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T . II R d. 1 K. . E II T . l nc a la lnetlc · nergy erm 111 t 1c 

Schroedinger Equation for a Central Force 

FrankS. Crawford, Jr. 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

September 4, 1963 

ABSTRACT 

We discuss the Hermitian operator Pr that corresponds to the 

radial component of linear momentum in the central-force problem. 

The purpose is purely pedagogical-i.e., we are slightly unhappy 

with the u::;ual manner in which the term 

a 
or 

makes its entrance, in a derivati0•1 of the Schroedinger equation 1r1 

spherical coordinates. 
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The ' 1 Radi;~l Kinetic Energy' 1 Term in the 
S c h r o c d i n g c r E q u a t i o n f o r a C e n t r a 1 F o r c e ::: 

Frank S. Crawford, Jr. 

Lawrence Radiation Laboratory 
University of California 

Be rkelcy, California 

September 4, 1963 

INTRODUCTION. 

The Schroedinger equation for the stationary states 4;(_::) of a 

single particle subject to a potential V(_::) can be written in the form 

The operator H is obtained from the classical Hamiltoni<J.n function 

2 
D 
J-

. H = 2m + V(;:) 

by substituting operators for the dynamical variables .::_ and £: The 

requirement that the eigenvalues E be real leads to the demand that 

the operator H be Hermitian, i.e. one demands 

( 1 ) 

where dT is the three-dimensional voiume element, and the integral 

extends over all space. 

If one is dealing with Cartesian coordinates one uses the operator;; 

{etc., for y and z ). 

(That px is Hermitian is checked by replacing H in the lc:it side of 

Eq. (1) by px and integrating once by parts, with ~ - 0 at infinity.) 
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Thl!n onl! obtains the Hermitian operator 

H = + V (x y z) , 

i. e • 1 

I-I = vo
2 + V(xyz). 

When one deals with a central potential 

V(::) = V(r), 

one na~urally uses spherical coordinates r, {), and <?· In most 

textbooks one proceeds now tv v0tain the Hermitian opcr<.itOr 

corresponding to the kinetic energy P..2 
/2m by transforming the 

Laplacian operator ~ 2 
[times (- fl

2 
/2m)] from Cartesian to spherical 

coordinates. 
2 

Then ~ , the square of the Hermitian operator 

L = _::X E. 
fl = rX-,-
1 

\7 • 

is. recognized in the ''3.ngular" part of the Laplacian, and one finds 

H = 2 a 
rdr + +. V(r) . 

In this forn< the ''radial'' part of the kinetic-energy operator is 

rather puzzling. It corresponds to the classical radial kinetic energy 

2/? p r .. rn. But one does not easily recognize here the square oi a 

Hermitian operator pr' and the operator pr is not usually discussed 

1 
at all. This can be mystifying to the student, and is therefore poor 

pedagogy. 
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DERIVATION OF RADIAL MOMENTUM OPERATOR 

A :;trai6htforward and elementary derivation will now be given, 

1n which the Hennitian operator corresponding to thc radial momentum 

2 
') enters naturally. At the same time the student is (lightly) 
l r 

excrciscd in the nonco1nmutative algebra of operators, a:-.d finally 

obt<lins the radial kinetic-energy operator in its most u:;eful form. 

All of this can be done with somewhat less algebra than i:; often e:xpendcd 

1n transforming the Laplacian to spherical coordinates. 

For r =f. 0 one can resolve: the classical linear momentum E. 

into a radial compon(;nt ... ·-r . J = 
J.... 

p r. and a t ·ansvc r S(; c on1ponen t that 

has the same maQnitucl(; (althougil not the same direction) ZlS rX.e I 

where r is the unit vector ;_,/r. Thus the kinetic c:1ergy can be written 

The second term can be written 

2 
(;_,X E) 

2 
2mr 

-
2 

2mr 

where L =.:: r X E. 1s the angular momentum. One easily show::; that 

? 
th(; operator~= ;_,X (11/i)~ is Hermitian, and so is L~. At this 

point one profitably studies the eigenfunction-eigenvalue problem for 

L 
2 

(and for L ) and finds· 
z. 

One then returns to the Schroedinger equation and writes 

. ·M 
~(;_,) = R(r) Y L (0, 4>) , 

--· ~-· ~ ... -.. --.. -- ·---···-·-----~~--
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thus oln<:~.ining th~ "radial equation II for R(r ), namely 

2 
~n2 L(L + 1l ' 1) 

I . r 
+ + V(r) R(r) E R(r). (2) = 

2rn 2 I 

2mr I 

J 

It is now natural to look for the Hcrmitia.n opcrator corrcsponciing 

i..J 0 • For the classical monlenturn 0 \\'C have 0 = r. 1) = 0 • r , •r ~-. ··r :-. J.-.. 

analogous to th~ Ca rtc sian con1o.· onent o W c: now 
• X 

n::plac~ 2. by the: opcrator E.= ('n/i):::... In the Cartesia.n case we have 

,. 
') : X • 
lx 

In the spherical case, 

sine<.: r i.:; ::ot. a fixed direction, r (11/i)~ and ('n/i)~ . r c\ rc not. 

equal, <.:1n<..i in fact neither r · 2 nor E._· r is Hermitian, and therefore 

neither cd.r: represent Pr· In seeing why tlH:sc operat.ors ar..:: not 

1-Iermiti;..:.n we will be naturally led to the correct Hermitian operator 

ior o . . r 

The Hermitian conjugate A I of an operator A 1s defined by the 

rcla tion 

(3) 

If At= A then A is said to be Hermitian, and one then immediately 

finds that the eigenvalues of A are real. A vector operator 

A = A x + A y"' + A z is Hermitian if its comnonents are Hermitian. 
- X y Z r 

Thus r = ;_/r and E = (11/i) ~ arc easily seen to be Hermitian. If A 

and B J.r,:: Hermitian operators, then (AB)t = BtAI = BA, as follows 

ciirc~..~tly from the defining Eq. (3). Thus AB is not in general 

Hermitian (unless BA = AB). However, AB + BA is Hermitian. 

For vector Hermitian operators, (A B )t = B tAt = B A , etc., 
X X X X X X 

for y and z, so that (~ • ~) t = ~. ~· Thus !::.., • ~ is not in general 
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He nnitian, but .:\ ~ B I3 · A i 5 • T h u 5 th c H c r mit i <.. n up e 1· a to r - -
tube a.:;sociatcd wit.l\ "2r is clearly 

1 
P r = 2 {r . E + .2. • r) ' 

i. c. , 

') 
' r 

r-, 
= 2i {r . .:. .:._. r) . { 4) 

Thi:; operator i:; ca:;ily evaluated in spherical coordinates. For 

clarity w<; include the operand wave .function R{r). W <; h<:tvc .for the 

first tern< in the parentheses oi Eq. (4), 

r . 0 
vR =orR. 

The second term is 

... 
V' . r R = 

= 

= 

= 

Thus \vc have 

{r . V' + v. r) R 

Finally we have from Eq. (4) 

p = r. 

Then for p; we have 

r. 

I, . .\ 

v ·I~ Rl 
- \r J 
R (v. ,::) R r · + 
r -

R 
3 

R rt l\) - + r 

(~ + ~r) R. 

= z(~ + ~)· R or r 

2 f a ) 
= r v·dr 1 R 

2 (a ) =r\Orr R. 

2,.3 

v 1 1 v R - - r. 
-r r-

+ 
1 (:.) 
-r-.- R 
r d r 

(5) 
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The: radi<1l c:qualion (1) becom..::s 

r . 

? 
L(L + 1 )'r,-

+ V(r) j R(r) " E R(r). '/ 
2mr-

Thi::> is just the: form one wishes for the radial kinetic-e::nt.::·gy term; 

onl! ::,.:.;c:s :Jy inspc:ction that if c:~c rnultiplies the radial c:qu;,tio:;. by r 

and de lines rR(r) = u(r). one bas the:: us.:!ful "equivalc:nt one -din1ensional'' 

forrn 

r .., 
! ·1 

c~~ 0 \2 L(. ·)r 2 · 

I 
I L-:- 1 :1 ll: .. or) V(r) u(r) = Eu(r). 

2n1r 
2 

J 

HERMITICITY OF RADL\L MOMENTUM OPERATOR 

:'-Jext we check that pr is indeed Hermiti;1n. In doing ::>0 we _:;ain 

more insight into the way in which u(r) = rR(r) ent(;rs naLur<dly. 

In spherical coordinates, with the :>eparation .;;<_:J M = R ( r ) Y L ((J , 9 ) , 

the question of the Hermiticity o£ pr lS just the que::>tion 

2 ? 
R ::< (o R) r dr -

• r (G) 

Starting with the left-hand side of Eq. (6) (and setting r-, = 1 for 

con\·eni.;:H;:c) we introduce u = rR; we then integrate once by part::>, 

demanding that u(r) vanish at r = 0 and r = oo. The minus sign 

introduced in the integration by parts is cancelled by the complex 

conjugation o£ i = ..J-::;. · Thus we have 



. " 
v:; 

r R::: (p R) r 2 
j r 
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and the <1nswC:r to 
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,( \ 

R':' I 1 1 () \ 2 
(-; i ur rRl r c.!r 
\ I 

<.0 

"' ;': 11 a \ j u· Vr u r / 
u d:· 

0 

i 

v:; 
/1 /1 \ 

... 
() 

.,. 

.J 
i 0 + \i or u i u c.i1· 
I 

0 

f~ 1 1 a \·':' 2 
rR) R:· dr r i u r 

0 

J ( n R ) ':' R r 2 d r , . r . 
0 

? 
- in Eq. ( 0) · II 11 

lS yc s. 

This last dcrnonstration is instructive in showing u::; how the: 

opc:1·awr (1•/i)(J /or) is in a certain sense HermitiCJ.n with r<:::;;)c.:ct to 

\ • . ( ) f l' 1 1l' . . l II(' L1e wave 1unct1on u r •. or \V uc1 tne 1nvcrsc-squarc av.' ,1o1· a 

conserved flux) has been factored out in order to reduce: the; ti:1·cc-

dimensional problcn1 to an cq ui valent one -clirncns ional problc: n1. 

EICE?\FUNCTIONS OF' RADIAL MO:M.E0JTUM OPERA TOR 

Lastly we look at the eigenfunction-eigenvalue problem for !") • ,. 

Wchav .. ~ 

Pr R(r) - P~. R(r) , 
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by E q. ( 5) ::.. :1 d p ~- is t1H.: 
• . I clgenvaJ.uc. 

• I 

ior r "f 0, 

I 1 ~~ u \ 
I - r : R - / R 

r i dr ' r ' 

l. (.;. ' 

1-r, (}' 
-· cJ r; u( 1") - ;) 

. r u( r) , 
/ 

u - c:xp (ikr) (outgoing w~n:) 

U- C:XD (-ikr) (incoming w;1 vc:), 

. whe r(: k 1s rea.l and oositive . ' ;...nd \V!1C ~:c 

\) 
·r 

(outooinn) 
b b ' 

or (l. ,, c 0 ·~~ .l.· "'' ') ... , ... ··:;-. . 

At iirst si:;ht it n1ay seen-: that we actually have ::c.;t sol\·.;;ci the: 

cigc:1function-eig...:nvalue problem, because in the dc:·iv~Llul: ivllo\•.in3 

Eq. (u) w .. .: as::;urncd u(r)-+ 0 at r - 0 and r - c.o (cl·, u;..._, st<::) 1r:. 

which wc integrated by parts), whereas our present ::;oluLiu::, 

th...: int .. ~gr::ned terrn [in the d.::rivation of Eq. (6)] still gin.:::> zc1·o, 

~c:c~:usc it has t.he same value-at r = 0 and at infinity, ni:lrnc:ly 

·'· 
u··· u == ·1. Thus u = e:xp (±ik1·) is an acc-eptable eigenfu:1ctio:1. 0: 

cours .. ~, these eigenfunctions are unnormalizable, in essentially the 

same way that the free -par tide eigenfunctions of p:x' namc:ly 

c:xp (±ik:x), arc unnormalizable. 

Fron1 Eq. (2) we sec that the eigenfunctions of pr correspond 

to stati011ary states (defi:'lite energy) only for free particles 
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[Y(r) = cunst.<..c.nt] in an S st.<.t.e (L = 0); otherwise, \';..: n"'<;"y ::0L 

2. 
pr by . E (2.) • I ••••..J • ._.,, u. CU.1::d.~nc •.• q. . For {rcc particles i:: "" 

u(1·) l:Xp (-ikr) + cxp (iu) l:Xp (ilu-). 

1. <.:. to l" c q u 1 r e u(r) = 0 at r = 0. 
4 

Frorn Eq. (2) we see: that thcr<.: 1::-: <:cnut.iH.:r sp.:citd C:.<Sc 10r 

which ::.. st.at.iona1·y si.<.:.i.C: ·{clciinit...: E) 1 • • • • 

r::<;-'/ oc ::>llT1t~1t~tn":<J\.l:-;t;: ~n clgcn~tat~ 

0£ l\.; ::h;:..L c~n occur 11 V(r) is i.hc r;.;.t:he:r l)(:culia1· ll:l:ct.ioJ: uf r (a.nd L), 

y (r) 
? 

1":- L(L ·i· t) 
2. 

2rnr 
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FOOT:\OTES A~..:D REFERE:\CES 

... 
VI u rk done u:1de r the of the U. S. Atomic Enc ~·.L!.)' C U; 1'1 :--:-. i S S i 0 !1. 

19 ss ); 

1. . . l . . ' ,. . Q . . . • . .- ' , . .. i. -.. , i . .. . ( D .. . ' ' . . . ;. : . I 1 ". I . . 1:..10(l,(.t...(J.o.\• l.!.do1L..lt,J1 l\'lLt. •. <1o~. • .-.L::, ..... •Cl ..... lL\._-J.,,,: .......... 1 -.'\1."\ • .~~,,..()'':· -1 \J' ... ~u' )· .:.. .;. ,,, . ... , 

.~.1:1d Linus Pauling ct!l.d E. I3. \Vil:;on, Jr., lr:troc:L:ctiu!; :.l, Ot~ii::tt.:n: 

') 
'--· 

P r c s s , 3 l' d c d. , 1 9 4 7 ) , ·.,). ·!S2J .. introduces the O\JCLltor ·,) 1
- (~-:/i)(iJ/or) 

'"' o !.- I 

and then shows that· D 
1 

.. r 
. - -1 

- 1 nr is canonic;:,.lly conju!,!,:.tL<: LC; r. 

L. Land;:::.u and E. Libhitz [Oua::turn ?v1cch<inics (Addiso:;-V/..:.:sl<;y 

Publis:1ingCo., Inc.;; Reading, Mass., 1958), p. 108, :·ootnotej 

mcntion without discussion the: operator pr oi our Eq. (S). £. C. 1:(e:r-:1blc 

[The· Funcbri1c:nd Prit;ciplcs of Quantum 1vlechz,nics (McGI·aw-hill 

Book Co., ;\cw York, '1937), pp. 297 and 335, footnote] discusses 

Lhc u:;satisfactory character of the operator ('n/i)(o/or). 
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