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ABSTRACT

We discuss the Hermitian operator p, that corresponds to the
radial component of linear momentum in the central-force problem.
The purpose is purely pedagogical—i.e., we are slightly unhappy

with the usual manner in which the term

2\ 2 ( 2 a¢>
— a— r ——
2 or or

2mr

makes its entrance, in a derivatioa of the Schroedinger cquation in

spherical coordinates.
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The "Radial Kinctic Encrgy' Term in the
"Schroedinger Equation for a Central Force™

Frank S. Crawford, Jr.

Lawrence Radiation Laboratory
University of California
Berkeley, California

September 4, 1963
INTRODUCTION |

The Schroedinger equation for the stationary states y(r) of a

single particle subject to a potential V(r) can be written in the form

2
2
H = -2? + V(r)
by substituting operators for the dynamical variables r and P- The

requirecment that the eigenvalues E be real leads to the demand that

the operator H be Hermitian, i.e. one demands’
Jy*Hyar = [(HY) ¢ar , (1)

where d7 is the three-dimensional volume element, and the integral

extends over all space.

If one is dealing with Cartesian coordinates one uses the operators
h
i

p =

x

4] .
= (etc., for y and z).

(That P 1s Hermitian is checked by replacing H in the left side of

‘Eq. (1) by P, and integrating once by parts, with ¢ = 0 at infinity.)
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Then once obtains the Hermitian operator

2 /.2 2 2
f ) ) )
H = = = + + + Vixyz),
- 2m E)xz' ayZ az2
1. ¢.,
2
il 2 .
- = - v <
H T < + Vixyz).

When one deals with a central potential
V() = V(r),

one naturally uses spherical coordinates r, 0, and ¢. In most
textbooks one procceds now to vutain the Hermitian operator
corresponding to the kinctic energy p”/2m by transforming the
. 2 .. 22/, . . .
Laplacian operator v° [times (-h°/2m)] from Cartesian to spherical |

coordinates. Then L7, the square of the Hermitian opcrator

L = rXp = rX

L N Py

oy
1 e

?

is. rccognized in the "angular' part of the Laplacian, and onc f{inds

(g ¥]

H= - o0 L 2 ;2

e
2m 2 or
- by

o @
H

+
N

+
<
5

In this form the "radial' part of the kinetic-energy operator is
rather puzzling., It corresponds to the classical radial kinctic energy
2, N . : )
p./2m. But onc does not easily recognize here the square of a
Hermitian operator P and the operator P, is not usually discusscd
1. e | .
at all. © This can be mystifying to the student, and is thereforc poor

pedagogy.
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DERIVATION OF RADIAL MOMENTUM OPERATOR

A straightforward and elementary dcri;'ation will now be given,
in which the Hermitian operator corresponding to the radial momentum

' ., 2 . s . o
p, cnters naturally. ” At the same time the student is (lightly)
excrceiscd in the noncommutative algebra of operators, ‘and finally
obtains the radial kinctic-energy operal.of in its most uscful‘form.
All of this can be done with somewhat less algebra than is often expended
in transforming the Laplacian to spherical coordinates.

For r # 0 one can resolve the classical lincar momenium p

. . -~ . ) - )
into a radial component ¥+ p = p and a t-ansverse component that
. I -

~has the same magnitude (although not the same direction) as TXp,

where £ is the unit vector r/r. Thus the kinetic energy can be written

YL Eept L Exp)® .
2m 2m 2m

The sccond term can be written

(x X 3)2 L2

Zmrz Zmr2

i

where L = r X p is the angular momentum.  One casily shows that

. , . 2 .
the operator L= r X (/i)Y is Hermitian, and so is L°. ALl this

point one profitably studies the eigenfunction-eigenvalue problem for

ey

L2 (and for Lz) and finds -

L? vM0,0) = 0% L(L+1) Y20, 4).

One then returns to the Schroedinger equation and writes

W) = RV,
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thus obtaining the ''radial equation' for R(r), namecly

-, .
) L2

o T L L"i -
g Loy D Lit) 5 v !R(r) = ER(r). (2)
: Zmr ji

v
M

It is now natural to look for the Hermitian opcerator corresponding

10 p_. For the classical momentum p we have p. = f*p=p-r7T,
P, : ; R i
L - w e o - & —_ o Ao .
analogous to the Cartesian component p = X . p =p - X. Wce now

P,

‘replace p by the operator p = (ti/i) V. In the Cartcsian case we have

o= X (n/1)v = (8/i)v «+ X = (h/i)(9 /8x). In the spherical case,
b Y ~——— ———
since ¥ is not a fixed direction, 7+ (A/i)V and (A/i)V . T arc not

. . . ~ L ~ . . . . v ~ .
cqual, and in fact neither ¥ . p nor p - T is Hermitian, and therciore
neither can represent P In sceing why these operators arc not
Hermitien we will be naturally led to the correct Hernitian operator
for p .

The Hermitian conjugate A' of an operator A is defined by the

-relation

(W)
——

[ o (avyer = [ @afy*yar. (

If A" = A then A ls said to be Hermitian, and one then immediately
finds that the eigenvalues of A are real. A vector operator

A = A\,_Q + Ay}'} + AZE is Hermitian if its components are Hermitian,

-

Thus T = i/r and p = (ﬁ/l)z are casily seen to be Hermitian. If A
and B are Hermitian operators, then (AB)-'L =pTal= BA, a; follows
dircctly from the defining Eq. (3). Thus AB is not in general
Hermitian (unless BA = AB). 'Howevér-, AB + BA is Hermitian. .

' : - = o
For vector Hermitian operators, (AXBX)’ = B;A;\ = B 'A\_, etc.,

for y and z, so that (A - ?_)T= B.A. Thus A * B is not in general
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Flermitian, but A = 3 + B A is. Thus the Hermitian operator

to be associated with 2. is clearly

_1 A. . ~
p.=3 (F-p+p-5),
i.c¢.,
5 =l(f v + V.7T) (4)
P 21 —r —

This operator is casily evaluated in spherical coordinates. For
clarity we include the operand wave function R(r). We have for the

first term in the parenthesces of Eq. (4),

a‘.
< . T =
bS mR .der.
The scecond term is
PN Y \
V.?R =V. = R
- ™ A\r /
=£1\_-(\7'r) + Rr-\?% + 71-1' v R
_ R 1 1 8
—?J + Rl<";—2> -1':1?)—1:‘]1

it
T

s
_i

QI %)

Nl
w

Thus we have

(.9 + 1-?)1{:2(.

Finally we have from Eq. (4)

= .1_ .ﬁ_ 9 2‘3 (’)
pl', " I — r. - o

Then for pi we have

e
P, =

e

o~
v-ll’.‘)‘
s

o

TN
Hlm
D—‘Ij
Q/lo.)
21

N

~
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The radial cquation (1) becomes

1 - 2 - 2
b1 1 /n 0 L(L+1)n" ey
% > ; —1- ’a"}‘.> r = T T \(I') l\(l) = EP\(A).

This is just the form oné wishes for the radial kinetic-encrgy term;

onc sces by inspection that if one multiplies the radial cquation by r

s e — Y R oo f . L . )
and defines rR(r) = u(r), one has the useful "equivalent one-dimensional’
form

o | 5 > B
i - - < o
i1 noo )\ L(L+1)n" | v( () E u(r)
g _-— = . T T T ur = ugr) .
2m \ i dx‘) 5 ) Ve
2mr i

bt

AERMITICITY OF RADIAL MOMENTUM OPERATOR

Next we check that P is indeed Hermitian. In doing so we gain

more insight into the way in which u(r) = rR(r) enters naturally.

. . . . . M
In spherical coordinates, with the separation ¢(r) = R{r) }’L (U, 0),

the question of the Hermiticity of P 1s just the question

O

fo R* (er) 1'2 dr

oG

[y (» R)* Rxar. (o)

fl-o

Stanting with the left-hand side of Eq. (6) (and setting h =1 for
convenience) we introduce u = rR; we then integrate once by parts,
demanding that u(r) vapislm at r =0 and r = ©», The minus sign
introduced in the integration by parts is cancelled by the complex

conjugation of i = N -1, Thus we have
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and the answer

- . . | . . !
the wave function u(r), for which "the inversc-squarce law'

to

UCRL-

0999

(%) / a \
w /1 Vo2
dr = R (-—- - — rR} r ar
. VTl dr -
J .
[7e]
Pal
:j:/‘l 0 \
= u — T oudr
\1 or )
o Ay
- - o
¢ ) -, .
4 2. oY . [T
= — Pafew) ! — Taoy 19— = i u dr
0
o
radys B \ x4
Al 13} § .
= 0 ‘-'j — -()—‘.' u) uar
. \" 4 J
o °
e i .
: /140 \" 2.
= f i,—.--.-a—rR Rr dr
i \\1 1 I /
o ,
Ve
= j (p R Rrédr,
0
2. ARt oo
= in Eq. (&) is 'yes.

This last demonstration is instructive in showing

us how the

operator (H/i)(0 /dr) is in a certain sense Hermitian with respect to

(for a

conscrved flux) has been factored out in order to reduce the wnrce-

dimensional problem to an equivalent one-dimensional problem.

W

 EIGENFUNCTIONS OF RADIAL MOMENT UM OPERATOR

e

Lastly we look at the eigenfunction-eigenvaluc problem for p .

have
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A
waere poois given by Eq. (3) and p’r is the elgenvalue. Thatis,
* ‘/
for r + 0,
AT O
fm v — r; R = p’' R,
r 1 or !
1. ¢.,
PEPR
PN . \
o= —— 1 U{Y = uY
T o) uin) M
B 7/
where u = rR. This differentizl equation has the solutions
u = ¢xp (ikr) - (outgoing wuve)
and
] u = exp (-ikr) (incoming wavc),
(i , L o ,
NS where Kk 1s real and positive, and wnere
! = +7k (outgoing) or -tk (incominyg)
- &L 5 o/ : Pebeen /e
Al first sight it may scem that we actually have not soived the
2
cigenfunction-cigenvalue problem, because in the derivation {ullowing
Eqg. {0) we assumed u(r)—~ 0 at r =0 and r =~ « (in the step in
which we integrated by.parts), whereas our present solution,
— .. Lt 3 - . Dol R e Sl . -
u = coxp{xikr), does not vanish at r = 0 or atinfinity. Noevertheless,
the integrated term’ [in the derivation of Eq. (6)) still gives zero,
Ty ey 11w O T .-._\ .‘ SN —— - et s .y - o,
because it has the same valuce-at r = 0 and-at infinity, namecly
u”u = 1, Thus u = exp (xikr) is an acceptable eigenfunction. Of
coursce, these eigenfunctions are unnormalizable, in essentially the
“same way that the free-particle eigenfunctions of p,» na rely
- o ..

exp (xikx), are unnormalizable.
From Eq. (2) we sece that the eigenfunctions of p'r correspond

to stationary states (definite energy) only for {ree¢ particles
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[V{r) = constani) in an S state (L = 0); otherwise, we may notl

replisce po by a constant in Eq. (2). For {rece particles in an

o
&
-~
e}
c*
oy
4
Vo
o
¢

S state, flux conscrvation is satisficd if we 'l

cormbination

There scems to be no compelling reason to require thzt expia = -1

ii
S

i.c. 1o require u{r) =0 at r
From Eq. (2) we scce that therce is another special casc fo
which a stationary siaie (deiinite E) may be simultancously an cigenstate

&

of p ; that can occur if V(r) is the rather peculiar funciion of r {and L),

Vi) = - Rl
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