## Lawrence Berkeley National Laboratory Recent Work

Title
THE ""RADIAL KINETIC ENERGY"" TERM IN THE SCHROEDINGER EQUATION FOR A CENTRAL FORCE

## Permalink

https://escholarship.org/uc/item/7tg4k7rp

## Author

Crawford, Frank S.
Publication Date
1963-09-04

## University of California

## Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California

## DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

THE "RADIAL KINETIC ENERGY" TERM IN THE SCHRODINGER EQUATION FOR A CENTRAL FORCE

Frank S. Crawford, Jr.
September 4, 1963

The "Radial Kinetic Encrgy" Term in the Schrocdinger Equation for a Central Force

Frank S. Crawford, Jr.
Lawrence Radiation Laboratory
University of California
Berkeley, California
September 4, 1963

ABSTRACT

We discuss the Hermitian operator $P_{r}$ that corresponds to the radial component of linear momentum in the central-force problem. The purpose is purely pedagogical-i.e., we are slightly unhappy with the usual manner in which the term

$$
-\left(\frac{\hbar^{2}}{2 m r^{2}}\right) \cdot \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)
$$

makes its entrance, in a derivation of the Schroedinger equation in spherical coordinates.

The "Radial Kinctic Encrgy" Terminthe Schrocdinger Equation for a Central Force

Frank S. Crawford, Jr.
Lawrence Radiation Laboratory
University of California Berkeley, California
September 4, 1963

## INTRODUCTION

The Schroedinger equation for the stationary states $\psi(\underline{r})$ of a single particle subject to a potential $V(\underset{m}{( })$ can be written in the form

$$
H \psi(\underset{\sim}{r})=E \psi(\underset{m}{r}) .
$$

The operator $H$ is obtained from the classical Hamiltonian function

$$
H=\frac{p^{2}}{2 m}+V(\underline{r})
$$

by substituting operators for the dynamical variables $\underset{\sim}{r}$ and $p$. The requirement that the eigenvalues $E$ be real leads to the demand that the operator $H$ be Hermitian, i.e. one demands

$$
\begin{equation*}
\int \psi^{*} H \psi d T=\int(H \psi)^{*} \psi d \tau \tag{1}
\end{equation*}
$$

where $d T$ is the three-dimensional volume element, and the integral extends over all space.

If one is dealing with Cartesian coordinates one uses the operators

$$
p_{x}=\frac{\hbar}{i} \frac{\partial}{\partial x} \quad(e t c, \text { for } y \text { and } z) .
$$

(That $p_{X}$ is Hermitian is checked by replacing $H$ in the left side of Eq. (1) by $p_{x}$ and integrating once by parts, with $\psi \rightarrow 0$ at infinity.)

Then one obtains the Hermitian operator

$$
H=-\frac{n^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V(x y z)
$$

i. c.,

$$
H=-\frac{n^{2}}{2 m} \nabla^{2}+V(x y z)
$$

When one deals with a central potential

$$
V(\underline{r})=V(r),
$$

one naturally uses spherical coordinates $r, 0$, and $o$. In most textbooks one proceeds now to vitain the Hermitian operator corresponding to the kinetic energy $p^{2} / 2 m$ by transiorming the Laplacian operator $\nabla^{2}\left[\right.$ times $\left.\left(-\hbar^{2} / 2 m\right)\right]$ from Cartesian to spherical coordinates. Then $L^{2}$, the square of the Hermitian operator

$$
L=\underset{m}{r} \times p=r \times \frac{\hbar}{i} \underset{m}{\nabla}
$$

is recognized in the "angular" part of the Laplacian, and one finds

$$
H=-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{L^{2}}{2 m r^{2}}+V(r)
$$

In this form the "radial" part of the kinetic-energy operator is rather puzzling. It corresponds to the classical radial kinetic energy $\mathrm{p}_{\mathrm{r}}^{2} / 2 \mathrm{~m}$. But one does not easily recognize here the square of a Hermitian operator $P_{r}$, and the operator $P_{r}$ is not usually discussed at all. ${ }^{1}$ This can be mystifying to the student, and is therefore poor pedagogy.

## DERIVATION OF RADLAL MOMENTUM OPERATOR

A straightforward and elementary derivation will now be given, in which the Hermitian operator corresponding to the radial momentum $P_{r}$ enters naturally. ${ }^{2}$ At the same time the student is (lightly) excreised in the noncommutative algebra of operators, and finally obtains the radial kineticenergy operator in its most uscful form. All of this can be done with somewhat less algebra than is often expended in transforming the Laplacian to spherical coordinates.

For $r \neq 0$ one can resolve the classical lincar momenium $p$ into a radial component $\widehat{Y}=P_{r}$ and a $t$ ansverse component that has the same magnitudic (although not the same direction) as $\hat{\mathrm{r}} \times \mathrm{p}$, where $\hat{i}$ is the unit vector $r / r$. Thus the kinetic energy can be written

$$
\frac{p^{2}}{2 m}=\frac{(\hat{i} \cdot p)^{2}}{2 m}+\frac{(\hat{i} \times p)^{2}}{2 m}
$$

The second term can be written

$$
\frac{(r \times p)^{2}}{2 m r^{2}} \equiv \frac{L^{2}}{2 m r^{2}}
$$

where $L: \underset{\sim}{x} \underset{\sim}{p}$ is the angular momentum. One casily shows that the operator $\underset{\sim}{L}=\underset{\sim}{r} \times(\hbar / i) \underset{\sim}{\nabla}$ is Hermitian, and so is $\underline{L}^{2}$. At inis point one profitably studies the eigenfunction-eigenvalue problem for $L^{2}\left(\right.$ and for $\left.L_{z}\right)$ and finds

$$
L^{2} Y_{L}^{M}(\theta, \phi)=\hbar^{2} L(L+1) Y_{L}^{M}(\theta, \phi)
$$

One then returns to the Schroedinger equation and writes

$$
\psi(r)=R(r) \dot{Y}_{L}^{M}(\theta, \phi),
$$

Lhus obtaining the "radial equation" for $R(r)$, namely

$$
\begin{equation*}
\left[\frac{p_{r}^{2}}{2 m}+\frac{n^{2} L(L \div 1)}{2 m r^{2}}+V(r) R(r)=E R(r) .\right. \tag{2}
\end{equation*}
$$

It is now natural to look for the Hermitian operator corresponding io $p_{r}$. For the classical momentum $p$ we have $p_{r}=\hat{r} \cdot p_{p}=\hat{r}$, analogous to the Cartesian component $p_{x}=\hat{x} \cdot p_{2}=\hat{2} \cdot \hat{x}$. We now replace $p$ by the operator $p=(\pi / i) \underset{\sim}{D}$. In the Cartesian case we have $P_{x}=\hat{x} \cdot(\hat{n} / i) \underset{\sim}{\nabla}=(\hbar / i) \underset{\sim}{\nabla} \cdot \hat{x}=(n / i)(\partial / \partial x)$. In the spherical case,
 equal, and in fact neither $\hat{r} \cdot \underset{\sim}{p}$ nor $p \cdot \hat{r}$ is Hermitian, and therciore neither can represent $p_{r}$. In seeing why these operators are not Hermition we will be naturally led to the correct Hermitian operator for $\mathrm{p}_{\mathrm{r}}$.

The Hermitian conjugate $A^{\dagger}$ of an operator $A$ is defined by the relation

$$
\begin{equation*}
\int \psi^{*}(A \psi) d \tau=\int\left(A^{\dagger} \psi\right)^{*} \psi d \tau \tag{3}
\end{equation*}
$$

If $\mathrm{A}^{\dagger}=\mathrm{A}$ then A is said to be Hermitian, and one then immediately finds that the eigenvalues of $A$ are real. A vector operator $\Delta=A_{x} \hat{X}+A_{y} \hat{y}+A_{z} \hat{z}$ is Hermitian if its components are Hermitian. Thus $\hat{r}=\underline{\sim} / r$ and $\underset{\sim}{p}=(\hat{n} / i) \underset{\sim}{\nabla}$ are easily seen to be Hermitian. If $A$ and $B$ arellermitian operators, then $(A B)^{\dagger}=B^{\dagger} A^{\dagger}=B A$, as follows directly from the defining Eq. (3). Thus $A B$ is not in general Hermitian (unless $B A=A B$ ). However, $A B+B A$ is Hermitian. For vector Hermitian operators, $\left(A_{x} B_{x}\right)^{\dagger}=B_{x}^{\dagger} A_{x}^{\dagger}=B_{x} A_{x}$, etc., for $y$ and $z$, so that $(A \cdot B)^{\dagger}=\underline{B} \cdot A$. Thus $A \cdot \underline{B}$ is not in general

Hermitian, but $A=\underset{\sim}{\mathrm{B}} \div \underset{\sim}{\mathrm{D}}$ A is. Thus the Hermitian uperator to be associated with $P_{r}$ is clearly

$$
p_{r}=\frac{1}{2}\langle\hat{r} \cdot p \div p \cdot \hat{r}\rangle,
$$

i.c.,

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}=\frac{\bar{H}}{2 \mathrm{i}}(\hat{r} \cdot \underline{\nabla} \div \underline{\nabla} \cdot \hat{r}) . \tag{4}
\end{equation*}
$$

This operator is casily evaluated in spherical coordinates. For clarity we include the operand wave function $R(:)$. We have for the first term in the parentheses oi Eq. (4),

$$
\hat{r} \cdot \underset{\sim}{\nabla} R=\frac{\partial}{\partial r} R .
$$

The second term is

$$
\begin{aligned}
\underline{\nabla} \cdot \hat{i} R & =\underline{\nabla} \cdot\left(\frac{r}{\bar{r}} R\right) \\
& \left.\left.=\frac{R}{r}(\underset{\sim}{r})+R \underline{r}\right) \underline{( }\right)+\frac{1}{r} \underline{r} \cdot \nabla R \\
& =\frac{R}{r} 3+R r\left(-\frac{1}{r^{2}}\right)+\frac{1}{r} r \frac{\partial}{\partial r} R \\
& =\left(\frac{2}{r}+\frac{\partial}{\partial r}\right) R .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
(\hat{r} \cdot \underline{\nabla}+\nabla \cdot \hat{r}) R & =2\left(\frac{\partial}{\partial r}+\frac{1}{r}\right) R \\
& =\frac{2}{r}\left(r \frac{\partial}{\partial r}+1\right) R \\
& =\frac{2}{r}\left(\frac{\partial}{\partial r} r\right) R .
\end{aligned}
$$

Finally we have from Eq. (4)

$$
\begin{equation*}
p_{r}=\frac{1}{r}\left(\frac{\hbar}{i} \frac{\partial}{\partial r}\right) r .^{2,3} . \tag{5}
\end{equation*}
$$

Then for $p_{r}^{2}$ we have

$$
p_{r}^{2}=\left(\frac{1}{r} \frac{\hbar}{i} \frac{\partial}{\partial r} r\right)\left(\frac{1}{r} \frac{\hbar}{i} \frac{\partial}{\partial r} r\right),
$$

i. c.,

$$
p_{r}^{2}=\frac{1}{r}\left(\frac{n}{i} \frac{\partial}{\partial r}\right)^{2} r
$$

The radial equation (1) becomes

$$
\left[\frac{1}{2 m} \frac{1}{r}\left(\frac{n}{i} \frac{\partial}{\partial r}\right)^{2} r \div \frac{L(L+1) \pi^{2}}{2 m r^{2}}+V(r)\right] R(r)=E R(r) .
$$

This is just the form one wishes for the radial kinetic-energy term; one sees jy inspection that if one multiplies the radial equation by $r$ and defines $r R(r) \equiv u(r)$, one has the useful "equivaleni one-dimensional" form

$$
\left[\frac{1}{2 m}\left(\frac{n}{i} \frac{\partial}{\partial r}\right)^{2} \div \frac{L(L+1) n^{2}}{2 m r^{2}}+V(r)\right] u(r)=E u(r)
$$

## FERMITICITY OF RADLAL MOMENTUM OPERATOR

Next we check that $P_{r}$ is indeed Hermitian. In doing so we gain more insight into the way in which $u(r)=r R(r)$ enters naturally.

In spherical coordinates, with the separation $\varphi(r)=R(r) Y(0,0)$, the question of the Hermiticity of $p_{x}$ is just the question

$$
\begin{equation*}
\int_{0}^{\infty} R^{*}\left(p_{r} R\right) r^{2} d r \stackrel{?}{=} \int_{0}^{\infty}\left(p_{r} R\right)^{*} R r^{2} d r \tag{i}
\end{equation*}
$$

Stanting with the left-hand side of Eq. (6) (and seting $\bar{n}=1$ ior convenience) we introduce $u=r R$; we then integrate once by parts, demanding that $u(r)$ vanish at $r=0$ and $r=\infty$. The minus sign introduced in the integration by parts is cancelled by the complex conjugation of $i=\sqrt{-1}$. Thus we have

$$
\begin{aligned}
\int_{0}^{\infty} R^{*}\left(p_{r} R\right) r^{2} d r & =\int_{0}^{\infty} R *\left(\frac{1}{r} \frac{1}{i} \frac{\partial}{\partial r} r R\right) r^{2} d r \\
& =\int_{0}^{\infty} u^{*}\left(\frac{1}{i} \frac{\partial}{\partial r}\right) u d r \\
& =\frac{1}{i}\left[|u(\infty)|^{2}-|u(0)|^{2}\right]-\frac{1}{i} \int_{0}^{\infty}\left(\frac{\partial u^{*}}{\partial r}\right) u d r \\
& =\int_{0}^{\infty} 0+\int_{0}^{\infty}\left(\frac{1}{i} \frac{\partial}{\partial r} u\right)^{*} u d i r \\
& \left.=\frac{\partial}{\partial r} r\right)^{*} R r^{2} d r \\
& =\int_{0}^{\infty}\left(p_{r} R\right)^{*} R r^{2} d r
\end{aligned}
$$

and the answer to $\stackrel{?}{=}$ in Eq. (ó) is "yes."
This Last demonstration is instructive in showing us how the operator ( $n / i$ ) ( $0 / \partial r$ ) is in a certain sense Fermitian with respect io the wave function $u(r)$, for which "the inverse-square law" (ior a conserved flux; has been factored out in order to reduce the theredimensional problem to an equivalent one-dimensional problem.

## EIGENFUNCTIONS OF RADIAL MOMENTUM OPERATOR

Lastiy we look at the eigeniunction-eigenvalue problem for $P_{1}$. We have

$$
p_{r} R(r)=p_{r}^{\prime} R(r)
$$

Where ：${ }^{\prime}$ is given by Eq．（5）and $p_{2}^{\prime}$ ．is the eigenvalue．That is， for $1+0$ ，

$$
\left(\frac{1}{r} \frac{\pi}{i} \frac{\partial}{\partial r} r \quad R=p_{r}^{2} R\right.
$$

i．c．，

$$
\left(\frac{\hbar}{i} \frac{\partial}{v_{r}}\right)^{\prime} u(r)=\partial_{r}^{\prime} u(r),
$$

where $u=r$ ．This dificerntial equation has the solutiv：s

$$
u=\operatorname{cxp}(i k r) \quad \text { (outgoing wave) }
$$

and

$$
u=\exp (-i k r) \quad \text { (incoming wave }),
$$

where $k$ is real and positive，and whene

$$
p_{r}^{\prime}=t h k \text { (outgoing), or the (incoming) }
$$

At firsi sight it may secm that we actually have not solved the digenfunction－cigenvalue problem，because in the derivation ivllowing Eu．（u）we assumed $u(r) \rightarrow 0$ at $r \rightarrow 0$ and $r \rightarrow \infty$（ir ine swo in which we integrated by parts），whereas our present solution， $u=$ exp（tikr），does not vanish at $r=0$ or atinfintiy．Nevertheicss， the integrated term［in the derivation of Eq．（0）］still gives zero， because it has the same value at $r=0$ and at infinity，namoly $u^{*} u=1$ ．Thus $u=\exp ( \pm i k r)$ is an acceptable eigenfuction．Oi courso，these eigenfunctions are unnormalizable，in essentially the same way that the iree－particle eigenfunctions of $P_{X}$ ，namely exp（土ikx），are unnormalizable．

From Eq．（2）we see that the eigenfunctions of $p_{r}$ correspond to stationary states（definite energy）only for free particles
$[V(r)=$ cunstani］in an $S$ state（ $L=0$ ）；otherwisc，we may act replace $p^{2}$ by a constan in Eq．（2）．For free paritcles in an $S$ stiate，fux conscrvation is satisficed if we have the haca： combination

$$
u(r)=\exp (-i k r)+\exp (i c) \exp (i k r) .
$$

There secms to be no compelling reason to require that upia $=-1$ ，
i．c．io require $u(r)=0$ ai $r=0 .{ }^{4}$
From Eq．（2）we see that there is anviner special case for which a stationary state（deninte E）may be simultanobisiy an cigenstate of $P_{r}$ ；that can occur if $V(r)$ is therathor peculiar iunction of $r$（and $L$ ），

$$
V(r)=-\frac{n^{2} L(L \div 1)}{2 m r^{2}}
$$

## FOOTNOTES AND REFERENCES

Work done under the auspices of the U. S. Aiomic Enc:yy Commission.

1. Se: ior mstance David Bonm, Qumam Theory (Prenticu-Hall, Now York, 1951); L. I. Schif, Quantum Nechanics (Mcc:awHin Book Cu., New York, 1955); E. Merxabaine, Qumam Monhanics (Jon Wiley and Sons, Inc., New Yo:n, 1gúi); J. L. Poweli and B. Crasemana, Quammancame AdinonWesley Publishing Co., Inc., Ruadma, Mass., 1901); V. Rojansiy,
 and Linus Pauling andE. E. Wilson, jr., Imarocuciona Quanum Machancs (McGraw-inil Book Co., Inc., Now Vu:k, tysj).
2. The derivation of $p_{r}$ giten here is not bond ta be represumive sumple of popular iexts listed in references 1 anc jo No aitumpi was made 10 scurch the vast hiterature of quantum moctanics to see whener a similar treatment has been given elswndare bee reierunce 3 , howevar.
3. P. Dirac (The Principles oi Quantum Mochanics (Onfore Laneraity Press, 3rded., 1947), p. 152] introduces the operator a (n/i)(o/or) and then shows that $p_{2}^{:}-$in $^{-1}$ is canonically conjugate io $i$. L. Landuu and E. Lifshitz [Quantum Mechanics (Addison-Wesley Publisining Co., Inc., Reading, Mass., 1958), p. 108, iootnote menion without discussion the operator $p_{\text {. of our Eq. (5). E. C. Komble }}$ The. Funcamental Principles of Quantum Mechanics (McGraw-Hill Book Co., New York, 1937), pp. 297 and 335, footnote] discusses Lhe unsatisfactory character of the operator ( $\hbar / \mathrm{i})(0 / \partial r)$.
4. Fo: a discussion of botndäy conditions at $r=0$, ses H. A. Armstong andE.A. Powex, Am. J. Pays. 3i, 2UZ (190j).
