler for HAL/S, a language
designed for real-time aerospace applications. Their experience
indicates that for equal effort spent with HOL and AL programming, the
HOL imposes a 10% speed and 12% memory penalty. Note that these results
were achieved with no saving of programming or debugging effort, since
the .same amount of time was spent in both cases. It is reasonable to
assume, therefore, that a 20 to 30% hardware penalty is imposed by the
HOL, with 10% perhaps as the limiting case.

For only a few hardware systems, this is a small penalty to pay
when the software costs may be reduced 20 to 50% and the software costs
may be several hundred times the hardware cost. When many systems are
involved, the software, which is a development item with negligible
reproduction cost, becomes small relative to the hardware. There is,
therefore, some breakeven point for the number of systems involved where
the cost advantage of the HOL relative to the AL is exactly offset by
the hardware penalty. Beyond this point, the AL proves to be the more
cost effective tool, if schedule considerations are not involved.

Again, careful consideration must be given to comput~r capacity if
the HOL advantage is not to disappear entirely. The effect of the HOL
hardware penalty on software cost under hardware restrictions is
indicated in figure 3. This figure was constructe~ from figure 1 by
superimposing the cost for HOL programming, assuming that the basic HOL
savings were 50% and the HOL hardware penalty ranged f~om 10% to 30% .

. / .r

.µ
U1
0
u
O'>
t:

•r-
E
E
IU
$..
tJ)

0
s...

o_

OJ
>

•r-
.p
m ,......
CV
cc

w

0

f ~HOL

'
' \ \
\
\
\
\
\

\

Assembler

50

Excess Computer Capacity, Percent I
. I

100

Figure 3. Effect of Using Higher-Order Languages on the

Programming Cost for a Limited Capacity Computer

vi
+>
s:::

:::>

'+-
0

300

250

200

R • Software Oevelooment
Hardware Unit

Cost Ratio

~ I .. ·.;·
..a I 50 i ! \. · :.::.:·~~ \ '-~ · ' Tce····"'·"c··. K \'. " "- ~ =:....._"""'::::::?-------:r-------"?--------

/
+;

0
0...

~
>
~ 100
~
C.'
l-
co

50

0

/

v
- !

/ t//l v /
/

10 20 30 40

,o
~
~

0"" "()
~~
~

!(:. ..

~~
~"<.;

o..::;..'l:i
~

'q,
.,j-'l:i

so'
~'v

HOL Hardware Penalty, %

Figure Breakeven Point Between Higher Order Language and Assembly
Language Programming

HOL VS AL TRADEOFFS

In a paper presented to the ARINC Avionics Engineering Seminar on
DAFCS (reference 7), · Eo S. Eccles showed some indications of the
dividing line between HOLs and ALs in developing Avionics software.
Figure 4 is a different presentation of the same ideas It shows the
breakeven point as a function of software hardware cost ratio, the HOL
cost saving, and the HOL hardware penalty. The software cost is a
one-time development cost while the hardware cost is the unit cost for a
single computer. The breakeven point may be simply calculated when the
difference between the HOL and AL software costs equals the hardware
penalty imposed by the HOL multiplied by the number of computers to be
purchased.

BEP = (S (AL)

= (S {AL)

S(HOL))/(H(HOL) ~ H(AL))

S (H 0 L)) / P (H 0 L) • H (AL)

where S(AL) is the software cost
S (HOL) is the software cost
H (AL) is the unit hardware
H (HOL) is the unit hardware

using AL
using a HOL
cost when AL is used
cost when a HOL is used

P(HOL) is the penalty associated with the HOL,
as a fr action of the hard v1ar e cost

(1)

Expressing the above as ratios (which are more general and easier to
guesstimate) :

BEP = (1 - S(HOL)/S(AL))/(P(HOL) ·S(AL)/H(AL)) (2)

In figure 4, the vertical scale (number of units at the breakeven
point) is a linear function of the software/hardware cost ratio, and so
the values on this scale may be multiplied by the same factor as the
cost ratio without changing the shapes of the curves (i. e. for cost
ratios of 1,000, 2,000 and 3,000, simply multiply the breakeven point
scale by 10). These curves, however, are quite general and indicate
only trends. Specific values to be used depend on the actual costs of
hardware and software. The costs involved are affected by such
parameters as:

Program size (number of words in final code)

Programmer productivity (code produced, tested and
documented per manmonth) which, in turn, is affected

· by experience and program complexity

Programmer cost (including cost of machines for
producing and testing code)

Effect of language used and other software tools on
productuvity

Scheduling restrictions on development

Cost of basic computer

Cost of adding memory

Cost of increasing speed.

While the information available for the numeric values to be used
for the above parameters is scattered, inconsistent and measured with
different tools and criteria, a simplified model that fits what observed
data is available, can be develope~ The costs used will be the latest
available (1975) and extrapolations five years into the future (1980).

Hardware Cost Model.

The typical control system which will use many copies of the same
program, generally requires a computer with between 4K and 64K of 16-bit
memory and speeds between 100 and 250 KOPS (thousands of operations per
second). In this range, there would be a basic cost for the CPU, I/O,
power supply, assembly and incidentals, plus a cost that varied linearly
with memory size. In addition, the overall cost would vary with speed.
While speed is very expensive when pushing the state of the art, for the
range considered here, Grosch's Law that cost varies with the
square-root of the speed - applies quite well. The basic cost model for
the hardware with 16-bit word memory would then be:

H = N·(B + 16·C·M) ·Sl/2 (3)

where H is the unit hardware cost
N is some constant
B is the basic loqic and power cost
c is the cost per bit of memory
M is the memory size in words

and s is the speed in KOPS

Although for any given application, memory and speed tradeoffs can
be made, as programs grow more complex, both memory and speed
requirements tend to increase. Fdr military avionics systems, from
which most of the data used here was gathered, observations indicate
that the tradeoffs generally make the speed increase roughly as the
square-root of the memory size. Therefore, our model will be modified
as follows:

H = N· (B + 16·C·M) ·Ml/4 (4)

The costs used in this study are for computers designed to military
standards. A typical MIL/SPEC computer in the midrange (16K of memory
and 200 KOPS) would cost today approximately $12,000, exclusive of
memory. The memory is typically 5 cents per bit or $.80 per word, or
about $13,000 for 16K of memory, for a total of $25,000. Substituting
into equation 2, we find:

$25,000 - N· (12,0fJ0 + 8·2 14) 27/2 or N ~ 088

thus,

(5)

The use of HOLs, ~s stated before, imposed both a memory and a
speed penalty on the hardware. Therefore, the hardware cost for the two
approaches to software will be:

H (AL) = 0 8 8 • (B + 16 • C Q M) ·Ml/ 4 (6)

H (HQ L } :: • 0 8 8 • { 1 + Pr-.) l / 2 • { B + 1 6 • C • M (1 -1 P .) } • IV l / 4
u r - M ! (7)

and the difference between the two will be:

a H = . 0 s s ~(.s. M 1 I 4
0

((1 + P
8

) 1 I 2 ~~ i) + i 6 • c . M 5 I 4 • ((i +PM) (i +PM) 1 I 2-1)) (s)

Where P
8

is the speed penalty

and PM is the memory penalty

for use of HOL

For illustrative purposes, the costs thus calculated for computers
covering the range of req~irements mentioned above are shown in Table 1.
The basic size, speed and cost of 16K of memory and 200 KOPS and $25,000
are assumed as above, and the costs calculated from equations 6 and 7
for smaller and larger computers. At the present time, basic computer
cost, B, is about $12,000 and memory cost, C, is between $.02 and $.05
per bit. Cost extrapolations show that memory costs are decreasing at
the rate of about 35% per year, and the rest of the computer at the rate
of about 20% per year. Thus, extrapolating to 1980, we get values for B
of $4,000 and for C of $.002 to $.005 per bit. For the HOL, a penalty
of 25% was assumed for both memory and speed.

1I1able 1 Unit Computer Costs

Memory Cost, per Bit

Nominal 1975 1980
I Memory Size $.05 $.02 $6005 $.002

.. ···-

AL Hi, 80 0 9,400 3,100 2,900
4I<

HOL 12,700 10,700 3,500 3,300
----·-----

AL 15,500 12,200 3,900 3,600
81\

HOL 18,900 14,300 4,500 4,100
··-·----

AL 25,000 17,200 5,300 4,500
16K

HOL 31,600 20,700 6,300 5,200
-~--_.....~·-...-.----- --~----~-·--·--~t. --·-----·-·-
I AL 45,200 26,600 7,800 6,000
I 32K

HOL 59,300 33,200 9,600 7,000

AL .9 0 r 7 f,rn 46,400 13,000 8,600
641\

HOL 122,10 60,200 16,600 10,400

Software Cost Model

Software costs are much harder to come by than hardware costs.
Records that have been kept on software costs and programmer
"productivity" are not directly comparable, since different
organizations have different measuring and accounting procedures~
Re rence 3 shows a 20· to 1 spre in programmer productivity over
nearly 170 programs. Reference 8 indicates differences in individual
programmer productivity of factors up to· 26 to 1. Reference 2 shows
cost per instruction ranging from $2 50 to $15.00 which, in turn, is
less than the commonly used 160 instructions per manmonth at a cost of
$4,000 per rnanmonth (including overhead, computer usage and profit) or
about $25 per instruction. Much of the variation in these numbers comes
from measuring costs for many kinds and sizes of programs with different
scheduling constraints and accounting procedures.

For this study, we will take a simple viewpoints The complexity
and size of the programs will vary over a small range and all other
factors will be assumed to be fixed, except for the difference between
the use of HOL or AL for writing the programs. The only measure of
program size and complexity will be the amount of memory used The cost
per instruction increases with size and for the kind of program being
considered here, our experience indicates that for AL programs, the cost
will be approximately

s (AL) = $ 2. M.5 I 4 (9)

The 5/4 power was chosen to simplify the final expression used for
comparison of HOL and AL, but is as good an approximation to the
available data in the range considered as any. The ratio S(HOL)/S(AL)
can Vary from .5 to .8, although the conclusions drawn apply even if
this ratio goes to zero. The values of S(AL) corresponding to the
memory sizes in table l are:

Table 2
Basic-·Softwar e Cost

-f ~~=-=: ~:~:hl
8K 156,0001

16K 370,000
32K 882,000
64K 2,097,000

UNIT COST COMPARISON

To illustrate the influence of the number of systems used on the
HOL vs AL cost tradeoff, figure 5 shows the per unit cost of both
hardware and software as a function of the number of units. The basic
software costs are t~ken from equation (8) or Table 2, and the savings
for the HOL are taken as 25%. The basic computer costs are taken from
equations 5 and 6 assuming a penalty for the HOL of 25% for both speed
and memory. The values can be seen in Table 1

The conclusion to be drawn from figure 5 is that Assemblers are
tools that will be with us for some time to come. For multiple copies
of small control systems, they provide cost savings over the use of
HOLs.

For today's computers and the class of programs considered, AL
coding is more co~t effective beyond a relatively small number of
computers --- in the dozens. Even if the HOLs reduced the software
costs to zero (100% saving), the hardware penalties would override this
saving at Te-ss than 100 computers in mo~:;t casesc The small arcs in
figure 5 show the breakeven points as a function of HOL cost saving.

Extrapolating to 1980, the values may change somewhat, but the
conclusions, in general are the same. The breakeven point is now in the
hundreds of computers, but the trends are to applications requiring many
copies, especially with microprocessors, where the numbers in a given
application may be in the millions (for automotive applications, for
example).. While figure 5 is illustrative only, the general trends are
clearo

Breakeven Point. The points of interest in
are t crossover points where the total
equal. Above this nu~ber of units, it does
programming. These breakeven points can be
using equations 5, 6, and 8:

the abovementioned figure
costs using HOLs and ALs are
not pay to use HOLs for
calculated from equation (1)

$2°M5/ 4 .(l ~ S(HOL)/S(AL))
BEP ~

~8. (l + ~;0 I 20~ + l ~~-.-;:-(~~~)-) ~-~T/4-=--~~-~;.-(-~ + 16-:c~~)~M 1 /4-

2 2. 7. MG (1 ~ s (HOL) Is (AL))

2 2., 7 ·Me (1 - S (HOL) / S (AL))

-13--:-((i ~P;)112-·=-1)--+~i6-:c~r~~-((i + p M)-~-(i~-J?;)TTx-~1)-
(10)

which can be evaluated for various assumptions of program size, HOL cost
advantage or hardware penalty, and basic hardware costs. This model
assumes that the basic software costs will not change However, the

..µ
<>r­
.,-

~

~
GJ
P-

..µ
U'l
0
u

·---- -.-- --
000, 0CO ~

'"

•I -- •

-------------- __ .._ --- ---·----- ···-----------

00 000

""' .

' ' ',
"',

. Program
Size

<!\.
........ ',--

'

i

" '
.........

........
........

'

"' '

" ' ,,

I

' ;

' '

" ' "

'"
'" "'-,'

;
--,--1

'

'-'

'~

8K
...........

·' ' !
..........

'
-.::

; '""" .~

~.""~-,

I

----·-- --~-- ----·-------------------

i~ssemb 1 er

-- ~ -- - .. . - __ _; -- -

-:-:..~ _- --: -:-:-:- .. - ~ - - ------~ -~

i
I

I i

: l I !
~ 000 1- ---- --- --- . J_ ------- __ I_ l ___ '._ _______ J_ ___ _J_

0 100

Number of Uni ts

gure 5. Variation of hardware plus software cost per unit computer as a
function of the number of computers purchased

(a) 1975 Memory Cost, 5¢/bit

sy

.,,
-'·

(CJ
c
-s
ro
\.)1

.....-. .--...
er Cl__.. 0

::::;
c+

-1 ...J.

c..o :::s
'1 c
Ul (i)

Q_

::::::__
ro
3
0

~
0
0
(./)

c+

N
-A--
...........
er
-J,

c+

-'•

0
0

<:>

0
0
0

I -- --

;_ ____ _
I
I , __ ,, __

l----
1

1---
1

1==·

Cost per Unit

r- . T --
I
I

I - .

!

(''.)

0

CJ
C)
0

I I

I I I

i I
I• ~

I .
I !

I
J

J

I
I

I
I,

l ...

I

l

i '

I

I - .

I

I i

,,
_,1,

ta
c
-s
m

\]l

.....-
() n

0
::s
rt

......! -Jo

l.D ::s
co c
0 <D

0..
:s: ..__,
ro z 3
0 c

(.~
:3
CT
ro

n -s
0 0 l/) , .. -I)

c
--1 ::;

............
.....

N rt
-A-

(/)

............
O"'
-'• rt .

0

0
0
0

'I.
'/

-=-=--(==: .~::_
I I

I
I

----!----- -
I

---+--- ·--,---· '

------- t_ ___ J __ ·-
j I

---·------~-----~ -

----~-~--L_ _____ ~
.L .

Cost per Unit

:r:)::::.
0 C/)
I V>

CD

fJ<

0
0
C)

+
-0 - ·--1. : {/) -s - - _, ,.

....1.0:
N lQ,
ro ~. , l

3

I
.(_
I

! I
I :

---.-- ___ j ----

0
0
0

0
0
0

! I '

! , i I i;
I I

I

I
i I -1-1
: I
i I
I I

I I
! j
: I

\·j
H-i
i . !

. - ... I. l

I I
I I ,- ~ i .
i I

- ,_ ~-j \ l i I

, i ! ! I

-r--tr·I
--~ i---1- I

I '

,,
....Jo

l.0
s::
)
CD

_J'1

r~<

...--. n
0.. 0
~- :::l

rl-
-1.

--I

lO
co
0 z
:s: c
CD 3
3 er
0 CD
""S
~

-s
0

() -1)
0
(/)

c+
-1.

c+
-J (/)

'-...
U"1
-A-
'-...
er
-'·
c+

0

; .
--- I -- -

I
--·-t · ---i-'-

1 / J *- ~ -- ---: _ _J

Cost per UnH

0
0 [T[l- ..

' I , I
I -1-1-1---·---·--
' I I i i I

- j I ·) ~ -- -- - - --

! J

1

i I i /
T .

-·r- .

·' ;
--· --1

" 0
0

9

i '

i ; I

I ! i j
' I : I l ! : I

I l i I

--'----'.·-h--1
~ ! i I
~--;--1-!

i I

effect of a change is linear; the breakeven point
with overall software cost.

creasing directly

The BEP increases monotonically with program size, but is limited
as M increases without bound, to

1.42·(1 - S(HOL)/S(AL))/C·((PM+l)·(l+Ps)l/2 - 1) (11)

The same limit applies as the basic non-memory cost goes to zero
(B ~ 0)e

The BEP decreases as the S(HOL)/S(AL) ratio increases, i.
there is little saving in HOL software, there is no point in
But even if the entire software cost disappears with the use
the BEP is limited by the hardware penalty to

2 2 e 7 • M/ (B • { (1 +PS) 1I2 ·~ 1) + 16 ° C • M • ((1 +PM) • (1 +PS) l I 2 - l) }

e., if
using it.
of HOLs,

(12)

If the memory cost becomes so low that it is negligible compared to
other computer costs, the BEP depends mainly on the HOL speed penalty:

(13)

But, since, in many cases, speed and memory can be traded, the HOL
compiler in such a case should be designed to take advantage of the low
memory cost by sacrificing compactness to gain speed (e. g. by
unwinding loops, replacing function subroutines by table look-up, etc.).

REAL CONSIDERATIONS

The above analysis assumed continuous variations of cost with
memory size and speed, and approximates very inaccurate data on software
costs with the use of simple functions. In reality, memory comes in
finite increments, usually of 4096 words, although in the future these
increments will tend to be larger. For this reason, the cost penalty
for HOL use may be zero if the memory penalty remains within one module,
but will jump discontinuously if an additional module is required.

There is a lower limit on computer speeds that are actually
available. Below this limit, there is no cost saving for slower
computers. But there is also a maximum attainable speed for a single
computer and, above some limit belo~ this maxi~um speed, the cost of
speed increases much faster than Grosch's Law indicates.

Software cost may include more than just initial development.
Through the lifetime of some systems, requirements may change, or the
software may be redesigned for other reasons. In this case, the
software cost will not terminate. In addition, scheduling
considerations may override the cost considerations. There is no doubt
that HOLs permit significant reductions in elapsed time for the
development of software.

CONCLUSIONS

There is a definite hardware penalty paid for using HOLs, which
means that when large quantities of com ers are to be used for a given
application, ALs provide a cost advantage The breakeven point with
today's technology is in the tens or hundreds of computers. With
tomorrow's (1980) technology, this breakeven point may be in the
hundreds or thousands The main advantage then of using HOLs for
software · development lies in the schedule advantage of making
modifications more quickly. A secondary advantage may be the ability to
salvage a large percentage of previously developed software if it is
decided to replace the computers with a different type during the
lifetime of the system.

The computer system selected should be exible and modular.
Initial estimates of computer requirements may be wrong. Therefore, the
system should be designed to allow incremental addition or removal of
speed and/or memory capacity. This modularity should include memories,
CPUs and special hardware (e. g. special functions to speed up
operations, or additional registers). This will avoid the software
penalty of trying to squeeze a program into available capacity (see
Figures 1 and 3).

Finally, the tools used for software development should not be
restricted Assembly Language should be used in combination with a
Higher-Order Language. The HOL can be used for initial design and
development, with the AL used when speed or memory becomes critically
close to some boundary. As shown in figure 3, the cost of using HOL
exclusively will rise rapidly when an attempt is made to avoid going to
the next increment of hardware module. At this point, it may pay to
11 tune 11 the code developed by the HOL compiler by using the AL, and thus
follow the solid line in the figure and save the incremental hardware
cost with a little additional software effort. In general, it is good
practice to use, with judgment, whatever tools are available. But for
any given small to medium size system, it probably does not pay to
develop tools as sophisticated and expensive as a special-purpose
Higher-Order Language and its associated -~pt_~!!l_i~ i 12g compiler .

l Programming Language Usage
Andreas S. Philippakis
Datamation, October 1973

REFERENCES

2. ~,hrough the Central "Multiprocessor" Avionics Enters the Computer Era
A. 0 Williman and C P o'oonnel
Astronautics and Aeronautics, LJuly 1970

I

3. Software and its Impact A Quantitative Assessment
Barry ~!\I. Boehm
Datamation, May 1973

4. Programming Languages: History and Fundamentals
Je E. Sammet
Prentice-Hall, Englewood Cliffs, N. J. 1969

5. Aerospace Higher Order Language Processing
Christine M. Anderson
Technical Report AFAL-TR-73~151
Air Force Avionics Laboratory, June 1973

6 HAL/S Configuration In ction
Intermetrics Corp. Pr~sentation to NASA, July 1975

7 Software in Digital Systems - An Engineer 's Approach
E. S .. Eccles
ARINC Avionics Engineering Seminar on DAFCS, May 1973

8. Man-Computer Problem Solving
He Sackman
Auerbach Publishers, Inc., 1970

