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ABSTRACT

"This paper describes regression analysis of certain types of
experimental data obtained from geotechnical testing. By suiﬁable
transformation, nonlinear equations may be converted into l%near
equations if appropriate weighting factors are applied to the data
before performing the regression analysis. ' Sample probléms in BASIC
which can be used with desktop computers are described. Typical

examples from soil mechanics and rock mechanics are included.

KEYWORDS
regression, nonlinear functions, transformation, weighting factor,

experimental data, soil and rock mechanics.
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REGRESSION ANALYSIS OF EXPERIMENTAL DATA
USING DESKTOP COMPUTERS

Douglas Frink! and Panchanatham N. Sundaram'

Introduction

Regression in a broad sense connotes the functional relationship between
two or more variables. In the case of two variables, say x and y, the rela-
tionship may be either linear or nonlinear resulting respectively in a regres-

sion line or regression curve. In many experiments, one variable x is the

cause, in part at least, of the variation in the other wariable y.

In scientific experiments, one or both of the variables x and y may be
subject to a certain amount of unpredictable variations often called “scatter."
In geotechnical tests, performéd éithéf i;'théblgbéfétory or in the field,
scatter in the derived data is more of a rule than exception. If the data is
plotted on a graph sheet the problem becomes that of fitting é line or curve

)

to the data points. It has been customary for practicing engineers to draw
this curve by “eye judéement.“ However, engineering organizations are in-
creasingly using desktop cémputers and computer graphics equipment to perform
engineering computations. These devices can assist the engineer to select the
mathematical function best suited for the analysis of experimental data, pro-
vided suitable software is available., This calls for the use of appropriate
stétistical procedures for handling the experimental data. The purpose of

this paper is to introduce simple programs in BASIC to perform regression

analysis of certain types of experimental data. The programs presented were

1staff Scientist, Earth Sciences Division, Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720.



written specifically for use in HP9845 series computers. However, with appro-
priate modifications, the sample programs may be used in other computers which

use BASIC.

Theoretical Basis

Linear Functions. Suppose that a function is to be fit to a set of data pairs,

x; and y;. The method of ieast—squares is often used to get the "best fit" to

i
the data set. According to this method, if f(x) is the best fit then the

qguantity “chi squared,” should be minimum and may be given as

N
32 = z {y, - £x) )2, (1)
i=1 :
where w; is the weighting factor to be applied to the values of y;. In the

absence of any information, wj; = 1. Normally, w; is inversely proportional to
the variance of Yo (Note: this approach assumes that most of the scatter

occurs in yj.)

As an example, we assume that
f(x) =a + bx, _ (2)
Therefore,

2 ; 2 :
a7 = I{y; = (a + bx)}"w. . ' (3)

The condition for the minimum value of x2 is satisfied by the differential
equations called Normal Equations, viz., y

N

2 : v
a (y; - a bxi)wi o, | | (4)

i=1



N

N : :

axz

el zz (yi - é - bxi)wixi = 0. v S (5)
i=1 :

Equations (4) and (5) are linear in the two unknowns a and b. Matrix formula-

tion of the two equations may be given as:

iw, X W, a Ly.w.
i i'i ii . : . :
5 = (6)
Ix.w Ix.w b IX.y.wW,
i'i i'i ifi'i
or
(Al(a) = (c) | (M
or

-1 :
(a) = [A] (c). : _ (8)
Thus equations (4) and (5) may be solved by simple algebraic methods or by

matrix inversion using equation (8).

This method of linear least'sqﬁarés‘can be'ektended to a polynomial of

of the form:

=a_+ax+a x2 + a %" | ' (9)
y 1 2 3 *** “n#1”

Since there are n + 1 unknowns, the method of linear least squares will result
in (n + 1) linear algebraic equations. When n exceeds 3, it is customary to
use matrix-inversion techniques to solve for the unkowns. Many desktop compu-

ters have built-in functions to perform matrix inversion.

Nonlinear Functions. There are functions for which the normal equations are

not linear functions of the unknown parameters, Let us take for example the

hyperbolic equation which is often used to fit axial or deviatoric stress and



axial strain data for soils,

b4 v ) :
T e—————— 1
Y a + bx (10)
Thus,
% 2
= X ———L"‘- (11)
X Y:'L-a-i-bx:.L v A

The normal equations are:

x, X W,
Lly. - =0 (12)
i a+bxi (a +bx.)2
i
2
9 X W,
tly., - =0 (13)
ioas+bx Jas bxi)2 '

Equations (12) and (13) cannot be easily solved., However, if we trans-
form equation (10) into
Y=aX +b | : (14)
where ¥ = 1/y and X = 1/x, then:

x? = £y, - b -ax %! =0 (15)

where w;' is the transformed weighting factor. 1In general, if a transforma-

tion function T is applied to y;, then the weighting factor w; should be
transformed to w;', using equation (1) and the methods described by Guest (1],
so that,

. 2
w, = wi[1/(aTVayi) l. _ (16)

1%
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In this case,

'1‘=-1- (17)
Yy
so that
w!' = y?w, , (18a)
i ii . .
or ‘
)
4
= . .
wi=y, (18b)
since wi =1 for all i.

The effect of the transformed weighting factor wi' is to make the values
of the unknown parameters obtainedvby minimizing e§uation (15) as close as
possible to the values obtained by minimizing equation (11). However, the
normal equations from equation (15) are linear and thus much simpler to solve

than the normal equations (12) and (13). Substituting equation (18a) in (15)

and finding the differential coefficients with respect to a and b respectively,
we have

a2 X3

T’=—=2(Y°.-b-ax.)— =0 (19)

a i i Y4
i

and
2 . .

9x - 1 '

E— = L(Yl - Db - aXi) Y4 = 0. . - | (20)
i

Normal equations (19) and (20) are linear in a and b and can be easily solved.
However, it is important to remember that whenever a transformation is made of
the original function then the weighting factor should also be correspondingly

changed.



~

Another common function used in curve-fitting is the power law of the

form,

y = ax" _ ' (21) “

Taking logarithms

L/
logy =log a + n log x (22)
then
2 _ z{log y. - (log a + n log xA)}zw' | (23)
x | i i i
where
2 .
' =
Equation (23) results in linear normal equations.
A slight variation of equation (21) is of the form,
y =a (x - b)q o » . . (24)
where a, b and n are the unknown parameters. Proceeding as before;
logy = log a + n log (x - b) (25)
or
Y = A+ nX (26)
where
Y=1logy; A=1loga and X = log(x - b) ' (27)
This gives
) ) _ < .
= - - '. . [
X z(yi A nxi) w! (28)
1%

Differentiating the "chi-squared"™ equation (28) with respect to A and n

respectively, yields the following ndrmal equations:



Z(Y, =A -nx.)w' =0 L (29)
i i’ : _ , :
o ' _
Z(Yi A “Xi)wix_i 0. (30)
These two equations are linear. However, the third normal equation, i.e.,
differentiating equation (28) with respect to b, yields

E(Yi -A- nxi)wj'_/(xi -b) =0~ (31)

and is not linear in b. Thus equations (29) through (31) cannot be easily
solved for the unknowns A, n and b. An efficient method amenable to computer

usage is called the Secant method (or Newton's method), and is explained below.

A trial value for b, say by, is assumed. Using this value, the magni-
tudes of a and n are obtained by solving equations (29) and (30). Using these
values of a, n and by, the dérivative axz/ab (eq. 31) is evaiuated as d4q. If
b1bis the exact solution, then d4; will be zero and no further compuﬁation is
necessary. Otherwise, the value of b, is either'inéreasea or decreased by a
small amount and a new value of the derivative (eq. 31) is determined as dy.
The secant slope is given as

d, -d
S=-b—?—_—b-1—. ' , (32)
2 1

A new value for b3 may then be estimated by extrapolating the slope to the b

axis as

d

, |
by=b, -3=. | » (33)



In general,

b(i + 1) - b(i)

i + 1) -4 ° (34)

b(i + 2) =b(i + 1) = d(i + 1)

The process is repeated until the values of a, b and n all satisfy the three -

normal equations (29) through (31) to the desired accuracy.

There are many other types of functions to which linear regression anal-
ysis may be applied after proper transformations. Due to space limitations,
only a limited number can be discussed here, Table 1 is a summary of the dif-
ferent steps in the regression analysis for the types of fitting functions

discussed in this paper.

Programs in BASIC

The‘unknowﬁs in the normal functions given in Table 1 can be efficientiy
solved by matrix-inversion technique. This may be accomplished by the use of
Subroutine Poly listed on Table 2. This routine is specifically written for
HP9845 series computers; however, with suitable modification it can be inco:-
porated in other computer systems that use BASIC language. In this subroutine,

the polynomial function has been described in the most general form as

N ..
Y= z am+i-1xm+l-1 (35)
i= |

where m is either a positive or negative integer. This general function can

be degraded to specific forms by proper choice of m and N. For example, v
m=0and N= 2 leads to y = a + a x . (36)
m=3and N = 1 leads to y = a x3 : (37)

3



and

m= -1 and N =.2 leads to 1/y = a_1x-1 +a. S (38)

In the case of logarithmic transformation, Equation (27) can be used énd
thus the subroutine Poly can be uséd for the .].i.near regression anaiysis by
specifying m = 0 and N = 2. The factors m and N are identified as *Omin® and
*Ncon"® respéctively" in subroutine Poly. The purpose of the variable "Flg” in
the subroutine .is to identify the type of transformation done on the weighting

factor, Wy e

Tables 3 and 4 give partial listings of two programs named respectively,
INVERT and SECANT, that call subroutines Poly. To conserve space, only the
portions of the programs that call Po_l'y and illustrate the application of. the
mathematics are included in the listings.. The unlisted positions are graphics=-
control statements used for the author's specific applicatiohs. Program INVERT
uses reciprocal transformation procedures in the éurve-fitting procedure. In
program SBECANT, subroutine Poly is used with the Secant method. Users may

incorporate the statements on Tables 3 and 4 (or equivalent statements in

langquages other than HP-BASIC) into their own data analysis programs.

Application Examples

i

Two examples, one from soil mechanics and the other from rock mechanics

are presented to illustrate the use of INVERT and SECANT.

.Example from a Soil Mechanics Laboratory Experiment. The nonlinear stress-

strain behavior of soils is frequently characterized by a hyperbolic relation-
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ship between deviatoric stress and axial strain [2], that has the form of
equation (38). The stfength parameters'from such a fit are used in finite-
element analysis of soil behavior under gravity and applied loads [3]. A

typical exémple of the deviatoric stress versus axial strain'data from consol-

idated undrained triaxial compression test of a medium~dense cohesionless sand
(4] is plotted on Figure 1. The hyperbolic law (eq. 10 or 38) was fitted to

the data points using program INVERT which calls subroutine Poly. The plot of
the hyperbolic curve fitted to the data points is shown as Curve 1 on Figure 1.
The maximum deviatoric stress, (04 = 03),1rr Projected by the curve fitting is
equal to '1/a' and is 11.19 MPa. Thus, the failure raﬁio,va, [2] is given by

(o0, = o) ‘
1 3'f 9.50
= = = 0.817 (39)
£ (c1 03)ult 11.19

where (04 = 03)¢ is the compressive strength and is obtained by inspection
from the data points on Figure 1. When R¢ takes the value 1.6 the hyperbolic
curve fitted through the data matches the empirical data at failure. However,
fo: the particular data shown on Pigure ‘1, the hyperbolic curve is a relatively

poor match of the stress=—strain behavior at failure.

Program INVERT can be used to fit the data with a higher order equation

of the type
y = = > " (40) "
~a+ bx + cx
or as per equation (35), with m = =1 and N = 3, we have «
1 = a x--1 +a + a.x. - (41)
y -1 o 1
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Curve 2 on Figure 1 shows the results of such a high-order fit to the triaxial
test data described above. . Unlike the hyperbolic curve described previously,
this fit does not give an asymptotic value for the deviatoric stress but gives

a peak value of (04 =~ 03)¢ defined by

\

y LI (42)

max b + s/;;

which occurs at x = vac. Using equatioﬁ k42) the peak or failﬁfé deviatoric
stress is given as 9.19 MPa. This is very close to the value 9.15 MPa taken
from the empirical data. The axial strain at which the deviatoric stress peaks
is given as 0.235, which is soméwhaﬁ greater than fhe value of 0.15 actually
observed during the test. The foregoing example demonstrates how computer
techniques can be used to find a function that best fits a set of empirical

data.

Example from a rock mechanics laboratory exgeriment.';Theﬁrelationship between

effective normal stress (dgs¢) and the normal closure (§) of a fracture may be
expressed by a hyperbolic law of the form [5]
o _=af—5—\" | (43)
eff ) -8
max
where Gmax is the anticipated maximum closure. Since this value of maximum
closure cannot be determined directly from the experimental data, it must be

estimated as a by-product'of the curve-fitting process.l'”

Equation (43) is not amenable to straight forward linear regression even

after substituting y = ¢ and x = 6/(8p,, = §) since the term x contains the
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unknown parameter §p... However, program SECANT enables the-deterﬁination of

three unknowns a, n and §,.,. Figure 2 is a plot of some typical normal stress

() versus average fracture deformation (§) data taken from laboratory tests

on granite [6]. As shown on the figure, the curve fitting performed using

SECANT gives a value of b, the initial aperture, of 54.919 microns. This per- &
mits estimates of absolute fracture closure to be made from the experimental

measurements.

Conclusions

Simple programs in BASIC have been éresented that enable reg:ession
ahalysis of geotechnical data to be performed using the method of linear
least~squares in cases where the functions are nonlinear. 1In perfofming the
linearization it is important to apply the proper weighting factor to the
data. Whenever the original function is transformed to linear form, the
weighting factor must also be suitably transformed. The programs described
perform these transformations and give results which are statistically

consistent.

By applying the mathemati;al principals discussed in the paper, programs
for handling other types of functions can be developed. Programs of this type,
that use the appropriate statistical procedures, can be used to rapidly deter-
mine the form of the curve that is best suited to the analysis of experimental

data used in estimating the properties of geologic materials.
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Table 1. Details of Regression Parameters.,.

Function Transformed Function
y = f(x) Y = F(X) x2 Normal Equations
. 2 : , _
Y = a + bx s o0 L[Yi - (a + bxi)] . Z(yi - a - bxi) — 0
}:(yi -a - bxi)xi = 0
n n, .2 \ n
Yy = ai+ awx + e0e + anx eve Z[Yi"(a1 + a2x + se0 + anx )] L(yl - a1 ~ azxi - see = anxi) =0
n .
E(yi A - A~ e - anxi)xi =0
etc. '
x 2 4 E(Y, - b - ax,)(x./¥h =0
y = 37 bx Y ~-aX +b E(Yi -b - axi) (1/Yi) i i i 4i
where Y = 1/y I(Y, - b -ax, )(1/Y,) =0
i i i
and X = 1/x
Y = ax" Y = A+ nX LY, - (a + nx)13(y?) LY, - (A +nX,)]ly> = 0
ax = n i Yy i 7% T
where . . 2 _
Y=1logyorIny Z[Y1 ‘(A + nxi)]yixi =0
X = 1log x or 1n x
A =1log aor lna
= af b)"' Y = A+ nX -2—(¥ QA-x)2(1/ ) (Y -A-nx)(z)-o
y = a{x - = n X = i~ n i Yj_ i Yi -
where : ' ' 2

™

——

<
i

Y=1logyor lny i A - nxi)(xiyi) =0

X = log(x - b) or 1ln{x - b)
A log a or 1n a

Ily; - A - nxi)tyf/(xi -b)] =0

A
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1¢
Ze
3L
4¢
e
(7]
72
3¢
s
1e2
112
12¢€
13¢
147
14
1c¢
17¢
18¢
1902
229
z1¢
222
1%
4&2
22¢
<EQ
272

8% -

2z¢
K1)
31?

‘7

‘!‘
-

’42
35¢
ce
37e
28¢
g2
4g¢
417
4c@
43¢
£4¢
45¢
4€0
47¢
ane
£92

Foly: ! SUB-PROGEAM FOE L
J
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TABLE 2
LISTING OF THE PROGRAM Po]y

1 MR FRE IR IR

!
SUB Poly(X(¥),Y(¥),%(®),Ept,rcon.omin, il Fi%))
\ . .
1 RN AT R RN
INEAF LEasT SQUARAS FIT 0B PLLYANODMIAL
! PAY ®i MOLIFISL TC A 3CSU3 ROUTINE- ‘
! INPUT AFRAYS:
! X(*) - X DLTA
! Y(*) = Y DaTa
! X AND vV AR® EITHEER . IFANSFORMEL Ci CRIGINAL LATA
1 $(*) = ASSIGNELD #EIGEHTS ‘
! 1F #(Ij=2 TH:zN 41 IS €ET 70 1
! INPUT VARIAZLES:
! Kpt - NUMFER OF X,Y PAIRS
! Ncon=NUHBER OF CCNSTANTS IN POLYAOMIAL
! Orin-SMALLEST ORCat TO EX USED IN POLYNIDWIIEL G e,-Ll,=&,24C;
! Flg = FLAG FCR TRANSFORM (.« =NO TRANSFCRN)
! IF ARRAYS X AND Y AFE TAY LOGARITIMS GF D3y LATL Task USE
1 Fle=1 (BAS. 14) OF rli=2 {8A3: o)
! IF ARRAYS X AND Y ARY RECIFROCALS CF 1%: DeTh USL Flg=3
! ODTDUI'
! E(*) - ARKAY BOLLING SOLUTION CCNSIANTS
! R(1)=COEFFICIENT CF SMALLIST PO®iR OF £; &(:) +2+XT PO&iR, RTC
!
OPTION BASE 1
LI™ A(Npt.Ncon),F(Kpt),At(Ncon,hpt),C(Xcon, con)
LI™ L(Necn), F(hron.hccn) F(Ncon)
TCI I=1 TC Apt

T1=wW (1) . B ,
IF W(I)=3 TIEN wi=1 ! IF MO #_IGETS ASSIGRESD 1;:\ ASSUN: wzi15HT=1
w1=SCH(ABS(VW1)) - ) sqR

1F Flp=1 TIEN W1=91*12"Y(I;

IF Fleg=2 THEM wil=w1*:XP(Y(I))

IF Flg=3 THIN W1=Wwl1*1/(Y(I)*Y(1),

B(I)=Y(I)*¥1
FOR J=1 TO Mcon
A(1,7)=X(1)" (Ncon-J+omin;*.1

NEXT J

NEXT 1

MAT At=TRN(A)

MAT C=At*a

MAT D=AL*T

MAT T=INV(C)

MAT F=F%T

FOR I=1 TO Acon
R(I)=F(Ncon+i-1)

AEXT I

SURIAT



13¢
14¢
12¢
162
17¢

1&¢

1¢e
20?2
zZie
r3 a3
25¢
24¢
<8¢
2€0
z7e
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TABLE 3 |
PARTIAL LISTING OF THE PROGRAM INVERT

P T T Y

FRCGRAM: INVZEET

PREPAREI 8Y LCUG FRINK 12/1£/81

LAYFENCF BFTEXFLEY LA:OrATURY

#RITTYN SPICIFICALLY FCR nP 5828 32hlild

MAY JAVE TO BF MCDINIET FOF CT:=:k COMZUTEES

#******#********4#

FITS AK EQUaTION OF T3 FOFM ¥=x/{a + tx - cex ¢« + gtc)
TEANSFORMED T0 Y=ex (-1) + b + cx + etc aal&: l=1/y

! USES POLYNOMIAL FIT

OFTION &A3: 1

S SUD sap G G e W W vem ad s

DIM Sieg(S7),Delf(5¢),ku(€),lelm:25),hesult(25,.4(57),a(5¢

FOR I= 1 0 ¢ ! Rial DaTs
PEAD 3i.(1), elt(I) _
IF 316(1)< TEEN Out

NEXT I

Qut: Not=I-1

¥C2 I=1 TO Not
X(I)=Telf(1)
Y(I)=1/51¢(1)

NZXT I .

Ncoa=3 ! SPECISIZS Nu OF CONSTANTS
Crin=-1 ! LOw:ST CADEX Ci

Flg=2 ! USE RECTPROCAL THRANSFORM

CALL Polv(Y(*) Y(*),a({*),Npt,Ncon,omin,slg, b *!

zs¢ Contin: !

), T8¢ ) hIE)



"17
TABLE 4
PARTIAL LISTING OF THE PROGRAM SECANT

1z § SRR A SR RO N AR ROOT W AK AT A A ORI R
2¢ !

32 ! PaCGRAM SFCANT

4¢ ' WEITTEN SPRCIFICALLY FOR EP 332D 3EhIZS -

1/ ! MAY EBAVE TC FE MCLIFIXL FOR CGTuoin COMPUTEAS

€2 ] REEEERERRREREXETERE R XREE

¢ ! '
- e@ ! . _ .

ce 1 FITS AN ZQUATION OF Tdi FOIM Y=A(X/(B=Xj} &

1¢? ! 105 TEAANSFORMATION I3 USED TO LINBARIZR 1HE 2UMCIION.
11¢° ! SECANT METZCL IS USLAZL 1C S(LVi 5CR t.

12¢ ! COMVEEGAINCE CFITZKION FOR T IS SaSEZ CN P:RC ciilnvi
13¢ ! DIF¥EREMNCE FETWEEN SUCCR35IV: ILLRATILAJ LFTES

142 ! NOEMAL EQ 2 CHANGES SIGN.
1z¢@ OPTION BA3E 1
lec DIM™ Sig(54),Pelf(E82),F¢

(z8),Fesult(2g)
172 TIm 4(52), x( 2),7(%0) E(*)
EEG

18¢ Crit=.2¢¢1 ! CONVERGENCE CRITERINN
1SC  FOR I=1 TC 5¢ ! RAD DA
2¢e READ Sigs(1), Delf(')

21e IF Sig(I)(Z TEEIN Out

2.0 DPels=MAX(Delf(I),D2ls)

23¢  NFXT I

24¢C Out: Npt=I-1
25¢ B¢ (1)=Dels*1.22

262 Flz=1 ! SPECIFIZS ICG IFeNSFCaiM
27 Ncon=2 ! NO OF CONSIANTS

26¢  Omin=2 ! SMALLE®3T (&DiR OF X

23¢  SOF M=1 T0 25

z2ee FCR I=1 TC Npt

312 ¥(I)=LsT(L2l1£(I)/(B2(M)=Lelfil)))

320 Y(I)=IGT(31g(I))

23¢ NEXT 1

240 ! ‘ ,

232 CALL Poly(X(*),Y(*),d(®) Npt NcoL,Omit,flg k(%)
2E¢ !

37¢e A=R(1)

3¢ N=R(2)

e GOSMP Deriv ! CALCULATE LERIVATIV:

4@ result(M)=Der ! NCRMAL EQ O

1@ PREINT "EESULT,DELMX ;Eesult(M);3e(M]

azy IF M=1 THEN Init

432 Ratio=ﬁesu1t(M)/ﬁesult(M-l)

440 IF (&BS((3BE(M)=-Tg(M=1)i /Bg(M=1;)<Crit, aNl (Ratio<¢, TZiM Comtir
452 Slope=(fesul t(M-1)- aesult( "))/ LR (M= )=EciMy )
4¢3 BZ(M+1)=32(M)~Eesul t(M) /Slcpe '

47¢ GOTO Cont

467 Init: DRA(M+1)=1.05%be (M)
49¢ Cornt: thT M -
‘47 PRINT NON=CONVEFGENT
e1e STCP

£2¢ Periv: Der=¢

230 FOF I=1 TC Npt

847 w=%(1)

£50 IF W=¢ TAIN W=1 .

2€e IF Fleg=1 TEEN ¥=u*1p Y{I)*12"Y.I)

€7¢  Der=Der+(Y(I)=A=N*X(I1))/(3¢(M)-Delf(l);~«
E&@  MNEXT I : '

53¢ PETURN
€2¢ Contin: Delmx=EFZ(M)
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* Triaxial Test Data
Medium Dense Sand

Curve
y=x(a +bx)

Max. dev.stress
(1/b)
11194,58 kPa

Curve 2
y=x (@ +bx +cx?)

Max. dev. stress

(17(b+2/ac))
9192.14 kPa

] |

a=3.25E-06 1/kPa
b=8.93E-05 1/kPa

a=3.90E-06 1/kPa
b=7.11E-05 1/kPa
€=9,09E-05 1/kPa

05 1 .5

~ Axial strain

2 .25

- XBLB8211-2649

Curves Fit to Triaxial Test Data for Sand.
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Deformation of a Fracture

in Granite
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af: b = 54,919 micron
&H n=1.319
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Average fracture deformation (micron)
XBL 8211-2650
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Figure 2. Curve Fit Through.Rock Fracture Deformation Data.
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