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ABSTRACT OF THE THESIS

Structural Equation Modeling with Latent Variables

By

Saeed Karimi-Bidhendi

MASTER OF SCIENCE in Electrical Engineering and Computer Science

University of California, Irvine, 2021

Chancellor’s Professor Hamid Jafarkhani, Chair

Discovering causal relationships between variables is a difficult unsupervised learning task,

which becomes more challenging if there are unobserved common causes between pairs of

variables. Often it is not feasible to uniquely recover causal relations when only obser-

vational data is available. When experimental data is obtainable through interventions, we

present a method for guaranteed identification under mild assumptions. We consider a linear

structural equation model where there are independent unobserved common causes between

pairs of observed variables. The generative process of latent effects is given by the mixing

method of blind source separation problem. Our objective is to disentangle the observed

causal effects from latent confounders and learn the model parameters that are consistent

with observational and experimental data. By exploiting the invariance of latent factors

across various interventions, we present matching methods as a way to combine the informa-

tion across various interventions. Finally, we propose an identification algorithm that uses

efficient tensor decomposition for a unique recovery of model parameters and disentangling

the latent confounders from observed causal effects.
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Chapter 1

Introduction

...out of nothing I have created a strange new universe.

János Bolyai

1.1 Background

W
hile causality implies lawlike necessities, probabilistic models are still the common

mathematical language for analysis of causal relations since observations are often

plagued with uncertainty. In graphical interpretation of probability, vertices correspond to

random variables and edges correspond to certain relationships between pairs of variables.

Most of our discussion involves a directed graph G, where each directed edge represents a

cause-and-effect relationship between two vertices, with no cycle, sometimes referred to as

a directed acyclic graph or DAG. The acyclic property of the graph comes from the fact

that a cause precedes its effect in time and no variable is a cause of itself. This graphical

representation reduces the chain rule decomposition of the joint probability over variables
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to a factorization in which each variable is condition on a specific set of variables. More

precisely, for a variable such as Xi in the DAG G, its Markovian parent Pa (Xi), or parent

for short, is the set of variables in G from which there is a direct edge to the variable Xi;

therefore, the chain rule factorization is reduced to

P (X1, · · · , Xn) =
n∏
i=1

P (Xi | Pa (Xi)) . (1.1)

Intuitively, not only Pa (Xi) represents the set of direct causes of Xi, but also it mediates

any association between Xi and other variables since Pa (Xi) intersects all directed paths to

Xi in the DAG G. The distribution P and DAG G that admit the factorization in Eq. (1.1)

are called compatible or Markov relative with each other. This correspondence is further

captured by both a graphical criterion called d-separation that provides a simple way to

characterize the independence relations between variables [27], and the notion of stability,

also referred to as DAG-isomorphism or faithfulness, which states that all independence

relations embedded in a probability distribution P is entailed in the structure of G.

It is worth noting that the interpretation of DAGs as carrier of independence hypothesis

does not necessarily imply causation; however, there are several advantages of building DAG

models based on causal rather than correlational information. For instance, judgements re-

quired in the construction of the model will be more meaningful and reliable. Axiomatically,

if conditional independence relations are result of causal relationships, then representing

those relationships would be a more natural and reliable way of expressing what we believe

about the world. Another significant advantage of building Bayesian networks based on

causal information is their ability to respond to external actions or interventions, which will

constitute most of our discussion throughout this work.

The ability of causal Bayesian models comes from the assumption that each parent-child

relationship in the graph is an autonomous mechanism, i.e. we can change one such link
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Figure 1.1: An exemplary change in the graphical model under intervention.

without changing other relationships. It can be easily seen that causal models contain more

information than probabilistic models since they can tell us how the probability of events

would change due to actions while probabilistic models only tell us how probabilities would

change due to observations. The assumption of autonomy is essential in causal models since

by its virtue we can assume that all changes are local and we only need to modify the factors

in Eq. (1.1) corresponding to the action taken, and leave the rest unchanged.

Actions are commonly denoted by the do(.) operator where do (Xi = xi) represents the action

that sets the value of the variable Xi to xi [27]. Note that while the observation Xi = xi

can lead to conditional inference for the value of the parent set Pa (Xi), the intervention

do (Xi = xi) isolates the variable Xi from its parents and eliminates the mechanisms that

used to affect Xi. In particular, the action do (Xi = xi) removes edges of the graphical

model G that are from Pa (Xi) to Xi, as illustrated in Figure 1.1. This in turn changes the

factorization in Eq. (1.1) since the terms corresponding to intervened variables are removed

from the factorization.

Historically, causal models were introduced using functional equations rather than graphi-

cal models. In functional causal models, causal relationships are expressed in the form of

deterministic functional equations, and probabilities are defined through the premise that

some variables in these equations are hidden. Generally, a functional causal model is a set
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of equations of the form:

Xi = fi (Pa (Xi) , Ui) , 1 ≤ i ≤ n (1.2)

where Pa (Xi) is the set of variables that directly determine the value of Xi, and Ui is the

hidden or background factor. If the set of functions in Eq. (1.2) are linear, the resulting

model is referred to as a linear structural equation model (SEM) and Eq. (1.2) becomes:

Xi =
∑
j 6=i

ai,jXj + Ui, 1 ≤ i ≤ n. (1.3)

Note that in linear models, Pa (Xi) corresponds to those variables whose coefficients are

non-zero. In a structural causal model, each variable has a distinct autonomous equation

associated to it. Equations are autonomous in the sense that alternation in one equation will

not change another one. In particular, the action do (Xi = c) corresponds to substituting

the i−th equation in Eq. (1.3) by Xi = c. The learning task of function approximation for

the functional causal model in Eq. (1.2), also known as causal inference, is crucial in many

scientific applications and it is at the heart of this study.

1.2 Causal Discovery

Discovering causal relationship between two variables can be translated to see how sensitive

the value of one variable is to a change in the other variable. This can be done through

calculating the post-interventional distribution of a variable, performing soft or hard actions

etc. Observational data plays a critical role in causal discovery and inference; however, it

may not provide sufficient information for a unique identification, especially if the causal

model includes latent variables [27].
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In principle, there may be several models that would fit a given distribution or observation.

When only observational data is available, according to the principle of Occam’s razor, one

would choose the simplest model that is equally consistent with the data, which we refer

to as the minimal model [27]. Although assumptions such as minimality and stability will

limit our search to a smaller space of structures, they often lead to a class of observationally

equivalent models and do not guarantee a unique or practical solution for the problem. Hence,

interventions accompanied by their respective experimental data are essential for inference

in these models. Intuitively, each action assigns a set of controlled values to a group of

variables and isolates them from their parents in the causal graph. The response of the

system to these actions, that comes in the form of experimental data, provides information

about the sensitivity of variables to those that are under intervention. While the choice of

intervention varies from one application to another, here we consider a class of latent variable

models called independent component analysis (ICA), and provide a general framework that

guarantees unique recovery of model parameters.

1.3 Related Works

Recently, learning-based methods have been an integral part of predictive modeling [22, 23].

However, for many applications in various fields such as economic, sociology, medicine etc.,

it is desirable to discover causal relations among variables instead of association between

them because predictions based on causal dependencies are more robust and reliable. Latent

variables have gradually become an inseparable part of modeling in the past few decades

[34]. In many practical applications of empirical sciences, there exist variables that are

unobserved but nevertheless affect the visible factors in the model. Utilizing hidden vari-

ables not only leads to a more descriptive representation of the model, but also relaxes the

computational complexity of many algorithms through dimensionality reduction. However,
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parameter learning for latent variable models can lead to many or possibly infinite models

that would fit the same observational data due to unobserved effects. Thus, it is sometimes

necessary to make some assumptions about hidden variables or the structure of graphical

model in order to make the identification process feasible [4]. A method is presented in [27]

to calculate the post-interventional distribution when no latent variable exists in the causal

model. Moreover, causal learning algorithms such as IC and PC are presented in [27] and

[36], respectively, to identify an observationally equivalent class of causal models under the

assumption of causal sufficiency where there exists no unobserved common cause between any

two observed variables. Recent works on causal model learning in the presence of latent con-

founding variables generally take only observational data into consideration [17, 30, 39], and

they ignore the information embedded in the experimental data obtained through actions;

thus, strong modeling assumptions is usually made for the identification process which may

not hold in many practical settings. As another example, the linear and acyclic LiNGAM

model in [32, 33], and its generalization to the latent confounder setting in [30], are proposed

for causal discovery under the assumption of non-Gaussian noise on the observational data

in an ICA-based model; however, only a class of models compatible with the data can be

recovered and no unique identification is guaranteed. Generalization of LiNGAM to hidden

variables and latent Gaussian confounders can be found in [18] and [6], respectively. The

equivalence class of models obtained by these methods can be further narrowed down given

background knowledge or assumptions such as polytrees for the structure and graph of the

causal model [19, 31].

The main characteristic of causal models is their ability to perform interventions and ob-

tain experimental data [27]. There is a rich literature on causal discovery using controlled

combinatorics and search experiments [10, 12, 21]. By allowing multi-variable actions, a

linear cyclic causal model can be recovered in the presence of confounding effects [20]. When

the causal model contains no latent or selection variable, the causal directed acyclic graph

can be identified using methods such as PC algorithm. Reference [36] demonstrates that

6



the PC algorithm is both sound and complete under faithfulness and causal sufficiency as-

sumptions. However, these methods fail in the presence of hidden or selection variables.

Reference [36] represents Fast Causal Inference (FCI) algorithm to learn the Markov equiva-

lence class of DAGs with latent and selection variables under faithfulness assumption using

conditional independent relations among visible variables. Although [36] and [37] demon-

strate the soundness of FCI algorithm, this method is computationally expensive for large

graphs. Therefore, several variations of FCI algorithm have been proposed to relax its com-

putational complexity. Reference [35] introduces the Anytime FCI algorithm in which the

size of conditioning set is limited by a specific bound. Moreover, [7] represents RFCI algo-

rithm that uses a smaller number of conditional independence tests than FCI. Although both

Anytime FCI and RFCI are typically less informative compared to FCI, in many practical

scenarios their performance is close to FCI. A method is presented in [38] to recover the

causal order in causal latent variable models. Recently, several methods have been proposed

to view interventions as active data queries with disparate costs [2, 15], and learn the causal

graph with confounding variables in a constrained budget setting [1, 13, 14, 24].

In general, recovering the directed acyclic graph between observed variables in a causal model

can be accomplished in various ways such as incorporating the causal knowledge that has

been acquired through past observations and experiments, testing a collection of conditional

independence relationships to accept or reject a candidate graph based on the d−separation

criterion [27] etc.; however, recently various causal discovery methods have been proposed

for this purpose. In [11, 20], a method is presented that uses atomic actions to recover the

causal ordering. In particular, the method in [11] uses n − 1 actions to recover the causal

directions. The idea behind their method is to examine which variables have changed after

performing single-variable actions. Hence, throughout this work we assume that the causal

ordering of observed variables in our model is known or recovered using these methods.
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1.4 Contributions

In this work, we consider a new model, called structural equation modeling with latent

variables (SEM-LV), where a linear SEM governs causal effects on each observed variable,

and mutually independent hidden variables affect observables through a latent generative

process given by the ICA model. Our aim is to disentangle the causal effects between

observed variables from latent confounders, and learn the model parameters using a carefully

selected set of interventions. First, we exploit the invariance of latent factors across different

actions, and propose a set of matching algorithms to find a unique correspondence between

system’s response to different actions. Then, we present a framework that not only provides

necessary and sufficient conditions of identifiability, but also it can be used to determine all

possible sets of actions for a guaranteed and unique recovery of model parameters.
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Chapter 2

Problem Formulation

In this section, we study the graphical representation of the structural equation model SEM-

LV, as shown in Figure 2.1, that consists of n observed and k latent variables, respectively.

Let X = {X1, · · · , Xn} be the set of observed variables, also referred to as visible variables,

and let H = {H1, · · · , Hk} be the set of latent variables, also referred to as hidden or

confounding variables. We denote a sample realization of observed and latent variables by

~x = (x1, · · · , xn)T ∈ Rn and ~h = (h1, · · · , hk)T ∈ Rk, respectively. The system model in

Figure 2.1 can be represented as a directed acyclic graph (DAG) G = (X
⋃
H,E) where

vertices consist of observed and latent variables, and E includes all directed edges between

vertices, which represents causal relationships between neighboring variables. Note that the

acyclic property of the graph G is due to the requirement that a cause precedes its effect in

time, and a variable cannot cause itself [27]. In particular, there is no self loop in the graph

G. For an observed variable Xi ∈ X, the parent set of Xi is denoted by Pa(Xi) ⊆ X
⋃
H, and

it contains all vertices in the graph G from which there is a directed edge to Xi. We assume

that the latent variables are independent, and the causality between latent and observed

variables is modeled by directed edges from the latent to observed variables, and not the

other way around. Hence, the DAG G can be regarded as a quasi-bipartite graph.
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Figure 2.1: Graphical representation of the SEM-LV model.

2.1 Structural Equation Models

Inspired by the classical independent component analysis (ICA) method, we consider a linear

model for the structural equations and causal relations between visible and latent variables:

~x = A~h + B~x, (2.1)

where A = [ai,j]1≤i≤n,1≤j≤k ∈ Rn×k is referred to as the mixing matrix, and B = [bi,j]1≤i,j≤n ∈

Rn×n is referred to as the causal matrix, respectively. The mixing matrix A corresponds to

the edges between latent and observed variables in Figure 2.1, and represents the correlation

among them. The causal matrix B corresponds to the edges between observed variables in

Figure 2.1, and encodes the causal relationships among them. By rearranging the terms in

Eq. (2.1), we can rewrite the system model as:

~x = C~h, (2.2)

where C = (I−B)−1 A is the new mixing matrix, and I ∈ Rn×n is the identity matrix.

Throughout this work, we assume that the mixing matrix A is a full rank matrix. Moreover,
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we suppose that the faithfulness assumption holds, i.e. if there is a causal path from Hj to

Xi then ai,j 6= 0, and similarly bi,j 6= 0 if there is a causal path from Xj to Xi. The objective

of this work is to disentangle causal effects of visible variables from hidden variables, i.e. to

recover the mixing matrix A and the causal matrix B in Eq. (2.1) by performing interventions

on visible variables.

2.2 Interventions

An intervention or action refers to a controlled experiment that sets the value of one or more

variables, and isolates those variables from the effect of their direct causes. Note that we can

only perform actions on the set of visible variables X since the variables in H are hidden.

Intervention changes the structure of the causal graph G in Figure 2.1 in the sense that it

removes all the incoming edges to the set of intervened variables. This in turn changes the

structural equation modeling, and in particular alters the mixing and causal matrices A and

B in Eq. (2.1). However, since the parent-child relationships in the graph are assumed to

be autonomous mechanisms [27], i.e. we can change one such link without changing other

relationships, then performing an action on a particular set of variables does not change the

linear models corresponding to other variables.

Here, we narrow our attention to those actions that set the value of variables to zero. Borrow-

ing the do(.) operator notation from [27], the model after the intervention do(Xi = 0|∀i ∈ S)

on the set S ⊆ {1, · · · , n} of visible variables can be written as:

~x = AS~h + BS~x, (2.3)

where AS and BS are formed by setting the row i of matrices A and B to all-zero vectors,
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for all i ∈ S. By rearranging the terms, Eq. (2.3) can be rewritten as:

~x = CS~h, (2.4)

where the new mixing matrix CS = (I−BS)−1 AS is also referred to as the response of

the SEM-LV model to the intervention do(Xi = 0|∀i ∈ S). Let PS = [pi,j]1≤i,j≤n ∈ Rn×n

be a diagonal binary matrix such that pi,i = 0 if i ∈ S, and pi,i = 1 otherwise. We refer

to PS as the action matrix since it is in one-to-one correspondence with the intervention

do(Xi = 0|∀i ∈ S). Now, we can model the relationship between matrices AS and A as:

AS = PSA. (2.5)

Similarly, the relation between matrices BS and B can be modeled as:

BS = PSB. (2.6)

Hence, the response to the action do(Xi = 0|∀i ∈ S) can be rewritten as:

CS = (I−PSB)−1 PSA. (2.7)

Our goal is to use the observational data, along with the experimental data from an ap-

propriate set of actions, to recover the mixing matrix A and the causal matrix B. More

precisely, we aim to find the necessary and sufficient condition on the selected set of actions

that renders matrices A and B identifiable.
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2.3 Assumptions

Throughout this work, we make the following mild assumptions about the parameters and

the system model in Figure 2.1. Since the mixing and causal matrices are usually random

and noisy in practice, these assumptions hold in many practical applications.

Assumption 1. For any subset S ⊆ {1, · · · , n} with cardinality of at least 2, every two

columns of the submatrix of A restricted to rows in S are linearly independent.

Assumption 2. Let A(i, j) be the element in Row i and Column j of the mixing matrix A.

For all i, j ∈ {1, 2, ..., k} such that i 6= j, and for all t ∈ {1, 2, ..., n} we assume that:

κi ×A(t, i)4 6= κj ×A(t, j)4, (2.8)

where

κi = E
[
H4
i

]
− 3, ∀i ∈ {1, · · · , k}. (2.9)

Assumption 3. The mixing matrix A is full rank, and every k rows of A constitute a full

rank k × k matrix.

Assumption 4. Let P1 and P2 be two binary diagonal matrices and define D =
(
I −

P1B
)−1

P1 −
(
I−P2B

)−1
P2. If

∣∣{i | P1(i, i) 6= P2(i, i) , 1 ≤ i ≤ n}
∣∣ ≤ k, then the column-

wise concatenation of matrices A and I − D†D has full row rank; otherwise, the row-wise

concatenation of D and I−AA† has full column rank, where A† and D† are any solution to

AA†A = A and DD†D = D, respectively, such as the pseudoinverse of A and D. Matrices

A† and D† are also called the weak inverse or g−inverse of A and D, respectively [26, 28].
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Chapter 3

Tensor Decomposition and the

Method of Moments for ICA

The blind source separation problem, first emerged in the framework of neural modeling

and signal processing [16, 29], consists of an unknown linear system that mixes a set of

hidden source signals and provides a linear combination of them as the observable output.

Due to the unknown characteristics and permutation of the hidden variables, the scale and

permutation ambiguity is an inherent feature of the blind source separation problem. Even

if the scale and permutation ambiguity is permitted, the blind source separation is still an

ill-posed problem without additional assumptions. In particular, [9] showed that no solution

exists for Gaussian and temporally i.i.d. sources. Hence, several assumptions have been

proposed to make the problem well-posed. Two common such assumptions are as follows [5]:

(i) Sources can be temporally i.i.d. but non-Gaussian, which corresponds to ICA methods;

and (ii) Sources are non-temporally i.i.d. but they can be Gaussian.
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Figure 3.1: Independent Component Analysis (ICA) model.

3.1 Independent Component Analysis

The assumption of non-Gaussian sources that are temporally i.i.d. leads to a class of methods

referred to as independent component analysis (ICA), where the unknown sources are jointly

independent. More precisely, the ICA model admits the graphical representation in Figure

3.1 and satisfies the following equality:

~x = A~h, (3.1)

where the matrix A is referred to as the mixing matrix. ICA methods aim at estimating the

mixing process to decompose a multivariate random signal into a set of independent non-

Gaussian sources. Hence, provided observations over the visible variable ~x, these methods

can be applied to the structural equation models in Eqs. (2.1) and (2.2) to recover columns of

the mixing matrix C in Eq. (2.2), which are also referred to as the independent components

(ICs). Due to the indeterminacy of permutation and scaling, we can only recover columns of

the matrix C up to the permutation, absolute scale and sign, which we refer to as the PSS

indeterminacy for brevity.

While the mixing matrix C in Eq. (2.2) can be recovered up to the PSS indeterminacy of the
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independent components, there is no unique way to decompose it to two matrices A and B

such that C = (I−B)−1 A holds. This implies that the observational data is not enough to

identify the mixing and causal matrices A and B, respectively. Hence, we resort to perform

interventions and use the experimental data to make the identification feasible. For an action

do(Xi = 0|∀i ∈ S) on the set S ⊆ {1, · · · , n} of visible variables, we can use ICA methods

to recover the columns of the response matrix CS up to the PSS indeterminacy. Our goal is

to find an appropriate set of interventions that guarantees identification of the mixing and

causal matrices A and B despite the inherent indeterminacies in the process.

3.2 Tensor Decomposition and the Method of Moments

Several methods have been proposed to learn the mixing process of an ICA model. Here,

we use the method in [3, 8] for guaranteed recovery of the independent components with

polynomial sample and computational complexity. This method, which we refer to as tensor

method or the method of moments, uses high-order moments of the stochastic vector ~x to

recover columns of C in Eq. (2.2) up to the PSS indeterminacy. In particular, let M4 be

the 4−th order cumulant of the zero-mean vector ~x defined as:

M4 = E [~x⊗ ~x⊗ ~x⊗ ~x]−T, (3.2)

where the 4−th order tensor T is defined as:

[T]i1,i2,i3,i4 = E [xi1xi2 ]E [xi3xi4 ] + E [xi1xi3 ]E [xi2xi4 ] + E [xi1xi4 ]E [xi2xi3 ] , (3.3)

for all 1 ≤ i1, i2, i3, i4 ≤ n. If the expected value of the variable xi is not zero, the term xi in

above equations should be replaced with xi−E [xi]. Using tensor decomposition algorithms,

such as the alternating power updates proposed in [3], the 4−th order moment M4 in Eq.
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(3.2) can be written as:

M4 =
k∑
i=1

κi~c
(i) ⊗ ~c(i) ⊗ ~c(i) ⊗ ~c(i), (3.4)

where ~c(i)’s are columns of the matrix C in Eq. (2.2), and κi denotes the excess kurtosis

defined as:

κi = E
[
H4
i

]
− 3, ∀i ∈ {1, · · · , k} (3.5)

and is a measure of non-Gaussianity. In particular, κi = 0 implies that Hi is a standard

normal random variable.

The 4−th order moment M4 in Eq. (3.2) can be calculated empirically from observations

over visible variables, and further decomposed to its rank-one components as in Eq. (3.4)

that yields columns of the matrix C. Note that the PSS indeterminacy can be translated to

the fact that there is no preferred ordering of the summation terms in Eq. (3.4), and values

of the excess kurtosis parameters are unknown. In Section 5, we present an algorithm to

alleviate this indeterminacy, which is a crucial aspect of the identification method presented

in the next section.
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Chapter 4

Causal Effects Identification

In this section, we study the effect of an intervention on the causal graphical model in Figure

2.1, and how the extra information from system’s response can be used to recover the mixing

and causal matrices A and B, respectively. Note that the i−th row of matrices A and B in

Eq. (2.1) corresponds to the visible variable Xi, and models the direct causal effect of other

variables on the value of Xi. Since Pa (Xi) is the parent set of the variable Xi in the causal

graph, i.e. the set of variables with a directed edge to the variable Xi in Figure 2.1, we have

ai,j 6= 0 if Hj ∈ Pa (Xi), and bi,j 6= 0 if Xj ∈ Pa (Xi). Hence, one approach to identify the

i−th row of the mixing and causal matrices is to perform actions on the parent set of the

variable Xi and study their effect from the observed experimental data. The intuition for

this procedure is that each observed variable takes a value based on the value of its parents

in the causal DAG. Thus, to identify one row that corresponds to a particular observed

variable, each action rules out a few of the sources from which that observed variable takes

its value. Therefore, each action takes a subset of sources and specifies how these sources

contribute to value of the observed variable. For the special case where there is no hidden

variable in the model, this intuition is also consistent with the Adjustment for Direct Causes

[27] which provides a Bayesian perspective on calculating the causal effect based on the
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probabilistic properties of the parent set. However, for the SEM-LV model in Figure 2.1

that contains latent variables, not only is it not feasible to perform interventions on the

latent variables, but also it is not known a priori which latent variables are in the parent

set Pa (Xi). Therefore, the disentanglement of causal effects in the SEM-LV model demands

innovative approaches, as described next.

4.1 Intervention Space and Action Graph

Note that each intervention do(Xi = 0|∀i ∈ S) corresponds to an action matrix PS that

sets the value of the visible variable Xi to zero for all i ∈ S ⊆ {1, · · · , n}. Since there are

2n such subsets S, the space of all possible interventions P = {PS |S ⊆ {1, · · · , n}} contains

2n possible actions. As an especial case, the set S = ∅ corresponds to the observational

data since no action is performed on the visible variables. Also, the set S = {1, · · · , n}

fixes the value of all variables and removes all causal relations in the causal DAG G; thus,

no experimental data is available and no inference is possible. However, for any non-empty

subset S $ {1, · · · , n}, we can infer the response CS to the action PS , up to the PSS

indeterminacy of the independent components, using the method of moment in Section 3.2.

For the SEM-LV model in Figure 2.1 that contains n visible and k latent variables, we

define the action graph as G = (P,E) where the vertices in P correspond to different action

matrices, and E contains edges between every two distinct vertices in P, i.e. G is a complete

graph. For an edge (PS1 ,PS2) ∈ E connecting two vertices PS1 and PS2 , let

RS1,S2 = {i | PS1(i, i) 6= PS2(i, i), i ∈ {1, · · · , n}} (4.1)

be the set of all diagonal indices where two action matrices are not equal. The set RS1,S2 ,

assigned to the edge connecting PS1 to PS2 in the action graph G, is a key factor in deter-
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mining the set of interventions that provides identification guarantee. The definition in Eq.

(4.1) implies that RS1,S2 = RS2,S1 . Moreover, the set R satisfies the following two lemmas.

Lemma 1. For the SEM-LV model in Figure 2.1 with n visible and k hidden variables, let

P be the set of all possible actions, and G be its corresponding action graph. For any three

action matrices such as PS1, PS2 and PS3 corresponding to S1,S2,S3 ∈ {1, · · · , n}, we have:

|RS1,S2 |+ |RS2,S3| ≥ |RS1,S3 | , (4.2)

where |R| denotes the cardinality of the set R. Moreover, the equality holds if and only if two

sets RS1,S2 and RS2,S3 are disjoint. In other words, the cardinality of the set RS1,S2 defined

in Eq. (4.1) satisfies the triangle inequality in the action graph G.

The proof is provided in Appendix A.

Lemma 2. For the SEM-LV model in Figure 2.1 with n visible and k hidden variables, let P

be the set of all possible actions, and G be its corresponding action graph. Let S1,S2, · · · ,Sl ⊆

{1, · · · , n} be l distinct sets so that edges (PS1 ,PS2) , (PS2 ,PS3) , · · · , (PSl ,PS1) constitute a

simple loop in the action graph G. Then, we have:

RSl,S1 ⊆ RS1,S2 ∪RS2,S3 ∪ · · · ∪ RSl−1,Sl , (4.3)

and RSl,S1 is determined uniquely in terms of sets R corresponding to edges (PS1 ,PS2) ,

(PS2 ,PS3) , · · · ,
(
PSl−1

,PSl
)
.

The proof is provided in Appendix B.
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4.2 Recovery of the Observed Causal Matrix

Here, we present a method to disentangle observed causal effects from latent confounders,

i.e. to recover the mixing and causal matrices A and B in Eq. (2.1), respectively. First, we

uniquely identify the causal matrix B one row at a time, then we recover the mixing matrix

A up to the PSS indeterminacy of its columns.

For an action do (Xi = 0 | ∀i ∈ S1) that corresponds to the action matrix PS1 , we can rewrite

Eq. (2.7) as:

PS1A = (I−PS1B) CS1 . (4.4)

Similarly, we have the following equation for the action do (Xi = 0 | ∀i ∈ S2):

PS2A = (I−PS2B) CS2 . (4.5)

Note that matrices CS1 and CS2 in Eqs. (4.4) and (4.5) are recovered, using the method of

moments in Section 3.2, only up to the absolute scale, sign and permutation of their columns.

However, for the rest of this section, we assume that we know the correspondence between

columns of the response matrices CS1 and CS2 in terms of scale, sign and permutation. Later

in Section 5, we present a novel method to infer this correspondence, which is a crucial aspect

of the identification process.

Our strategy to identify the causal matrix B is to recover one row, say j ∈ {1, · · · , n}, at

a time. As mentioned in the beginning of Section 4, in order to identify the j−th row of

matrices A and B which corresponds to the visible variable Xj, we need to perform actions

on other visible variables in the SEM-LV model to study their effect on the value of Xj, and

no action should be performed on the visible variable Xj itself. This implies that for actions

PS1 and PS2 performed to recover the j−th row of the matrix B, we have j /∈ S1 and j /∈ S2.

21



Therefore, if Z = I−B, then the j−th row of both matrices (I−PS1B) and (I−PS2B) are

equal to the j−th row of Z. Hence, from Eqs. (4.4) and (4.5) we have the following equality:

〈Z(j, :) , CS1(:, l)〉 = 〈Z(j, :) , CS2(:, l)〉 ∀l ∈ {1, · · · , k}, (4.6)

where 〈., .〉 denotes the inner product. Note that Eq. (4.6) holds since both sides are equal

to the element aj,l of the mixing matrix A. We can rewrite Eq. (4.6) as:

(CS1 −CS2)
T Z(j, :)T = ~0, (4.7)

which yields k linear equations for identification of the j−th row of Z. Note that the pair of

actions used to obtain k linear equations in Eq. (4.7) corresponds to the edge (PS1 ,PS2) in

the action graph G. In other words, for any two sets S1,S2 ⊆ {1, · · · , n} such that j /∈ S1

and j /∈ S2, the edge (PS1 ,PS2) in the action graph G leads to k linear equations as in Eq.

(4.7). In order to recover the j−th row of Z, we need to determine the number of equations

in Eq. (4.7) that are linearly independent.

Theorem 4.1. For the SEM-LV model in Figure 2.1 with n visible and k hidden variables,

let P be the set of all possible actions, and G be its corresponding action graph. Let CS1 and

CS2 be responses of the SEM-LV model to two action matrices PS1 ,PS2 ∈ P corresponding

to the edge (PS1 ,PS2) in the action graph G, respectively. Then, we have:

rank (CS1 −CS2) = min (|RS1,S2| , k) . (4.8)

The proof is provided in Appendix C.

Theorem 4.1 provides a heuristic on the number of linearly independent equations in Eq.

(4.7) that can be used to identify the j−th row of Z. For an index i ∈ {1, · · · , n}, let Pi ⊆ P
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be the intervention subspace such that PS ∈ Pi if and only if i /∈ S. Therefore, in order

to identify the j−th row of Z, the pair of action matrices PS1 and PS2 , which corresponds

to the edge (PS1 ,PS2) in G, should be chosen such that PS1 ,PS2 ∈ Pj. The information

retrieved from responses CS1 and CS2 is used to identify the j−th row of Z in the form of a

set of linear equations in Eq. (4.7) where min (|RS1,S2| , k) of them are linearly independent

according to Theorem 4.1. However, the information provided by a pair of actions in Pj may

not be enough to identify Z(j, :), i.e. the number of unknown elements in the j−th row of

Z can be larger than min (|RS1,S2 | , k). Thus, we need to consider several edges of G with

vertices in Pj, and study the number of linearly independent equations that can be obtained

from their collective set of equations.

Theorem 4.2. For the SEM-LV model in Figure 2.1 with n visible and k hidden variables,

let P be the set of all possible actions, and G be its corresponding action graph. Let J ={
j1, · · · , j|J |

}
⊆ {1, · · · , n} be a subset of indices sorted in ascending order, and define

Sj = {j} for each j ∈ J . Consider the collection of edges
(
PSj1 ,PSj2

)
,
(
PSj2 ,PSj3

)
, · · · ,(

PSj|J |−1
,PSj|J |

)
in G, and define W ∈ Rn×(k|J |−k) to be the column-wise concatenation of

matrices
(
CSji −CSji+1

)
for 1 ≤ i < |J |. Now, we have:

rank (W) = |J | . (4.9)

The proof is provided in Appendix D.

In order to identify the elements in row j of Z, the set J in Theorem 4.2 should be a subset

of {1, · · · , n} \{j}, and Theorem 4.2 guarantees a certain number of linearly independent

equations for the identification process. In particular, if we choose J = {1, · · · , n} \{j}, then

Theorem 4.2 provides n − 1 linearly independent equations for recovery of the row j in Z.

Since no variable is a cause of itself, we have Z(j, j) = 1, i.e. there are at most n−1 unknown

elements in the j−th row of Z, and these elements can be identified using the aforementioned
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n − 1 linearly independent equations. Note that by choosing J = {1, · · · , n} \{j}, we are

treating all elements of Row j, except for the diagonal element Z(j, j), to be unknown and

let the model to determine their values based on the experimental data. However, alternative

approaches can be used to incorporate properties of these matrices. In particular, the matrix

Z is lower triangular with diagonal entries equal to 1, i.e. there are at most j − 1 unknown

elements in Row j of Z, and we do not necessarily need to perform intervention on all

variables, except Xj, to recover Row j of Z. Intuitively, Row j of Z includes information

on how other variables affect the value of Xj; therefore, we only need to conduct actions

on ancestors of Xj in the graphical representation of SEM-LV model, i.e. X1, · · · , Xj−1,

since these variables are the ones contributing to the value of Xj. Thus, we can choose

J = {1, · · · , j−1} which provides j−1 linearly independent equations, according to Theorem

4.2, for recovery of the j − 1 unknown elements in Row j of Z.

While Theorem 4.2 provides enough theoretical guarantee to design an identification algo-

rithm, it can be generalized to an arbitrary collection of edges in G, which we leave below

as a conjecture since its proof and use is beyond the scope of this work.

Conjecture 1. For the SEM-LV model in Figure 2.1 with n visible and k hidden variables,

let the mixing and causal matrices A and B be uniform random matrices. For the collection

of edges (PS1 ,PS2) , (PS3 ,PS4) , · · · ,
(
PS2l−1

,PS2l
)

in G, the matrix W ∈ Rn×(kl) is formed

by column-wise concatenation of matrices
(
CS2i−1

−CS2i
)
, for all 1 ≤ i ≤ l. We have:

L ≤ rank (W) ≤ U, with probability of 1 (4.10)
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where

L = min

 l∑
i=1

min
(∣∣RS2i−1,S2i

∣∣ , k) , ∣∣∣∣ ⋃
i∈[l]

RS2i−1,S2i

∣∣∣∣
 , (4.11)

U = min

max

 l∑
i=1

min
(∣∣RS2i−1,S2i

∣∣ , k) , ∣∣∣∣ ⋃
i∈[l]

RS2i−1,S2i

∣∣∣∣
 , n− |V|

 , (4.12)

and V ⊆ {1, · · · , n} is defined as V = {v | PSr(v, v) = PSt(v, v), ∀r, t ∈ {1, · · · , 2l}}.

Intuitively, Conjecture 1 provides a lower and upper bound on the number of linearly inde-

pendent equations obtained from a collection of edges in G with vertices in Pj that is needed

to identify the j−th row of Z. Since for all PS ∈ Pj we have PS(j, j) = 1, it immediately

follows that j ∈ V . Therefore, Eq. (4.12) implies that U ≤ n− 1, i.e. regardless of the num-

ber of edges in G that we consider for identification of the elements in Z(j, :), the maximum

possible number of linearly independent equations does not exceed n− 1. However, since no

variable can be a cause of itself, all diagonal entries of Z are equal to 1, i.e. the number of

unknown elements in each row of Z is at most n− 1 as well.

While Conjecture 1 can directly lead to many heuristics to select the collection of edges in G

that is needed for identification, practical limitations demand to perform as few interventions

as possible. In order to reduce the number of actions, the collection of edges in G that are

chosen to identify Z should be as connected as possible. For instance, two edges (PS1 ,PS2)

and (PS3 ,PS4) corresponding to distinct sets S1, S2, S3 and S4, require four actions to take

place; however, two edges (PS1 ,PS2) and (PS2 ,PS3) only require three interventions.

Conjecture 2. For the SEM-LV model in Figure 2.1 with n visible and k hidden variables,

let P be the set of all possible actions, and G be its corresponding action graph. Consider the

edges (PS1 ,PS2) , (PS2 ,PS3) , · · · ,
(
PSl−1

,PSl
)
, (PSl ,PS1) that constitute a simple loop in G

for distinct subsets S1,S2, · · · ,Sl ⊆ {1, · · · , n}. Let W ∈ Rn×(kl−k) be an n× (kl−k) matrix

25



form by column-wise concatenation of matrices
(
CSi −CSi+1

)
for 1 ≤ i ≤ l − 1, and let

W ∈ Rn×(kl) be an n × (kl) matrix that is formed by column-wise concatenation of W and

(CSl −CS1). Then, we have:

rank
(
W
)

= rank (W) . (4.13)

Conjecture 2 indicates that while it is desirable for our collection of edges to be as connected

as possible, having a loop in our selected edges does not increase the number of linearly

independent equations. This implication is also reinforced by Lemma 2 and Eq. (4.3) since

the set RSl,S1 is a subset of the union of sets R corresponding to other edges, and it does

not change the second term in Eq. (4.11). Therefore, in order to recover each row of Z, the

optimal set of edges that lead to minimum number of interventions should be as connected

as possible but does not include any loop, i.e. it should constitute a tree within G.

4.3 Recovery of the Mixing Matrix

Guided by Theorem 4.2, identification methods can be developed to recover the causal matrix

B in the SEM-LV model. In Section 5.2, we present one such method that uses only n

atomic interventions to identify the matrix B. Here, we assume that the causal matrix B

is recovered, and aim to identify the mixing matrix A in Eq. (2.1). Note that although

the method presented in Section 5 can find the correspondence between columns of two

response matrices, the true permutation and dilation of one particular response matrix is

always unknown since Hi variables are hidden by nature. Therefore, while the causal matrix

B can be fully recovered, the mixing matrix A can only be identified up to the permutation,

absolute scale and sign of its columns.

Once the causal matrix B is identified, there is no unique way to recover the mixing matrix
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A. Here, we consider two scenarios depending on whether or not observational data is

available for the variable ~x.

In the first scenario where the observational data on ~x is available, the new mixing matrix C

in Eq. (2.2) can be recovered up to the PSS indeterminacy of its columns using the method

of moments in Section 3. Then, the mixing matrix A can be recovered as:

A = (I−B) C. (4.14)

In the second scenario where no observational data exists on ~x, we show that the available

information, provided by actions performed to identify B, is enough to recover A and no

further intervention is required. Note that for all actions such as PS that were performed to

identify Row j of B, we have PS(j, j) = 1. Therefore, among all actions that were performed

to identify all rows of B, there exists a collection of actions such as PS1 ,PS2 , · · · ,PSm that

for P =
∑m

t=1 PSt we have P(i, i) ≥ 1 for all i ∈ {1, · · · , n}. Now, the mixing matrix A can

be recovered as:

A = P
−1

m∑
i=1

(I−PSiB) CSi . (4.15)

Eq. (4.15) comes from the fact that if P(i, i) > 1 for a particular index i, then the summation

of terms in right-hand-side of Eq. (4.15) results in the i−th row of A to be counted more

than once. Hence, the correction factor P
−1

is used to make the required adjustment.
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Chapter 5

Elimination of PSS Indeterminacy

Theorem 4.1 indicates that any pair of action matrices, such as PS1 and PS2 , would yield

min
(∣∣RS1,S2∣∣, k) number of linearly independent equations for identification of row j of the

causal matrix B provided that j /∈ S1∪S2. However, as mentioned in Section 4, this statement

holds only if the PSS indeterminacy between columns of the response matrices CS1 and CS2

is eliminated. In this section, we provide subroutines to eliminate this indeterminacy based

on the selected actions. Then, we present a method accordingly that uses atomic actions to

render matrices A and B identifiable.

5.1 Independent Component Matching

Based on the set of intervened variables, the intervention space P = {PS | S ⊆ {1, · · · , n}}

can be partitioned into three disjoint subsets as P = Pα ∪ Pβ ∪ Pγ where:
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Pα = {PS | S ⊆ {3, · · · , n}} , (5.1)

Pβ = {PS | S ⊆ {2, · · · , n} , 2 ∈ S} , (5.2)

Pγ = {PS | S ⊆ {1, · · · , n} , 1 ∈ S} . (5.3)

In Section 5.2, we present an identification algorithm that uses actions in Pα ∪Pβ to recover

the causal matrix B except for its first column. Then, pairs of actions such as PS1 ∈ Pα∪Pβ

and PS2 ∈ Pγ are utilized to recover the first column of B. In what follows, we explain in

details how the correspondence between columns of two response matrices can be found for

three different scenarios of a pair of actions such as (PS1 ,PS2).

5.1.1 Matching Subroutine 1

In the first scenario, we consider the case where PS1 ,PS2 ∈ Pα, and explain how to find

the correspondence between independent components of their respective response matrices.

Let MS1
4 be the 4−th order tensor, defined as in Eq. (3.2), that is calculated from the

experimental data corresponding to the action matrix PS1 . The 4−th order tensor MS2
4 is

defined similarly. Now, using the method of moments in Section 3.2, we have:

MS1
4 =

k∑
i=1

κi~v
(i) ⊗ ~v(i) ⊗ ~v(i) ⊗ ~v(i), (5.4)

MS2
4 =

k∑
i=1

ηi~w
(i) ⊗ ~w(i) ⊗ ~w(i) ⊗ ~w(i), (5.5)

therefore, the response matrices CS1 and CS2 can be written as:
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CS1 =
[
~v(1) | ~v(2) | · · · | ~v(k)

]
, (5.6)

CS2 =
[
~w(1) | ~w(2) | · · · | ~w(k)

]
, (5.7)

where the permutation, absolute scale and sign of the columns in Eqs. (5.6) and (5.7) are

unknown. The following Lemma is the key to find the correspondence between columns of

CS1 and CS2 .

Lemma 3. For the SEM-LV model in Figure 2.1 with n visible and k hidden variables, let

CS1 and CS2 be response matrices to actions PS1 and PS2 in P, respectively. Then, the first

min (S1 ∪ S2)− 1 rows of CS1 and CS2 are the same, i.e. we have:

CS1 (1 : min (S1 ∪ S2)− 1 , :) = CS2 (1 : min (S1 ∪ S2)− 1 , :) . (5.8)

The proof is provided in Appendix E.

Let C̃S1 =

[
~̃v
(1)
∣∣∣~̃v(2)

∣∣∣ · · · ∣∣∣~̃v(k)
]

be the submatrix of CS1 in Eq. (5.6) restricted to its first

min (S1 ∪ S2) − 1 rows. Similarly, let C̃S2 =

[
~̃w

(1)
∣∣∣ ~̃w(2)

∣∣∣ · · · ∣∣∣ ~̃w(k)
]

be the submatrix of CS2

in Eq. (5.7) restricted to its first min (S1 ∪ S2)− 1 rows. Lemma 3 implies that columns of

the matrix C̃S1 can be obtained by a proper rearrangement and dilation of columns of the

matrix C̃S2 . From Assumption 1 it can be readily inferred that every two columns of C̃S1

are linearly independent. Similar observation holds for every pair of columns in C̃S2 . Hence,

if we constitute the following matrix:

ΘC̃S1 ,C̃S2
=



θ1,1 θ1,2 ... θ1,k

θ2,1 θ2,2 ... θ2,k
...

θk,1 θk,2 ... θk,k


, (5.9)
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such that:

θi,j = arccos


〈
~̃v
(i)
, ~̃w

(j)
〉

∣∣∣∣∣∣~̃v(i)
∣∣∣∣∣∣× ∣∣∣∣∣∣ ~̃w(j)

∣∣∣∣∣∣
 , (5.10)

then, exactly one element in each row and column of the matrix Θ is either 0 or π. Now, if

for two indices i and j we have θi,j = 0 or π, then Column i of the matrix CS1 corresponds

to Column j of the matrix CS2 . As for the proper sign between these two columns, we

keep their current sign in case θi,j = 0; otherwise, θi,j = π indicates that the sign for either

Column i of CS1 or Column j of CS2 should be flipped. In what follows, we describe how to

eliminate the indeterminacy in absolute scaling between these two columns.

The excess kurtosis associated with each independent component can be uniquely determined

based on the characteristics of its corresponding latent variable, as in Eq. (3.5). Since

Column i of CS1 corresponds to Column j of CS2 , they are associated with the same hidden

variable; hence, their excess kurtosis κi and ηj should be equal. Note that the indeterminacy

in absolute scaling of the column ~v(i) in the response matrix CS1 is due to the unknown

value of the excess kurtosis κi. Another way to interpret this is that we can multiply ~v(i) by

a positive constant c ∈ R+, and divide its corresponding excess kurtosis κi by c4 such that

the 4−th order cumulant MS1
4 in Eq. (5.4) does not change. Thus, we multiply the excess

kurtosis κi by
ηj
κi

, and divide ~v(i) by 4

√
ηj
κi

for a proper scaling between these two columns.

Alternatively, we can multiply the excess kurtosis ηj by κi
ηj

, and divide ~w(j) by 4

√
κi
ηj

. This

procedure is outlined in Algorithm 1.

Note that since variables Hi are hidden by nature, the true scale, sign and permutation of

these columns can never be recovered; however, in order to make Eqs. (4.6) and (4.7) valid,

we only need to find the right correspondence between columns of CS1 and CS2 to rearrange

and rescale these columns accordingly. The intuition for the aforementioned strategy is

that once the right correspondence is found, any change in scale, sign and ordering of these
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columns translates into changing the order of equations in Eq. (4.7) and multiplying both

sides of each equation by a non-zero constant, which does not change the set of linear

equations in Eq. (4.7). In other words, if the column ~v(i) in CS1 corresponds to the column

~w(j) in CS2 , and they both correspond to the hidden variable Hl, our strategy claims that

although the variable Hl is unknown to us, two columns ~v(i) and ~w(j) should correspond

to each other because they both correspond to an unknown variable. The rationale for this

argument is similar to Eq. (4.6) where the equality holds because both sides of the equation

are equal to an unknown element in A.

Algorithm 1: Elimination of PSS indeterminacy for pair of actions in Pα
Result: Correspondence between columns of the response matrices;
Input: The SEM-LV model in Fig. 2.1 with n visible and k hidden variables,

experimental data for action matrices PS1 ,PS2 ∈ Pα;
— Apply the method of moments in Section 3.2 on the experimental data for PS1 to

obtain columns of the response CS1 up to PSS as in Eqs. (5.4) and (5.6);
— Apply the method of moments in Section 3.2 on the experimental data for PS2 to

obtain columns of the response CS2 up to PSS as in Eqs. (5.5) and (5.7);

— Let C̃S1 and C̃S2 be submatrices of CS1 and CS2 , respectively, when restricted to
their first min (S1 ∪ S2)− 1 rows;

— Obtain the matrix ΘC̃S1 ,C̃S2
as in Eqs. (5.9) and (5.10);

for i = 1, · · · , k do
for j = 1, · · · , k do

if θi,j = 0;
• Column i of CS1 corresponds to Column j of CS2 ;

• Divide the j−th column of CS2 by 4

√
κi
ηj

;

• Keep the current sign of these two columns;
if θi,j = π;
• Column i of CS1 corresponds to Column j of CS2 ;

• Divide the j−th column of CS2 by 4

√
κi
ηj

;

• Flip the sign for one of these two columns;

end

end
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5.1.2 Matching Subroutine 2

In the second scenario, we consider the case where PS1 ∈ Pα ∪ Pβ and PS2 ∈ Pβ. Since

2 ∈ S2, Lemma 3 indicates that only the first row of the response matrices CS1 and CS2 are

the same; therefore, the matrix Θ in Eq. (5.9) cannot be constructed. However, if Column

i of CS1 in Eq. (5.6) corresponds to Column j of CS2 in Eq. (5.7), then we have:

CS1(1, i) = CS2(1, j), (5.11)

κi = ηj, (5.12)

where Eq. (5.11) follows from Lemma 3, and Eq. (5.12) comes from the fact that both

columns correspond to the same hidden variable. Therefore, if the matrix F is defined as:

F =



f1,1 f1,2 ... f1,k

f2,1 f2,2 ... f2,k
...

fk,1 fk,2 ... fk,k


, (5.13)

such that:

fi,j =
CS2(1, j)

CS1(1, i)
, (5.14)

then, for each row of the matrix F in Eq. (5.13), say i, there is a unique column index

j ∈ {1, · · · , k} such that:

fi,j = ± 4

√
κi
ηj
. (5.15)

Note that this uniqueness comes from Assumption 2 and the fact that the first row of CS1

and CS2 are equal to the first row of A since the matrix B is strictly lower triangular. Thus,
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if Eq. (5.15) holds for two indices i and j, then column i of CS1 corresponds to column j

of CS2 . Moreover, we keep the sign of these two columns in case fi,j = 4

√
κi
ηj

; otherwise, we

flip the sign of either Column i of CS1 or Column j of CS2 if fi,j = − 4

√
κi
ηj

holds. Finally,

we divide Column j of CS2 by the factor of 4

√
κi
ηj

for a proper scaling between these two

columns. Alternatively, we can multiply Column i of CS1 by this factor. This mechanism is

summarized in Algorithm 2.

Algorithm 2: Elimination of PSS indeterminacy for PS1 ∈ Pα ∪ Pβ and PS2 ∈ Pβ
Result: Correspondence between columns of the response matrices;
Input: The SEM-LV model in Fig. 2.1 with n visible and k hidden variables,

experimental data for action matrices PS1 ∈ Pα ∪ Pβ and PS2 ∈ Pβ;
— Apply the method of moments in Section 3.2 on the experimental data for PS1 to

obtain columns of the response CS1 up to PSS as in Eqs. (5.4) and (5.6);
— Apply the method of moments in Section 3.2 on the experimental data for PS2 to

obtain columns of the response CS2 up to PSS as in Eqs. (5.5) and (5.7);
— Calculate the matrix F as in Eqs. (5.13) and (5.14);
for i = 1, · · · , k do

for j = 1, · · · , k do

if fi,j = 4

√
κi
ηj

;

• Column i of CS1 corresponds to Column j of CS2 ;

• Divide the j−th column of CS2 by 4

√
κi
ηj

;

• Keep the current sign of these two columns;

if fi,j = − 4

√
κi
ηj

;

• Column i of CS1 corresponds to Column j of CS2 ;

• Divide the j−th column of CS2 by 4

√
κi
ηj

;

• Flip the sign for one of these two columns;

end

end
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5.1.3 Matching Subroutine 3

In the third scenario, we consider the case where PS1 ∈ Pα ∪ Pβ and PS2 ∈ Pγ. We present

an identification method in Section 5.2 that uses interventions in Pα ∪ Pβ to recover the

causal matrix B except for its first column. Hence, throughout this section, we assume that

columns of B, except for the first one, are already identified using interventions in Pα ∪ Pβ

for which Algorithms 1 and 2 can be used to eliminate the PSS indeterminacy.

Using the method of moments in Section 3.2, we can obtain the response matrices CS1 and

CS2 to actions PS1 and PS2 , respectively, where columns are obtained up to permutation,

absolute scale and sign. For a proper scaling between these columns, we divide each excess

kurtosis κi in Eq. (5.4) by |κi|, and multiply the column ~v(i) by 4
√
|κi|. Similarly, we divide

each excess kurtosis ηi in Eq. (5.5) by |ηi| and multiply the column ~w(i) by 4
√
|ηi|. Although

the correspondence in terms of permutation and sign between columns of CS1 and CS2 is still

unknown, these columns are scaled properly after this process that sets all excess kurtosis

values to ±1. Therefore, for each row t such that t ∈ {i | PS1(i, i) = PS2(i, i) = 1} we have:

k∑
i=1

〈Z(t, :) , CS1(:, i)〉
2 =

k∑
i=1

〈Z(t, :) , CS2(:, i)〉
2 (5.16)

because both sides of Eq. (5.16) are equal to the sum of squares for elements in Row t of A.

Note that the only unknown variable in Eq. (5.16) is the element B(t, 1) since other columns

of B are already identified. Moreover, the element B(t, 1) only appears on the left hand side

of Eq. (5.16) since the first row of CS2 is zero. Therefore, the second order polynomial in

Eq. (5.16) yields two solutions B(t, 1) = b′t,1 or b′′t,1.

Lemma 4. Only one of two solutions for B(t, 1) in Eq. (5.16) is consistent with the rank-one

tensor decomposition in Eq. (3.4).

The proof is provided in Appendix F.
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Note that both Z(t, :)CS1 and Z(t, :)CS2 yield Row t of A up to permutation and sign. Hence,

Column i of CS1 corresponds to Column j of CS2 if and only if the equation Z(t, :)CS1(:, i) =

Z(t, :)CS2(:, j) holds and the normalized excess kurtosis κi and ηj are equal. Assumption

2 implies the uniqueness of this one-to-one correspondence. Moreover, by repeating this

procedure for all indices t ∈ {2, · · · , n}, using actions PS1 ∈ Pα∪Pβ and PS2 ∈ Pγ such that

t ∈ {i | PS1(i, i) = PS2(i, i) = 1}, we can fully recover the first column of the causal matrix

B. This process is summarized in Algorithm 3.

Algorithm 3: Elimination of PSS indeterminacy for PS1 ∈ Pα ∪ Pβ and PS2 ∈ Pγ
Result: Correspondence between columns of the response matrices,

the first column of the causal matrix B;
Input: The SEM-LV model in Fig. 2.1 with n visible and k hidden variables,

the causal matrix B except for its first column,
experimental data for action matrices PS1 ∈ Pα ∪ Pβ and PS2 ∈ Pγ;

— Apply the method of moments in Section 3.2 on the experimental data for PS1 to
obtain columns of the response CS1 up to PSS as in Eqs. (5.4) and (5.6);

— Apply the method of moments in Section 3.2 on the experimental data for PS2 to
obtain columns of the response CS2 up to PSS as in Eqs. (5.5) and (5.7);

for i = 1, · · · , k do

— Divide κi by |κi|, and multiply ~v(i) by 4
√
|κi|;

— Divide ηi by |ηi|, and multiply ~w(i) by 4
√
|ηi|;

end
for t ∈ {i | PS1(i, i) = PS2(i, i) = 1} do

— Calculate B(t, 1) using Lemma 4 and Eq. (5.16);
for i = 1, · · · , k do

for j = 1, · · · , k do
if Z(t, :)CS1(:, i) = Z(t, :)CS2(:, j) and κi = ηj;
• Column i of CS1 corresponds to Column j of CS2 ;

end

end

end
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5.2 Identification Algorithm

Here, we consider n atomic interventions PS1 ,PS2 , · · · ,PSn such that Si = {i} for all 1 ≤

i ≤ n, and show that the experimental data associated with this set of n actions contains

sufficient information to recover the mixing and causal matrices A and B, respectively.

First, we aim to recover the causal matrix B, except for its first column, one row at a time.

For this purpose, we consider the row index j ∈ {2, · · · , n} and our goal is to recover the el-

ements B(j, 2 : n) using actions PS2 ,PS3 , · · · ,PSj−1
,PSj+1

, · · · ,PSn . We have excluded the

case of j = 1 since B is a strictly lower triangular matrix and its first row is zero. Using Algo-

rithms 1 and 2, we can eliminate the PSS indeterminacy among columns of response matrices

for each pair of these actions. Therefore, for each of the edges (PS2 ,PS3), (PS3 ,PS4) , · · · ,(
PSj−2

,PSj−1

)
,
(
PSj−1

,PSj+1

)
,
(
PSj+1

,PSj+2

)
, · · · ,

(
PSn−1 ,PSn

)
we can constitute the Eq.

(4.7) accordingly. Column-wise concatenation of the matrices CSr − CSt corresponding to

these edges yields the matrix W ∈ Rn×(k(n−3)). According to the Theorem 4.2, the rank of

this matrix can be calculated as:

rank [W] = |{1, · · · , n}\{1, j}| = n− 2. (5.17)

Note that this is also consistent with Conjecture 1 where we have:

L ≤ rank [W] ≤ U, (5.18)

such that:

L = min [(n− 3)×min (2, k) , n− 2] , (5.19)

U = min [max [(n− 3)×min (2, k) , n− 2] , n− 2] . (5.20)

Since k ≥ 2 and n ≥ 4, from straightforward calculations it follows that L = U = n − 2;
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thus, we have rank [W] = n− 2.

Let Wf ∈ Rn×(n−2) be an n × (n − 2) matrix formed by keeping the n − 2 columns of W

that are linearly independent. Now, we have:

WT
f Z(j, :)T = ~0. (5.21)

According to Lemma 3, the first row of W, which is multiplied by the element B(j, 1) in

Eq. (5.21), is zero. Moreover, since B is a causal matrix, we have Z(j, j) = 1. Therefore, if

Wf ∈ R(n−2)×(n−2) is an (n− 2)× (n− 2) matrix formed by removing rows 1 and j of Wf ,

and Z(j, :) ∈ R1×(n−2) is formed by removing the 1st and j−th elements of Z(j, :), then we

have:

W
T

f Z(j, :)T = −Wf (j, :)
T , (5.22)

thus, the unknown elements in Row j of Z can be recovered as:

Z(j, :)T = −
(
W

T

f

)−1
Wf (j, :)

T . (5.23)

In other words, Eq. (5.23) yields the elements in Z(j, 2 : n) except for the element Z(j, j)

which is known a priori to be 1. This renders Row j of B to be identifiable except for

the element B(j, 1) in the first column. By repeating this process for each row, the causal

matrix B can be fully recovered, except for its first column, using the n− 1 atomic actions

PS2 ,PS3 , · · · ,PSn .

Intuitively, the first column of the causal matrix B indicates how the variable X1 affects other

visible variables, and to capture this causal effect, we need to intervene on the variable X1.

By using actions PS2 ,PS3 , · · · ,PSn , no intervention is performed on the variable X1; hence,

its effect on other variables is cancelled out from both sides of the Eq. (4.6). The intuition
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for this cancellation effect is captured in Lemma 3 which implies that the first row of the

matrix Wf in Eq. (5.21) is zero and the variable X1 does not appear in the identification

process outlined in Eqs. (5.21) to (5.23).

Now, we aim to recover the first column of B, one element at a time. For this purpose, we

consider the row index j ∈ {2, · · · , n} and our goal is to identify the element B(j, 1). Note

that for any atomic action such as PSt where t 6= j, we have j ∈ {i | PS1(i, i) = PSt(i, i) = 1}.

Therefore, the element B(j, 1) can be uniquely calculated from the pair of actions PS1 and

PSt using Eq. (5.16) and Lemma 4 as outlined in Algorithm 3. Now that the causal matrix

B is fully recovered, the mixing matrix A can be calculated up to the PSS indeterminacy of

independent components from Eq. (4.15). This procedure is summarized in Algorithm 4.

Note that causal relations among visible variables makes the matrix B to be strictly lower

triangular after topological ordering. Therefore, there are at most j − 1 unknown elements

in Row j of B. However, in Eqs. (5.21) to (5.23) we have only used the fact that B(j, j) = 0,

i.e. we have treated all other elements to be unknown, and let the algorithm to recover them.

Since the algorithm uses the experimental data that satisfies the causal relations between

visible variables, it will calculate all elements on or above the diagonal of B to be zero.

However, as discussed in Section 4.2, similar procedure as described above can be carried

out that uses the fact that B is strictly lower triangular, and employs atomic actions on

X1, · · · , Xj−1, i.e. PS1 , · · · ,PSj−1
, to recover Row j of B.
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Algorithm 4: Identification Method

Result: The mixing matrix A and the causal matrix B;
Input: The SEM-LV model in Fig. 2.1 with n visible and k hidden variables,

experimental data for each atomic action PSi where Si = {i} for 1 ≤ i ≤ n;
// Recover the response matrices;
for i = 1, · · · , n do

— Apply the method of moments in Section 3.2 on the experimental data for
PSi to obtain columns of the response matrix CSi up to PSS;

end
// Recover the causal matrix B one row at a time, except for its first column;
for t = 2, · · · , n do

— Initialize the matrix W ∈ Rn×0;

for
(
PSi ,PSj

)
∈
{

(PS2 ,PS3) , · · · ,
(
PSt−2 ,PSt−1

)
,
(
PSt−1 ,PSt+1

)
,(

PSt+1 ,PSt+2

)
, · · · ,

(
PSn−1 ,PSn

) }
do

— Eliminate the PSS indeterminacy between columns of response matrices
CSi and CSj using Algorithms 1 and 2;

— Perform column-wise matrix concatenation W =
[
W ; CSi −CSj

]
;

end

— Obtain the matrices Wf and Wf from W as in Eqs. (5.21) and (5.22);
— Recover the row t of B except for the element B(t, 1) using Eq. (5.23);

end
// Recover the first column of the causal matrix B;
— Select two distinct indices i, j ∈ {2, · · · , n};
— Identify the first column of B by applying Algorithm 3 on the pairs of actions

(PS1 ,PSi) and
(
PS1 ,PSj

)
;

// Recover the mixing matrix A up to the PSS of its columns;
— Eliminate the PSS indeterminacy between columns of the response matrices

CS1 , · · · ,CSn using Algorithms 1, 2 and 3;
— Using Eq. (4.15), recover the mixing matrix as A = 1

n−1
∑n

i=1 (I−PSiB) CSi
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Chapter 6

Results and Discussions

We validate our proposed identification method using an exemplary SEM-LV model with

n = 5 visible and k = 3 hidden variables. Latent variables are i.i.d. and admit a Laplacian

distribution with the location parameter µ = 0, and the scale parameter b = 0.2. The ground

truth mixing and causal matrices A and B are provided in Table 6.1.

Table 6.1: The ground-truth mixing and causal matrices.

mixing matrix A causal matrix B
4.2641 3.1823 2.3416
0.2616 1.9111 3.0209
−0.3516 −0.9527 −0.5902
−2.8339 −4.4090 −3.1865
−10.7413 −7.2342 −7.3736




0 0 0 0 0
0.4486 0 0 0 0
0.9099 0.3969 0 0 0
0.8436 0.7028 0.4585 0 0
1.4372 0.6046 0.7382 0.7976 0



Each realization of visible variables is generated using a random sampling of latent variables

according to their distribution, and the ground truth mixing and causal matrices, i.e. the

matrices A and B in Table 6.1 and their modifications according to Eqs. (2.5) and (2.6).

In what follows, we vary the number of generated data over visible variables, and study its

effect on the estimation performance of Algorithm 4.
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Figure 6.1: Estimation error versus sample size.

Assume that Â and B̂ are the estimated mixing and causal matrices using Algorithm 4. In

order to measure the efficacy of the estimation, we calculate the ratio between Frobenius

norm of the difference between predicted and ground-truth, and Frobenius norm of the

ground-truth. In other words, we compute ‖A−Â‖F‖A‖F
and ‖B−B̂‖F‖B‖F

versus M , i.e. the number of

observed data for each atomic action used for matrix recovery, as shown in Figure 6.1. Since

the estimated mixing matrix is always up to the permutation, scale and sign of its columns,

we eliminate the PSS indeterminacy between A and Â using the aforementioned matching

algorithms before calculating their relative difference in Frobenius norm.

As shown in Figure 6.1, the estimation error decreases with an increase in the number of

observed data for each atomic action. Note that our analysis and algorithms are based

on infinite sample regime, where the rank one components in tensor decomposition can be

recovered perfectly. In this scenario, our estimation of A and B will have zero error due to

theoretical guarantees by Theorems 4.1 and 4.2. This is in agreement with Figure 6.1 where

our identification algorithm achieves a relative difference of 0.1% and 0.14% for the mixing

and causal matrices, respectively, given M = 106 experimental data for each intervention.

The matrices Â and B̂ in this case are provided in Table 6.2.
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Table 6.2: The estimated mixing and causal matrices for M = 106.

mixing matrix Â causal matrix B̂
4.2640 3.1779 2.3466
0.2610 1.9121 3.0064
−0.3495 −0.9472 −0.5849
−2.8373 −4.4026 −3.1822
−10.7358 −7.2342 −7.3756




0 0 0 0 0
0.4509 0 0 0 0
0.9091 0.3957 0 0 0
0.8427 0.7021 0.4584 0 0
1.4351 0.6061 0.73811 0.7972 0



When M is not infinite, elements of the matrix Θ in Eq. (5.9) are not exactly 0 or π for the

corresponding columns, due to the approximation error in rank one tensor decomposition.

Therefore, first we keep track of the change in sign and replace θi,j with π − θi,j if θi,j >
π
2
,

then we apply Hungarian algorithm to find the corresponding columns. Similar approach is

carried out for the matrix F in Eq. (5.13). Figure 6.1 demonstrates the robustness of our

method to this error in tensor decomposition for sample sizes as small as M = 103.

An observation in Figure 6.1 reveals that the error in estimation of the mixing matrix is

usually less than that of the causal matrix. This is partially due to the averaging effect

in Eq. (4.15) and the last step of Algorithm 4, where the effect of estimation error in one

particular response matrix is mitigated by averaging over all response matrices. In particular,

simulation results show that if we consider a modification of Eq. (4.15) where A is recovered

using response matrices to only two atomic actions, the relative error in Frobenius norm of

A and Â increases, although it is still less than that of the causal matrix.

In this work, we focused on the space of all possible actions that sets the value of a collection

of visible variables to zero, and presented an identification algorithm to recover the mixing

and causal matrices. However, generalization of this framework can be considered such

that not only intervened variables can have non-zero values, but also the observational and

experimental data are noisy. In [25], a preliminary study of this scenario is provided along

with the theoretical analysis of the matrix recovery in finite sample regime.
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Chapter 7

Conclusion

In this work, a linear structural equation model is discussed where latent variables follow

the mixing process of the blind source separation problem to affect observed variables. We

modeled this identification task as a disentanglement problem, and studied the necessary

and sufficient conditions for recovery of the model parameters. Since observational data can

only be used to recover a combination of latent and observed causal effects, we employed a

series of interventions that would guarantee unique identification. A novel matching process

is proposed that uses the invariance property of latent effects across observed variables to

combine the information corresponding to different interventions. Then, an identification

method is proposed to disentangle the observed causal effects from hidden confounders.

Simulation results show that our proposed algorithm can efficiently recover the mixing and

causal effects in both finite and infinite sample regime.
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Appendix A

Proof of the Lemma 1

Let i ∈ RS1,S3 , i.e. PS1(i, i) 6= PS3(i, i). Now, if PS2(i, i) = PS3(i, i), then PS1(i, i) 6=

PS2(i, i), i.e. i ∈ RS1,S2 . However, if PS2(i, i) 6= PS3(i, i), then i ∈ RS2,S3 . Therefore,

i ∈ RS1,S3 implies that i either belongs to RS1,S2 or RS2,S3 , which indicates that |RS1,S3| ≤

|RS1,S2|+ |RS2,S3|.

The above argument implies that if i ∈ RS1,S3 , then i either belongs to RS1,S2 or RS2,S3 ,

but it cannot belong to both. In other words, i ∈ RS1,S2 ∪ RS2,S3 but i /∈ RS1,S2 ∩ RS2,S3 .

Therefore, the equality in Eq. (4.2) holds if and only if RS1,S2 ∩RS2,S3 = ∅, i.e. if two sets

RS1,S2 and RS2,S3 are disjoint, and the proof is complete. �
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Appendix B

Proof of the Lemma 2

For any index t ∈ {1, · · · , n}, let g(t) be the cardinality of the set

{
i | PSi(t, t) 6= PSi+1

(t, t), i ∈ {1, · · · , l − 1}
}
. (B.1)

Since diagonal entries of action matrices are either 0 or 1, it directly follows from the defini-

tion of the set R that t ∈ RSl,S1 if and only if g(t) is an odd number. Note that if g(t) is an

odd number, then g(t) ≥ 1; hence, there exists at least one index such as j ∈ {1, · · · , l − 1}

for which we have PSj(t, t) 6= PSj+1
(t, t), i.e. t ∈ RSj ,Sj+1

. Therefore, any element of RSl,S1 ,

such as t, appears in at least one of the sets RS1,S2 ,RS2,S3 , · · · ,RSl−1,Sl and Eq. (4.3) is

proved.

The uniqueness of the set RSl,S1 comes from the fact that for each t ∈ RS1,S2 ∪RS2,S3 ∪ · · · ∪

RSl−1,Sl , we have t ∈ RSl,S1 if and only if the number of sets RS1,S2 ,RS2,S3 , · · · ,RSl−1,Sl to

which t belongs is an odd number, and the proof is complete. �
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Appendix C

Proof of the Theorem 4.1

Using Eq. (2.7), we can write CS1 −CS2 as follows:

CS1 −CS2 =
[
(I−PS1B)−1 PS1 − (I−PS2B)−1 PS2

]
A. (C.1)

Since A is a full rank matrix, i.e. rank [A] = min (n, k) = k, then we need to prove that:

rank [D] = |RS1,S2| . (C.2)

where D = (I−PS1B)−1 PS1 − (I−PS2B)−1 PS2 . For an action matrix PS , we define the

matrix QS to be the submatrix of PS restricted to rows in {i | 1 ≤ i ≤ n, i /∈ S}. It readily

follows that QT
SQS = PS , and QSQ

T
S is equal to the identity matrix. Moreover, using

straightforward algebraic calculations, we can rewrite the matrix on the left-hand-side of

Eq. (C.2) as:

(I−PS1B)−1 PS1 − (I−PS2B)−1 PS2 = QT
S1

[
QS1PS1 (I−B) PS1Q

T
S1

]−1
QS1

−QT
S2

[
QS2PS2 (I−B) PS2Q

T
S2

]−1
QS2 . (C.3)

50



Let Z = I − B, and denote the complement of the set S by S = {1, · · · , n}\S. Given a

matrix U and two index sets Sr and Sc, let U (Sr,Sc) be the submatrix of U restricted to

rows in Sr and columns in Sc. From Eq. (C.3) and properties of the matrix QS , we have:

(
(I−PS1B)−1 PS1

) (
S1,S1

)
=
(
Z
(
S1,S1

))−1
, (C.4)(

(I−PS2B)−1 PS2
) (
S2,S2

)
=
(
Z
(
S2,S2

))−1
. (C.5)

Now, we need to following lemma to proceed with the proof.

Lemma 5. Let S ( {1, · · · , n} be an index set, and consider an invertible n × n matrix

U ∈ Rn×n such that U (S,S) is also invertible. Then, we have:

det
[(

U−1
) (
S,S

)]
=

1

det [U]
× det [U (S,S)] . (C.6)

Proof: Without the loss of generality, we assume that max (S) < min
(
S
)

since rearranging

rows of the matrix U to make it so only changes the sign in both sides of Eq. (C.6). Now,

from the properties of determinant for block matrices, we have:

det [U] = det [U (S,S)]× det
[
U
(
S,S

)
−U

(
S,S

)
× (U (S,S))−1 ×U

(
S,S

)]
. (C.7)

Moreover, from the inversion formula for block matrices, we have:

(
U−1

) (
S,S

)
=
(
U
(
S,S

)
−U

(
S,S

)
× (U (S,S))−1 ×U

(
S,S

))−1
. (C.8)

Since the determinant of the inverse matrix is equal to the inverse of the determinant for

that matrix, Eq. (C.6) follows from Eqs. (C.7) and (C.8), and the proof is complete.

For the ease of argument and notations, we assume that max
(
S1 ∩ S2

)
< min

(
S1 ∩ S2

)
and

max
(
S1 ∩ S2

)
< min

(
S1 ∩ S2

)
. Similar reasoning can be carried out for the general case.
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Now, using Lemma 5 and Eqs. (C.4) and (C.5), we have:

det
[
D
(
S1 ∩ S2,S1 ∩ S2

)]
=

1

det
[
Z
(
S1,S1

)] × det
[
Z
(
S1 ∩ S2,S1 ∩ S2

)]
, (C.9)

det
[
D
(
S2 ∩ S1,S2 ∩ S1

)]
=

1

det
[
Z
(
S2,S2

)] × det
[
Z
(
S2 ∩ S1,S2 ∩ S1

)]
. (C.10)

Since Z is a lower triangular matrix with diagonal entries equal to 1, it follows from Eqs.

(C.9) and (C.10) that:

det
[
D
(
S1 ∩ S2,S1 ∩ S2

)]
= 1 6= 0, (C.11)

det
[
D
(
S2 ∩ S1,S2 ∩ S1

)]
= 1 6= 0. (C.12)

Note that D
(
S1 ∩ S2,S2 ∩ S1

)
= 0 and D

(
S2 ∩ S1,S1 ∩ S2

)
= 0. Therefore the submatrix

of D restricted to rows and columns in
(
S2 ∩ S1

)
∪
(
S1 ∩ S2

)
is a block diagonal matrix,

where the two diagonal blocks have non-zero determinants according to Eqs. (C.11) and

(C.12). Therefore, the rows of D in
(
S2 ∩ S1

)
∪
(
S1 ∩ S2

)
are all linearly independent.

Note that all rows of D in S1 ∩ S2 are zero since these rows are set to zero by both action

matrices. Moreover, using straightforward algebraic calculations, and the fact that both

matrices (I−PS1B) and (I−PS2B) are lower triangular, it follows that the element in

row i and column j of both matrices is equal to (−1)i+j × bj+1,j × bj+2,j+1 × · · · × bi,i−1,

for j < i < min (S1 ∪ S2). Hence, the rows of D in S1 ∩ S2 are all zero too. Therefore,

the rank of the matrix D, which is equal to the number of linearly independent rows, is

equal to
∣∣(S2 ∩ S1

)
∪
(
S1 ∩ S2

)∣∣. Since RS1,S2 =
(
S2 ∩ S1

)
∪
(
S1 ∩ S2

)
, it follows that

rank [D] = |RS1,S2|; thus, we have:

rank [CS1 −CS2 ] = rank [DA] ≤ min (rank [D] , rank [A]) = min (|RS1,S2| , k) . (C.13)

According to Corollary 6.1 in [26], in case |RS1,S2| ≤ k, the equality in Eq. (C.13) holds if

and only if the partitioned matrix
(
A, I−D†D

)
has full row rank. However, if |RS1,S2 | > k,
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then the equality in Eq. (C.13) holds if and only if the row-wise concatenation of D and

I−AA† has full column rank. These conditions are met according to Assumption 4; hence,

the equality in Eq. (C.13) holds, and the proof is complete. �.

Note: Since the mixing and causal matrices are usually random and noisy in practical

applications, the necessary and sufficient condition for the equality in Eq. (C.13) holds with

high probability given the properties of random matrices. In general, the matrix B does not

have to be strictly lower triangular for Theorem 4.1 to hold. Moreover, we have used the key

property that Z
(
S1 ∩ S2,S1 ∩ S2

)
6= 0 in Eqs. (C.9) and (C.10) to derive Eqs. (C.11) and

(C.12); however, this property is not necessary for Theorem 4.1 to hold as well. The proof

for the general case is beyond the scope of this work; however, in what follows, we provide

a series of conjectures useful for proving the general scenario.

Conjecture 3. Let S ( {1, · · · , n} be an index set, and consider a uniformly random and

invertible n× n matrix U ∈ Rn×n. Then, with probability of 1, we have:

|S| −
∣∣S∣∣ = rank [U (S,S)] if and only if

(
U−1

) (
S,S

)
= 0. (C.14)

Conjecture 4. Let S ( {1, · · · , n} be an index set, and consider a uniformly random and

invertible n× n matrix U ∈ Rn×n. Then, with probability of 1, we have:

|S| − rank [U (S,S)] =
∣∣S∣∣− rank

[(
U−1

) (
S,S

)]
. (C.15)

Corollary 1. If rank [U (S,S)] < |S| −
∣∣S∣∣, then the matrix U is not invertible.

Conjecture 5. Let S ( {1, · · · , n} be an index set, and consider a uniformly random and

invertible n × n matrix U ∈ Rn×n. If the condition |S| −
∣∣S∣∣ = rank [U (S,S)] holds, then

with probability of 1, we have:

∑
i,j∈S

U(j, i)×U−1(i, j) = rank [U (S,S)] . (C.16)
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Appendix D

Proof of the Theorem 4.2

Using Theorem 4.1, we have:

rank
[
CSji −CSji+1

]
= min

(∣∣∣RSji ,Sji+1

∣∣∣ , k) = min (|{ji, ji+1}| , k) = 2. (D.1)

According to the proof of Theorem 4.1, not only we have rank
[
Dji,ji+1

]
=
∣∣∣RSji ,Sji+1

∣∣∣ =

|{ji, ji+1}| = 2, but also rows ji and ji+1 of Dji,ji+1
are linearly independent. Hence, it readily

follows that rows ji and ji+1 of CSji −CSji+1
= Dji,ji+1

A are also linearly independent. This

is because if we employ the proof by contradiction and use the fact that all other rows of

Dji,ji+1
can be written as a linear combination of rows ji and ji+1 of Dji,ji+1

, then we obtain

rank
[
CSji −CSji+1

]
= 1 which contradicts Eq. (D.1).

Using Lemma 3 and the fact that elements of J are sorted in ascending order, it follows

that the matrix W has the form shown via an example in Figure D.1(a), where the zero

and non-zero elements are denoted via gray and blue colors, respectively, and non-zero

elements follow a step-wise property. Since rows ji and ji+1 of CSji − CSji+1
are linearly

independent, and W is obtained by column-wise concatenation of matrices CSji − CSji+1

for all i ∈ {1, · · · , |J | − 1}, it follows that all rows of W that are within J are linearly
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Figure D.1: (a) The matrix W for a SEM-LV model with n = 12, k = 3, and J =
{2, 4, 5, 8, 11, 12}. (b) The set of six linearly independent rows of W.

independent. These rows are shown in the exemplary model of Figure D.1(b). Therefore:

rank [W] ≥ |J | . (D.2)

Lemma 6. Rank of the matrix D =
[
Dji,ji+1

, Dji+1,ji+2

]
, that is formed by column-wise

concatenation of matrices Dji,ji+1
and Dji+1,ji+2

, is equal to 3.

Proof: According to the proof of Theorem 4.1, we have rank
[
Dji,ji+1

]
= 2, and two columns

Dji,ji+1
(:, ji) and Dji,ji+1

(:, ji+1) are linearly independent. Similarly, rank
[
Dji+1,ji+2

]
= 2,

and two columns Dji+1,ji+2
(:, ji+1) and Dji+1,ji+2

(:, ji+2) are linearly independent. In order

to show that the rank of D is equal to three, we find three linearly independent columns such

that their span includes all other columns of D.

Note that all columns of Dji,ji+1
can be expressed as a linear combination of two columns ~d1 =

Dji,ji+1
(:, ji) and ~d2 = Dji,ji+1

(:, ji+1). Similarly, all columns of Dji+1,ji+2
are representable

as a linear combination of columns ~d3 = Dji+1,ji+2
(:, ji+1) and ~d4 = Dji+1,ji+2

(:, ji+2). There-

fore, the span of these four columns contains all columns of D, and we need to show that only

three of these four columns are linearly independent to complete the proof. Since B is strictly

lower triangular matrix, it follows from simple algebraic calculations that the first ji− 1 and

ji+1 − 1 elements of ~d1 and ~d2 are zero, respectively, and ~d1(ji) = −1 and ~d2(ji+1) = 1.
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Similarly, the first ji+1 − 1 and ji+2 − 1 elements of ~d3 and ~d4 are zero, respectively, and

~d3(ji+1) = −1 and ~d4(ji+2) = 1. Using this property and the fact that ji < ji+1 < ji+2,

it readily follows that ~d1, ~d2 and ~d4 are linearly independent, and ~d1, ~d3 and ~d4 are also

linearly independent. Hence, we need to demonstrate that ~d3 is in the span of three linearly

independent vectors ~d1, ~d2 and ~d4. Similar argument can be carried out to show that ~d2 is

in the span of three linearly independent vectors ~d1, ~d3 and ~d4.

From the definition, we have:

Dji,ji+1
+ Dji+1,ji+2

=
(
I−PSjiB

)−1
PSji −

(
I−PSji+1

B
)−1

PSji+1

+
(
I−PSji+1

B
)−1

PSji+1
−
(
I−PSji+2

B
)−1

PSji+2

=
(
I−PSjiB

)−1
PSji −

(
I−PSji+2

B
)−1

PSji+2

= Dji,ji+2
, (D.3)

and from the proof of Theorem 4.1 we know that rank
[
Dji,ji+2

]
= 2 and columns ji and ji+2

are linearly independent. Therefore, we can write:

~d2 + ~d3 = Dji,ji+2
(:, ji+1)

= t1 ×Dji,ji+2
(:, ji) + t2 ×Dji,ji+2

(:, ji+2)

= t1 ×
(
~d1 + Dji+1,ji+2

(:, ji)
)

+ t2 × ~d4

= t1 ×
(
~d1 +

[
s1 × ~d3 + s2 × ~d4

])
+ t2 × ~d4, (D.4)

where we have used the property that column c of Dji,ji+1
is zero for all ji+1 < c ≤ n. This

property follows from simple algebraic calculations and the fact that B is a strictly lower

triangular matrix. Eq. (D.4) implies that ~d3 can be written as a linear combination of ~d1,

~d2, and ~d4, and the proof for Lemma 6 is complete.
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Note that we can rewrite W as:

W =
[
Dj1,j2 , Dj2,j3 , · · · , Dj|J |−1,j|J |

]
×



A 0 · · · 0

0 A · · · 0

...
...

0 0 · · · A


= D×A. (D.5)

By successively applying Lemma 6 to the matrix D =
[
Dj1,j2 , Dj2,j3 , · · · , Dj|J |−1,j|J |

]
,

we obtain rank
[

D
]

= |J |. Therefore, Eq. (D.5) implies that:

rank [W] ≤ min
(
rank

[
D
]
, rank

[
A
])

= min (|J | , k × (|J | − 1))

= |J | . (D.6)

Eqs. (D.2) and (D.6) indicate that rank [W] = |J | and the proof is complete. �
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Appendix E

Proof of the Lemma 3

Using Eq. (2.7), we have:

CS1 = (I−PS1B)−1 PS1A, (E.1)

CS2 = (I−PS2B)−1 PS2A. (E.2)

First, we show that the first min (S1 ∪ S2)−1 rows of matrices (I−PS1B)−1 and (I−PS2B)−1

are the same. Since B = [bi,j]1≤i,j≤n is a strictly lower triangular matrix, then both

(I−PS1B) and its inverse, i.e. (I−PS1B)−1, are also lower triangular matrices. Simi-

larly, both (I−PS2B) and its inverse, i.e. (I−PS2B)−1, are lower triangular matrices.

Therefore, we only need to compare the elements in row i and column j of (I−PS1B)−1

and (I−PS2B)−1, where j < i ≤ min (S1 ∪ S2)− 1. Using Cramer’s rule, we have:

(I−PS1B)−1 =
1

det [(I−PS1B)]
× adj [(I−PS1B)] , (E.3)

(I−PS2B)−1 =
1

det [(I−PS2B)]
× adj [(I−PS2B)] . (E.4)
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Note that since both (I−PS1B) and (I−PS2B) are lower triangular matrices with diagonal

entries equal to 1, we have: det [(I−PS1B)] = det [(I−PS2B)] = 1. Using straightforward

algebraic calculations and the fact that j < i ≤ min (S1 ∪ S2)−1, it readily follows that the el-

ement in row i and column j of both adjugate matrices adj [(I−PS1B)] and adj [(I−PS2B)]

is equal to (−1)i+j × bj+1,j × bj+2,j+1 × · · · × bi,i−1. Hence, the first min (S1 ∪ S2) − 1 rows

of matrices (I−PS1B)−1 and (I−PS2B)−1 in Eqs. (E.3) and (E.4) are the same, which

concludes our first aim.

Second, we show that the elements in row i and column j of response matrices CS1 and CS2

are the same, where i ≤ min (S1 ∪ S2) − 1. As we showed above, the i−th row of matrices

(I−PS1B)−1 and (I−PS2B)−1 in Eqs. (E.1) and (E.2) are the same. Moreover, the first i

elements in the j−th column of matrices PS1A and PS2A are equal, for each j ∈ {1, · · · , k}.

Since elements above the diagonal of matrices (I−PS1B)−1 and (I−PS2B)−1 are zero, it

directly follows that the first min (S1 ∪ S2)− 1 rows of both response matrices are the same,

and the proof is complete. �
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Appendix F

Proof of the Lemma 4

We can rewrite the Eq. (2.7) for the two actions as follows:

PS1A = (I−PS1B) CS1 , (F.1)

PS2A = (I−PS2B) CS2 . (F.2)

Since excess kurtosis values for columns of response matrices are normalized to ±1, ele-

ments in row t1 of CS1 and CS2 are the same up to permutation and sign, where t1 ∈

{i | PS1(i, i) = PS2(i, i) = 1}. Therefore, elements in row t1 of PS1A and PS2A should be

the same up to their permutation and sign. Note that since the first row of CS2 is zero, Eq.

(F.2) yields the elements in row t1 of PS2A, which we refer to as the true row t1 of A and

denote it by ~at1 , regardless of the value of B(t1, 1). Now, for a fixed ordering of the columns

of CS1 , two solutions b′t1,1 and b′′t1,1 yield two candidates for row t1 of A, which we denote

by ~a′t1 and ~a′′t1 , respectively. Note that since the ordering for columns of CS1 is fixed, i−th

element of ~a′t1 corresponds to the i−th element of ~a′′t1 . Now, if both solutions b′t1,1 and b′′t1,1

are valid, since there exist an index j ∈ {1, · · · , k} such that both these elements correspond

to the j−th element of ~at1 , it follows that ~a′t1(i) = ±~a′′t1(i) for all i ∈ {1, · · · , k}.
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Now, if ~a′t1(i) = ~a′′t1(i) for some index i, it follows that either b′t1,1 = b′′t1,1, which concludes the

proof, or CS1(1, i) = 0. Furthermore, for any two indices i1 and i2 such that ~a′t1(i1) = −~a′′t1(i1)

and ~a′t1(i2) = −~a′′t1(i2), it follows from simple algebraic calculations that
CS1 (1,i1)

~a′t1
(i1)

=
CS1 (1,i2)

~a′t1
(i2)

and
CS1 (1,i1)

~a′′t1
(i1)

=
CS1 (1,i2)

~a′′t1
(i2)

. Therefore, both candidate rows ~a′t1 and ~a′′t1 are proportional to

the first row of CS1 . Similar observation is true for the two candidate rows corresponding

to another index t2 ∈ {i | PS1(i, i) = PS2(i, i) = 1}. An immediate implication of this is

that if both pairs of solutions
{
b′t1,1, b

′′
t1,1

}
and

{
b′t2,1, b

′′
t2,1

}
are valid, then any of the four

possible pairs of rows t1 and t2 of A will be linearly dependent which is in contradiction with

Assumption 1. Therefore, there exists at most one index, say t1, for which both solutions

b′t1,1 and b′′t1,1 are valid.

Now, if we restrict matrices PS1A and PS2A in Eqs. (F.1) and (F.2) to row indices in

{i | PS1(i, i) = PS2(i, i) = 1}, we obtain two submatrices which we denote by P̂S1A and

P̂S2A, respectively. Similar to Eq. (5.9), we construct the matrix Θ = [θi,j]1≤i,j≤k where θi,j

is the angle between columns i of P̂S1A and column j of P̂S2A. Note that the two solutions

b′t1,1 and b′′t1,1 can only alter the row t′1 of P̂S2A, in the sense of negating the sign of some

elements, that corresponds to row t1 in PS2A. Therefore, if one of the solutions, say b′t1,1

is valid, then the other solution, i.e. b′′t1,1, that flips the sign of some elements in row t′1 of

P̂S2A but keeps all other rows unchanged, cannot lead to a valid solution, i.e. exactly one 0

or π in each row and column of Θ, and the proof is complete. �
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