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EPIGRAPH

Our understanding of musical technique

would have advanced much further

if only someone had asked:

Where, when and how did music first develop its most striking and distinctive characteristic

- repetition?

— Heinrich Schenker
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ABSTRACT OF THE DISSERTATION

Analysis and Generation of Music Signals with the Variable Markov Oracle

by

Cheng-i Wang

Doctor of Philosophy in Music

University of California, San Diego, 2018

Professor Shlomo Dubnov, Chair

Music is temporal in nature, and each music piece has its own way of building expectations

and surprises while the piece unfolds itself in time. Musical expectations are created by regularities

of series of musical events while surprises are created by either the variation or breaking of such

regularities. In that sense, identifying repeated sequences and distinguishing between variations

is an essential task for either human listening to music, or modeling music algorithmically.

In this dissertation, a model is proposed to have the capabilities modeling both the

temporal and expectation/surprise nature of music signals. The proposed model is named the

Variable Markov Oracle since it is derived from a string matching method called Factor Oracle,

that is capable of detecting arbitrarily long repetitions and could emulate variable-order Markov

xvi



chain behavior. The Variable Markov Oracle, in short, is a compressed suffix tree indexing each

time instance in a music piece, while in the same time tracing the repeated sub-sequences in the

piece. The model selection for the Variable Markov Oracle allows detection of inexact repetitions

and utilizes information theoretic measurements which corresponds to the concept of expectation

and surprises.

Motif identification and structural segmentation are two of the music research problems

that are closely related to the concept of repeated sub-sequences in music, and in this dissertation

the Variable Markov Oracle is used to solve these two problems and proved to be effective.

The Variable Markov Oracle is also used in the context of machine improvisation to improve

previously Factor Oracle based systems by providing query-guided and structural improvisation.

Besides being applied to music signals, the uses of Variable Markov Oracle for retrieval and

creative use on other time series data, such as human gesture, are also presented.
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Chapter 1

Introduction

1.1 Modeling Temporality in Music

Music is an art form manifesting itself as temporal structures [1] meaning that it is the

sequential relationships, repetitions and variations of musical elements that makes up a music

piece [2, p. 327] [3, p. 154]. Since temporality is an inherent and fundamental concept of music,

it is crucial for computational models to encompass such concept, so that the models could be

used for analyzing or generating music materials.

Traditionally, “bag-of-features” was the dominant approach used in information retrieval

circumstances. “Bag-of-features” refers to modeling songs by extracting features from either audio

recordings or symbolic music representations (MIDI for example) with features aggregated into

fixed-length vectors by statistical descriptors of the extracted features. Each fixed-length vector

represents a single music piece, and the fixed-length vector representation facilitates querying,

comparison, classification and clustering easily between music pieces having varied length [4, 5].

Although it is proven to be effective for inter-song applications, “bag-of-features” approach is not

able to deal with intra-song applications such as motif discovery, structural segmentation, audio

thumb-nailing, etc, since “bag-of-features” does not include temporal information within each

1



music piece.

In order to tackle intra-song application problems, models that take temporal information

into their considerations are proposed. Especially Hidden Markov Models (HMMs) are widely

adopted from speech recognition [6] to intra-song music applications, such as chord recognition

[7], source separation [8], structural segmentation [9], etc. In [10], the dynamic texture model

is proposed to model temporal dependencies of music signals for the music auto-tagging task.

The difference between previous HMM based model and the dynamic texture model is that the

dynamic texture model uses a linear dynamic system which has a continuous state space unlike

the discrete state space assumed by HMMs.

In general the use of HMM or dynamic texture model falls under the unsupervised

learning regime from a machine learning point of view. For modeling sequential relationships

by supervised learning, Linear Chain Conditional Random Fields (CRFs) are used in intra-song

music emotion modeling [11] and audio-to-score matching [12]. The main difference between

CRFs and HMMs is that HMMs learn the joint probabilities between the observations and

hidden states while CRFs learn the conditional probabilities of the output variables given input

variables. Recurrent neural networks was used in [13] to generate Western tonal music. With

the recent developments of using deep neural networks to learn feature transformation and non-

linear mappings, recurrent neural networks are revived and used in jazz music transcription and

generation [14], chord recognition [15], piano music transcription [16], etc. Convolutional neural

networks are also used for music information retrieval [17, 18, 19] and music generation [20, 21]

tasks, but it exploits local patterns rather than modeling temporal dependencies.

The aforementioned approaches, whether being unsupervised or supervised, could also be

seen as model-based approaches, where parameters of compact mathematical models are trained or

learned to describe temporal relationships between observations. Model-based approaches rely on

carefully choosing of models and abundant amount of samples (in this dissertation, music pieces.)

available for training. On the other hand, approaches differ from from model-based approaches,

2



are described as agnostic approaches in this dissertation. The agnostic approaches utilize distance

(or similarity) calculations between observations and use these distances to build algorithms or

data structures for further applications. For retrieval tasks such as query-by-content, Dynamic

Time Warping (DTW) has been the dominant distance metric/algorithm used in time series query-

by-content task by practitioners but is limited by its quadratic computational complexity [22] and

monotonicity conditions. Another example is the Guidage system for query-by-audio, proposed

in [23]. Guidage uses a structure called the Audio Oracle (AO) [24] to represent an audio signal

in a suffix structure. This representation allowed efficient sub-clips retrieval by traversing the AO

structure in forward direction, according to an input query. For symbolic sub-sequence matching,

one function absent from AO was a solution for traversing the suffix links. For music generation

applications, previous research using the Factor Oracle (FO) [25, 26] suffix tree data structure

for symbolic music generation and the AO [24, 27] for audio content generation were developed

for machine improvisation applications. Details of both FO and AO are provided in chapter 2.

In [28], the bijection between Bregman divergence and exponential families is used to derive

distance metrics for audio similarity computations with AO for on-line segmentation applications.

Since the FO can be used to find varied length of repeated sub strings in a symbolic

sequence and AO extends FO to accept multi-variate time series as input, the Variable Markov

Oracle (VMO) data structure, that combines FO and AO with new functionalities, is proposed in

this dissertation. The use of the VMO on music analysis and generation applications are elaborated

as well.

1.2 Modeling Musical Information Content

Models and methods mentioned in section 1.1 deal with describing temporal relationships

in a music piece both systematically and mathematically. However, there is another way to

characterize the temporal structure of music signals by measuring the “information content” of

3



the music signal by information theoretic measurements such as mutual information, entropy, etc

[29, 30, 31]. The motivation of using information theoretic measurements to characterizing the

temporal structure of music signals is that measurements such as mutual information and entropy

could be related the the concept of “expectation” and “surprise” in music [32]. In [33], it is argued

that the emotional content brought by music aries from composer’s creation and manipulation of

expectation. Then in [32, 34], it is further elaborated that the concept of “expectation” is tightly

related to regularities and the possibilities of explaining the “expectation” concept by statistical

models. The following quote from [35] is a concise description of the connections between

expectations in music and statistical models;

Once a musical style has become part of the habit responses of composers, performers,
and practiced listeners it may be regarded as a complex system of probabilities . . . out
of such internalized probability systems arise the expectations - the tendencies -
upon which musical meaning is built . . . the probability relationships embodied in a
particular musical style together with the various modes of mental behavior involved
in the perception and understanding of the materials of the style constitute the norms
of the style, . . .

By assuming musical events, structures and expectations could be approximated by

probabilistic models, the information content of music signals could then be measured by mea-

surements such as mutual information or entropy. In [30], multiple information theoretic based

measurements are proposed. Among the proposed measurements, the Predictive Information

Rate (PIR) measures the average amount of future information gained from observing the present

observations, given the past observations, and is define as

PIR(X , Y |Z) = H(Y |Z)−H(Y |X , Z)

where X stands for current observation, Z for past observations and Y for future observations. It

is shown in [30] that the PIR values could reflect changes of phrases, sections or parts in a music

4



piece. In [29, 31], the Information Rate (IR) is proposed and is defined as

IR(X , Z) = H(X)−H(X |Z)

where it measures how much of knowing the past reduce the uncertainty observing the current

event. For both PIR and IR, one way to calculate their values given actual music signal observa-

tions is to assume a parametric probabilistic source emitting the observations, then calculating

the measurements with the parametric probabilistic models. In [30], 2nd-order Markov chain is

used to model the sequential relationships between the past, present and future observations. The

music signals used in the experiment for PIR was limited to minimalist melodies in symbolic

form to accommodate the use of 2nd-order Markov models. For the calculation of IR, in [29], it

is shown that IR is inversely derivable from spectral flatness assuming spectral features are from a

Gaussian process. Assuming probabilistic sources for music signals has the advantages of model

interpretability and closed form solutions for PIR and IR calculations for certain probabilistic

models, but such assumption also in the same time suffers from model biases and limitations

choices of traceable models for information theoretic measurement calculations.

The other way to calculate information theoretic measurements is to approximate them

by replacing the entropy terms with complexity measurement from compression algorithms if

appropriate ones exist. In [31], the IR calculation on audio feature signals is approximated by

compression algorithms on the AO suffix structures. The advantage of calculating information

theoretic measurements by approximating them with compression algorithms instead of assuming

probabilistic sources is that it is easier to account for variable-length context. Compression

algorithms based on encoding repeated sub-strings such as the Lempel-Ziv-Welch algorithms

[36] or the Compror algorithm based on the FO suffix tree data structure [37] both could handle

variable length past context.

Since the FO and AO suffix tree data structure on time series is capable of modeling

5



sequential relationships and calculating information theoretic measurements for information

content, further developments of a suffix tree based data structure and algorithms extending both

FO and AO to have on-line clustering and query-retrieval capabilities are conducted. The newly

developed suffix tree data structure is the VMO.

1.3 Dissertation Organizations

The following chapters are organized as follows; in chapter 2, the construction, model

selection, on-line clustering and query-matching algorithms of VMO are elaborated. Music infor-

mation retrieval and analysis tasks using VMO including motif discovery, structural segmentation

and music analysis are provided in chapter 3. Generative use of VMO is shown in chapter 4.

Lastly, the use of VMO for human 3-D gesture applications is in appendix A and a computer

music composition using VMO is presented in appendix B.
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Chapter 2

The Variable Markov Oracle

2.1 Factor Oracle and Audio Oracle

Audio Oracle (AO) [24] is the signal extension of Factor Oracle (FO), a suffix automaton

for symbolic sequences. FO was proposed in [38] originally for bio sequence pattern matching

and later extended to generating symbolic musical sequences [25]. In this chapter a new data

structure is proposed, called the Variable Markov Oracle (VMO) that extends both AO and FO

by combining strengths from both of them. First, it models time series observations and its

symbolized version simultaneously rather than just the symbolized version (FO) or just the time

series (AO). Second, it possesses a set of algorithms that allow the searching of signal fragments

both in forward and backward directions, to match and recombine an input query in terms of

fragments of stored data. The forward and backward search directions allowed by VMO enable

nonlinear recombination paths which are not possible with DTW. The VMO is also equipped with

an on-line construction algorithm inherited from FO. Technical details for VMO are provided in

this chapter.

FO is a compressed suffix tree (suffix automaton) that aims at fast retrieval of repeated

sub-strings (factors) and patterns (repeated suffixes) of a symbolic sequence, Q. FO could be
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constructed in linear time and space, which is shown to be more appropriate than two other

variable-order models based on incremental parsing and probabilistic suffix trees [25] for real-

time applications. For a sequence of symbols Q = q1,q2, . . . ,qt , . . . ,qT , an FO is constructed

with T states and each symbol qt is associated with a state. Two kinds of link, forward link and

suffix link, are created during the construction of FO. Two types of forward links are in an oracle

structure. The first is an internal forward link which is a pointer from state t−1 to t labeled by

the symbol qt , denoted by δ(t− 1,qt) = t. The other forward link is an external forward link

which is a pointer from state t to t + k labeled by qt+k with k > 1. An external forward link

δ(t,qt+k) = t + k is created in FO when

qt+1 6= qt+k,

qt = qt+k−1,

δ(t,qt+k) = /0.

In other words, an external forward link is created when the most recent internal forward

link, δ(t + k− 1,qt+k) = t + k, is never preceded by the previous occurrence of qt (given that

qt = qt+k−1). The function of the forward links is to provide an efficient way to retrieve any of

the factors of Q, starting from the beginning of Q and following a unique path formed by forward

links.

A suffix link (sfx) is a backward pointer that points state t to k, t > k, without a label and

is denoted by sfx[t] = k. The condition for when to create a suffix link is

sfx[t] = k ⇐⇒ the longest repeated suffix of

{q1,q2, . . . ,qt} is recognized in k.

Suffix links are used to find repeated suffixes in Q. In order to track the longest repeated suffix at
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Figure 2.1: FO of Q = “abbcabcdabc”. Dashed arrows are the suffix links and solid arrows are
the forward links with labels of each symbol.

each time index t, the length of longest repeated suffixes (lrs) at each state t (denoted as lrs[t]) is

computed by the algorithm described in [39]. The construction of FO could be done incrementally

by appending newly appearing symbols to the end of Q. The algorithms for constructing FO

are provided in [39]. An example of FO structure is depicted in figure 2.1. The example will be

further exploited in section 2.2.3.1 to explain the decoding steps in the query-matching algorithm.

AO is the signal extension of FO. The input for an AO, O[t], is a continuous, possibly

multi-dimensional, time series sampled at discrete times. To extend the domain of FO from

symbolic sequences to time series, such as an audio signal, a threshold θ is introduced to determine

if O[t] is similar to states found in O[1 . . . t−1] by following suffix links. θ is associated with the

metric between observations of the given time series. Two samples O[i] and O[ j] are considered

similar if |O[i]−O[ j]| ≤ θ. The metric should be chosen according to the application domain

and features used. Different θ values will lead to different oracle structures, the details of how to

choose an appropriate θ based on music information dynamics are given in section 2.2.2. Unlike

FO, the AO does not symbols associated with the forward links. An example of AO is depicted in

figure 2.2.
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Figure 2.2: AO (bottom) of O = O[1] . . .O[T ] (top). Dashed arrows are the suffix links and solid
arrows are the forward links without labels of each frame.

2.2 Variable Markov Oracle

As mentioned above, AO resembles the suffix structure of FO, without symbols attached

to states. This fact prevents AO from having efficient navigating algorithms for states linked by

suffix links. From this observation, VMO is devised to improve AO by explicitly assigning labels

to frames (or states) linked by suffix links during the AO construction. The symbols formed by

gathering states connected by suffix links have the following properties; 1) pairwise distances

between states connected by suffix links are less than θ, 2) the symbolized signal formed by

the oracle could be interpreted as a sample from a variable-order Markov model since the states

connected by suffix links share common suffixes with variable length, 3) each state is labeled by

only one symbol because each state has only one suffix link, 4) the alphabet size of the assigned

symbols is unknown before the construction and is determined by θ.

To explicitly keep track of the linked states and also to maintain the on-line nature of the
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construction algorithm, the construction of VMO combines FO and AO by treating the sequence of

assigned labels Q as the symbolic sequence for an FO. Pointers to O are tracked by introducing a

list of pointers, Σ= [σ1 . . .σm . . .σM], with M the number of labels formed and σm a list containing

the pointers (frame numbers) for the mth label. In summary, VMO accepts O as input and returns

an oracle structure keeping track of the cluster label sequence Q and also the lists of pointers to O.

The lists of pointers are stored in Σ and indexed by Q. An example VMO following the previous

FO and AO examples is shown in figure 2.3.

Let O be the incoming new signal and t the time index. O[t] represents the newly observed

value or vector at t. A forward link from state i to state j labelled by q is denoted by δ(i,q) = j. A

suffix link from state j to state i is denoted by sfx[ j] = i without labeling. Q = q1, . . . ,qT denotes

the label sequence for labels of observations O = O[1] . . .O[T ]. The initialization of a VMO is

provided in algorithm 1. In algorithm 2, the incremental algorithm to add an incoming signal

observation is provided. For each new incoming sample O[t], a new state is constructed with the

internal forward link δ(t−1,qt) = t created. The cluster (pointer) label qt for O[t] is initialized

as null. The while loop from line 5 to line 15 in algorithm 2 is the standard process to assign

external forward links and suffix links introduced in [39]. Line 16 to line 25 in algorithm 2 is the

newly introduced part of VMO that assigns the cluster label to qt then appends the pointer of O[t]

to σqt . In this chapter, for the algorithms described in pseudocode, X [i] means retrieving the item

from an array X in its ith location; [a;b] means appending b to the end of a; Xi, j means accessing

the item at ith row and jth column of a matrix X ; and X(i, :) means retrieving the whole ith row

in a matrix X .

2.2.1 VMO as an On-line Clustering Algorithm

The on-line construction algorithms presented in section 2.2 build a clustering of frames

and stores the clustering in Σ. How the construction algorithms could be viewed as an on-line

clustering algorithm with Markov constraints is conjectured in this section. An on-line clustering
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Figure 2.3: VMO (middle) of O = O[1] . . .O[T ] (top) with symbolized/clustered frames Q =
“abbcabcdabc” (bottom). Dashed arrows are the suffix links and solid arrows are the forward
links with labels of each symbol.

Algorithm 1 On-line construction of VMO
Require: Time series as O = O[1],O[2] . . .O[T ]

1: Create an oracle P with initial state p0
2: sfxP[0]←−1, Σ← /0, N← 1
3: for t = 1 : T do
4: Oracle(P = p1 . . . pt)← Add-Frame(Oracle(P = p1 . . . pt−1),O[t])
5: end for
6: return Oracle(P = p1 . . . pT )
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Algorithm 2 Add-Frame
Require: Oracle P = p1 . . . pt , time series instance O[t +1]

1: Create a new state t +1
2: qt+1← 0, sfxP[t +1]← 0, M← 0
3: Create a new transition from t to t +1, δ(t,qt+1) = t +1
4: k← sfxP[t]
5: while k >−1 do
6: D← distances between O[t +1] and O[δ(k, :)]
7: if all distances in D is greater than θ then
8: δ(k,qt+1)← t +1
9: k← sfxP[k]

10: else
11: Find the forward link from k that minimizes D

k′← δ(k, :)[argmin(D)]
12: sfxP[t +1]← k′

13: break
14: end if
15: end while
16: if k =−1 then
17: sfxP[t +1] = 0
18: Initialize a new cluster with current frame index

σM+1← t +1
19: Σ← [Σ;σM+1]
20: Assign a label to the new cluster, qt+1←M+1
21: Update number of clusters, M←M+1
22: else
23: Assign cluster label based on assigned suffix link

qt+1← qk′

24: σqk′ ← [σqk′ ; t +1]
25: end if
26: return Oracle P = p1 . . . pt+1
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algorithm refers to incrementally aggregating a data stream into clusters without observing all

the data points in the first place. In [40], an on-line clustering algorithm, the Leader-Follower

Clustering, is proposed. The leader-follower clustering algorithm is provided in algorithm 3.

Algorithm 3 Leader-Follower Clustering
Require: A data stream with x the incoming sample

1: Initialize η,θ
2: w1← x
3: while x is presented do
4: j← argmin j′ ‖x−w j′‖ (find nearest cluster)
5: if ‖x−w j′‖< θ then
6: w j← w j +ηx
7: else
8: add new w← x
9: ‖w‖← w/‖w‖ (normalizing the weights)

10: end if
11: end while
12: return w1,w2, . . .

Comparing algorithm 2 to algorithm 3, one can observe that the suffix link finding routine

in algorithm 2 is similar to line 4 in the Leader-Follower Clustering where a possible cluster label

is identified. Then the label-assigning routine in algorithm 2 is where either an existing label gets

assigned or a new label is formed, and is similar to the If-else part in algorithm 3 as well. The θ

used in both algorithms plays the same role in the sense that it controls the number of clusters

created. Two major differences separates these two algorithms. First, the suffix link finding

routine in algorithm 2 places a Markov constraint on the states to be considered as candidate states

for the suffix link of the incoming sample. Markov constraint refers to the constraints placed in

constraint satisfaction problem (CSP) to enforce Markov properties in the generated sequence

from solving the CSP [41]. The concept is borrowed here and used to explain the effect of line 6

in algorithm 2 where, instead of having Markov constraint cost functions in an optimization

scenario of CSP, VMO directly limits only the states sharing the same suffix with the incoming

observation to be considered as candidates to where suffix links point. Then variable-order

Markov properties are injected because of the shared suffixes. The second difference is that
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Figure 2.4: Two oracle structures with extreme values of θ. The characters near each forward
link represent the assigned labels. (Top) The oracle structure with θ = 0 or extremely low θ

value. (Bottom) The oracle structure with a very high θ value. In both cases the oracles are
incapable of capturing any type of structure from the time series.

VMO does not parametrize the clustered frames in terms of centroids or other statistics. From

another point of view, since the clusters in VMO are formed by whether assigning linkages

between incoming frames and existed frames in established clusters or creating a new cluster by

criteria related to distance or similarity measures, VMO is more like a variant of single linkage

hierarchical clustering.

2.2.2 Model Selection via Information Rate

As mentioned earlier, different θ values lead to different oracle structures. For an extreme

θ value, VMO may assign different symbols to every frame in O (θ being excessively low), or

VMO may assign the same symbol to every frame in O (θ being excessively high). In these two

cases, VMO is incapable of capturing variable-order dependencies in the time series. Selecting the

optimal θ in the context of music information dynamics with Information Rate (IR) is described

in this section. An example of the oracle structure with extreme θ values is shown in figure 2.4.

With different θ values, VMO constructs different suffix structures and different symbol-
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ized sequences from the signal. To select the one symbolized sequence with the most informative

variable-order structure, IR is used as the criterion in model selection between different structures

generated by different θ values. IR is an information theoretic measure capable of measuring the

information content of a time series [24] in terms of the predictability of its source process on the

present observation given past ones. VMO uses the same approach as AO [31] to calculate IRIR.

Let xN
1 = {x1,x2, . . . ,xN} denote time series x with N observations, H(x) = −∑P(x) log2 P(x)

the entropy of x, the definition of IR is

IR(xn−1
1 ,xn) = H(xn)−H(xn|xn−1

1 ). (2.1)

IR is the mutual information between the present and past observations, which is maximized

when there is a balance between variation and repetition in the symbolized signal. The value of

IR could be approximated by replacing the entropy terms in (2.1) with a complexity measure

associated with a compression algorithm. This complexity measure is the number of bits used to

compress xn independently using the past observations xn−1
1 .

IR(xn−1
1 ,xn)≈C(xn)−C(xn|xn−1

1 ). (2.2)

Compror, a lossless compression algorithm based on FO and lrs, is provided in [37]. The

detailed formulation of combining Compror, AO and IR is provided in [31] and also the following

paragraphs.

Before getting into the compression algorithms using VMO, a motivating example of

why IR is an appropriate measurement is provided here. Assuming a symbolic sequence X =

[a,b,a,b,a,b, . . .], that repeats forever and a is always followed by b and b always followed by

a. If X is modeled by a 1st-order Markov chain, then the IR of X is easily 1 since H(X) = 1

and H(Xn|Xn−1
1 ) = H(Xn|Xn−1) = 0. Also X has the maximum IR value among all possible

2-event sequences. In [30], it is argued that the aforementioned statements about X is why IR is
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not suitable for modeling information dynamics of music signals, since the repeating structure

of [a,b,a,b, . . .] is not interesting by the sequence itself. Here the argument opposed to [30]

is provided to support why IR is a suitable measurement for capturing information dynamics.

Essentially, if there exists some algorithms or models that could reduce or decompose surface

musical elements into the form of X , then that implies that such algorithms or models are capable

of finding the basic building blocks a and b of the music piece as similar concepts were proposed

by [42] and [43]. In other words, unlike in [30] that only “surface” musical events (note values

having the same length) are modeled by Predictive Information Rate (PIR), IR is capable of

measuring how well a latent space or state space model is capable of modeling a reduced structure

of the surface musical events.

For a VMO, the on-line generation of code words C for equation (2.2) is as follows [37]:

When a new state is added to an oracle structure at time (t +1), the suffix link and length of the

longest repeated suffix for this state along the VMO are computed. If the resulting suffix link

points to state 0 that means no suffix was found since the distance between the new state and

all previous states exceeded the threshold θ. In such a case the new state has to be individually

encoded. Otherwise, if suffix link to a previous location in the state sequence is found and

the length of the longest repeating suffix is smaller than the number of steps passed since the

last encoding event, then a complete preceding block of states is encoded in terms of a pair

(length, position). In the method here individual new state will be denoted as a pair (0, position).

Let κ[i] be the array that contains the states where encoding occurs during the compression pass.

An algorithm for computing κ is described in algorithm 4 with lrs an array containing the lengths

of the longest repeated suffixes of the oracle at each step. lrs could be obtained during the

construction of an oracle. The collection of code pairs Φκ resulting from algorithm 4 is passed to

the incremental IR algorithm, as described in algorithm 5.

A visualization of the sum of IR values versus different θs is depicted in figure 2.5. When

algorithm 4 and algorithm 5 are applied to a VMO, higher θ value creates higher C(xn) and
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Algorithm 4 Compression Pass over VMO
Require: Array containing the length of repeated suffixes for every state lrs[t], t = 1 · · ·T

1: Create an array κ with initialization κ = {1}
2: for t = 1 to T do
3: if lrs[t +1]< t−lrs[end]+1 then
4: κ← κ∪{t}
5: end if
6: end for
7: return Vector κ

Algorithm 5 Incremental IR from code Φ

Require: A sequence of codeword pairs Φ = (length, position), with position information, κ,
from compression algorithm, and length information from lrs.

1: Compute length T by summing all Φ→ length values
2: Create vectors C(xn) and C(xn|xn−1

1 )
3: for t = 1 to T do
4: M← number of symbols up to t by ∑

t
i=1(lrs[i] == 0)

5: C(xt)← log2(M)

6: C(xt |xt−1
1 )← log2(# of codewords Φ up to t)

Φ→ length to which state t belongs
7: end for
8: return Vector IR =C(xn)−C(xn|xn−1

1 )
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Figure 2.5: IR values are shown on the vertical axis while θ are on the horizontal axis. The
solid blue curve shows the relationship between IR and θ, and the dashed black line indicates
the chosen θ by locating the maximum IR value. Empirically, IR curves exhibit quasi-concave
function shapes, thus a global maximum can be located.

C(xn|xn−1
1 ) while lower θ creates lower C(xn) and C(xn|xn−1

1 ). Thus IR is maximized with an

intermediate θ value when C(xn) and the negative C(xn|xn−1
1 ) are balanced. A VMO with higher

IR value captures more of the repeating sub-clips (ex. patterns, motifs, themes, gestures, etc) than

the ones with lower IR values.

2.2.3 Sequence Matching Algorithms

One of the advancement that the VMO brings is the capability of performing query-

retrieval or query-matching tasks on either symbolic or multi-variate time series. The sequence

matching functionality is enabled by the clustering functionality introduced in VMO and it

achieves sequence matching by concatenation of sub-sequences in the target sequence found

by the repeated suffix structure. The algorithms for query-matching are described here in the

following section and referred to in following chapters.

Let R be the query observation indexed by n, denoted as R = R[1], . . . ,R[n], . . . ,R[N]. The

matching algorithm provided in algorithm 6 takes R as input and matches it to the target VMO,

Oracle(Q = q1,q2, . . . ,qT ,O = O[1],O[2], . . . ,O[T ]), constructed by a target time series, O. The

algorithm returns a cost and a corresponding recombination path using O resembling R. The

cost is the reconstruction error between the query and the best match from O given a metric on a
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frame-by-frame basis. The recombination path corresponds to the sequence of indices that will

reconstruct a new sequence from O that best resembles the query, R.

2.2.3.1 Query-matching algorithm

The query-matching algorithm described in this section is a dynamic programming

algorithm. The algorithm is separated into two steps, initialization and decoding. In algorithm 6,

the initialization is in line 1 to line 6. During initialization, the size of the alphabet, M, is obtained

from the cardinality of Σ. Then for the mth list, the frame within the mth list that is closest

to the first query frame, R[1], is found and stored. After the initialization step, the decoding

step (line 7∼13 in algorithm 6) iterates over the rest of the query frames from 2 to N to find M

paths, with each path beginning with the state found corresponding to the respective label in the

initialization step. It could be observed that the proposed query-matching algorithm is similar

to the Viterbi decoding algorithm for HMM and max-sum inference algorithm for graphical

models [44] in the sense that each update in the decoding step depends only on its neighboring

findings, thus making it efficient to compute and of no need to search over the whole state space.

A visualization of algorithm 6 from initialization to decoding for one path among the M paths is

shown in figure 2.6. The query-matching algorithms are used in section 4.2.1 for guided synthesis

applications.

2.2.3.2 On-line alternative

To satisfy certain applications that require real-time capabilities, the query-matching

algorithm described in algorithm 6 is adjusted. The on-line query-matching algorithm will be

referred to as the query-following algorithm. The query-following algorithms are provided in

algorithm 7 and algorithm 8. The query-following algorithm updates the current “time progression”

and “likelihood” on a frame-by-frame basis instead of one final backward pass at the end of the

query time series for the offline version. In algorithm 7, M possible paths are initialized according
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(a) At t = 1 (Initialization for label a); {a, 9}, the pair of label initialized and frame matched.
At initialization, for label a the choices for the first frame are stored in the list, {1,5,9} from
Σ. Assuming the closest frame in O to R[1] with label a is O[9], then the first frame for path
beginning with label a will be 9. With the help of keeping track of Σ, the calculation between
R[1] and {O[1],O[5],O[9]} is straight forward.

(b) At t = 2 (Decoding); {b, 10}, the pair of label identified and frame matched. At t = 2,
the only possible label following label a from t = 1 is b, thus making frames in {2,3,6,10}
the possible candidates. Let O[10] be the closest frame from the candidates to R[2]

(c) At t = 3 (Decoding): {c, 4}, the pair of label identified and frame matched. At t = 3, the
possible labels following label b from t = 2 is b and c by examining the forward links from
state 10. The possible frames are now the union of labels b and c, {2,3,4,6,7,10,11}. Let
the closest frame from the candidates to R[3] be O[4], the result path beginning at label a is
{9,10,4}. The steps from (a) to (c) are done for all other 3 possible paths as well

Figure 2.6: Decoding steps: Consider the target time series represented as the VMO shown
above, the same from figure 2.1. The light gray parts of each subplot are the same from
figure 2.1. In each subplot, parts marked by black with thick arrows indicate the path for
the chosen state, dark gray ones with thick arrows represent possible paths and filled circle
represents the candidate states. Numbers on the thick black arrows are step numbers. In this
example, the query R, is assumed to have 3 frames and the subplots demonstrate hypothetic
steps for the path started with frames in O in cluster labeled by a (among 4 possible paths started
via a, b, c or d). Here the visualization of the query time series is omitted and the path is chose
generically to demonstrate algorithm 6.
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Algorithm 6 Query-Matching
Require: Target signal in VMO, Oracle(Q = q1,q2, . . . ,qT ,O = O[1],O[2], . . . ,O[T ]) and query

time series R = R[1],R[2], . . . ,R[N]
1: Get the number of clusters, M← |Σ|
2: Initialize cost vector C ∈ RM and path matrix P ∈ RM×N .
3: for m = 1 : M do
4: Pm,1← Find the state, t, in the mth list from Σ

with the least distance, dm,1, to R[1]
5: Cm← dm,1
6: end for
7: for n = 2 : N do
8: for m = 1 : M do
9: Pm,n← Find the state, t, in lists with labels

corresponding to forward links from state
Pm,n−1 with the least distance, dm,n to R[n]

10: Cm += dm,n
11: end for
12: end for
13: return P[argmin(C)], min(C)

to the number of labels assigned by a VMO and the first entry for each path is located according

to the distance between the first observation from the input stream to every frame in each label.

Algorithm 7 returns a path vector P and a cost vector C and passes them to the query-following

algorithm. In algorithm 8, the algorithm is run once to update P and C for each path for each

incoming sample, then Pargmin(C) is returned as the found index in target time series O indicating

the best match between the incoming time series R and stored time series O.

Algorithm 7 Query Following - Initialization
Require: Target signal in VMO, Oracle(Q = q1,q2, . . . ,qT ,O = O[1],O[2], . . . ,O[T ]) and first

frame of incoming time series R[1]
1: Get the number of clusters, M← |Σ|
2: Initialize cost vector C ∈ RM and path vector P ∈ RM.
3: for m = 1 : M do
4: Pm← Find the state, t, in the mth list from Σ

with the least distance, dm, to R[1]
5: Cm← dm
6: end for
7: return Pargmin(C), P, C
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Algorithm 8 Query Following - On-line Update
Require: Target signal in VMO, Oracle(Q = q1,q2, . . . ,qT ,O = O[1],O[2], . . . ,O[T ]), path vec-

tor P, cost vector C from algorithm 7 and incoming time series R[n] at time n.
1: for m = 1 : M do
2: Ptemp← Pm
3: Pm← Find the state, t, in lists with labels

corresponding to forward links from state
Ptemp with the least distance, dm to R[n]

4: Cm += dm
5: end for
6: return Pargmin(C), P, C

2.2.3.3 A Probabilistic Interpretation

In this section, the analogy between the inference problem in HMM and the query-

matching algorithm used by VMO will be elaborated. Given an HMM learned from O =

O[1],O[2], . . . ,O[T ] specified as, initial probabilities πi of being at state i, transition probabilities

ai j for transitioning from state i to state j, the hidden state at time step n denoted by xn and

emission probabilities P(R[n]|m) for observed variable R[n] at time step n generated by state

m and. Given an observed time series R = R[1],R[2], . . . ,R[N]. The most likely hidden states

sequence x1, . . . ,xN that generates R could be found by the recurrence relations:

V1,m = P(R[1]|m) ·πm,

Vn,m = max
m′

(P(R[n]|m) ·am′m ·Vn−1,m′).

Then given a VMO indexing O = O[1],O[2], . . . ,O[T ], we can replace the terms in the recurrence

relations in HMM with attributes in VMO. First of all, we treat the clusters of frames σ1, . . . ,σM

stored in Σ as hidden states in an HMM. With Σ available from VMO, initial probability is replaced

by an empirical frequency estimation from VMO as

πi =
|σi|
T

,
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with |σi| denoting the number of frames stored in σi. The transition probability is replaced as

ai j =
1(∃δ(t, j), t ∈ σi)|σ j|

∑
M
j′=1 1(∃δ(t, j′), t ∈ σi)|σ′j|

,

with 1() an indicator function returns 1 if the condition enclosed is true or 0 otherwise. The

replacement for the transition probability is an approximation with conditional empirical frequency

estimation from transition candidates by forward links. For the emission probability, we replace

it by

P(R[n]|m) ∝ exp(
−d(R[n],m)

α
),

with d(R[n],m)≥ 0 and α≥ 0. α is a scalar controlling the variance which is assumed to be 1.

d(R[n],m) is a cost function, and we define the cost function as

d(R[n],m), min
t ′∈σm
‖R[n]−O[t ′]‖.

The definition of the cost function refers to finding the closest frames in σm to the incoming

observation R[n] and returning their distance. If we take log on both sides of the recurrence

relations along with combining the above replacements, the recurrence relations could be re-
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written as:

log(V1,m) = log(exp(− min
t ′∈σm
‖R[1]−O[t ′]‖) · |σm|

T
))

=− min
t ′∈σm
‖R[1]−O[t ′]‖+ log(

|σm|
T

),

log(Vn,m) = max
m′

log((exp(− min
t ′∈σm
‖R[n]−O[t ′]‖) (2.3)

· 1(∃δ(t,m), t ∈ σm′)|σm|
∑

M
j=1 1(∃δ(t, j), t ∈ σm′)|σ j|

·Vn−1,m′)

= min
m′

(min
t ′∈σm
‖R[n]−O[t ′]‖

+ log(
1(∃δ(t,m), t ∈ σm′)|σm|

∑
M
j=1 1(∃δ(t, j), t ∈ σm′)|σ j|

·Vn−1,m′)).

then the comparison between the above re-written recursive relations to the query-matching

algorithm proposed in algorithm 6 can be made. One can first notice that algorithm 6 not

only identifies the hidden states (σm′) but also the extracted frame O[t ′] from that hidden state,

which is consistent with the cost function mint ′∈σm ‖R[n]−O[t ′]‖ proposed above. Then the next

observation is that the probabilities for transitioning to different σm is the number of of frames

in σm proportional to the sum of number of frames possible to transition to from σm′ . Combine

the above two observations, it could be established that the probability distribution for candidate

frames before considering the emission probability is actually uniform. Thus one only need to

consider the cost function in (2.3) which means log(V1,m) and log(Vn,m) is actually exactly Cm in

algorithm 6.

2.2.4 Context-Aware Hidden Markov Models

It is shown in [45] and previous paragraphs that a VMO is capable of clustering data

points of a multivariate time series based on their temporal relations, and tracking the sequential

transitions between these clusters. This effectively makes VMO into a latent temporal model with
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special behavior that is different from the common HMM due to its variable length modeling

property. In this section, a further study of how a VMO differs from a HMM is presented. A

visual demonstration of the context aware aspect of a HMM constructed by VMO (VMO-HMM

hereafter) is depicted in figure 2.7. In the example these observations are clustered into groups

according to different clustering methods. Figure 2.7 shows these results by marking the cluster

assignments with different colors. Examples of time series modeled by a VMO, an HMM Gaussian

Mixture Models (HMM-GMM) and a K-Means clustering algorithm are shown. It should be noted

that the K-Means clustering algorithm clusters observations based on spatial positions only (in the

feature space), and that both the VMO and the HMM-GMM take the time trajectories into account.

In these examples it is evident that only VMO is capable of distinguishing between observations

that are spatially but not sequentially (temporally) close to each other and assigning them to

different clusters. After examining the results it is clear that the establishment of clusters by an

HMM-GMM and a K-means clustering algorithm is mainly determined by spatial relationships

between observations but not temporal relationships. Although the possibility of forming a latent

model was discussed in previous studies of VMO and Viterbi-like query-matching algorithms

were described in previous sections, the VMO data structure still has to be kept in order for those

algorithms to work. In this section, the proposed latent model is a compact version of the VMO

data structure with a novel statistical model and probabilistic interpretations.

2.2.4.1 Variable Markov Oracle as Latent Model

A VMO could be viewed as an on-line clustering algorithm without the need to specify

the number of clusters as described earlier. A VMO could also be considered as a data structure

that traces repeated sub-sequences in the latent space. These two properties make VMO capable

of both modeling and generating multivariate time series.

The clustering property of a VMO is explained in detail in [45] and section 2.2.1. The

VMO was introduced as a data structure that allowed symbolization and clustering, but without an
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Figure 2.7: Two time series examples modeled by three different approaches. The gesture
in the top row is a real world 3-D human skeletal joints gesture projected onto its first two
principle components. The bottom one is a synthetic spiral sequence. The bottom one is a shape
commonly tested in manifold discovering and clustering. Three approaches are used to model
these time series. (From right to left) K-Means, HMM-GMM and VMO. Each observation along
the time series is represented as a colored circle with its color represents the label (hidden/latent
state) that the observation is assigned to. observations with the same color in the same plot
belong to the same label. The starting and ending positions of the two time series are annotated
in the left most column. Dashed lines connecting the data points represent the time progression
trajectories of each time series.
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underlying statistical model. In [46] and section 2.2.3.3, an HMM analogy between the Viterbi

algorithm and the VMO query-matching algorithm was made as the first attempt to establish a

statistical interpretation for the VMO. It took into account the inference of emission probabilities

from observation and but did not model transition probabilities. The work described in this section

is the most complete analogy or statistical interpretation of the FO structure after IR optimization

to an HMM.

In short, a VMO records where and how long the longest repeated suffixes happened

for every time step in the time series, and stores them in two arrays, sfx and lrs respectively.

Since for each observation only one longest repeated suffix is recorded, each observation in

a time series is indexed by the VMO by assigning a label that is based on the unique paths

that are defined by suffix records. The labels are stored in Σ. Observations assigned the same

label possess two properties that are utilized in this section: The first one is that the distances

between the observations connected by suffix links are below a found threshold θ during the

model selection process. The second one is that they all share common suffixes in the latent

space. The first property sets the basis of modeling observations with a latent variable, the second

property provides a Markovian relationships between the latent variables.

2.2.4.2 VMO-HMM

The HMM-like model extracted from a VMO is called the VMO-HMM. To extract a

VMO-HMM from a VMO, each latent variable is represented by the centroid extracted from the

clustered observations. The choice of centroid could be flexible, such as the mean or the median,

depending on the applications. To extract the Markov transition probabilities from a VMO, the

lrs array is used. The lrs arrays contains the lengths of the longest repeated suffixes, thus it

also provides variable-length Markov transition information. To obtain these information, a 3-D

Markov transition tensor is created instead of a 2-D Markov transition matrix. In algorithm 9, a

simple algorithm is provided to show how the tensor is extracted.
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Algorithm 9 HMM tensor extraction
Require: An indexed VMO V , max variable Markov order length M

1: N← the number of latent variables in V
2: Create a 3-D tensor S with dimensions {M,N,N}
3: T ← the number of data points in V
4: for t = 2 : T do
5: i← latentV [t−1]
6: j← latentV [t]
7: if lrsV [t]< 2 then
8: S[1, i, j] += 1
9: else

10: S[1 : lrsV [t]−1, i, j] += 1
11: end if
12: end for
13: for m = 1 : M do
14: Normalize each row in S[m, :, :]
15: end for
16: return S

In algorithm 9, the counts of occurrences between consecutive latent variables are accu-

mulated across the first dimension of S, with the index if the first dimension representing the

order of each Markov transition matrix. In section 3.3, jazz music analysis with the help from

VMO-HMM is presented, and in section 4.4, the use of VMO-HMM in generating new musical

materials is shown.

Chapter 2 is adapted from published materials in ”Variable Markov Oracle: A Novel

Sequential Data Points Clustering Algorithm with Application to 3D Gesture Query-Matching”.

Wang, Cheng-i. & Dubnov, Shlomo. International Symposium on Multimedia, 2014, 215-222,

”The Variable Markov Oracle: Algorithms for Human Gesture Applications”. Wang, Cheng-i. &

Dubnov, Shlomo. IEEE MultiMedia, IEEE, 2015, 22, 52-67 and ”Context-Aware Hidden Markov

Models of Jazz Music with Variable Markov Oracle”. Wang, Cheng-i. & Dubnov, Shlomo.

5th International Workshop on Musical Metacreation (MUME 2017) at the Eight International

Conference on Computational Creativity, ICCC 2017, 2017. All of the algorithms described here

could be found on https://github.com/wangsix/vmo.
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Chapter 3

Analysis with the VMO

3.1 Motif Discovery

Automatic discovery of musical patterns (motifs, themes, sections, etc.) is a task defined

as identifying salient musical ideas that repeat at least once within a piece [47, 48] with com-

putational algorithms. In contrast to “segments” found in the music segmentation task [49], the

patterns found here may overlap with each other and may not cover the entire piece. In addition,

the occurrences of these patterns could be inexact in terms of harmonization, rhythmic pattern,

melodic contours, etc. Lastly, hierarchical relations between motifs, themes and sections are also

desired outputs of the pattern discovery task.

Two major approaches for symbolic representations are the string-based and the geometric

methods. A string-based method treats a symbolic music sequence as a string of tokens and

applies string pattern discovery algorithms on the sequence [50, 51]. A geometric method views

musical patterns as shapes appearing on a score and enables inexact pattern matching as similar

shapes imply different occurrences of one pattern [52, 53]. For a comprehensive review of pattern

discovery with symbolic representations, readers are directed to [48]. For audio representations,

geometric methods for symbolic representations have been extended to handle audio signals
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by multi F0-estimation with beat tracking techniques [54]. Approaches adopted from music

segmentation tasks using self-similarity matrices and greedy search algorithms are proposed in

[55, 56]. Most of the research involving audio representations has been focused on “deadpan

audio” rendered from MIDI. In [54], the pattern discovery task is extended to live performance

audio recordings with a single recording for each music piece. In the current study, instead of

directly applying the proposed framework on performance recordings, multiple recordings are

gathered for each musical piece to aid the pattern discovery on deadpan audio. In following

sections, a string-based approach utilizing the clustering and repeated suffixes properties of the

Variable Markov Oracle (VMO) is described and evaluated.

3.1.1 Pattern Discovery by VMO

Algorithm 10 shows the string-based algorithm for the automatic pattern discovery task

using the VMO. The idea behind algorithm 10 is to track patterns by following suffix link (sfx),

rsfx and length of longest repeated suffixes (lrs). rsfx stands for the reverse suffix links and

stores where the suffix links are from for each frame. sfx and rsfx provides the locations of

patterns, and lrs indicates the length of these patterns. In line 5 of algorithm 10, checks are made

so that redundant patterns are avoided, and the lengths of patterns are larger than a user-defined

minimum L. From line 6 to 10, the algorithm recognizes occurrences of established patterns, and

from line 11 to 15 it detects new patterns and stores them into Pttr and PttrLen.

Algorithm 10 returns Pttr,PttrLen and K. Pttr is a list of lists with each Pttr[k],k ∈

{1,2, . . . ,K}, a list containing the ending indices of different occurrences of the kth pattern found.

K is the total number of patterns found. PttrLen has K values representing the length of the kth

pattern in Pttr.
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Algorithm 10 Pattern Discovery using VMO
Require: VMO, V, of length T and minimum pattern length L.
Ensure: sfx,rsfx,lrs ∈V

1: Initialize Pttr and PttrLen as empty lists.
2: Initialize prevS f x =−1,K = 0
3: for i = T : L do
4: pttrFound = False
5: if i−lrs[i]+1 > sfx[i]∧sfx[i] 6= 0∧lrs[i]≥ L then
6: if ∃k ∈ {1, . . . ,K},sfx[i] ∈ Pttr[k] then
7: Append i to Pttr[k]
8: PttrLen[k]←min(lrs[i],PttrLen[k])
9: pttrFound = True

10: end if
11: if prevS f x−sfx[i] 6= 1∧ pttrFound == False then
12: Append {sfx[i], i,rsfx[i]} to Pttr
13: Append min{lrs[{sfx[i], i,rsfx[i]}]} to PttrLen
14: K← K +1
15: end if
16: prevS f x← sfx[i]
17: else
18: prevS f x←−1
19: end if
20: end for
21: return Pttr,PttrLen,K

32



3.1.2 Experiments

The dataset chosen for the music pattern discovery is the JKU Pattern Development

Dataset (JKU-PDD) [47]. This dataset consists of five polyphonic classical music pieces or

movements in both symbolic and audio representations. The ground truth of repeated patterns

(motifs, themes, sections) for each piece is annotated by musicologists. The details of the

experimental setup are provided in the following sections.

3.1.2.1 Feature Extraction

For the automatic musical pattern discovery task, the chromagram is the input feature to

algorithm 10 for both the symbolic and audio representations. The chromagram is a feature that

characterizes harmonic content and is commonly used in musical structure discovery [57].

3.1.2.1.1 Symbolic Representation For the experiments described in this section, the sym-

bolic representation chosen is MIDI, but other symbolic representations may be used instead. The

chromagram derived from the symbolic representation is referred to as the “midi-chromagram”.

The midi-chromagram is similar to the midi-histogram described in [58] and represents the

presence of pitch classes during each time frame. To create a midi-chromagram with quantization

b in terms of MIDI whole note beats, frame size M, and hop size h, the MIDI file is first parsed

into a matrix where each column is a MIDI beat quantized by b and each row is a MIDI note

number (0−127). For each analysis frame, the velocities are summed over M MIDI beats, and

then folded and summed along the MIDI notes to create a single octave of velocities. In other

words, all velocities that correspond to MIDI notes that share the same modulo 12 are summed.

The analysis frame then hops h MIDI beats forward in time, repeats the folding and summing,

and continues on until the end of the MIDI matrix is reached. The bottom plot in figure 3.1

is an example of the midi-chromagram extracted from the Beethoven minuet MIDI file in the

JKU-PDD dataset.
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3.1.2.1.2 Audio Recording The routines for extracting the chromagram from an audio record-

ing used in this section is as follows. For a mono audio recording sampled at 44.1 kHz, the

recording is first down-sampled to 11025 Hz. Next, a spectrogram is calculated using a Hann win-

dow of length 8192 with 128 samples overlap. Then the constant-Q transform of the spectrogram

is calculated with frequency analysis ranging between fmin = 27.5 Hz to fmax = 5512.5 Hz and

12 bins per octave. Finally, the chromagram is obtained by folding the constant-Q transformed

spectrogram into a single octave to represent how energy is distributed among the 12 pitch classes.

To achieve the pattern discovery on a music metrical level, the chroma frames are aggre-

gated with a median filter according to the beat locations found by a beat tracker [59] conforming

to the music metrical grid. For finer rhythmic resolution, each beat identified is spliced into two

sub-beats before chroma frame aggregation. Lastly, the sub-beat-synchronous chromagram is

whitened with a log function. Whitening boosts the harmonic tones implied by the motifs so that

the difference between the same motif with and without harmonization is reduced. See the top

plot in figure 3.1 for an example of the the beat-synchronous chromagram extracted from the

Beethoven minuet deadpan audio in the JKU-PDD dataset.

3.1.2.2 Repeated Themes Discovery

For both symbolic and audio representations, after the chroma feature sequence O is

extracted from the music piece as described in section 3.1.2.1.1 and 3.1.2.1.2, θ ∈ (0.0,2.0]

is used to construct multiple VMOs with O. The L2−norm is used to calculate the distance

between incoming observations and the ones stored in a VMO. The single VMO with the highest

Information Rate (IR) is fed into algorithm 10 with L to find patterns and their occurrences.

Instead of setting L = 5 for all pieces as in [60], L is set according to lrs as L = γ

T ∑
T
t=1lrs[t],

where L is adaptive to the average length of repeated suffixes found in the piece. γ is a scaling

parameter which is set to 0.5 empirically.

To consider transposition (moving chroma patterns up or down by a constant pitch
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Figure 3.1: Features, found patterns, and ground truth for the Beethoven minuet in the JKU-
PDD. 1. Beat-synchronous chromagram from the deadpan audio recording. 2. Patterns found by
algorithm 10 using the chromagram shown above. 3. Ground truth from JKU-PDD. 4. Patterns
found by algorithm 10 using the midi-chromagram. 5. Quantized midi-chromagram. For 2., 3.
and 4., each row is a pattern place holder with dark regions representing the occurrences on the
timeline. The order of found patterns is manually sorted to best align with the ground truth for
visualization purposes. Notice the hierarchical relations of patterns embedded in the ground
truth and how they are found from the algorithms.

35



interval), the distance function used for VMO structures is a cost function with transposition

invariance. For a transposition invariant cost function, a cyclic permutation with offset k on an

n-dimensional vector x = (x0,x1, . . . ,xn−1) is defined as

cpk(x) := {xi→ x(i+k mod n),∀i ∈ (0,1, . . . ,n−1)},

and the transposition invariant dissimilarity d between two vectors x and y is defined as, d =

mink{‖x−cpk(y)‖2}. n = 12 for the chroma vector, and the cost function is used during the VMO

construction and model selection.

In addition to the regular chromagram, a stacked chromagram using time-delay embedding

with M steps of history as in [61] is also used. Experiments reveal that choices for b, M, and h for

both the midi-chromagram and the stacked midi-chromagram can greatly alter the accuracy of

patterns discovered. The values used in the experiments were quantization sizes b = [1
8 ,

1
16 ,

1
32 ],

frame size M = [1,8,16,32], and hop lengths h = [1,2,4] where M and h are described in terms

of MIDI beats of size b. It was found that the stacked midi-chromagram with b = 1
32 , M = 16, and

h = 2 resulted in the best pattern discovery. For the audio representation, there is no significant

difference in terms of the patterns found or the evaluation metrics between regular and stacked

chromagrams.

Figure 3.1 shows the chromagram found from audio and MIDI for the Beethoven minuet

in the JKU-PDD along with the patterns found by the VMO structure and the ground truth patterns.

The patterns found by the audio and symbolic representations share similarities and visually

resemble the ground truth patterns. In section 3.1.3, quantitative measures for evaluating the

patterns found by the VMO are explained and reported.
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3.1.2.3 Performance Recordings to Aid Pattern Discovery

Five performance recordings for each of the pieces included in the JKU-PDD are collected

in order to further explore the discovery of repeated themes. The motivation behind this experi-

ment is to explore the notion that music performances contain information about how performers

interpret the musical structure embedded in the score [62] and to examine whether or not the

patterns found on deadpan audio could be improved with the addition of such information.

For each of the performance recordings, the chromagram is extracted and aggregated

along the beats as described in section 3.1.2.1.2. DTW [63] is used to align the beat-synchronous

chromagram from the performance audio with the beat-synchronous chromagram of the deadpan

audio. Since motif annotations on these performance recordings do not exist yet, the alignment

between the deadpan audio and performance recordings are necessary so that the patterns found

from the performance recordings can be compared to the ground truth or added to the found

patterns from the deadpan audio. The drawback of the alignment is that timing variations

containing the performer’s structural interpretations are lost. Although timing variations are lost

in this experiment, velocity variations applied across time and different voices are retained. The

aligned performance audio chromagram is then whitened, normalized and fed into the VMO

pattern finding algorithm. For patterns found across multiple performances of one piece, the

intersection of patterns for any two performances of one piece that are longer than L are kept

and added to the found patterns from the deadpan audio. Figure 3.2 is an example of how

incorporating performance recordings can change the discovered patterns from deadpan audio.

3.1.3 Evaluation

The evaluation follows the metrics proposed in the Music Information Retrieval Evaluation

eXchange (MIREX) [53]. Three metrics are considered for inexact pattern discovery. For each

metric, standard F1 score, defined as F1 =
2PR

(P+R) , precision P and recall R are calculated. The first
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Table 3.1: Results from various algorithms on the JKU-PDD for both symbolic (upper three)
and audio (bottom four) representations. Scores are averaged across pieces. Missing values
were not reported in their original publications.

Algorithm Fest Pest Rest Fo(.5) Po(.5) Ro(.5) Fo(.75) Po(.75) Ro(.75) F3 P3 R3 Time (s)
VMO symbolic 60.79 74.57 56.94 71.92 79.54 68.78 75.98 75.98 75.99 56.68 68.98 53.56 4333

[54] 33.7 21.5 78.0 76.5 78.3 74.7 − − − − − − −
[64] 50.20 43.60 63.80 63.20 57.00 71.60 68.40 65.40 76.40 44.20 40.40 54.40 7297

VMO deadpan 56.15 66.8 57.83 67.78 72.93 64.3 70.58 72.81 68.66 50.6 61.36 52.25 96
deadpan + real 52.76 53.2 58.25 67.35 74.42 63.31 70.51 72.73 68.58 48.25 50.2 52.84 −

[56] 49.8 54.96 51.73 38.73 34.98 45.17 31.79 37.58 27.61 32.01 35.12 35.28 454
[54] 23.94 14.9 60.9 56.87 62.9 51.9 − − − − − − −
[65] 41.43 40.83 46.43 23.18 26.6 20.94 24.87 32.08 21.24 28.23 30.43 31.92 196

metric is the establishment score (est) which measures how each ground truth pattern is identified

and covered by the algorithm. The establishment score takes inexactness into account and does

not consider occurrences. The second metric is the occurrence score (o(c)) with a threshold c.

The occurrence score measures how well the algorithm performs in finding occurrences of each

pattern. The threshold c determines whether or not an occurrence should be counted. The higher

the value for c, the lower the tolerance. c = {0.5,0.75} are used in standard MIREX evaluation.

The last metric is the three-layer score that considers both the establishment and occurrence score.

The results of the proposed framework are listed in table 3.1 along with a comparison to previous

work.

From the evaluations for both symbolic and audio representations, the establishment

scores are generally lower than the occurrence scores, meaning that the proposed algorithm

is better at finding occurrences of established patterns than finding all possible patterns. With

the symbolic representation, the standard Fest, Fo(.75), and F3 scores are better than previously

published results. The establishment, occurrence, and three-layer precision scores are also as

good as or better than previous algorithms [54, 64]. The recall scores reveal that this is a part of

the algorithm that could be improved as previous algorithms all scored higher on recall than the

proposed algorithm. Similar to the symbolic results, the proposed audio algorithm achieves high

F1 and precision scores for the establishment, occurrence, and three-layer scores. The recall of

the audio algorithm is higher than previously reported results [54, 55, 56]. The recall rates of the

proposed framework are inferior when compared to the precision scores and previous work in
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symbolic representation. This may occur because chroma features were used and the folding of

the constant-Q spectrogram discards information contained in different voices.

The inclusion of performance recordings is the effort made in this work to improve both

the coverage and accuracy of the pattern discovery framework for audio representations. Due to

space limitations, the detailed metrics for each piece in the JKU-PDD is not shown here. The

effects of including performance recordings are described here. The establishment recall rate

and occurrence precision rate with threshold 0.5 are improved when performance recordings

are included, but in general the pattern discovery task is not improved because the decrease in

establishment precision rate is larger than the improvement on recall rates. This result indicates

that more patterns and their occurrences could be discovered if different versions of the same

piece are used in the pattern discovery task, but more false positive patterns will be found.

The proposed pattern finding algorithm completed in less time than previously reported

algorithms on both symbolic and audio representations. Although the VMO data structure is used

for both the proposed symbolic and audio algorithms, there is a discrepancy in the time that it

takes to find the patterns for all five songs. The audio algorithm takes much less time because the

analysis frames are larger than the frames used in the symbolic representation (32th note versus

8th note relatively). Thus, there are less frames to analyze with the audio representation and

building a VMO takes less time.

Figure 3.3 is a summary of the three-layer F1 scores for each of the 5 pieces in the

JKU-PDD for the proposed audio and symbolic frameworks along with the current state of the art

results. The small quantization value for the MIDI representation leads to a higher score in the

case of the Beethoven and Chopin pieces. The proposed audio and symbolic framework have the

highest F1 value on the Beethoven minuet and the lowest F1 value with the Bach Fugue. When

looking at the proposed method along with the current state of the art results, it is evident that the

Bach Fugue and the Gibbons piece are songs where patterns are embedded in different voices,

and that the Beethoven piece has more consistent repeated phrases. The algorithm for symbolic
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Figure 3.3: Three-layer F1 score (F3 in table 3.1) for the proposed deadpan audio and symbolic
method on the 5 pieces in the JKU-PDD plotted along with state of the art results.

data described in [64] performs better with Bach and Gibbons in comparison to VMO and [56],

most likely because of its capability to discover patterns embedded in different yet simultaneous

voices.

In figure 3.4 and 3.5 and 3.6, the competition results from MIREX on JKU-PDD deadpan

audio test set are shown. It is obvious that the VMO approach outperform [56] in general and only

is inferior for one piece out of five. A result on real performed audio from JKU-PDD development

set is shown in figure 3.7, it is also obvious that the VMO approach is better than previous state of

the art approach.

In summary, the method proposed here has improved upon the F1 and P scores as well as

time to find patterns. The patterns found using audio and symbolic representations are similar and

the evaluation scores reflect this similarity. Improving recall and allowing for inexact occurrences

should be a focus for future studies. Source codes and details about the experiments are accessible

via Github1.
1https://github.com/wangsix/VMO repeated themes discovery
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Figure 3.4: Establishment scores of the VMO and comparison to other participating approaches
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Figure 3.5: Occurence scores of the VMO and comparison to other participating approaches in
MIREX competition.
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Figure 3.6: F3 of the VMO and comparison to other participating approaches in MIREX
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JKU-PDD plotted along with state of the art results.

3.1.4 Discussion

In this section, a framework for automatic pattern discovery from a polyphonic music

piece based on a VMO is proposed and shown to achieve state of the art performance on the

JKU-PDD dataset and MIREX test set. With both the regular and stacked midi-chromagram, a

smaller quantization value b results in better pattern discovery because finer details are captured

with smaller quantization. From the results, it seems that a larger frame size M for smaller

quantization b resulted in better pattern finding. For hop size h, it is observed that h = 2 results in

a hop of a 16th note which is the shortest note in the JKU-PDD ground truth annotations. Results

from both the audio and MIDI representations show that the recall of discovered themes could be

improved. Although it is possible for a VMO to identify inexact patterns from the input feature

sequence with symbolization from θ, different occurrences of the same pattern are sometimes

not recognized because chroma features discard information from various voices in the music

piece. Our framework could be improved if the feature used allows for separation of voices

from polyphonic MIDI and audio. Incorporating techniques for identifying multiple voices in

polyphonic audio would improve the proposed framework.

In addition to the proposed framework for both symbolic and audio representations, using

multiple performance recordings in the repeated themes discovery task for deadpan audio is
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another novelty presented in this dissertation. The work done in this dissertation differs from

[54] in that the performance audio recordings are used as supplements to deadpan audio and

not analyzed as separate musical entities. The original intention behind using deadpan audio

for repeated themes discovery is to allow for the use of audio signal processing techniques, but

deadpan audio contains the same amount of information as its symbolic counterpart with less

accessibility because of its representation. This is evident by the similarity between the MIREX

metrics for the MIDI and deadpan audio since similar techniques are applied. Performance record-

ings, on the other hand, contain expressive performance variations on phrasing and segmentation.

In this dissertation, it is shown that adding performance recordings to the proposed framework

achieved improvements on some of the standard metrics. The next step for advancing the repeated

themes discovery task is to annotate the performance recordings so that these recordings can be

used as a dataset directly without referencing back to the deadpan audio version. By observing

the results from the pattern finding with performance recordings, the patterns found for each

performance show informative cues as to how each rendition of the same piece differs from the

others visually (figure 3.2). These visualizations are interesting discoveries on their own, even

without a comparison to ground truth annotations, and could be further investigated for use in

expressive performance analysis and music structural segmentation.

3.2 Structural Segmentation

Automatically recognizing the segmentation of a music piece is not only a fundamental

task in music information retrieval research for music structure analysis, but also leads to the

development of efficient music content navigation and exploration applications. Reviews of

existing work could be found in [66, 67]. Among various approaches, the Self-similarity matrix

(SSM) has been the fundamental building block for several existing algorithms. An SSM captures

global repetitive structures containing essential information for music segmentation. Matrix

44



decomposition of an SSM is widely adopted in existing work. In [68], non-negative matrix

factorization (NMF) is used to decompose an SSM into basis functions representing different

structural sections. The NMF idea is extended in [69] with a convexity constraint on the weights

during decomposition, which leads to more stable results. In [70], ordinal linear discriminant

analysis is used to learn feature representations from the singular value decomposition of the time-

lag SSM. Spectral clustering is used in [49] to obtain low-dimensional repetition representations

from an SSM. Approaches focus on deriving segmentation boundaries from an SSM are also

popular. In [71], a checkerboard-like kernel is applied along the diagonal of the SSM to obtain

a novelty curve for segmentation boundaries. Structure features are devised in [61] based on

time-lag SSM and segmentation boundaries are inferred from structure features.

Approaches based on matrix decomposition or boundary detection represents two aspects

of music segmentation problem; finding global structures and local change points. The two

problems also corresponds to the categorization of repetition/homogeneous- and novelty-based

approach proposed in [67]. In this section, algorithms to address the two aforementioned problems

are proposed. The two algorithms can independently or jointly be plugged into various existing

segmentation algorithms. For finding global repetitive structures, a novel method for obtaining

SSMss is presented. The method is based on the VMO [60], a suffix automaton capable of

symbolizing multi-variate time-series and keeping track of its repeated motifs. Since repeating

sub-sequences are essential in music structure analysis, it is natural to experiment with the SSM

obtained from the VMO (VMO-SSM) in the music structure segmentation task instead of the

SSMss obtained with traditional approaches. Conventionally, an SSM is obtained by exhaustively

calculating frame-by-frame pairwise distances. For music segmentation tasks, a binary SSM

(recurrence plot) is often desired [70, 49, 61]. Nearest-neighbor criterion is often used to obtain a

binary SSM from an SSM, but the number of nearest neighbors chosen for each frame is often

determined heuristically. The VMO-SSM is directly in binary form and the reduction from

continuous distance values to binary values is done implicitly according to information dynamics
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[29, 30]. For improving the boundary detection accuracy, an iterative boundary adjustment

algorithm to post-process the results from segmentation algorithms is proposed. The proposed

algorithms are evaluated in the music structure segmentation task with the Beatles ISO dataset

[72] against existing approaches based on SSMss.

3.2.1 SSM from Variable Markov Oracle

To obtain a binary SSM, the common approach is to apply k-nearest neighbor thresholding

for each frame. Using k-nearest neighbor thresholding gains scale-invariance on the result binary

SSM. With the VMO-SSM, instead of obtaining scale-invariance, the emphasis is on tracing

similar trajectories in the metric space drawn by the time series.

The VMO is a suffix automaton capable of reducing a multi-variate time series down to a

symbolic sequence but still retains repeating sub-sequences as shown in [60] and previous chapter.

The VMO stores the information regarding repeating sub-sequences within a time series via suffix

links. For each observation at time t of the time series with length T indexed by a VMO, a suffix

link, sfx[t] = k, is created pointing back in time k to where the longest repeated suffix happened.

The suffix links not only contain the information regarding repeating sub-sequences, but also

imply a frame-to-frame equivalency between t and k given sfx[t] = k that leads to symbolization

of the time-series. Given the symbolized sequence S by a VMO, a binary SSM (VMO-SSM),

R ∈ RT×T , could be trivially obtained via, with t > k,

Rtk =


1 if sfx[t] = k,

0 otherwise,

and filling the main diagonal line with 1.

The construction and model selection algorithms for VMO are documented in chapter 2.

A visualization of how a VMO-SSM is obtained is shown in figure 3.8. The advantage of using

46



a VMO to create an SSM over the traditional frame-by-frame pair-wise distance approach is

that a VMO selectively chooses frames to calculate distances with for each frame based on if

common suffices are shared between two frames. The selective behavior leads to a more efficient

calculation than the traditional exhaustive manner (O(T logT ) versus O(T 2) [38]) and also keeps

track of recurrent motifs within the time series. The other difference of using a VMO for SSM

calculation is that the reduction from a multivariate time series to a symbolic sequence utilizes

the concept of information dynamics [29, 30] that aims at modeling the evolving information

dynamics as the time series unfolds itself. In the case for the VMO, the information theoretic

measurement, IR [29] as described in section 2.2.2, is maximized to determine the threshold for

frame selection during suffix assignment.

3.2.2 Segmentation Algorithm

To show how the VMO-SSM could help improving the music structure segmentation

task, and to highlight the difference between the using a VMO-SSM and a traditional SSM, two

existing work utilizing binary SSMss are adopted in this work. For both work, their original

SSMss are replaced by VMO-SSMss. The first segmentation algorithm is the spectral clustering

(SC) approach proposed in [49] and the second is the combination of structure features and

segment similarity (SF) proposed in [61].

3.2.2.1 Spectral Clustering

In [49], the observation is that the partition of the graph defined by a connectivity matrix

into m connected components by spectral clustering is effectively the same as segmenting the

time series with m distinguished sections (the total number of segments could be more than m

with repetition of any of the sections). A series of operations are applied on the SSM to obtain

a connectivity matrix, then spectral clustering is applied on the connectivity matrix to obtain a

low-dimensional representation of repetitive structures. The operations include nearest neighbor
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Figure 3.8: (1) A synthetic 4-dimensional time series. (2) A VMO structure with symbolized
signal {a,b,b,c,a,b,c,d,a,b,c}, lower (dashed) are suffix links. Values outside of each circle
are the length of longest repeated suffix. (3) Symbolized signal. (4) The VMO-SSM obtained
from the symbolized signal in (3).
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thresholding, smoothing with a median filter, adding local linkages, balancing local and global

linkages, linkage weighting and feature fusion.

By replacing traditional SSM originally used in [49] with the binary VMO-SSM described

in section 3.2.1, only median filtering and adding local linkages are needed to obtain the connec-

tivity matrix R+ in this work. The median filter is applied in the diagonal direction to suppress

erroneous entries, fill missing blanks and keep sharping edges of the diagonal stripes in the binary

SSM

R′ = median(Ri+t, j+t |t ∈ −ω,−ω+1, . . . ,ω).

The operation of adding local linkage is defined as

δi j =


1 if |i− j|= 1,

0 otherwise

R+
i j = max(δi j,R′i j).

Let I denote a identify matrix with dimension N, and D the diagonal degree matrix of R+. The

symmetric normalized Laplacian matrix of R+ is then calculated as

L = I−D
−1
2 R+D

−1
2 .

The eigenvectors of L could be interpreted as component membership functions of connected

components on a graph defined by L [73]. The segmentation then follows standard spectral

clustering algorithm as documented in [73]. In short, the first m eigenvectors with m smallest

eigenvalues are concatenated to form a matrix Y ∈ RT×m with rows normalized, then each row

of Y is treated as one observation in k-means clustering with k = m. The assigned label from

k-means clustering is the resulting segmentation labels. Boundaries are inferred from finding

label changes between adjacent frames. Visualizations of the R+ matrix and Y matrix are depicted
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Figure 3.9: (Left) The binary VMO-SSM. (Right) The eigenvector matrix, Y , of “All You Need
is Love” from Beatles.

in figure 3.9.

3.2.2.2 Structure Features and Segment Similarity

The details of the SF algorithm could be found in [61]. The goal of that work is to base the

algorithm on a local presentation (frame-wise) of global structures (from tim-lag SSM). Similar

to the replacement process described in section 3.2.2.1, the original binary SSM is replaced by

the VMO-SSM. After obtaining R from the VMO, the following steps are applied to find the

boundaries first; 1) a time-lag matrix L is obtained from R. 2) L is convolved with a 2-D Gaussian

kernel. 3) Boundaries are identified via peak-picking on a novelty curve derived from L. To

further obtain segment labels, segment-to-semgent similarities are calculated based on a DTW-

like score given R. The resulting similarities are stored in a square matrix Ŝ with dimensions

equal to the number of segments identified from boundary detection. A dynamic threshold

based on the statistics of Ŝ is used to discard non-similar segments. Transitivity between similar

segments is induced by iteratively applying matrix multiplication of Ŝ with itself and threshold.
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Segment labels are then obtained from the rows of Ŝ. Parameters for this algorithm include the

standard deviations of the Gaussian kernel, {sL,sT}, for time-lag and time axis respectively, and

peak-picking window length λ. An illustration of L, the novelty curve and Ŝ derived from R is

shown in figure 3.10.

3.2.3 Boundary Adjustment

Observations after examining the segmentation results from last sections reveal that often

times the segmentation algorithm is capable of locating the boundaries between segments within

a window of a few seconds but is not capable of locating the major change point within a window

less than 1 second. The reason might be due to the smoothing on the SSM to obtain R′ or L. To

remedy the aforementioned situation, an iterative boundary adjustment algorithm is proposed

to fine-tune the segmentation boundaries to nearby local maxima in terms of the dissimilarity

between adjacent segments.
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The criteria to refine boundaries is that the distance between two adjacent segments should

be the farthest at the refined boundary points. Based on the criteria, the proposed algorithm adopts

the method proposed in [74] where the distance between two segments are defined as the distance

between the empirical distributions of the two segments. The distance criteria boils down to

calculating the Kullback-Leibler divergence between the two segments, where the two segments

are each modeled by a Multinomial distribution. Since the effect of changing one boundary point

propagates to other adjacent segments of neighboring boundaries, an iterative algorithm is devised

as shown in algorithm 11.

Algorithm 11 Iterative Boundary Adjustment
Require: Boundary points B (without beginning and ending frame), features X , window size W ,

iteration limit N and adjustment cost C.
1: n← 0
2: while True do
3: c← 0
4: B′← B
5: Randomly permute B′

6: for b ∈ B′ do
7: κ← K-L divergence of the two segments in X adjacent to b
8: b′← b
9: for t ∈ {b−W : b+W} do

10: κ′← K-L divergence of the two segments in X adjacent to t
11: if κ′ > κ then
12: κ← κ‘
13: b′← t
14: end if
15: end for
16: b← b′

17: c += abs(b−b′)
18: end for
19: B← B′

20: n += 1
21: if c≤C||n≥ N then
22: break
23: end if
24: end while
25: return B

52



Table 3.2: F , P and R represent F1-score, precision and recall respectively. Underscores of
0.5 and 3 represent 0.5 and 3 seconds window hit rate scores. pair stands for frame clustering.
So, Su and S f are the normalized conditional entropies of over-, under-segmentation and their
F1-scores. Results of SF and OLDA are from [70, 61]. Results of other algorithms are from [69].
Algorithms followed by (*) are the ones with boundary adjustment algorithm. Parenthesis refers
to the feature used for that algorithm. Numbers in bold are the highest F1-score for each metric.

Boundaries Segmentations
Algorithm F0.5 P0.5 R0.5 F3 P3 R3 Fpair Ppair Rpair S f So Su

SF (Chroma)[61] − − − 77.4 75.3 81.6 71.1 78.7 68.1 − − −
VMO+SF (Chroma) 36.29 33.84 40.81 69.02 64.27 77.7 61.22 69.99 58.59 67.38 64.59 73.25

VMO+SF* (Chroma) 37.37 35.08 41.94 61.5 57.74 68.94 56.16 63.24 54.4 62.81 60.99 67.5
VMO+SC (CQT+MFCC) 34.34 29.38 43.52 64.46 55.09 81.64 55.9 68.63 49.87 62.50 57.59 70.54

VMO+SC* (CQT+MFCC) 38.41 34.28 45.47 60.98 54.29 72.26 52.84 61.08 49.05 60.02 55.87 64.84
VMO+SC (Chroma) 31.87 26.39 42.18 61.98 51.2 82.2 52.81 64.57 47.25 59.56 54.93 67.23
VMO+SC* (Chroma) 33.80 28.88 42.07 60.83 52.06 75.45 49.98 57.54 46.40 56.9 53.04 61.37
SC[49] (CQT+MFCC) 31.9 26.03 45.39 57.46 46.95 81.05 54 65.16 48.93 59.56 55.05 67.41
C-NMF[69] (Chroma) 24.89 24.52 26.41 60.41 59.84 63.45 53.53 58.29 52.65 57.2 55.85 60.63

OLDA[70] (Multi-feature) 29.6 29.7 32 53.5 55.3 55 − − − − − −
SI-PLCA[75] (Chroma) 28.27 39.57 22.74 50.12 70.59 39.97 49.36 42.67 65.17 48.08 62.28 42.67

CC[76] (Chroma) 25.06 27.3 23.86 55.06 60.17 52.16 49.18 62.91 41.06 56.5 50.36 66.5

Algorithm 11 resembles an expectation-maximization algorithm in the sense that each

iteration (outer for-loop in algorithm 11) stochastically cycles through all boundaries and adjusts

them to maximize the K-L divergence of adjacent segments, then fixes the adjusted boundaries

as new boundaries and proceeds to the next iteration until convergence criteria are met. The

stopping criteria are the total number of iteration N and the total length of boundaries moved C.

Empirical observation of running algorithm 11 shows that the total length of boundary moved at

each iteration, c, monotonically decreases with number of iterations i.

3.2.4 Music Structure Segmentation

The Beatles-ISO dataset has 179 annotated songs and is widely used in evaluating seg-

mentation algorithms [76, 68, 75, 70, 61]. The segmentation experiment aims at identifying a

segmentation of a given audio recording and compare the segmentation with human annotations.

3.2.4.1 Experiments

To evaluate the effect of the VMO-SSM and the boundary adjustment algorithm, the

proposed framework is evaluated against the Beatles-ISO dataset and compared to existing work

on the same dataset. Three standard features and their combinations are considered in this
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experiment; constant-Q transformed spectra (CQT), chroma and MFCCs. All audio recordings

are down-sampled to 22050Hz, analyzed with a 93ms window and 23ms hop. CQT are calculated

between frequency range [0,2093]Hz with 84 bins. Chroma are derived from CQT by folding

the 8 octaves into 12 bins. MFCCs are calculated from 128 Mel bands and 12 MFCCs are taken.

All features are beat-synchronized using a beat-tracker [59] with median-aggregation. Similar to

[49, 61], features are then stacked using time-delay embedding with one step of history and one

step of future. Each dimension of each feature is normalized along the time axis. To combine

different features, they are simply stacked and different dimensions are assumed to have equal

importance.

A parameter sweep is done to find the best set of parameters in this experiment. Cosine

distance is used in the VMO distance calculation. For SC, the median filtering window ω is

17. The number of basis in SC (or the number of distinguished sections), m, is 5. For SF, the

standard deviations for time-lag and time axis, {sL,sT}, are 0.5 and 12. The peak-picking window

length λ is 9. The parameters for the boundary adjustment algorithm, W , N and C, are {4,10,2}

respectively.

3.2.4.2 Evaluation

The evaluation results of the proposed framework along with the ones from other existing

work are shown in Table 3.2. The metrics used follow the ones proposed in Music Information

Retrieval Evaluation eXchange (MIREX). The evaluation could be understood in two aspects. The

first aspect is the performance on retrieving boundaries and the second one is the performance on

assigning labels to regions defined by retrieved boundaries. For boundary hit rate, the combination

of the VMO, SC and boundary adjustment outperforms all other existing work by a margin of at

least 7% (in [61] it is not reported) for 0.5s window tolerance. For 3s window tolerance, despite

being inferior to SF, the approaches using the VMO-SSM are still superior to other existing work.

The boundary adjustment algorithm turns out introducing a trade-off between short- and long-time
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tolerance boundary hit rate. For SC the trade-off of F0.5 and F3 is acceptable with F0.5 always

improved slightly more than the degradation of F3. It could be observed that it is not worthwhile

applying the boundary adjustment algorithm on SF since the degradation of F3 is far more than

the improvement on F0.5. The discrepancy between applying the boundary adjustment algorithm

on SC and SF could be understood by the nature of the segmentation algorithms, since SF focuses

on finding boundaries from SSM more directly than the matrix decomposition approaches, there

might be less room left for improving boundary accuracies in the post-processing stage for

SF. For segmentations, original SF ranks the highest in pair-wise clustering F-score and the

combination of the VMO and SF is the runner-up. For the F-score of normalized conditional

entropy, the VMO-SF combination returns the highest score (it is not reported in [61]). For matrix

decomposition approaches, replacing traditional SSMss with VMO-SSMs achieves comparable

or superior performances than existing work in segment labeling evaluation.

3.2.5 Discussions

In this section, an alternative SSM extracted from the VMO is shown to be reliable

replacing the traditional SSM in music segmentation tasks. In general, using the VMO-SSM

improves boundary detection accuracy and achieves comparable or superior performances in

segment labeling to state-of-the-art. The reason that the VMO-SSM is better in boundary detection

for matrix decomposition approaches is that the selective mechanism during the construction of

the VMO suffix structure discards unnecessary calculations, and in turn leads to a cleaner binary

SSM than the one from traditional approach.

3.3 Music Analysis with VMO-HMM

To exemplify the use of VMO-HMM on musical applications, a case study on analyzing

Jazz music harmonic progression is conducted. The piece being analyzed is “Now’s the time”
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from Charlie Parker. The lead sheet in MusicXML and an accompaniment recording in midi are

both available. To analyze the harmonic progression automatically, the MIDI accompaniment is

used as the input to a VMO. The lead sheet comes with the melody and human annotated chord

labels, and serves as the reference to the VMO analysis.

To obtain harmonic information from a MIDI file, the MIDI note events are first quantized

to a piano roll matrix with dimension {128,B}, where B stands for the number of bars and

the first dimension for MIDI pitch values. The values in the piano roll matrix are velocities

ranging between [0,127] with 0 representing a none event. There are several choices for the note

velocity aggregation (pooling) within a bar, such as max, mean or median. For this case study,

max-pooling is used to aggregate the note velocities within each bar along the time axis. Since the

time signature and tempo are given in the MIDI file, the bar locations could easily be determined.

After extracting the piano roll matrix, it is further folded over octaves to form a chroma-like matrix

(midi-chromagram) with dimensions {12,B}, with the first dimension represents the pitch class

{C,Db,D,Eb,E,F,Gb,G,Ab,A,Bb,B}. A normalization along the time axis is done to normalize

the values of each pitch class to be between [0,1]. A visualization of the final midi-chromagram

matrix is depicted in figure 3.11.

To further strengthen the harmonic modeling, the 12-dimension data points from the

midi-chromagram are projected onto the tonnetz space [77] during the construction of a VMO

with the midi-chromagram. The L2 norm distance is used during the construction. After indexing

the midi-chromagram with a VMO, the clusters could be retrieved by grouping the frames in Σ

having the same label. The clusters of chroma frames for each clusters formed by the VMO could

be visualized as in figure 3.12.

Parts of the reference lead sheet with chord labels are shown in figure 3.13. To examine

how well a VMO-HMM capture the relationships between observations and latent variables. A

qualitative comparison between the reference chord labels and the clusters from the VMO-HMM

shows that the discovered clusters from the VMO-HMM do capture harmonic meanings and
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Figure 3.11: The midi-chromagram extracted from the MIDI accompaniment recording of the
Jazz piece “Now‘s the time”.

provide more information than the reference chord labels from the lead sheet. Comparing the

centroid chroma (right column) in figure 3.12 with the score in figure 3.13, cluster-0 and cluster-5

match with chord labels F and F7, cluster-1 matches with B[7, cluster-2 with Am/D7, cluster-3

with Gm, cluster-4 with C7 and cluster-6 with C7([9). Since cluster-7 only has only 1 frame in it

and paragraph considerations, its discussion will be skipped. The unsupervised discovery with the

VMO-HMM is nearly perfect to the reference chord labels, which shows that the VMO-HMM is

capable of capturing the groupings of midi-chroma frames into harmonically meaningful clusters.

Furthermore, an interesting split of the chord label [F,F7] into cluster-0 and cluster-5 shows

that the VMO-HMM does capture a level deeper than what the surface chord labels suggest. By

examining where cluster-0 and cluster-5 are located in the score, the F7s associated with cluster-0

are undeniably the tonic with a flat 7 for which Major or Mixolydian scales could be suitable. On

the other hand, the F7 associated with cluster-5 are passing chords between C7. Like the one in

measure 11. Though it is marked as F7 in the lead sheet, in the accompaniment MIDI file it is

actually played as F13(]11), in which a Lydian Dominant scale could be used.

Finally, the Markov transition matrices obtained from algorithm 9 of different orders are

shown in figure 3.14. The jth entry in the ith row in each matrix represents the probability from

cluster-i transition to cluster- j. Matching the clusters to the chord labels verifies that this piece

follows a tight [ii,V,I] progression of the chord sequence [D7, Gm, C7] and [Gm, C7, F7].

By examining these Markov transition matrices, it could be observed that the higher the order, the
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Figure 3.12: The clusters formed by the VMO on “Now‘s the time”. The left matrix of each
row is the collection of frames from the midi-chromagram, the right single vector is the median
centroid obtained by median-pooling along the time axis within that cluster. The four pitches
for each cluster represent the four most dominant pitches within that cluster by velocity.
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Figure 3.13: Partial score from the lead sheet of “Now‘s the time” from bar 1 to 25. The
annotated chord labels are on top of each bar.
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sparser the Markov transition matrix is. As the transition matrix gets sparser, the more definite

the transition probabilities and fewer choices for possible next states. The musical interpretation

combining the observations of the transition matrices and the clusters is that lower order Markov

transition matrices capture freer and more jazzy relationships between chord clusters while higher

order ones capture stricter harmonic tonal function relationships between chord clusters. For

example, in the 1st-order transition matrix, cluster-0, which matches to [F,F7], could transition

to any of the other clusters except for cluster-5, whose chroma content is similar to cluster-0. But

as the order gets higher, the possible clusters that cluster-0 could transition to becomes fewer,

and converges to cluster-1 and cluster-2, which matches to B[7 and Am/D7 respectively. The

converged transitions between F7 to B[7 and Am/D7 are standard [I,IV] or [I, vi] movements

in tonal theory.

Chapter 3 is adapted from published materials in ”Pattern Discovery from Audio Record-

ings by Variable Markov Oracle: A Music Information Dynamics Approach”. Wang, Cheng-i.

& Dubnov, Shlomo. Acoustics, Speech, and Signal Processing (ICASSP), 2015 IEEE Interna-

tional Conference on, 2015, ”Music Pattern Discovery with Variable Markov Oracle: A Unified

Approach to Symbolic and Audio Representations”. Wang, Cheng-i.; Hsu, Jennifer. & Dubnov,

Shlomo. International Society for Music Information Retrieval Conference, 2015, 176-182,

”Structural Segmentation with the Variable Markov Oracle and Boundary Adjustment”. Wang,

Cheng-i. & Mysore, Gautham. J. Proceedings of ICASSP 2016, Shanghai., IEEE, 2016 and

”Context-Aware Hidden Markov Models of Jazz Music with Variable Markov Oracle”. Wang,

Cheng-i. & Dubnov, Shlomo. 5th International Workshop on Musical Metacreation (MUME

2017) at the Eight International Conference on Computational Creativity, ICCC 2017, 2017.
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Figure 3.14: Different Markov transition matrices extracted from the VMO-HMM, from lower
to higher order. The entry [i, j] in each matrix represents the probability from latent variable i to
j.
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Chapter 4

Generate with VMO

4.1 Machine Improvisation

Using computers to generate musical content has a long history and has existed since

the introduction of computational technologies [78, 79]. Recently, interactive and on-line music

systems [80] have been the focus of this field. Previous research using the Factor Oracle (FO)

[25, 26] for symbolic music generation and the Audio Oracle (AO) [24, 27] for audio content

generation will be extended for machine music synthesis and improvisation in this chapter.

Machine Improvisation refers to artificially augmented musical performances where machines

contribute creatively to the musical outcome. With the use of machine learning and algorithmic

techniques, programming compositional algorithms has been largely substituted by programming

machines that extract patterns or rules from musical examples. Furthermore, it is now possible to

rehearse or perform with machines that improvise in the style of live musicians. These machines

capture musical style by using either live musical content or pre-recorded examples.

Currently, objective criteria to evaluate the quality of music produced by one independent

artificial agent does not exist, as elaborated in [81, 82]. Thus, for such an agent, the qualitative

goal proposed in [83, 25] to model the style from the input examples is followed. The goal
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behind imitating the style of musical examples is to recreate the sense of creativity and virtuosity

embedded within the style of musical examples. This creativity and virtuosity can hopefully be

approximated by the musical outcome that shares a similar style with the musical examples. To

capture the style of musical input, the sequential dependencies between musical surface events,

such as pitch class profiles, melody, beat tatum, etc, are modeled. This allows the system to

generate musical surface events that conform to the sequential dependencies from the input

examples. The aforementioned intuition is supported by the experiment reported in [84] where

it is shown that complex sources can be approximated by Markov models with limited orders.

The argument of approximating a generative source with limited-order Markov models conforms

with the argument made in [85]. In [85], the use of a dictionary-based approach to parse, store

and model a musical sequence is proposed. The dictionary-based approach is proposed to solve

the conflicting requirements of having arbitrarily long context (large order Markov model) for

prediction and having enough samples for reliable conditional probability estimates. As a result,

the Incremental Parsing algorithm used in Lempel and Ziv compression algorithm [36] is used to

construct the dictionary-based model and leads to a variable-Markov model (since the context

stored in the dictionary has different lengths) that echoes to the argument made in [84]. From the

perspective of the dictionary-based approach, the FO also parses a sequence by identifying the

longest repeated suffixes at each time instance and resembles the Incremental Parsing.

Previous work in machine improvisation has focussed on symbolic representations [25,

86, 87] where the granularity and expressivity of the musical outcomes are limited. Thus it is

desirable to have a system that is capable of processing both symbolic and audio representations.

The FO was originally introduced for fast pattern matching in bio-informatics [38], but it was

shown in [25, 86, 87] that an FO could be used for symbolic machine music improvisation

by imitating a musician’s style. An AO is the signal extension of an FO that enables machine

improvisation with an audio signal. Although the AO structure laid the foundations for audio

machine improvisation, it lacks certain functionalities that the FO structure provides on symbolic
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sequences.

Systems that implement stylistic machine improvisation through the FO and AO structures

capture the style of the musical input but improvise with little relation to the musician. A machine

listening component to the machine improvisation framework is added in this chapter. As a

first step towards guided machine improvisation, a framework for guided musical synthesis

in [88] based on the Variable Markov Oracle (VMO) is proposed. The FO and AO structures

were combined to create the VMO data structure for off-line guided music synthesis using a

query-matching algorithm, algorithm 6. The query-matching algorithm extends the single frame

query function in the AO structure [27] to a sequence query-matching function. The sequence

query-matching algorithm based on a VMO could also be viewed as an extension of the Guidage

system proposed in [23] where both forward and suffix links are used instead of only using

forward links. A VMO achieves this query-matching functionality by explicitly exploring how

feature frames in a multivariate time series are clustered together by the oracle structure [45] as

described in chapter 2. Using a VMO with the query-matching algorithm allows us to address

rhythmic and harmonic issues between the improvised output and the musical input in a machine

improvisation scenario. On the rhythmic side, a rhythmic beat phase feature that allows a live

musician to query the machine for an improvised output that is synchronized in beat phase is

defined. For harmonic relations between the improvised output and input music, a VMO allows

for longer queries (as opposed to the single-frame query approach of an AO) that can improve the

improvisation output.

Given a constructed VMO, a machine improvisation scheme without interactions with

other musical agents is elaborated in [24, 27]. Given a starting state, a pointer navigates the oracle

structure by suffix links to “reshuffle” the audio stream, creating novel audio sequences from

the original one. Suffix links are used as jumping points during the navigation. By using suffix

links as jumping points, the smoothness of the reshuffled audio signal is assured since suffix links

point to the occurrences of the longest repeated suffixes of the current point. The basic algorithm
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for machine improvisation using a VMO is provided in algorithm 12. Other heuristics of how to

navigate the oracle to improve the quality of the improvised outcome could be found in [26].

Algorithm 12 VMO Incremental Improvisation
Require: A VMO Q = q1,q2, . . . ,qT , current navigating index i

1: Retrieve all the states following the states having the label qi, store the retrieved states in a
list L

2: if L is empty then
3: in← i+1
4: else
5: in← Choose randomly from L either uniformly or by some specified weights
6: end if
7: return The next index to navigate to, in

4.2 Query-guided Improvisation

In previous experience with machine improvisation, scenarios are encountered where

interactions between the machine and the human input are desired; i.e. the machine improvises

along with another human musician. Such machine improvisation is referred to as guided

improvisation. Guided or control improvisation refers to a framework that the improvisation

from the artificial musical agent is regularized by, rather than interactive with, the input from

the human musician, predefined rules or references. Under such frameworks, the problem could

then be divided into two well-defined blocks. The first is the improvisation part which is usually

cast as a sampling process or random walk given some stochastic process describing the music

generating process. The second is the regularization part that could be implemented as cost

functions, constraints or heuristics solving tractable optimization problems.

The simplest case of improvisation control and interaction appear in what are termed as

the “cadence” problem, which is how to make the machine improvisation reach an ending point

together with the human musician automatically. A simple, single chroma query to lead an AO

to a certain tonal area where it matches the soloist so the AO could be stopped together with
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the musician in a situation where both are chromatically consistent with respect to each other is

proposed in [27]. In these applications, the musician would use a single long note as a query to a

system that would emphasize regions in the oracle that have a related chroma.

Another generalized version of the “cadence” situation is the “queueing” problem, i.e.

how to trigger changes in the selection of material that the oracle structure uses in a way that

corresponds to the musical input. In previous experiments, it was not possible to distinguish

among different types of musical material simply based on a single chroma or note. Moreover,

changing the note or replacing the query in time creates a ”moving target” situation that could

fall into a desired trajectory, but without any guarantees or algorithmically efficient solutions.

Therefore, one would want to allow the system to listen to more than a single note and be able to

switch between regions or alternative oracles based on longer queries. In this case, the sequential

nature within the query is taken into account. Intuitively, to make regions distinct, a longer context

than a single note query is needed, especially if one would like to consider adding transformations,

such as transposition or pitch shift in the future. In this way, identification of melodic phrases or

even timbral “gestures” can be used to switch regions more generally.

Operation of the guided improvisation can also be understood in terms of ensembles and

larger compositional relations between humans and artificial partners. In an “accompaniment”

scenario, the oracle is trained on a selection of musical material that supports a live solo or lead

musical instrument. One can think of it as a “duet” situation, where a solo input is driving an

intelligent and creative playback of an accompaniment piano or even a complete Jazz ensemble.

The role of the system then, would be instantaneously harmonizing, providing a bass line and

even rhythm to a melodic or polyphonic lead query.

A different configuration and musical use of the proposed system is for constraining a

machine generated solo for a given song or standard. In such a case, a recording of the backing

ensemble is provided as a query into an oracle trained on an unrelated solo (from a different

source). The purpose of the query is to navigate an unrelated solo in a way where the solo licks
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would be extracted to match the song composition. In this case the query is used to create the

solo, while the harmonic and rhythmic grids are fixed in the query track.

In short, as a next step to address the aforementioned “cadence” and “queueing” problem

from the previous results in AO structures, the revised oracle structure, the VMO, is introduced to

allow for querying with a sequence instead of a single frame. Although the examples presented in

this chapter are created in an off-line fashion, the algorithms are capable of on-line deployment.

4.2.1 Query-matching Algorithm for Generation

Algorithm 6 or 7 and 8 are used to create new music signals by using a query music signal

guiding a path traversing the target music signal. The signals could be either audio or MIDI

representations. The returned path matches the target and query music signals in the feature

space extracted from the signals. The target music signal in the guided synthesis/improvisation

applications is treated as the material for concatenative synthesis, and the query music signal

provides the map that illustrates how the materials should be recombined. For the examples

described hereafter, the steps are as follows:

1. Both the target and query music signals are converted from their original representations to

appropriate feature representations.

2. The target feature time series is indexed by an VMO as O, and the query feature time series

is used as query input, R, for algorithm 6 or 7 and 8 to retrieve the recombination path

P[argmin(C)].

3. The recombination path P[argmin(C)] is used to index the target music signal to generate

new music content.
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4.2.2 Examples - Guiding with Tonal Content

In this section, how to guide target music with tonal content from query music is described.

Approaches for audio and MIDI are both described here. For audio representations, chroma

is chosen to be the feature used to represent the tonal content of a music signal. The chroma

is calculated using a window length of N with N
2 overlap, frequency analysis ranging between

fmin = 63.54Hz to fmax = 22050Hz and 12 bins per octave. The recombination path P[argmin(C)]

is used to index the target music signal. These indices are used to synthesize a new music signal

with the overlap-add method using a hamming window of length N, and an overlap of length N
2 .

In our settings, N is set empirically to 215 = 32768 from listening evaluations made by the author.

The music signals for the examples are obtained from free shared music recordings in the style of

Jazz. Lead tenor saxophone recordings are cut into segments of 50∼ 100 seconds long and are

used as query music signals, R. Full band recordings (drums, bass, electric guitar and piano) are

20∼ 40 seconds long and used as O to construct VMOs. Although in theory, the query-matching

and improvisation algorithms could be applied to all genres and features, the combination of Jazz

and chroma is chosen because so far, the query-matching algorithm still works based on frame

level matching between the query and the target music signal. The relatively wider tolerance for

rapidly changing harmonic or rhythmic structures of Jazz music allows for a natural progression

even if the musical structure is broken on a larger scale (such as chord progression or sectional

changes) due to the recombination of audio frames from the original audio. The audio examples

can be found online 1.

To qualitatively evaluate the query-guided synthesis from audio representations, a free

(unguided) improvised accompaniment using the AO mentioned in [27] is synthesized as well to

compare with the query-guided version. Example I is shown here and depicted in figure 4.1. To aid

the evaluation with quantitative measures, frame-by-frame distances between the chromagrams

1https://soundcloud.com/pyoracle/sets/guided-free-improvisation-with-markov-oracle
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Figure 4.1: Example I. (Upper) Chromagram of the saxophone lead. (Middle) Chromagram of
the query-guided accompaniment. (Bottom) Chromagram of the free improvised accompani-
ment.
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Figure 4.2: Frame-by-frame L2-norm between chromagrams of lead and accompaniment
for example I. The {µ,σ} of L2-norm error for guided-synthesis and free improvisation are
{0.13,0.07} and {0.15,0.06} respectively.
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of query music signal and the two synthesized accompaniments are plotted in figure 4.2. From

figure 4.2, it is observed that the errors could potentially be correlated. After examination of

the parameters used, we conclude that the possible correlation is due to the fact that the query

signal used in this case might be too far from the target signal in the feature space, thus leading to

rather indistinguishable synthesis between the query-guided and free improvised version from

the signal point of view. But in figure 4.1, it could also be observed that the query-guided

accompaniment did have a more similar structure to the lead than the free improvised one.

The phenomenon is clearer at the beginning of the signal. Aurally, when listening to the mix

of the lead and the synthesized accompaniments, one can observe that the free improvised

accompaniment has a better sense of continuation in terms of how sub-clips of the original

signals are recombined. In contrast, the query-guided accompaniment sounds more “broken”

due to the use of shorter sub-clips to match the query. Nevertheless, in the case of the free

improvised accompaniment, the original lead and the accompaniment sound separately from each

other even if the tonality of the lead and the original accompaniment recording were chosen to

be compatible with each other. In listening to the mix with query-guided accompaniments, the

synchronization between the lead and the accompaniment in terms of harmonicity is more obvious.

The sound examples could be found at the project page (https://soundcloud.com/pyoracle/sets/

guided-free-improvisation-with-markov-oracle). For the examples, the left channel is always

the query, which stays unchanged, and the right channel is the new generated audio either by

query-guided (VMO) or free-improvisation (AO) approach.

After the experiment of using a lead saxophone as the query and the accompaniment

recording in VMO as target, another experiment, where the roles of the lead and the accompani-

ment are switched, is performed. Example II is shown here in figure 4.3. The L2-norm errors for

example II are depicted in figure 4.4. The sound examples for example II are also accessible by

the project webpage mentioned above. For example II, similar conclusions to example I based on

corresponding plots could be drawn. But with example II, the L2-norm error plot in figure 4.4
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Figure 4.3: Example II. (Upper) Chromagram of the saxophone accompaniment. (Middle)
Chromagram of the query-guided lead. (Bottom) Chromagram of the free improvised lead.
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Figure 4.4: Frame-by-frame L2-norm between chromagrams of lead and accompaniment
for Example II. The {µ,σ} of L2-norm error for guided-synthesis and free improvisation are
{0.14,0.05} and {0.18,0.06} respectively.

reflects the fact that the query-matching algorithm is able to find the path that minimizes frame-by-

frame distances between the query and the target with context constraints. By listening to example

II, one can find it clearer that the synthesized lead guided by the accompaniment conforms to

the harmonic changes and dominant melodic lines of the accompaniment. Especially around

25 seconds in the result, as the accompaniment made a transition in terms of chord progression

used to inform the end of the accompaniment, the guided lead saxophone turned to materials

and reshuffling that not been used before to follow the change of chord progression. In general,

although aesthetically there is no clear and obvious evidence that using query-guided approach is

superior than the previous approach of using unguided machine improvisation, it is still asserted

that the materials generated using query-guided approach sound musically meaningful and per-
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form a better job conforming to the query used than the ones generated with free improvisation

approach. Extra examples of both cases are accessible via the project webpage. One drawback of

the concatenative synthesis approach that the guided synthesis has is the artificial layered sounds

of the solo saxophone caused by the cross-fade between the overlap and add audio waveforms. A

possible remedy is to weight the distance between the current frame and its immediate following

frame lower than jumping to frames connected by suffix links. The lowered weights on the next

frame will encourage continuous than jumping thus result in the improvised sound having less

interruptions due to the jumps. The tradeoff of such remedy is by gaining continuity, the match to

target timeseries is sacrificed.

For symbolic query-matching, a MIDI solo is generated by guidance from a MIDI

accompaniment. In this case, the accompaniment MIDI is the query while the solo MIDI is the

target. The MIDI file is first quantized to sixteenth notes. Next, the pitch classes are extracted

from each MIDI file using a frame-by-frame, overlap-add method. For each frame, the notes are

transposed to a single octave of 12 notes, and the velocities of each pitch class are summed. The

velocities for each pitch class are also summed for any overlapping frames. The analysis frame

size and hop sizes used here are 8 and 1 sixteenth notes long, respectively. The final MIDI pitch

class feature is a 12-dimensional vector for each time frame similar to the chroma features from

audio signals.

After inputting the two MIDI pitch class features into the query-matching algorithm, the

recombination path P[argmin(C)] is used to index the target MIDI pitch class feature. This allows

one to synthesize a new MIDI file with the overlap-add method using a frame size and hop size

that match those used in analysis. During this synthesis stage, the overlap-add procedure adds

velocities for frames that are not sequential in the original MIDI file. Higher velocity values in

the final synthesis indicate notes that are more important in the musical context. For that reason,

we use a velocity threshold, vthresh, to filter out pitches that have a lower influence on the final

musical output. If a note’s velocity is less than vthresh, the note velocity is set to 0. If a note’s
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velocity is greater than 127 (the maximum MIDI velocity), then that note’s velocity is clipped to

127. A vthresh value set to maximum velocity of the original solo−10 created satisfying results.

For the examples presented here, MIDI files were retrieved from the multi-modal MIREX-

like emotion dataset [89]. An example of the first few measures of a MIDI solo guided by a MIDI

accompaniment is shown in figure 4.5. The MIDI accompaniment that guided the improvisation

is shown on the bottom stave while the improvised solo is on the top staff. The solo MIDI

and accompaniment MIDI belong to the same song (John Stewart’s “Daydream Believer”), and

inputting the two parts of the same piece into the query-matching algorithm results in a new

solo over the original accompaniment. The generated solo uses notes similar to those found

in the accompaniment within the same analysis window, as this is a direct result of using the

MIDI pitch class feature to guide the solo generation. To quantify how often the original solo

and accompaniment combination occur in this query-guided generation, the original solo is

compared to the recombination path P[argmin(C)] used to index the solo. An original solo and

accompaniment combination repetition in the new generation means that a frame in the original

solo is equal to a frame in the recombined solo. For this example, there are no repetitions in the

newly generated solo.

For a MIDI accompaniment (target) guided by a MIDI solo (query), the MIDI pitch

class feature, as described above, is used. During reconstruction, the role of the solo and

accompaniment are switched as the recombination path P[argmin(C)] is used to index the MIDI

accompaniment pitch class feature. For this application, the same MIDI song for both the solo

and the accompaniment (Roberta Flack’s “Killing Me Softly”) is used. An example of the first

few measures of an accompaniment guided by a MIDI solo is shown in figure 4.6. The solo used

to guide the improvisation is in the top staff while the improvised accompaniment is shown in the

bottom stave. Because the generated accompaniment is matched with the solo using the MIDI

pitch classes, the generated accompaniment has many notes in common with the original solo. For

an idea of how novel this generated example is, 0.044% of the original solo and accompaniment
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Figure 4.5: First few measures of an improvised MIDI solo guided by a MIDI accompaniment
using solo and accompaniment from John Stewart’s “Daydream Believer.” The improvised
MIDI solo is on the top staff and the original MIDI accompaniment is shown on the bottom
stave.

Figure 4.6: First few measures of an improvised MIDI accompaniment guided by a MIDI solo
using solo and accompaniment from Roberta Flack’s “Killing Me Softly.” The top staff is the
original MIDI solo while the bottom stave is the improvised MIDI accompaniment.

combination was repeated in this query-guided generation.

4.2.3 Examples - Guiding with Rhythmic Content

In the following musical examples, how to guide a tonal piece using a rhythmic piece

is described. In the following examples, rhythmic pieces that consist of drum patterns stringed

together by various jazz drum loop patterns are used. The jazz beat was used to guide the

improvisation of three different musical pieces with tonal content:

• Nujabes - “Flowers” (piano cover)

76



• The Heath Brothers - “Smilin’ Billy Suite Part 1”

• Cole Porter - “Night and Day”

The feature used for both the tonal and rhythmic content is an intermediate calculation in the beat

tracking algorithm described in [90]. This feature is referred to as a “beat phase descriptor” as it

captures the offset of the first beat from the start of an analysis frame. The feature is calculated

given an onset detection function (ODF) and a beat period τ, the reciprocal of tempo, in an

overlap-add fashion. The ODF is passed through a comb filter consisting of impulses at various

offsets from the start of an analysis frame. This comb filter contains all possible shifts of the

beat phase for a given τ. The resulting beat phase descriptor for a single analysis frame of

ODF samples is a vector with length equal to τ. In our examples, the ODF is calculated using

the spectral flux, the frame rate for the ODF is 11.6 ms, and the comb filtering proceeds in a

frame-by-frame analysis with 512 ODF samples and a hop size of 128 ODF samples. An issue

that occurs with this feature is that different musical pieces will have different τ, and so the

feature vectors will be different sizes. The query-matching algorithm requires equal dimensions

for features inputs, so only some of the values in the beat phase feature vector are retained. We

keep the values at indices [ τ

8 ,
2τ

8 . . . , 7τ

8 ,τ]. The resulting beat phase allows one to infer the beat

alignment within an ODF frame.

The beat phase feature for the tonal content is input as the target to the query-matching

algorithm while the beat phase feature for the rhythmic piece is input as the query. The beat phase

feature guides the tonal improvisation to match the beat phase of the rhythmic piece. Please refer

to the online appendix2 for examples for MIDI and rhythmic-guided improvisations.

2https://soundcloud.com/pyoracle/sets/mume-acm-special-edition
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4.2.4 Related Works

Guided improvisation in music is closely related to the problem of planning and control

that includes improvisation capabilities. Control improvisation has also become an area of

interest in other domains. Specifying control signals to guide a system into a desired behavior

is common in robotics and other dynamic systems, where adding a randomized strategy from

examples might add more flexibility to a system [91]. In the case of music, the need for the

improvisation to conform to outside constraints, such as partnering with other musicians, is less

strictly defined and does not have any critical safety specifications. However, undesired notes

can still be quite troublesome, especially during live performances where machines are involved.

In [91], monophonic symbolic Jazz melody is generated using FO [38, 25, 26] constrained by a

specification in the form of another finite state automaton. The finite state constraint automaton

penalizing inappropriate transitions during melody generation by encoding chord progression,

note progression and beat tatum. FO is also the core of the Omax system (IRCAM) [86, 92]

and the Mimi system (USC) [93]. Both systems focus on symbolic representations. In [94], an

extension of the Omax system, ImproteK, is introduced where autonomous improvisations are

learned from the human musician accompanied by pre-recorded or live materials. The Mimi

system uses visual feedbacks to enable interactions between the human musician and artificial

agent [95].

Another approach to this problem is to form the control improvisation problem in con-

straint satisfaction problem (CSP), as done in [41, 96]. In [41], Markov constraint is introduced

and refers to the constraints placed in CSP to enforce Markov properties in the generated se-

quence from solving the CSP. In [96], meter constraint is introduced in the generation of symbolic

melodies from CSP with Marko constraints learned from examples. Other related examples that

use time-automata to provide flexible and even improvisatory performances in coordination with

a plan are the interactive score projects, such as Antescofo [97] and Virage [98]. In such cases,
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a formal score specification allows the system to modify its performance according to expres-

sive inflection or to a musician, mostly limited to time changes within a tightly predetermined

sequence of events. This restriction makes it difficult for the system to navigate the specification

in a highly non-linear temporal fashion, i.e. allowing jumps and recombination of events in the

way in which VMO is designed.

4.3 Structural Improvisation

In this section an alternative machine improvisation mechanism based on the VMO that

is an attempt toward structured machine improvisation is proposed, where the artificial musical

agent is capable of producing musical content that has both the style of musical surface events

from the human input and a sense of structure. The style of musical surface events can be imitated

by using the basic machine improvisation algorithm as in algorithm 12 with human input. Before

continuing with the details of the proposed mechanism, the assumptions on the “sense of structure”

will first be desribed.

Two common beliefs in music research are 1) that structured sound is what distinguishes

music from noise and 2) one of the essential elements that gives rise to the sense of structure is

the interaction between expectation and surprise throughout a music piece. From a Markovian

point of view, expectation of a time series is closely related to repetition of subsequences. With

the repeated suffixes captured by the VMO, the concept of surprise is injected in a music piece

by randomly jumping between frames constrained by suffix links and introduce the concept of

expectation by creating repetitions during the improvisation. To implement the aforementioned

hypothesis, the improvisation system generates new musical content based on either the past

history of the improvisation itself or the human input. The improvisation is capable of memorizing

its own past with the introduction of another VMO, S, recording the improvisation on the fly. S is

constructed with the music content generated by the original VMO, P. During the improvisation,
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a switching mechanism is used so that the improvisation either favors itself or the human musical

input. When the current improvised phrase has longer repeated sections than that of the human

input, the improvisation favors itself, S, otherwise, the current improvised phrase will favor the

human input. The improvisation will also favor the human input when there is a new symbol

created in P. The switching algorithm is a heuristic to balance between introducing new symbols

to S given P and letting S have either longer or more repeating sections. Introducing new symbols

to S will increase the first term on the right hand side of equation (2.2) while letting S have longer

or more repeating sections will decrease the second term on the right hand side of equation (2.2).

This as a whole, will increase the IR of S, which is another indication of structuredness. The

condition for adding new symbols in S given P is straightforward. For the condition toward letting

S have either longer or more repeating sections, the heuristic is to compare the lrs of S and P at

the current navigating index. lrsP < lrsS is an indication that the improvisation itself has longer

repeating sections at the current index and that it is worthwhile to continue to improvise with itself

to create longer phrases and repeating phrases. The algorithm for the alternative improvisation

setting is in algorithm 13.

Algorithm 13 Structured Improvisation
Require: Human music input

1: Create a VMO P = p1 . . . pT with the human music input
2: Create a VMO S = s1 . . .sN with N < T with the improvisation itself
3: if lrsP[T ]< lrsS[N] and |Σ| is the same from previous update then
4: Improvise with S by algorithm 12
5: else
6: Improvise with P by algorithm 12
7: end if

The heuristics of the switching mechanism is illustrated in figure 4.7. By comparing

the lrs values for S with or without switching, one can observe that the improvisation with the

switching mechanism has longer lrs values than the one without. Instrumental solos are used

to experiment with the alternative machine improvisation setting proposed in this section. The

resulting musical outcome does have longer repeated sections of itself, which means that the
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Figure 4.7: An illustration of how the switching mechanism helps to increase the length of
repeated sections of the improvisation. The blue solid line is the lrs value for human music
input, the green dashed line is the improvised output without switching, and the red dotted line
is the improvised output with switching.

results have a better sense of high-level structure than the musical output created by improvisations

without the switching mechanism.

4.4 Improvisation with VMO-HMM

The use of a VMO for improvisation and synthesis is already introduced in [46]. The

guided music generation was made possible by specifying a query to recombine the indexed audio

or MIDI signal based on the VMO suffix structures. The limitation works introduced in previous

sections are that the query and the target (VMO-indexed) signals have to use the same alphabet,

or in other words, the same feature or type of signal. A framework analyzing symbolic music

representation (not limited to MIDI) using VMO-HMM is proposed in this section, allowing

the VMO to further expand its generative capabilities across different representations. The most

important advancement of the following work is that it allows the user to specify a query signal

that uses a different alphabet from the target signal. To be more specific, the user could now
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specify a chord label sequence as input to the improvisation system. The system then translates

the chord label sequence to pitch class profiles, which is essentially the same representation as the

midi-chromagram used in section 4.2.2. Then the translated sequence is used as the query to the

VMO to generate a new sequence in the same manner as proposed in [46] and previous sections.

In the following sections, the proposed framework is applied on jazz music to show its capability.

4.4.1 Jazz chord sequences

Musicologists have tried to capture the essence of jazz chord sequences by applying rules

of Classical harmony to understand how basic harmonic structures have been transformed in

a jazz composition. One common technique of chord substitution rule can be formalized as a

“rewriting rule” which allows transforming a subsequence of chords into another subsequence

of chords that introduces diversity, without, in principle, changing the harmonic function of the

subsequence. Indeed, although jazz harmony could be considered born from Classical harmony in

an evolutionary viewpoint, the harmonic functions of jazz chords seem to be much more complex

than those in Classical four-part chorals, because of the underlying combinatorial “game” at

play. For example, in classical theory the chord of C major and F# chord are the most “distant”

in terms of their tonal context. In jazz however, a C(7) and F#(7) are closely related through

sharing a common tri-tone axis, and may be considered interchangeable. Another common

example of a distinction between Classical and jazz interpretation of chords is the functional

role of C and C7. While in classical harmony a C7 is considered an unstable dominant chord

that is expected to resolve to an F, in jazz, C and C7 are often considered equivalent. These

examples indicate that the harmonic rules which make sense in classical harmony might not be

strictly obeyed in other tonal or modal musical styles. In a VMO-HMM model, the relations

between harmonic constructs, captured by the latent variables, depend on the previous note

aggregation phase (the feature extraction part described in section 3.3) that is based on surface

level note dynamics. The experiments in chapter 4 show that there are two main transition types
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between latent states suggesting different tonal relations and chord transitions. One of them is

the common jazz operation called the ”enrichment” of chords, either viewed as 7, 9, 11 and 13

notes, or as sustained or color notes. These enrichments are often used as special events, and

understanding the context of their application is important for allowing targeted and effective

use of such harmonic devices. In the analysis conducted in section 3.3 it is found that the same

musical notations (such as the F7 chord in “Now’s the time” example) could be split between

two clusters, where one (cluster-5 described in section 3.3) of them contains a particularly more

rich and embellished set of notes than the other. Accordingly, when a VMO-HMM is used to

generate a new chord progression by a random walk on the Markov structure between the latent

variables, such alterations, substitutions or enrichments may be controlled as part of the musical

meta-composition design.

4.4.2 Random Walks on VMO-HMM

Given different Markov transition matrices from different lrs values obtained from

algorithm 9 described in section 2.2.4.1, it is straight forward to sample latent variable sequences

treating each row in the transition matrix as a multinomial distribution conditioned on its previous

latent variable. Continuing from the analysis example used in section 3.3, given cluster-0 as the

fixed initial latent variable, each next latent variable is drawn randomly given the multinomial

distribution conditioned on the current latent variable. After the latent variable sequences are

sampled, chord labels are assigned to latent variables based on the clusters shown in figure ?? in

the same way as section 3.3. By examining the two sampled examples (figure 4.8), it could be

observed that the chord choices and temporal relations of the lower order one are freer than the

higher order one. If one focuses only on the root progression of these two example sequences,

the 1st-order sequence contains progressions such as [I,ii,VI], [I,vi,ii,V] and [IV,V,I],

while the 5th-order one contains mainly the [I,vi,ii,V,I,V] progression. Based on these

observations, the lower order Markov model indeed captures a wider variety than the higher order
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| F7 | F7 | F7 | Gm |C7([9)| F7 | D7 | Gm |C7([9)| Bb7 | C7 |F7(]11)| C7 |
(a) 1st-order

| F7 | D7 | Gm | C7 |F7(]11)| C7 |F7(]11)| F7 | D7 | Gm | C7 |F7(]11)| C7 |
(b) 5th-order

Figure 4.8: Two sampled 12-bar chord label sequences of different orders Markov transition
matrices from the VMO-HMM on the piece “Now’s the time”. It should be noted that the chord
labels are inferred by human inspection on the clusters shown in figure 3.12, not the chord labels
from figure 3.13.

Markov model but lacks repetitive structures. On the other hand, the higher order Markov model

captures more salient harmonic progressions in the music spanning multiple bars. To render

actual musical content from the chord label sequences, one simple method is to randomly select a

bar containing the midi events from the cluster associated to the latent variable. Due to space

limitation the generated scores are not shown here and could be found in the repository3. It should

be noted that since the random sampling is on the latent variable space, there is no limitation

on how the chord labels should be realized. Reshuffling the original musical content is just a

convenient way, other generative methods based on chord labels could also be used.

4.4.3 Query VMO-HMM by Chord Label Sequence

The other advantage of using the VMO-HMM is that it provides a complete setting for an

ordinary HMM Viterbi recognition algorithm [7]. A Viterbi algorithm using VMO was proposed

in [45] and chapter 2, where the transition probabilities are assumed to be a uniform distribution

on the forward links from a frame to possible next frames. In the VMO-HMM setting, the

transition probabilities between latent variables are learned from the oracle structure based on the

longest repeated suffixes of each frame.

To use the Viterbi algorithm with a VMO-HMM for music content generation, one can

specify a chord label sequence similar to the generated sequences in figure 4.8, then translate

3https://github.com/wangsix/markov improvisation
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the chord label sequence into a chroma (pitch class profile) vector sequence. To translate chord

labels to chroma vectors, one can simply use 12-dimensional binary vectors to represent 12-tone-

pitch classes. An example of such translation and comparison to the actual chroma sequence

is shown in figure 4.9. The translated chroma sequence is then used as the observation in the

Viterbi algorithm. To infer the latent variable sequence generating the observations, the emission

probability of an observation generated by a latent variable could also be simplified as the cosine

distance between the binary pitch class vector (observation) and the centroid (mean or median

of the cluster) chroma vector normalized to be a positive-valued vector which sums to 1. The

Viterbi algorithm decodes an observation sequence to a latent variable sequence. The decoded

latent variable sequence could then be used to generate new musical materials as in section 4.4.2.

As a proof of concept using the aforementioned approach generating musical contents with a user

specified chord label sequence, the chord labels from the first 12 bars in the reference MusicXml

file of “Now‘s the time” is used as the input chord label sequence to the Viterbi algorithm to

see if the decoded latent variable sequence matches the given chord labels. The goal of this

proof of concept is to see if given a version of translation between the chord labels and the pitch

class profiles, how well could the Viterbi decoder from a VMO-HMM work. The result of this

initial attempt works well since the Viterbi decoder is capable of finding the exact latent variable

sequence as the input chord label given the reduced representation from a VMO-HMM. The

testing script can also be found in the repository provided above. In figure 4.10, both the query

and the decoded chord label sequences are shown. At bar 11, although the input label from the

lead sheet specifies F7, but the Viterbi algorithm with the VMO-HMM extracted from the MIDI

accompaniment file is able to spell out F7(]11) given its different context from earlier F7s. This

observation confirms that the VMO-HMM is capable of distinguishing similar chord given their

pitch classes if they have different context in the music.
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C
D
EF
G
A
B

First 12 chroma frames from "Now`s the time." 

F7 F7 F7 F7 B-7 B-7 F7 D7 Gm C7 F7 C7

C
D
EF
G
A
B

Translated chroma frames from chord labels

Figure 4.9: The actual midi-chromagram from the MIDI accompaniment compared to the
translated query chromagram (pitch classes) from chord labels in the lead sheet.

| F7 | F7 | F7 | F7 | B[7 | B[7 | F7 | D7 | Gm | C7 | F7 | C7 |
(a) Query Chord Labels

| F7 | F7 | F7 | F7 | B[7 | B[7 | F7 | D7 | Gm | C7 | F7(]11) | C7 |
(b) Decoded Chord Labels

Figure 4.10: The query and decoded chord label sequences. All the chord labels are matched
besides bar 11, where the F7 from the lead sheet is identified as F7(]11) given the VMO-HMM.
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4.5 Discussions

Guided improvisation in music is closely related to the problem of planning and control

where flexible/dynamic strategies are desired. Control improvisation has also become an area of

interest in other domains. Specifying control signals to guide a system into a desired behavior

is common in robotics and other dynamic systems, where adding a randomized strategy or

constraining automata from examples to the generative process might add more flexibility to

a system [99, 100]. In the case of music, the need for the improvisation to conform to outside

constraints, such as partnering with other musicians, is less strictly defined and does not have any

critical safety specifications. However, undesired notes can still be quite troublesome, especially

during live performances where machines are involved. In the music alignment problem, solutions

are proposed to match the same music piece in different media such as audio, midi, score, etc

[101], but the solutions are focused on alignment, not creation. Another approach to this problem

is introducing constraints to the improvisation system, as explored in [96, 102]. Unlike the

probabilistic constraints or control imposed in [100], the constraints imposed in [102] is hard

and rule-like. Other related examples that use time-automata to provide flexible and even

improvisatory performances in coordination with a plan are the interactive score projects, such as

Antescofo [97] and Virage [98]. In such cases, a formal score specification allows the system

to modify its performance according to expressive inflection or to a musician, mostly limited to

time changes within a tightly predetermined sequence of events. This restriction makes it difficult

for the system to navigate the specification in a highly non-linear temporal fashion, i.e. allowing

jumps and the recombination of events in the way the VMO structure is designed.

Generating musical structures with mathematical formulations or computational methods

has been a recent focus in computer music. In [103], a Markov model is used to generate bar level

song structure, while a genetic algorithm is used to generate more detailed musical components in

the genre of Electronic Dance Music. In [104], multiple agents that focus on different attributes
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compete with each other to form a negotiated decision directing the musical outcome in real-time.

In [105], as an effort towards automatic articulation of musical scores into music renditions

with expressive performance characteristics, pitch class collections are used as the basic units to

decompose a piece into a structured view. Both [103, 105] are off-line systems and work on the

symbolic representation of music.

For the application where a tonal piece is guided by rhythmic content, our results could

be improved if the analysis frames are synchronized to the downbeats in the music. For each

beat-synced analysis frame, the beat phase would be calculated and this feature would describe

where significant events occur within a beat frame. This would better synchronize the rhythmic

content with the tonal content across downbeats and within each beat measure. The problem

with this is that analysis frames for each beat may be of different length because downbeats are

not always spaced evenly and reconstruction algorithms would need to be modified. Because

the beat phase feature is calculated using evenly spaced ODF samples, the feature would also

need to be modified before attempting this extension. Also, it is desirable to not only guide a

target signal with rhythmic content but also constrain harmonic or melodic progression so that

the musical outcome is natural. To achieve such an effect, a navigation algorithm working with

multiple VMOssmust be designed.

For the structured improvisation proposed in this work with VMOs, another possible

approach which is not presented here is to query the improvisation itself with pre-recorded

materials. The pre-recorded materials are treated as scores or maps for the improvisation. The

drawback of the current approach is that the navigation might be trapped in loops, and so an

escape mechanism must be formulated. A taboo list containing a recent history of visited states

could potentially solve this problem as proposed in [26].

An aspect of musical interaction that has not been addressed in this work is that in

musical practice, synchronized entries of a beat, or tightly triggered tutti sections, are a common

artistic tool. Allowing the oracle and the improviser to hit notes together after silence, or trigger
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notes sequentially in a precisely timed way is a task for future research. Another notion of

musical interaction that we have not discussed is the use of harmonic progression / variations /

substitutions as a constraint for the oracle. This can be accomplished indirectly in our current

system if the harmonic grid or the chord sequence is used as a query. We will consider in the

future, the possibility of specifying a chord progression symbolically and providing it as a query

to a recording. One problem with using such an approach is that harmonic theory and chroma

analysis of audio are difficult to reconcile. To prevent this problem, we will need to either design

an intermediate feature that is capable of bridging harmonic progression and chroma, or design a

different audio feature that more directly describes harmonic progression.

In general, these issues relate to an even more general problem that we call the “duet

problem” that appears when more or less free improvisation happens between two musicians

or between a musician and a machine. A related problem in off-line composition using MIDI /

symbolic sequences was encountered earlier in composing “Composer Duets”, briefly described

in [106]. The idea there was to have the oracle attempt to match a polyphonic pattern from a

duet recording. We do not exactly have this type of situation in audio, since usually, we do not

have multi-track audio available for oracle training, so that one track could be used as the query

while another can be used as improvisation material. In the future, we may experiment with

creating recordings where two tracks are produced specifically for the accompaniment task or

use multi-channel MIDI files. In this case, guidance of the oracle output on one track will be

achieved by querying a second related track.

Chapter 4 is adapted from published materials in ”Guided Music Synthesis with Variable

Markov Oracle”. Wang, Cheng-i. & Dubnov, Shlomo. Tenth Artificial Intelligence and Interactive

Digital Entertainment Conference, 2014, ”Machine Improvisation with Variable Markov Oracle:

Toward Guided and Structured Improvisation”. Wang, Cheng-i.; Hsu, Jennifer. & Dubnov,

Shlomo. Computers in Entertainment (CIE), ACM, 2016, 14, 4 and ”Context-Aware Hidden

Markov Models of Jazz Music with Variable Markov Oracle”. Wang, Cheng-i. & Dubnov, Shlomo.
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5th International Workshop on Musical Metacreation (MUME 2017) at the Eight International

Conference on Computational Creativity, ICCC 2017, 2017.
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Appendix A

Human-Gesture Applications

A.1 3-D Gesture Recognition and Retrieval

The goal for this experiment is to test the performance of algorithm 6. The problem is

formalized as follows; given a collection of time series data of the same type (e.g. audio, video,

sensory data, etc) categorized into different categories (or types, genres, labels, etc) and a query

time series not included in the collection, use the query time series to search over the collection

and return multiple matches according to the query. The returned matches are deemed correct if

they belongs to the same category as the query.

The MSRC-12 Kinect gesture dataset [107] is chosen for this experiment. This dataset

contains 6244 annotated instances of both iconic and metaphoric human full body gestures

recorded using XBox Kinect by 30 participants. The sample rate of the 3D joints is 30Hz and

each frame of the gesture instance is stored as a 3D 20-joint skeleton. We treat the sequence of

skeleton frames as the query time series, with R ∈ R3×20 . Snapshots of example skeleton frames

are shown in figure A.1. The length of each gesture sequence is between 13∼ 492 frames, and

each participant performed 8∼ 20 times for each gesture.

The experiment follows the leave-one-out principle; first all the instances are pre-processed
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Figure A.1: Example frames of 3-D skeletal joints. There are 20 joints, making each frames
having a dimension of 60.

Table A.1: Number of instances from the subset of the MSRC-12 dataset. These actions were
meant for gaming scenarios.

Gesture Participant Total Number
A B C D E

Crouch or hide 20 20 21 21 20 102
Shoot with a pistol 20 10 22 9 20 81
Throw an object 9 10 10 20 22 71
Change weapon 19 20 20 20 20 99
Kick to attack 24 10 20 9 20 83

Put on a goggle 10 11 12 10 20 63

to store in VMO structures, then each time one instance from the collection is set aside as the

query, next we use the skeleton sequence of the query as R in algorithm 6 to match all the rest

instances in the collection stored as VMOs. Algorithm 6 returns the 10 entries with the lowest

cost, C, for each query. Every instance is used as a query once in this experiment. A smaller

subset instead of the full collection is chosen due to the large amount of instances. The subset

chosen contains the 6 iconic gestures out of the 12 gestures performed by 5 randomly chosen

participants from the full collection. The total number of instances of the subset is 499. A list of

the details of the subset is provided in table A.1.

The result of the leave-one-out query-return experiment is listed in table A.2 and table A.3.

In table A.2, a retrieved match is considered correct if it belongs to the same category of the query
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Table A.2: Precision for Kinect skeletal gesture retrieval - Consider type of gesture only - (upper
rows) performances using VMO and (lower three rows) with other approaches.

Gesture Precision (%)
Crouch or hide 99.9

Shoot with a pistol 90.6
Throw an object 84.6
Change weapon 98.4
Kick to attack 92.7

Put on a goggle 92.2
Avg.±std. 93.1±5
DTW[108] 82.74
HMM[108] 91.81

Cov3DJ-SVM[109] 93.6

Table A.3: Precision for Kinect skeletal gesture retrieval - Both type and participant are
considered

Gesture Participant Precision (%)
A B C D E

Crouch or hide 99 89.5 87.1 86.2 98.5 92±5.5
Shoot with a pistol 100 85 100 33.3 99.5 83.5±25
Throw an object 63.3 83 81 94.5 86.8 81.7±10
Change weapon 100 98.5 100 88.5 100 97.4±4.4
Kick to attack 100 90 100 51.1 95 87.2±18

Put on a goggle 90 81.8 100 57 100 85.7±15
Avg.±std. 92±13 87.9±5.6 94.6±7.7 68.4±22.5 96.6±4.7 Avg.±std.
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for each of the 10 retrievals of the query, then the precision for one type of gesture is calculated

as the counts of correct matches divided by the total number of queries from that type of gesture.

The result in table A.2 is compared to [109], the state of the art on reported precision on the

MSRC-12 dataset so far. The precision achieved using VMO query-matching algorithm (93.1%)

reached a comparable level to [109] (93.6%) on the subset chosen in this experiment.

In [109], a feature called Cov3DJ is proposed where the covariances between joints are

used, then a SVM is trained to recognize testing gestures. SVM with Cov3DJ reaches the state of

art performance but since Cov3DJ has to be calculated over all the data points of each gesture,

it is not possible for on-line applications. We also compare our results to the HMM and DTW

and experiments done in [108] on the MSRC-12 dataset. DTW and HMM are both baseline

approaches for time-series query-retrieval experiments. In [108], the feature used for DTW and

HMM is similar to ours which is the time series data from the gestures. DTW performs the worst

among VMO, HMM and itself with 82.75% accuracy. The relatively lower accuracy with DTW in

comparison to the other two approaches is caused by the fact that DTW does not allow the query

gesture having “jitter” behaviors, since DTW assumes linear time relations between the query and

target gestures. HMM has similar performance to VMO. The estimation of the number of hidden

states in an HMM is found by exhaustively searching over a range of possible values which in a

sense is similar to finding the optimal θ value for VMO, but the EM algorithm for estimating the

HMM parameters has to iterate over each gesture for several times until convergence while the

construction for VMO requires only one pass through each gesture, thus making HMM relatively

inefficient comparing to VMO.

In table A.3, the criteria for correct match is stricter than the previous experiment in the

sense that we only consider a match to be correct if both the gesture and the participant who

performed the gesture are the same as the query. From the results in table A.3, the observation is

that given the simple frame by frame 3-D skeletal joint data points, the query-matching algorithm

not only is able to retrieve the same type of gesture, but is also able to retrieve the gesture that

94



performed by the same participant who did the query gesture. This result implies a possible

solution to user identification problem in gaming console or mobile devices, which was not

addressed for the MSRC-12 dataset in previous research.

A.2 Gesture Following

Based on the online query following algorithms proposed in section 2.2.3.2, it is possible

to track where in the stored multivariate time series that the newly input observation is closest

to. A visualization of such query following is depicted in figure A.2. In figure A.2, the left sub

figure shows the result of the gesture following (red dashed line) based on a stored gesture (blue

line) given unknown input observations (green dotted line). The right subfigure of figure A.2

shows how the gesture following result (red dashed line) corresponds to its original sequence

(blue line) in terms of the matching in time (as of frame indices). The original sequence shown

in the figure is part of a longer sequence where multiple gestures sampled from the MSRC-12

dataset were concatenated into one longer sequence to resemble how it would be used in real

world performance/gaming environment. This long time series is then projected onto its first

principal component for visualization. From the example shown in figure A.2, we observe that

the on-line query following algorithm is able to find the correct segment in the stored gesture

matching the input observations. Though due to visualization purposes, we omit the rest of the

stored gesture (blue line), where the other gestures lie in the original time series, in figure A.2.

Also we notice that from time index evolution in the right subfigure of figure A.2, the query

following is consistent with the temporal relations of the stored gesture (the red dashed line

mostly follows the diagonal with time stretch or compression movements indicated by nearly

vertical or horizontal lines).

We combine the aforementioned on-line query following algorithms into an interactive

dance/graphics system depicted in figure A.4. We use VMO as the mapping interface between
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Figure A.2: (Left) Projected trajectory of the stored gesture (blue), input stream (green) and
gesture following result (red). (Right) Time indices evolution of the gesture following result
(red) compared to original gesture (blue).

the input dance movements and graphics/interaction/effects rendered during a performance.

We implement VMO and the proposed algorithms in C++ within the OPENFRAMEWORKS

open source environment (http://openframeworks.cc/). Snapshots of the VMO gesture following

working alongside computer-generated graphics in OPENFRAMEWORKS are depicted in figure A.5.

The dance movements are captured by identifying the infrared reflector tied on the dancer‘s joints

using the Kinect camera. We show an example of the raw depth image along with the identified

marker in figure A.3. In figure A.5, the trajectory represents the stored gesture (sequence of 2D

points) with different colors indicating mappings to different computer-generated graphics. The

bigger circle is the input marker and the green small circle along the trajectory is the current

gesture-following position on the stored gesture corresponding to the input marker. In this

demo, the system generates different graphics when the gesture following position (green circle)

traverses onto different segments of the stored gesture represented by different colors.

For the system proposed in this appendix, we consider a scenario where the rehearsal or

practice of the dancer is recorded and stored as VMO. During a live performance the system tracks

the input dance movements and matches them to the gestures stored in VMO via algorithm 7 and 8.

For graphics/effects/interaction rendering, the temporal mapping between live dance movements
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Figure A.3: The green rectangles represent input identified markers on the dancer‘s ankle by
processing the infrared images from the Kinect camera.

Figure A.4: Diagram of the proposed interactive dance/graphics system using VMO. The system
would be capable of using guiding or generating multimedia contents with a live query input.
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to the stored gestures by gesture following allows the evolvement of the incoming time series

scrubbing another time series, such as video, audio or rendering function parameters that varies

in time. Other details of this interactive dance/graphics system is documented in [110].

Appendix A is adapted from published materials in ”Variable Markov Oracle: A Novel

Sequential Data Points Clustering Algorithm with Application to 3D Gesture Query-Matching”.

Wang, Cheng-i. & Dubnov, Shlomo. International Symposium on Multimedia, 2014, 215-222 and

”The Variable Markov Oracle: Algorithms for Human Gesture Applications”. Wang, Cheng-i. &

Dubnov, Shlomo. IEEE MultiMedia, IEEE, 2015, 22, 52-67.
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Figure A.5: Snapshots of the OPENFRAMEWORKS application where VMO and the gesture
following algorithms are embedded. Two different graphics are shown here. See text for details.
(Top) Particle emission showing the trace of the input marker along the stored gesture trajectory.
(Bottom) Grid particles interact with the input marker.
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Appendix B

Mumento

B.1 Concert Proposal for MuMe 2017

• Title: Mumento

• Musical and technical creation: Shlomo Dubnov, Cheng-i Wang and Jaime Arias

• Conceptual Design: Shlomo Dubnov

• Duration: Variable, but preferably 9 12 minutes

• Instrumentation: To be determined with the performers, possibly based on ”the shape of

distance[5]”: 2 flutes, clarinet, viola and percussion. See https://chambercartel.bandcamp.

com/album/the-shape-distance

B.1.1 Description of the work

The proposed performance uses a novel structured improvisation system called VMO-

score which is a tool to generate an interactive score to control the improvisation according to

larger structures found in an audio recording. ”Mumento” is designed to explore the question
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of musical structure by structuring two timelines - one of the reference recording recombined

and sequenced by the machine in reverse, and one of the live performer, progressing forward on

same music materials. This structure design borrows from similar techniques used in cinema,

questioning the relation between order of presentation and the natural arrow of time of the music

materials, also hinting at a structure of film bearing a resembling name.

B.1.2 Description of the technology behind VMO-Score

The VMO-Score system [111] takes an audio file as an input and uses the tool VMO [45]

for improvisation. In addition, VMO is also used to do a segmentation analysis of the input [112].

Once the tool has identified possible natural transitions between sections with similar musical

content, it translates the musical structure into a Petri net [113] model in order to provide a higher,

more intuitive and formal representation of this structure. Therefore, the artist can modify the

structure of the Petri net in order to control the improvisation by adding temporal and logical

constraints. VMO-Score also generates an interactive score based on the Petri net structure for

the inter-media sequencer i-score [114]. This tool provides a complete graphical interface for

structuring and performing in real-time the improvisation. Such improvisation is carried out by the

Max interface called PyOracle which is controlled by i-score using OSC messages [27]. Musically

speaking, the reference audio recording is used as raw material for creating a semi-open musical

form for an human-machine improvisation. The tool allows design of improvisation where tighter

relations are established between the musician and the machine based on pre-determined music

materials, a pre-designed structure, and careful planning of transition times and conditions ahead

of the stage performance.
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B.1.3 Examples of previous performances using VMO-Score

Examples of improvisation with ”parallel” time (unlike the proposed ”Mumento” design

explained above), can be seen on:

• https://youtu.be/AvAlBux-nM4

• https://youtu.be/oT9e6culX40

B.1.4 Novel Technological Elements in the current work

In the previous performances, the triggers for chaining the improvisation segment and

progression and branching of the musical form were initiated by the performer. For reasons

of convenience, instead of using pedals or other specific triggers, the musician signaled to the

computer operator when and which transitions to follow. In the proposed piece we plan to explore

a machine listening element by adding feature extraction and detectors for specific musical

materials that would signal a transition to the machine. This change will allow a fully autonomous

machine operation, adding to the expressive freedom of the man-machine duo, while maintaining

pre-negotiated rules of discourse. Accordingly, the new element we are planning to include is a

live machine listening component that will be active during the performance that will control the

transitions/form in autonomous manner.

B.1.5 Preparing for the MuMe 2017 Concert

We plan to contact some of the players from Chamber Cartel ensemble (http://www.

chambercartel.com/) to use some of their musical recordings as the baseline musical material for

structuring the new composition. As explained in the section about the Mumento structure, the

recording, after segmentation, will be re-arranged in a way that reverses the segmental sequence
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with slight overlap. This kind of design is possible thanks to the segmentation tools and the

i-score / petri-net programming flexibility. The ideal situation for designing the piece would be to

prepare the improvisation based on an accompaniment sound file that the performers know well.

It could be an example from their own composition or prior improvisation, or some sound track

that they know well. Such choice of materials allows tighter integration between the computer

part and the improviser and better planning of the overall form.

B.2 Scores and performance plan

The instruction for each musician are shown in figure B.2, B.3, B.4 and B.5. The instruc-

tion for each musician is split into 4 parts, with each part containing performance instructions

taken from the piece “Domination of Black” by Drew Backer. The instructions on each of the 4

parts are based on materials from rehearsal marks A-B, C, E and F on the score.

For the computer part, a recording of the “Domination of Black” (https://soundcloud.

com/drewbakermusic/domination-of-black) is segmented using the structural segmentation al-

gorithms proposed in section 3.2.2.1. Two versions of segmentation are extracted, one with

chromagram while the other with constant-Q transformed spectrogram (CQT). The segments

from the segmentation algorithms are then fed into the basic machine improvisation algorithm,

algorithm 12, during the performance to generate new musical materials on the fly. The segments

used during the performance are manually selected and ordered reversely to their original order.

In figure B.1, the reversely ordered machine improvisation segment are shown. For example,

c6 refers to the 6th segments from segmentation with CQT, q4 for the 4th segments from the

chromagram segmentation, etc. Also the timings for when the ensemble should start, stop and

advance to the next part is shown. In the timeline figure it can be seen that while the human

ensemble following the instructions are advancing to different parts in the same order as the

original score, the computer generated materials are based on segments that are ordered reversely
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c6 c6’

CA-B

c6’’ q4

E

c6’’’ q3

F

q2 q1

Computer

Ensemble

20’’  40’’ 20’’ 20’’ 40’’  32’’

 8’’

24’’80’’-120” 44’’  16’’

Figure B.1: The timeline of the “Mumento” piece, indicating when the musicians should start
and stop playing, also has information as to which segments are being improvised upon by
VMO.

to the order in the original score.

The actual performance took place at the MuMe 2017 concert in Atlanta, Georgia, on

June 19th, 2017. The venue was the Mammal Gallery. The ensemble was the Chamber Cartel

(http://www.chambercartel.com/) lead by percussionist Caleb Herron. A video recording of the

performance can be found at https://www.youtube.com/watch?v=xGr5mX7mmIE.
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NOT PLAYING FOR FIRST SECTION 

(COMPUTER IMPROV. - INSTRUMENTAL W/ COMPUTER - COMPUTER SOLO)

(a) A-B

AFTER COMPUTER ENTERS, KEEP PLAYING FOR 10 BARS (~40’)

FREE TO ENTER AND EXIT ON ANY NOTE BUT NO SILENCES, KEEP BLENDING

(EXIT INDIVIDUALLY)

(b) C

TUTTI - ENTER TOGETHER AND KEEP PRECISE COUNT WITH OTHER MUSICIANS

E

(c) E

WAIT FOR CONDUCTOR 
SIGNAL TO MOVE TO 
THE NEXT STAVE

TUTTI

(d) F

Figure B.2: The 4-part instructions for viola. The materials for each part are chosen, gathered, re-
arranged from corresponding rehearsal marks [A-B, C, E, F] in the original score of “Domination
of Black”.
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COMPUTER IMPROV.  ~ 20’’ SIL.

WAIT FOR CONDUCTOR SIGNAL OR PLAY ONCE AFTER CLARINET AND MARIMBA 
ALREADY ENTERED TO SIGNAL POSSIBLE ENDING OF SECTION

MAY REPEAT IF CONDUCTOR SIGNALS

(a)

AFTER COMPUTER ENTERS, KEEP PLAYING FOR 10 BARS (~40’)

FREE TO ENTER AND EXIT ON ANY NOTE BUT NO SILENCES, KEEP BLENDING

(EXIT INDIVIDUALLY)

(b)

TUTTI - ENTER TOGETHER AND KEEP PRECISE COUNT WITH OTHER MUSICIANS

(c)

WAIT FOR CONDUCTOR 
SIGNAL TO MOVE TO 
THE NEXT STAVE

TUTTI

(d)

Figure B.3: The 4-part instructions for cello. The materials for each part are chosen, gathered, re-
arranged from corresponding rehearsal marks [A-B, C, E, F] in the original score of “Domination
of Black”.
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COMPUTER IMPROV.  ~ 20’’ SIL.

NO NEED TO ENTER TOGETHER BUT KEEP LISTENING AND CHANGE NOTES IN 
RESPONSE TO THE COMPUTER OR MARIMBA OR INITIATE CHANGE

MAY REPEAT UNTIL CONDUCTOR SIGNALS SILENCE

(a)

AFTER COMPUTER ENTERS, KEEP PLAYING FOR 10 BARS (~40’)

FREE TO ENTER AND EXIT ON ANY NOTE BUT NO SILENCES, KEEP BLENDING

(EXIT INDIVIDUALLY)

(b)

TUTTI - ENTER TOGETHER AND KEEP PRECISE COUNT WITH OTHER MUSICIANS

(c)

WAIT FOR CONDUCTOR 
SIGNAL TO MOVE TO 
THE NEXT STAVE

TUTTI

(d)

Figure B.4: The 4-part instructions for bass clarinet. The materials for each part are chosen,
gathered, re-arranged from corresponding rehearsal marks [A-B, C, E, F] in the original score of

“Domination of Black”.
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COMPUTER IMPROV.  ~ 20’’ SIL.

NO NEED TO ENTER TOGETHER BUT KEEP LISTENING AND CHANGE NOTES IN 
RESPONSE TO THE COMPUTER OR B. CLARINET OR INITIATE CHANGE

MAY REPEAT UNTIL CONDUCTOR SIGNALS SILENCE

(a)

AFTER COMPUTER ENTERS, KEEP PLAYING FOR 10 BARS (~40’)

FREE TO ENTER AND EXIT ON ANY NOTE BUT NO SILENCES, KEEP BLENDING

(EXIT INDIVIDUALLY)

(b)

TUTTI - ENTER TOGETHER AND KEEP PRECISE COUNT WITH OTHER MUSICIANS

E mallet

(c)

WAIT FOR CONDUCTOR 
SIGNAL TO MOVE TO 
THE NEXT STAVE

TUTTI

(d)

Figure B.5: The 4-part instructions for percussion. The materials for each part are chosen,
gathered, re-arranged from corresponding rehearsal marks [A-B, C, E, F] in the original score of

“Domination of Black”.
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Acronyms

AO Audio Oracle. 3, 5–7, 9–11, 16, 62–65, 67, 68, 71, Glossary: Audio Oracle

CRF Linear Chain Conditional Random Field. 2

DTW Dynamic Time Warping. 3

FO Factor Oracle. 3, 5–11, 16, 28, 62–64, 78, Glossary: Factor Oracle

HMM Hidden Markov Model. 2

IR Information Rate. ix, 5, 15–19, 28, 34, 47

lrs length of longest repeated suffixes. 9, 16–18, 28, 31, 34

PIR Predictive Information Rate. 4, 5, 17

sfx suffix link. 8, 11, 28, 31, Glossary: Suffix link

SSM Self-similarity matrix. 44–47, 49–51, 55

VMO Variable Markov Oracle. ix, 3, 6, 7, 10–12, 14–17, 19, 21–23, 25–29, 31, 32, 34, 36–38,

40–43, 45–48, 54–56, 58, 64, 65, 67, 68, 71, 79, 81, 82, 84, 88, Glossary: Variable Markov

Oracle
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Glossary

Audio Oracle A signal extension of the Factor Oracle. 3, 7, 62, 109

Factor Oracle A compressed suffix tree on a symbolic sequence. 3, 7, 62, 109

Suffix link A back ward pointer pointing back in time to where the longest repeated suffix

happend. 8, 31, 109

Variable Markov Oracle A compressed suffix tree structure on continuous time-series by com-

bining Factor Oracle and Audio Oracle. ix, 3, 7, 31, 64, 109
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[92] B. Lévy, “Visualising omax,” Master II ATIAM. UPMC-IRCAM, 2009.

[93] I. Schankler, J. B. Smith, A. R. François, and E. Chew, Emergent formal structures of
factor oracle-driven musical improvisations. Springer, 2011.

[94] J. Nika, J. Echeveste, M. Chemillier, and J.-L. Giavitto, “Planning human-computer
improvisation,” in International Computer Music Conference, p. 330, 2014.

117



[95] A. R. François, E. Chew, and D. Thurmond, “Visual feedback in performer-machine
interaction for musical improvisation,” in Proceedings of the 7th international conference
on New interfaces for musical expression, pp. 277–280, ACM, 2007.

[96] P. Roy and F. Pachet, “Enforcing meter in finite-length markov sequences.,” in Twenty-
Seventh AAAI Conference on Artificial Intelligence, 2013.

[97] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard, “Operational semantics of a
domain specific language for real time musician–computer interaction,” Discrete Event
Dynamic Systems, vol. 23, no. 4, pp. 343–383, 2013.

[98] A. Allombert, R. Marczak, M. Desainte-Catherine, P. Baltazar, L. Garnier, and B. Yeti,
“Virage: Designing an interactive intermedia sequencer from users requirements and
theoretical background,” in Proceedings of the International Computer Music Conference,
2010.

[99] I. Akkaya, D. J. Fremont, R. Valle, A. Donzé, E. A. Lee, and S. A. Seshia, “Control
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